@@ -16,6 +16,9 @@ |
||
| 16 | 16 | */ |
| 17 | 17 | protected $dimension; |
| 18 | 18 | |
| 19 | + /** |
|
| 20 | + * @param integer $dimension |
|
| 21 | + */ |
|
| 19 | 22 | public function __construct($dimension) |
| 20 | 23 | { |
| 21 | 24 | if ($dimension < 1) { |
@@ -25,6 +25,9 @@ |
||
| 25 | 25 | */ |
| 26 | 26 | protected $output; |
| 27 | 27 | |
| 28 | + /** |
|
| 29 | + * @param ActivationFunction $activationFunction |
|
| 30 | + */ |
|
| 28 | 31 | public function __construct(?ActivationFunction $activationFunction = null) |
| 29 | 32 | { |
| 30 | 33 | $this->activationFunction = $activationFunction ?: new ActivationFunction\Sigmoid(); |
@@ -30,7 +30,7 @@ |
||
| 30 | 30 | } |
| 31 | 31 | |
| 32 | 32 | /** |
| 33 | - * @param mixed $targetClass |
|
| 33 | + * @param integer $targetClass |
|
| 34 | 34 | */ |
| 35 | 35 | public function backpropagate(array $layers, $targetClass): void |
| 36 | 36 | { |
@@ -1,6 +1,6 @@ discard block |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\FeatureExtraction; |
| 6 | 6 | |
@@ -13,7 +13,7 @@ discard block |
||
| 13 | 13 | */ |
| 14 | 14 | private $idf; |
| 15 | 15 | |
| 16 | - public function __construct(?array $samples = null) |
|
| 16 | + public function __construct(? array $samples = null) |
|
| 17 | 17 | { |
| 18 | 18 | if ($samples) { |
| 19 | 19 | $this->fit($samples); |
@@ -1,6 +1,6 @@ discard block |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\FeatureExtraction; |
| 6 | 6 | |
@@ -73,7 +73,7 @@ discard block |
||
| 73 | 73 | } |
| 74 | 74 | } |
| 75 | 75 | |
| 76 | - private function transformSample(string &$sample): void |
|
| 76 | + private function transformSample(string & $sample): void |
|
| 77 | 77 | { |
| 78 | 78 | $counts = []; |
| 79 | 79 | $tokens = $this->tokenizer->tokenize($sample); |
@@ -1,6 +1,6 @@ discard block |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\CrossValidation; |
| 6 | 6 | |
@@ -61,7 +61,7 @@ discard block |
||
| 61 | 61 | return $this->testLabels; |
| 62 | 62 | } |
| 63 | 63 | |
| 64 | - protected function seedGenerator(?int $seed = null): void |
|
| 64 | + protected function seedGenerator(?int $seed = null) : void |
|
| 65 | 65 | { |
| 66 | 66 | if (null === $seed) { |
| 67 | 67 | mt_srand(); |
@@ -1,6 +1,6 @@ discard block |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Math\Statistic; |
| 6 | 6 | |
@@ -112,7 +112,7 @@ discard block |
||
| 112 | 112 | * |
| 113 | 113 | * @param array|null $means |
| 114 | 114 | */ |
| 115 | - public static function covarianceMatrix(array $data, ?array $means = null) : array |
|
| 115 | + public static function covarianceMatrix(array $data, ? array $means = null) : array |
|
| 116 | 116 | { |
| 117 | 117 | $n = count($data[0]); |
| 118 | 118 | |
@@ -1,12 +1,12 @@ |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Metric; |
| 6 | 6 | |
| 7 | 7 | class ConfusionMatrix |
| 8 | 8 | { |
| 9 | - public static function compute(array $actualLabels, array $predictedLabels, ?array $labels = null) : array |
|
| 9 | + public static function compute(array $actualLabels, array $predictedLabels, ? array $labels = null) : array |
|
| 10 | 10 | { |
| 11 | 11 | $labels = $labels ? array_flip($labels) : self::getUniqueLabels($actualLabels); |
| 12 | 12 | $matrix = self::generateMatrixWithZeros($labels); |
@@ -1,6 +1,6 @@ discard block |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\NeuralNetwork\Network; |
| 6 | 6 | |
@@ -132,7 +132,7 @@ discard block |
||
| 132 | 132 | $this->addLayer(new Layer($nodes, Input::class)); |
| 133 | 133 | } |
| 134 | 134 | |
| 135 | - private function addNeuronLayers(array $layers, ?ActivationFunction $activationFunction = null): void |
|
| 135 | + private function addNeuronLayers(array $layers, ?ActivationFunction $activationFunction = null) : void |
|
| 136 | 136 | { |
| 137 | 137 | foreach ($layers as $neurons) { |
| 138 | 138 | $this->addLayer(new Layer($neurons, Neuron::class, $activationFunction)); |