@@ -1,6 +1,6 @@ |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Classification\Ensemble; |
| 6 | 6 | |
@@ -1,6 +1,6 @@ |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Classification\Ensemble; |
| 6 | 6 | |
@@ -1,6 +1,6 @@ discard block |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Classification\Linear; |
| 6 | 6 | |
@@ -64,7 +64,7 @@ discard block |
||
| 64 | 64 | protected function runTraining(array $samples, array $targets) |
| 65 | 65 | { |
| 66 | 66 | // The cost function is the sum of squares |
| 67 | - $callback = function ($weights, $sample, $target) { |
|
| 67 | + $callback = function($weights, $sample, $target) { |
|
| 68 | 68 | $this->weights = $weights; |
| 69 | 69 | |
| 70 | 70 | $output = $this->output($sample); |
@@ -1,6 +1,6 @@ discard block |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Classification\Linear; |
| 6 | 6 | |
@@ -193,7 +193,7 @@ discard block |
||
| 193 | 193 | * The gradient of the cost function to be used with gradient descent: |
| 194 | 194 | * ∇J(x) = -(y - h(x)) = (h(x) - y) |
| 195 | 195 | */ |
| 196 | - $callback = function ($weights, $sample, $y) use ($penalty) { |
|
| 196 | + $callback = function($weights, $sample, $y) use ($penalty) { |
|
| 197 | 197 | $this->weights = $weights; |
| 198 | 198 | $hX = $this->output($sample); |
| 199 | 199 | |
@@ -224,7 +224,7 @@ discard block |
||
| 224 | 224 | * The gradient of the cost function: |
| 225 | 225 | * ∇J(x) = -(h(x) - y) . h(x) . (1 - h(x)) |
| 226 | 226 | */ |
| 227 | - $callback = function ($weights, $sample, $y) use ($penalty) { |
|
| 227 | + $callback = function($weights, $sample, $y) use ($penalty) { |
|
| 228 | 228 | $this->weights = $weights; |
| 229 | 229 | $hX = $this->output($sample); |
| 230 | 230 | |
@@ -256,7 +256,6 @@ |
||
| 256 | 256 | * |
| 257 | 257 | * The probability is simply taken as the distance of the sample |
| 258 | 258 | * to the decision plane. |
| 259 | - |
|
| 260 | 259 | * @param mixed $label |
| 261 | 260 | */ |
| 262 | 261 | protected function predictProbability(array $sample, $label) : float |
@@ -1,6 +1,6 @@ discard block |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\DimensionReduction; |
| 6 | 6 | |
@@ -146,7 +146,7 @@ discard block |
||
| 146 | 146 | |
| 147 | 147 | // Calculate overall mean of the dataset for each column |
| 148 | 148 | $numElements = array_sum($counts); |
| 149 | - $map = function ($el) use ($numElements) { |
|
| 149 | + $map = function($el) use ($numElements) { |
|
| 150 | 150 | return $el / $numElements; |
| 151 | 151 | }; |
| 152 | 152 | $this->overallMean = array_map($map, $overallMean); |
@@ -1,6 +1,6 @@ |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\DimensionReduction; |
| 6 | 6 | |
@@ -65,24 +65,24 @@ |
||
| 65 | 65 | private $V = []; |
| 66 | 66 | |
| 67 | 67 | /** |
| 68 | - * Array for internal storage of nonsymmetric Hessenberg form. |
|
| 69 | - * |
|
| 70 | - * @var array |
|
| 71 | - */ |
|
| 68 | + * Array for internal storage of nonsymmetric Hessenberg form. |
|
| 69 | + * |
|
| 70 | + * @var array |
|
| 71 | + */ |
|
| 72 | 72 | private $H = []; |
| 73 | 73 | |
| 74 | 74 | /** |
| 75 | - * Working storage for nonsymmetric algorithm. |
|
| 76 | - * |
|
| 77 | - * @var array |
|
| 78 | - */ |
|
| 75 | + * Working storage for nonsymmetric algorithm. |
|
| 76 | + * |
|
| 77 | + * @var array |
|
| 78 | + */ |
|
| 79 | 79 | private $ort; |
| 80 | 80 | |
| 81 | 81 | /** |
| 82 | - * Used for complex scalar division. |
|
| 83 | - * |
|
| 84 | - * @var float |
|
| 85 | - */ |
|
| 82 | + * Used for complex scalar division. |
|
| 83 | + * |
|
| 84 | + * @var float |
|
| 85 | + */ |
|
| 86 | 86 | private $cdivr; |
| 87 | 87 | private $cdivi; |
| 88 | 88 | |
@@ -1,6 +1,6 @@ discard block |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | /** |
| 5 | 5 | * Class to obtain eigenvalues and eigenvectors of a real matrix. |
| 6 | 6 | * |
@@ -842,7 +842,7 @@ discard block |
||
| 842 | 842 | |
| 843 | 843 | // Always return the eigenvectors of length 1.0 |
| 844 | 844 | $vectors = new Matrix($vectors); |
| 845 | - $vectors = array_map(function ($vect) { |
|
| 845 | + $vectors = array_map(function($vect) { |
|
| 846 | 846 | $sum = 0; |
| 847 | 847 | for ($i = 0; $i < count($vect); ++$i) { |
| 848 | 848 | $sum += $vect[$i] ** 2; |
@@ -1,6 +1,6 @@ |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Math\Statistic; |
| 6 | 6 | |
@@ -1,6 +1,6 @@ |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\NeuralNetwork\ActivationFunction; |
| 6 | 6 | |