@@ -1,6 +1,6 @@ discard block |
||
1 | 1 | <?php |
2 | 2 | |
3 | -declare(strict_types=1); |
|
3 | +declare(strict_types = 1); |
|
4 | 4 | |
5 | 5 | namespace Phpml\DimensionReduction; |
6 | 6 | |
@@ -161,20 +161,20 @@ discard block |
||
161 | 161 | switch ($this->kernel) { |
162 | 162 | case self::KERNEL_LINEAR: |
163 | 163 | // k(x,y) = xT.y |
164 | - return function ($x, $y) { |
|
164 | + return function($x, $y) { |
|
165 | 165 | return Matrix::dot($x, $y)[0]; |
166 | 166 | }; |
167 | 167 | case self::KERNEL_RBF: |
168 | 168 | // k(x,y)=exp(-γ.|x-y|) where |..| is Euclidean distance |
169 | 169 | $dist = new Euclidean(); |
170 | 170 | |
171 | - return function ($x, $y) use ($dist) { |
|
171 | + return function($x, $y) use ($dist) { |
|
172 | 172 | return exp(-$this->gamma * $dist->sqDistance($x, $y)); |
173 | 173 | }; |
174 | 174 | |
175 | 175 | case self::KERNEL_SIGMOID: |
176 | 176 | // k(x,y)=tanh(γ.xT.y+c0) where c0=1 |
177 | - return function ($x, $y) { |
|
177 | + return function($x, $y) { |
|
178 | 178 | $res = Matrix::dot($x, $y)[0] + 1.0; |
179 | 179 | |
180 | 180 | return tanh($this->gamma * $res); |
@@ -184,7 +184,7 @@ discard block |
||
184 | 184 | // k(x,y)=exp(-γ.|x-y|) where |..| is Manhattan distance |
185 | 185 | $dist = new Manhattan(); |
186 | 186 | |
187 | - return function ($x, $y) use ($dist) { |
|
187 | + return function($x, $y) use ($dist) { |
|
188 | 188 | return exp(-$this->gamma * $dist->distance($x, $y)); |
189 | 189 | }; |
190 | 190 | |
@@ -218,7 +218,7 @@ discard block |
||
218 | 218 | protected function projectSample(array $pairs): array |
219 | 219 | { |
220 | 220 | // Normalize eigenvectors by eig = eigVectors / eigValues |
221 | - $func = function ($eigVal, $eigVect) { |
|
221 | + $func = function($eigVal, $eigVect) { |
|
222 | 222 | $m = new Matrix($eigVect, false); |
223 | 223 | $a = $m->divideByScalar($eigVal)->toArray(); |
224 | 224 |
@@ -1,6 +1,6 @@ discard block |
||
1 | 1 | <?php |
2 | 2 | |
3 | -declare(strict_types=1); |
|
3 | +declare(strict_types = 1); |
|
4 | 4 | |
5 | 5 | namespace Phpml\CrossValidation; |
6 | 6 | |
@@ -62,7 +62,7 @@ discard block |
||
62 | 62 | |
63 | 63 | abstract protected function splitDataset(Dataset $dataset, float $testSize); |
64 | 64 | |
65 | - protected function seedGenerator(?int $seed = null): void |
|
65 | + protected function seedGenerator(?int $seed = null) : void |
|
66 | 66 | { |
67 | 67 | if ($seed === null) { |
68 | 68 | mt_srand(); |
@@ -1,6 +1,6 @@ discard block |
||
1 | 1 | <?php |
2 | 2 | |
3 | -declare(strict_types=1); |
|
3 | +declare(strict_types = 1); |
|
4 | 4 | |
5 | 5 | namespace Phpml\FeatureExtraction; |
6 | 6 | |
@@ -13,7 +13,7 @@ discard block |
||
13 | 13 | */ |
14 | 14 | private $idf = []; |
15 | 15 | |
16 | - public function __construct(?array $samples = null) |
|
16 | + public function __construct(? array $samples = null) |
|
17 | 17 | { |
18 | 18 | if ($samples) { |
19 | 19 | $this->fit($samples); |
@@ -1,12 +1,12 @@ |
||
1 | 1 | <?php |
2 | 2 | |
3 | -declare(strict_types=1); |
|
3 | +declare(strict_types = 1); |
|
4 | 4 | |
5 | 5 | namespace Phpml\Metric; |
6 | 6 | |
7 | 7 | class ConfusionMatrix |
8 | 8 | { |
9 | - public static function compute(array $actualLabels, array $predictedLabels, ?array $labels = null): array |
|
9 | + public static function compute(array $actualLabels, array $predictedLabels, ? array $labels = null) : array |
|
10 | 10 | { |
11 | 11 | $labels = $labels ? array_flip($labels) : self::getUniqueLabels($actualLabels); |
12 | 12 | $matrix = self::generateMatrixWithZeros($labels); |
@@ -1,6 +1,6 @@ discard block |
||
1 | 1 | <?php |
2 | 2 | |
3 | -declare(strict_types=1); |
|
3 | +declare(strict_types = 1); |
|
4 | 4 | |
5 | 5 | namespace Phpml\Math; |
6 | 6 | |
@@ -126,7 +126,7 @@ discard block |
||
126 | 126 | public function transpose(): self |
127 | 127 | { |
128 | 128 | if ($this->rows == 1) { |
129 | - $matrix = array_map(function ($el) { |
|
129 | + $matrix = array_map(function($el) { |
|
130 | 130 | return [$el]; |
131 | 131 | }, $this->matrix[0]); |
132 | 132 | } else { |
@@ -1,6 +1,6 @@ discard block |
||
1 | 1 | <?php |
2 | 2 | |
3 | -declare(strict_types=1); |
|
3 | +declare(strict_types = 1); |
|
4 | 4 | |
5 | 5 | namespace Phpml\Math\Statistic; |
6 | 6 | |
@@ -14,7 +14,7 @@ discard block |
||
14 | 14 | * |
15 | 15 | * @throws InvalidArgumentException |
16 | 16 | */ |
17 | - public static function fromXYArrays(array $x, array $y, bool $sample = true, ?float $meanX = null, ?float $meanY = null): float |
|
17 | + public static function fromXYArrays(array $x, array $y, bool $sample = true, ?float $meanX = null, ?float $meanY = null) : float |
|
18 | 18 | { |
19 | 19 | if (empty($x) || empty($y)) { |
20 | 20 | throw InvalidArgumentException::arrayCantBeEmpty(); |
@@ -52,7 +52,7 @@ discard block |
||
52 | 52 | * @throws InvalidArgumentException |
53 | 53 | * @throws \Exception |
54 | 54 | */ |
55 | - public static function fromDataset(array $data, int $i, int $k, bool $sample = true, ?float $meanX = null, ?float $meanY = null): float |
|
55 | + public static function fromDataset(array $data, int $i, int $k, bool $sample = true, ?float $meanX = null, ?float $meanY = null) : float |
|
56 | 56 | { |
57 | 57 | if (empty($data)) { |
58 | 58 | throw InvalidArgumentException::arrayCantBeEmpty(); |
@@ -115,7 +115,7 @@ discard block |
||
115 | 115 | * |
116 | 116 | * @param array|null $means |
117 | 117 | */ |
118 | - public static function covarianceMatrix(array $data, ?array $means = null): array |
|
118 | + public static function covarianceMatrix(array $data, ? array $means = null) : array |
|
119 | 119 | { |
120 | 120 | $n = count($data[0]); |
121 | 121 |
@@ -1,6 +1,6 @@ |
||
1 | 1 | <?php |
2 | 2 | |
3 | -declare(strict_types=1); |
|
3 | +declare(strict_types = 1); |
|
4 | 4 | |
5 | 5 | /** |
6 | 6 | * @package JAMA |
@@ -1,6 +1,6 @@ discard block |
||
1 | 1 | <?php |
2 | 2 | |
3 | -declare(strict_types=1); |
|
3 | +declare(strict_types = 1); |
|
4 | 4 | |
5 | 5 | /** |
6 | 6 | * Class to obtain eigenvalues and eigenvectors of a real matrix. |
@@ -128,7 +128,7 @@ discard block |
||
128 | 128 | |
129 | 129 | // Always return the eigenvectors of length 1.0 |
130 | 130 | $vectors = new Matrix($vectors); |
131 | - $vectors = array_map(function ($vect) { |
|
131 | + $vectors = array_map(function($vect) { |
|
132 | 132 | $sum = 0; |
133 | 133 | for ($i = 0; $i < count($vect); ++$i) { |
134 | 134 | $sum += $vect[$i] ** 2; |
@@ -1,6 +1,6 @@ discard block |
||
1 | 1 | <?php |
2 | 2 | |
3 | -declare(strict_types=1); |
|
3 | +declare(strict_types = 1); |
|
4 | 4 | |
5 | 5 | namespace Phpml\NeuralNetwork; |
6 | 6 | |
@@ -44,7 +44,7 @@ discard block |
||
44 | 44 | /** |
45 | 45 | * @return Neuron |
46 | 46 | */ |
47 | - private function createNode(string $nodeClass, ?ActivationFunction $activationFunction = null): Node |
|
47 | + private function createNode(string $nodeClass, ?ActivationFunction $activationFunction = null) : Node |
|
48 | 48 | { |
49 | 49 | if ($nodeClass === Neuron::class) { |
50 | 50 | return new Neuron($activationFunction); |