1
|
|
|
<?php |
2
|
|
|
|
3
|
|
|
declare(strict_types=1); |
4
|
|
|
|
5
|
|
|
namespace Phpml\DimensionReduction; |
6
|
|
|
|
7
|
|
|
use Exception; |
8
|
|
|
use Phpml\Math\Statistic\Covariance; |
9
|
|
|
use Phpml\Math\Statistic\Mean; |
10
|
|
|
|
11
|
|
|
class PCA extends EigenTransformerBase |
12
|
|
|
{ |
13
|
|
|
/** |
14
|
|
|
* Temporary storage for mean values for each dimension in given data |
15
|
|
|
* |
16
|
|
|
* @var array |
17
|
|
|
*/ |
18
|
|
|
protected $means = []; |
19
|
|
|
|
20
|
|
|
/** |
21
|
|
|
* @var bool |
22
|
|
|
*/ |
23
|
|
|
protected $fit = false; |
24
|
|
|
|
25
|
|
|
/** |
26
|
|
|
* PCA (Principal Component Analysis) used to explain given |
27
|
|
|
* data with lower number of dimensions. This analysis transforms the |
28
|
|
|
* data to a lower dimensional version of it by conserving a proportion of total variance |
29
|
|
|
* within the data. It is a lossy data compression technique.<br> |
30
|
|
|
* |
31
|
|
|
* @param float $totalVariance Total explained variance to be preserved |
32
|
|
|
* @param int $numFeatures Number of features to be preserved |
33
|
|
|
* |
34
|
|
|
* @throws \Exception |
35
|
|
|
*/ |
36
|
|
|
public function __construct(?float $totalVariance = null, ?int $numFeatures = null) |
37
|
|
|
{ |
38
|
|
|
if ($totalVariance !== null && ($totalVariance < 0.1 || $totalVariance > 0.99)) { |
39
|
|
|
throw new Exception('Total variance can be a value between 0.1 and 0.99'); |
40
|
|
|
} |
41
|
|
|
|
42
|
|
|
if ($numFeatures !== null && $numFeatures <= 0) { |
43
|
|
|
throw new Exception('Number of features to be preserved should be greater than 0'); |
44
|
|
|
} |
45
|
|
|
|
46
|
|
|
if ($totalVariance !== null && $numFeatures !== null) { |
47
|
|
|
throw new Exception('Either totalVariance or numFeatures should be specified in order to run the algorithm'); |
48
|
|
|
} |
49
|
|
|
|
50
|
|
|
if ($numFeatures !== null) { |
51
|
|
|
$this->numFeatures = $numFeatures; |
52
|
|
|
} |
53
|
|
|
|
54
|
|
|
if ($totalVariance !== null) { |
55
|
|
|
$this->totalVariance = $totalVariance; |
56
|
|
|
} |
57
|
|
|
} |
58
|
|
|
|
59
|
|
|
/** |
60
|
|
|
* Takes a data and returns a lower dimensional version |
61
|
|
|
* of this data while preserving $totalVariance or $numFeatures. <br> |
62
|
|
|
* $data is an n-by-m matrix and returned array is |
63
|
|
|
* n-by-k matrix where k <= m |
64
|
|
|
*/ |
65
|
|
|
public function fit(array $data): array |
66
|
|
|
{ |
67
|
|
|
$n = count($data[0]); |
68
|
|
|
|
69
|
|
|
$data = $this->normalize($data, $n); |
70
|
|
|
|
71
|
|
|
$covMatrix = Covariance::covarianceMatrix($data, array_fill(0, $n, 0)); |
72
|
|
|
|
73
|
|
|
$this->eigenDecomposition($covMatrix); |
74
|
|
|
|
75
|
|
|
$this->fit = true; |
76
|
|
|
|
77
|
|
|
return $this->reduce($data); |
78
|
|
|
} |
79
|
|
|
|
80
|
|
|
/** |
81
|
|
|
* Transforms the given sample to a lower dimensional vector by using |
82
|
|
|
* the eigenVectors obtained in the last run of <code>fit</code>. |
83
|
|
|
* |
84
|
|
|
* @throws \Exception |
85
|
|
|
*/ |
86
|
|
|
public function transform(array $sample): array |
87
|
|
|
{ |
88
|
|
|
if (!$this->fit) { |
89
|
|
|
throw new Exception('PCA has not been fitted with respect to original dataset, please run PCA::fit() first'); |
90
|
|
|
} |
91
|
|
|
|
92
|
|
|
if (!is_array($sample[0])) { |
93
|
|
|
$sample = [$sample]; |
94
|
|
|
} |
95
|
|
|
|
96
|
|
|
$sample = $this->normalize($sample, count($sample[0])); |
97
|
|
|
|
98
|
|
|
return $this->reduce($sample); |
99
|
|
|
} |
100
|
|
|
|
101
|
|
|
protected function calculateMeans(array $data, int $n): void |
102
|
|
|
{ |
103
|
|
|
// Calculate means for each dimension |
104
|
|
|
$this->means = []; |
105
|
|
|
for ($i = 0; $i < $n; ++$i) { |
106
|
|
|
$column = array_column($data, $i); |
107
|
|
|
$this->means[] = Mean::arithmetic($column); |
108
|
|
|
} |
109
|
|
|
} |
110
|
|
|
|
111
|
|
|
/** |
112
|
|
|
* Normalization of the data includes subtracting mean from |
113
|
|
|
* each dimension therefore dimensions will be centered to zero |
114
|
|
|
*/ |
115
|
|
|
protected function normalize(array $data, int $n): array |
116
|
|
|
{ |
117
|
|
|
if (empty($this->means)) { |
118
|
|
|
$this->calculateMeans($data, $n); |
119
|
|
|
} |
120
|
|
|
|
121
|
|
|
// Normalize data |
122
|
|
|
foreach ($data as $i => $row) { |
123
|
|
|
for ($k = 0; $k < $n; ++$k) { |
124
|
|
|
$data[$i][$k] -= $this->means[$k]; |
125
|
|
|
} |
126
|
|
|
} |
127
|
|
|
|
128
|
|
|
return $data; |
129
|
|
|
} |
130
|
|
|
} |
131
|
|
|
|