| Total Complexity | 52 |
| Total Lines | 1604 |
| Duplicated Lines | 13.09 % |
| Changes | 0 | ||
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like data.datasets.DSM_cts_ind often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | from sqlalchemy import ARRAY, Column, Float, Integer, String |
||
| 2 | from sqlalchemy.ext.declarative import declarative_base |
||
| 3 | import geopandas as gpd |
||
| 4 | import numpy as np |
||
| 5 | import pandas as pd |
||
| 6 | |||
| 7 | from egon.data import config, db |
||
| 8 | from egon.data.datasets import Dataset |
||
| 9 | from egon.data.datasets.electricity_demand.temporal import calc_load_curve |
||
| 10 | from egon.data.datasets.industry.temporal import identify_bus |
||
| 11 | |||
| 12 | # CONSTANTS |
||
| 13 | # TODO: move to datasets.yml |
||
| 14 | CON = db.engine() |
||
| 15 | |||
| 16 | # CTS |
||
| 17 | CTS_COOL_VENT_AC_SHARE = 0.22 |
||
| 18 | |||
| 19 | S_FLEX_CTS = 0.5 |
||
| 20 | S_UTIL_CTS = 0.67 |
||
| 21 | S_INC_CTS = 1 |
||
| 22 | S_DEC_CTS = 0 |
||
| 23 | DELTA_T_CTS = 1 |
||
| 24 | |||
| 25 | # industry |
||
| 26 | IND_VENT_COOL_SHARE = 0.039 |
||
| 27 | IND_VENT_SHARE = 0.017 |
||
| 28 | |||
| 29 | # OSM |
||
| 30 | S_FLEX_OSM = 0.5 |
||
| 31 | S_UTIL_OSM = 0.73 |
||
| 32 | S_INC_OSM = 0.9 |
||
| 33 | S_DEC_OSM = 0.5 |
||
| 34 | DELTA_T_OSM = 1 |
||
| 35 | |||
| 36 | # paper |
||
| 37 | S_FLEX_PAPER = 0.15 |
||
| 38 | S_UTIL_PAPER = 0.86 |
||
| 39 | S_INC_PAPER = 0.95 |
||
| 40 | S_DEC_PAPER = 0 |
||
| 41 | DELTA_T_PAPER = 3 |
||
| 42 | |||
| 43 | # recycled paper |
||
| 44 | S_FLEX_RECYCLED_PAPER = 0.7 |
||
| 45 | S_UTIL_RECYCLED_PAPER = 0.85 |
||
| 46 | S_INC_RECYCLED_PAPER = 0.95 |
||
| 47 | S_DEC_RECYCLED_PAPER = 0 |
||
| 48 | DELTA_T_RECYCLED_PAPER = 3 |
||
| 49 | |||
| 50 | # pulp |
||
| 51 | S_FLEX_PULP = 0.7 |
||
| 52 | S_UTIL_PULP = 0.83 |
||
| 53 | S_INC_PULP = 0.95 |
||
| 54 | S_DEC_PULP = 0 |
||
| 55 | DELTA_T_PULP = 2 |
||
| 56 | |||
| 57 | # cement |
||
| 58 | S_FLEX_CEMENT = 0.61 |
||
| 59 | S_UTIL_CEMENT = 0.65 |
||
| 60 | S_INC_CEMENT = 0.95 |
||
| 61 | S_DEC_CEMENT = 0 |
||
| 62 | DELTA_T_CEMENT = 4 |
||
| 63 | |||
| 64 | # wz 23 |
||
| 65 | WZ = 23 |
||
| 66 | |||
| 67 | S_FLEX_WZ = 0.5 |
||
| 68 | S_UTIL_WZ = 0.8 |
||
| 69 | S_INC_WZ = 1 |
||
| 70 | S_DEC_WZ = 0.5 |
||
| 71 | DELTA_T_WZ = 1 |
||
| 72 | |||
| 73 | Base = declarative_base() |
||
| 74 | |||
| 75 | |||
| 76 | class DsmPotential(Dataset): |
||
| 77 | def __init__(self, dependencies): |
||
| 78 | super().__init__( |
||
| 79 | name="DsmPotential", |
||
| 80 | version="0.0.4.dev", |
||
| 81 | dependencies=dependencies, |
||
| 82 | tasks=(dsm_cts_ind_processing), |
||
| 83 | ) |
||
| 84 | |||
| 85 | |||
| 86 | # Datasets |
||
| 87 | View Code Duplication | class EgonEtragoElectricityCtsDsmTimeseries(Base): |
|
|
|
|||
| 88 | target = config.datasets()["DSM_CTS_industry"]["targets"][ |
||
| 89 | "cts_loadcurves_dsm" |
||
| 90 | ] |
||
| 91 | |||
| 92 | __tablename__ = target["table"] |
||
| 93 | __table_args__ = {"schema": target["schema"]} |
||
| 94 | |||
| 95 | bus = Column(Integer, primary_key=True, index=True) |
||
| 96 | scn_name = Column(String, primary_key=True, index=True) |
||
| 97 | p_nom = Column(Float) |
||
| 98 | e_nom = Column(Float) |
||
| 99 | p_set = Column(ARRAY(Float)) |
||
| 100 | p_max_pu = Column(ARRAY(Float)) |
||
| 101 | p_min_pu = Column(ARRAY(Float)) |
||
| 102 | e_max_pu = Column(ARRAY(Float)) |
||
| 103 | e_min_pu = Column(ARRAY(Float)) |
||
| 104 | |||
| 105 | |||
| 106 | View Code Duplication | class EgonOsmIndLoadCurvesIndividualDsmTimeseries(Base): |
|
| 107 | target = config.datasets()["DSM_CTS_industry"]["targets"][ |
||
| 108 | "ind_osm_loadcurves_individual_dsm" |
||
| 109 | ] |
||
| 110 | |||
| 111 | __tablename__ = target["table"] |
||
| 112 | __table_args__ = {"schema": target["schema"]} |
||
| 113 | |||
| 114 | osm_id = Column(Integer, primary_key=True, index=True) |
||
| 115 | scn_name = Column(String, primary_key=True, index=True) |
||
| 116 | bus = Column(Integer) |
||
| 117 | p_nom = Column(Float) |
||
| 118 | e_nom = Column(Float) |
||
| 119 | p_set = Column(ARRAY(Float)) |
||
| 120 | p_max_pu = Column(ARRAY(Float)) |
||
| 121 | p_min_pu = Column(ARRAY(Float)) |
||
| 122 | e_max_pu = Column(ARRAY(Float)) |
||
| 123 | e_min_pu = Column(ARRAY(Float)) |
||
| 124 | |||
| 125 | |||
| 126 | View Code Duplication | class EgonDemandregioSitesIndElectricityDsmTimeseries(Base): |
|
| 127 | target = config.datasets()["DSM_CTS_industry"]["targets"][ |
||
| 128 | "demandregio_ind_sites_dsm" |
||
| 129 | ] |
||
| 130 | |||
| 131 | __tablename__ = target["table"] |
||
| 132 | __table_args__ = {"schema": target["schema"]} |
||
| 133 | |||
| 134 | industrial_sites_id = Column(Integer, primary_key=True, index=True) |
||
| 135 | scn_name = Column(String, primary_key=True, index=True) |
||
| 136 | bus = Column(Integer) |
||
| 137 | application = Column(String) |
||
| 138 | p_nom = Column(Float) |
||
| 139 | e_nom = Column(Float) |
||
| 140 | p_set = Column(ARRAY(Float)) |
||
| 141 | p_max_pu = Column(ARRAY(Float)) |
||
| 142 | p_min_pu = Column(ARRAY(Float)) |
||
| 143 | e_max_pu = Column(ARRAY(Float)) |
||
| 144 | e_min_pu = Column(ARRAY(Float)) |
||
| 145 | |||
| 146 | |||
| 147 | View Code Duplication | class EgonSitesIndLoadCurvesIndividualDsmTimeseries(Base): |
|
| 148 | target = config.datasets()["DSM_CTS_industry"]["targets"][ |
||
| 149 | "ind_sites_loadcurves_individual" |
||
| 150 | ] |
||
| 151 | |||
| 152 | __tablename__ = target["table"] |
||
| 153 | __table_args__ = {"schema": target["schema"]} |
||
| 154 | |||
| 155 | site_id = Column(Integer, primary_key=True, index=True) |
||
| 156 | scn_name = Column(String, primary_key=True, index=True) |
||
| 157 | bus = Column(Integer) |
||
| 158 | p_nom = Column(Float) |
||
| 159 | e_nom = Column(Float) |
||
| 160 | p_set = Column(ARRAY(Float)) |
||
| 161 | p_max_pu = Column(ARRAY(Float)) |
||
| 162 | p_min_pu = Column(ARRAY(Float)) |
||
| 163 | e_max_pu = Column(ARRAY(Float)) |
||
| 164 | e_min_pu = Column(ARRAY(Float)) |
||
| 165 | |||
| 166 | |||
| 167 | # Code |
||
| 168 | def cts_data_import(cts_cool_vent_ac_share): |
||
| 169 | """ |
||
| 170 | Import CTS data necessary to identify DSM-potential. |
||
| 171 | |||
| 172 | ---------- |
||
| 173 | cts_share: float |
||
| 174 | Share of cooling, ventilation and AC in CTS demand |
||
| 175 | """ |
||
| 176 | |||
| 177 | # import load data |
||
| 178 | |||
| 179 | sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
||
| 180 | "cts_loadcurves" |
||
| 181 | ] |
||
| 182 | |||
| 183 | ts = db.select_dataframe( |
||
| 184 | f"""SELECT bus_id, scn_name, p_set FROM |
||
| 185 | {sources['schema']}.{sources['table']}""" |
||
| 186 | ) |
||
| 187 | |||
| 188 | # identify relevant columns and prepare df to be returned |
||
| 189 | |||
| 190 | dsm = pd.DataFrame(index=ts.index) |
||
| 191 | |||
| 192 | dsm["bus"] = ts["bus_id"].copy() |
||
| 193 | dsm["scn_name"] = ts["scn_name"].copy() |
||
| 194 | dsm["p_set"] = ts["p_set"].copy() |
||
| 195 | |||
| 196 | # calculate share of timeseries for air conditioning, cooling and |
||
| 197 | # ventilation out of CTS-data |
||
| 198 | |||
| 199 | timeseries = dsm["p_set"].copy() |
||
| 200 | |||
| 201 | for index, liste in timeseries.items(): |
||
| 202 | share = [float(item) * cts_cool_vent_ac_share for item in liste] |
||
| 203 | timeseries.loc[index] = share |
||
| 204 | |||
| 205 | dsm["p_set"] = timeseries.copy() |
||
| 206 | |||
| 207 | return dsm |
||
| 208 | |||
| 209 | |||
| 210 | View Code Duplication | def ind_osm_data_import(ind_vent_cool_share): |
|
| 211 | """ |
||
| 212 | Import industry data per osm-area necessary to identify DSM-potential. |
||
| 213 | ---------- |
||
| 214 | ind_share: float |
||
| 215 | Share of considered application in industry demand |
||
| 216 | """ |
||
| 217 | |||
| 218 | # import load data |
||
| 219 | |||
| 220 | sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
||
| 221 | "ind_osm_loadcurves" |
||
| 222 | ] |
||
| 223 | |||
| 224 | dsm = db.select_dataframe( |
||
| 225 | f""" |
||
| 226 | SELECT bus, scn_name, p_set FROM |
||
| 227 | {sources['schema']}.{sources['table']} |
||
| 228 | """ |
||
| 229 | ) |
||
| 230 | |||
| 231 | # calculate share of timeseries for cooling and ventilation out of |
||
| 232 | # industry-data |
||
| 233 | |||
| 234 | timeseries = dsm["p_set"].copy() |
||
| 235 | |||
| 236 | for index, liste in timeseries.items(): |
||
| 237 | share = [float(item) * ind_vent_cool_share for item in liste] |
||
| 238 | |||
| 239 | timeseries.loc[index] = share |
||
| 240 | |||
| 241 | dsm["p_set"] = timeseries.copy() |
||
| 242 | |||
| 243 | return dsm |
||
| 244 | |||
| 245 | |||
| 246 | View Code Duplication | def ind_osm_data_import_individual(ind_vent_cool_share): |
|
| 247 | """ |
||
| 248 | Import industry data per osm-area necessary to identify DSM-potential. |
||
| 249 | ---------- |
||
| 250 | ind_share: float |
||
| 251 | Share of considered application in industry demand |
||
| 252 | """ |
||
| 253 | |||
| 254 | # import load data |
||
| 255 | |||
| 256 | sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
||
| 257 | "ind_osm_loadcurves_individual" |
||
| 258 | ] |
||
| 259 | |||
| 260 | dsm = db.select_dataframe( |
||
| 261 | f""" |
||
| 262 | SELECT osm_id, bus_id as bus, scn_name, p_set FROM |
||
| 263 | {sources['schema']}.{sources['table']} |
||
| 264 | """ |
||
| 265 | ) |
||
| 266 | |||
| 267 | # calculate share of timeseries for cooling and ventilation out of |
||
| 268 | # industry-data |
||
| 269 | |||
| 270 | timeseries = dsm["p_set"].copy() |
||
| 271 | |||
| 272 | for index, liste in timeseries.items(): |
||
| 273 | share = [float(item) * ind_vent_cool_share for item in liste] |
||
| 274 | |||
| 275 | timeseries.loc[index] = share |
||
| 276 | |||
| 277 | dsm["p_set"] = timeseries.copy() |
||
| 278 | |||
| 279 | return dsm |
||
| 280 | |||
| 281 | |||
| 282 | View Code Duplication | def ind_sites_vent_data_import(ind_vent_share, wz): |
|
| 283 | """ |
||
| 284 | Import industry sites necessary to identify DSM-potential. |
||
| 285 | ---------- |
||
| 286 | ind_vent_share: float |
||
| 287 | Share of considered application in industry demand |
||
| 288 | wz: int |
||
| 289 | Wirtschaftszweig to be considered within industry sites |
||
| 290 | """ |
||
| 291 | |||
| 292 | # import load data |
||
| 293 | |||
| 294 | sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
||
| 295 | "ind_sites_loadcurves" |
||
| 296 | ] |
||
| 297 | |||
| 298 | dsm = db.select_dataframe( |
||
| 299 | f""" |
||
| 300 | SELECT bus, scn_name, p_set FROM |
||
| 301 | {sources['schema']}.{sources['table']} |
||
| 302 | WHERE wz = {wz} |
||
| 303 | """ |
||
| 304 | ) |
||
| 305 | |||
| 306 | # calculate share of timeseries for ventilation |
||
| 307 | |||
| 308 | timeseries = dsm["p_set"].copy() |
||
| 309 | |||
| 310 | for index, liste in timeseries.items(): |
||
| 311 | share = [float(item) * ind_vent_share for item in liste] |
||
| 312 | timeseries.loc[index] = share |
||
| 313 | |||
| 314 | dsm["p_set"] = timeseries.copy() |
||
| 315 | |||
| 316 | return dsm |
||
| 317 | |||
| 318 | |||
| 319 | View Code Duplication | def ind_sites_vent_data_import_individual(ind_vent_share, wz): |
|
| 320 | """ |
||
| 321 | Import industry sites necessary to identify DSM-potential. |
||
| 322 | ---------- |
||
| 323 | ind_vent_share: float |
||
| 324 | Share of considered application in industry demand |
||
| 325 | wz: int |
||
| 326 | Wirtschaftszweig to be considered within industry sites |
||
| 327 | """ |
||
| 328 | |||
| 329 | # import load data |
||
| 330 | |||
| 331 | sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
||
| 332 | "ind_sites_loadcurves_individual" |
||
| 333 | ] |
||
| 334 | |||
| 335 | dsm = db.select_dataframe( |
||
| 336 | f""" |
||
| 337 | SELECT site_id, bus_id as bus, scn_name, p_set FROM |
||
| 338 | {sources['schema']}.{sources['table']} |
||
| 339 | WHERE wz = {wz} |
||
| 340 | """ |
||
| 341 | ) |
||
| 342 | |||
| 343 | # calculate share of timeseries for ventilation |
||
| 344 | |||
| 345 | timeseries = dsm["p_set"].copy() |
||
| 346 | |||
| 347 | for index, liste in timeseries.items(): |
||
| 348 | share = [float(item) * ind_vent_share for item in liste] |
||
| 349 | timeseries.loc[index] = share |
||
| 350 | |||
| 351 | dsm["p_set"] = timeseries.copy() |
||
| 352 | |||
| 353 | return dsm |
||
| 354 | |||
| 355 | |||
| 356 | def calc_ind_site_timeseries(scenario): |
||
| 357 | # calculate timeseries per site |
||
| 358 | # -> using code from egon.data.datasets.industry.temporal: |
||
| 359 | # calc_load_curves_ind_sites |
||
| 360 | |||
| 361 | # select demands per industrial site including the subsector information |
||
| 362 | source1 = config.datasets()["DSM_CTS_industry"]["sources"][ |
||
| 363 | "demandregio_ind_sites" |
||
| 364 | ] |
||
| 365 | |||
| 366 | demands_ind_sites = db.select_dataframe( |
||
| 367 | f"""SELECT industrial_sites_id, wz, demand |
||
| 368 | FROM {source1['schema']}.{source1['table']} |
||
| 369 | WHERE scenario = '{scenario}' |
||
| 370 | AND demand > 0 |
||
| 371 | """ |
||
| 372 | ).set_index(["industrial_sites_id"]) |
||
| 373 | |||
| 374 | # select industrial sites as demand_areas from database |
||
| 375 | source2 = config.datasets()["DSM_CTS_industry"]["sources"]["ind_sites"] |
||
| 376 | |||
| 377 | demand_area = db.select_geodataframe( |
||
| 378 | f"""SELECT id, geom, subsector FROM |
||
| 379 | {source2['schema']}.{source2['table']}""", |
||
| 380 | index_col="id", |
||
| 381 | geom_col="geom", |
||
| 382 | epsg=3035, |
||
| 383 | ) |
||
| 384 | |||
| 385 | # replace entries to bring it in line with demandregio's subsector |
||
| 386 | # definitions |
||
| 387 | demands_ind_sites.replace(1718, 17, inplace=True) |
||
| 388 | share_wz_sites = demands_ind_sites.copy() |
||
| 389 | |||
| 390 | # create additional df on wz_share per industrial site, which is always set |
||
| 391 | # to one as the industrial demand per site is subsector specific |
||
| 392 | share_wz_sites.demand = 1 |
||
| 393 | share_wz_sites.reset_index(inplace=True) |
||
| 394 | |||
| 395 | share_transpose = pd.DataFrame( |
||
| 396 | index=share_wz_sites.industrial_sites_id.unique(), |
||
| 397 | columns=share_wz_sites.wz.unique(), |
||
| 398 | ) |
||
| 399 | share_transpose.index.rename("industrial_sites_id", inplace=True) |
||
| 400 | for wz in share_transpose.columns: |
||
| 401 | share_transpose[wz] = ( |
||
| 402 | share_wz_sites[share_wz_sites.wz == wz] |
||
| 403 | .set_index("industrial_sites_id") |
||
| 404 | .demand |
||
| 405 | ) |
||
| 406 | |||
| 407 | # calculate load curves |
||
| 408 | load_curves = calc_load_curve(share_transpose, demands_ind_sites["demand"]) |
||
| 409 | |||
| 410 | # identify bus per industrial site |
||
| 411 | curves_bus = identify_bus(load_curves, demand_area) |
||
| 412 | curves_bus.index = curves_bus["id"].astype(int) |
||
| 413 | |||
| 414 | # initialize dataframe to be returned |
||
| 415 | |||
| 416 | ts = pd.DataFrame( |
||
| 417 | data=curves_bus["bus_id"], index=curves_bus["id"].astype(int) |
||
| 418 | ) |
||
| 419 | ts["scenario_name"] = scenario |
||
| 420 | curves_bus.drop({"id", "bus_id", "geom"}, axis=1, inplace=True) |
||
| 421 | ts["p_set"] = curves_bus.values.tolist() |
||
| 422 | |||
| 423 | # add subsector to relate to Schmidt's tables afterwards |
||
| 424 | ts["application"] = demand_area["subsector"] |
||
| 425 | |||
| 426 | return ts |
||
| 427 | |||
| 428 | |||
| 429 | def relate_to_schmidt_sites(dsm): |
||
| 430 | # import industrial sites by Schmidt |
||
| 431 | |||
| 432 | source = config.datasets()["DSM_CTS_industry"]["sources"][ |
||
| 433 | "ind_sites_schmidt" |
||
| 434 | ] |
||
| 435 | |||
| 436 | schmidt = db.select_dataframe( |
||
| 437 | f"""SELECT application, geom FROM |
||
| 438 | {source['schema']}.{source['table']}""" |
||
| 439 | ) |
||
| 440 | |||
| 441 | # relate calculated timeseries (dsm) to Schmidt's industrial sites |
||
| 442 | |||
| 443 | applications = np.unique(schmidt["application"]) |
||
| 444 | dsm = pd.DataFrame(dsm[dsm["application"].isin(applications)]) |
||
| 445 | |||
| 446 | # initialize dataframe to be returned |
||
| 447 | |||
| 448 | dsm.rename( |
||
| 449 | columns={"scenario_name": "scn_name", "bus_id": "bus"}, |
||
| 450 | inplace=True, |
||
| 451 | ) |
||
| 452 | |||
| 453 | return dsm |
||
| 454 | |||
| 455 | |||
| 456 | def ind_sites_data_import(): |
||
| 457 | """ |
||
| 458 | Import industry sites data necessary to identify DSM-potential. |
||
| 459 | """ |
||
| 460 | # calculate timeseries per site |
||
| 461 | |||
| 462 | # scenario eGon2035 |
||
| 463 | dsm_2035 = calc_ind_site_timeseries("eGon2035") |
||
| 464 | dsm_2035.reset_index(inplace=True) |
||
| 465 | # scenario eGon100RE |
||
| 466 | dsm_100 = calc_ind_site_timeseries("eGon100RE") |
||
| 467 | dsm_100.reset_index(inplace=True) |
||
| 468 | # bring df for both scenarios together |
||
| 469 | dsm_100.index = range(len(dsm_2035), (len(dsm_2035) + len((dsm_100)))) |
||
| 470 | dsm = dsm_2035.append(dsm_100) |
||
| 471 | |||
| 472 | # relate calculated timeseries to Schmidt's industrial sites |
||
| 473 | |||
| 474 | dsm = relate_to_schmidt_sites(dsm) |
||
| 475 | |||
| 476 | return dsm[["application", "id", "bus", "scn_name", "p_set"]] |
||
| 477 | |||
| 478 | |||
| 479 | def calculate_potentials(s_flex, s_util, s_inc, s_dec, delta_t, dsm): |
||
| 480 | """ |
||
| 481 | Calculate DSM-potential per bus using the methods by Heitkoetter et. al.: |
||
| 482 | https://doi.org/10.1016/j.adapen.2020.100001 |
||
| 483 | Parameters |
||
| 484 | ---------- |
||
| 485 | s_flex: float |
||
| 486 | Feasability factor to account for socio-technical restrictions |
||
| 487 | s_util: float |
||
| 488 | Average annual utilisation rate |
||
| 489 | s_inc: float |
||
| 490 | Shiftable share of installed capacity up to which load can be |
||
| 491 | increased considering technical limitations |
||
| 492 | s_dec: float |
||
| 493 | Shiftable share of installed capacity up to which load can be |
||
| 494 | decreased considering technical limitations |
||
| 495 | delta_t: int |
||
| 496 | Maximum shift duration in hours |
||
| 497 | dsm: DataFrame |
||
| 498 | List of existing buses with DSM-potential including timeseries of |
||
| 499 | loads |
||
| 500 | """ |
||
| 501 | |||
| 502 | # copy relevant timeseries |
||
| 503 | timeseries = dsm["p_set"].copy() |
||
| 504 | |||
| 505 | # calculate scheduled load L(t) |
||
| 506 | |||
| 507 | scheduled_load = timeseries.copy() |
||
| 508 | |||
| 509 | for index, liste in scheduled_load.items(): |
||
| 510 | share = [] |
||
| 511 | for item in liste: |
||
| 512 | share.append(item * s_flex) |
||
| 513 | scheduled_load.loc[index] = share |
||
| 514 | |||
| 515 | # calculate maximum capacity Lambda |
||
| 516 | |||
| 517 | # calculate energy annual requirement |
||
| 518 | energy_annual = pd.Series(index=timeseries.index, dtype=float) |
||
| 519 | for index, liste in timeseries.items(): |
||
| 520 | energy_annual.loc[index] = sum(liste) |
||
| 521 | |||
| 522 | # calculate Lambda |
||
| 523 | lam = (energy_annual * s_flex) / (8760 * s_util) |
||
| 524 | |||
| 525 | # calculation of P_max and P_min |
||
| 526 | |||
| 527 | # P_max |
||
| 528 | p_max = scheduled_load.copy() |
||
| 529 | for index, liste in scheduled_load.items(): |
||
| 530 | lamb = lam.loc[index] |
||
| 531 | p_max.loc[index] = [lamb * s_inc - item for item in liste] |
||
| 532 | |||
| 533 | # P_min |
||
| 534 | p_min = scheduled_load.copy() |
||
| 535 | for index, liste in scheduled_load.items(): |
||
| 536 | lamb = lam.loc[index] |
||
| 537 | |||
| 538 | p_min.loc[index] = [-(item - lamb * s_dec) for item in liste] |
||
| 539 | |||
| 540 | # calculation of E_max and E_min |
||
| 541 | |||
| 542 | e_max = scheduled_load.copy() |
||
| 543 | e_min = scheduled_load.copy() |
||
| 544 | |||
| 545 | for index, liste in scheduled_load.items(): |
||
| 546 | emin = [] |
||
| 547 | emax = [] |
||
| 548 | for i in range(len(liste)): |
||
| 549 | if i + delta_t > len(liste): |
||
| 550 | emax.append( |
||
| 551 | (sum(liste[i:]) + sum(liste[: delta_t - (len(liste) - i)])) |
||
| 552 | ) |
||
| 553 | else: |
||
| 554 | emax.append(sum(liste[i : i + delta_t])) |
||
| 555 | if i - delta_t < 0: |
||
| 556 | emin.append( |
||
| 557 | ( |
||
| 558 | -1 |
||
| 559 | * ( |
||
| 560 | ( |
||
| 561 | sum(liste[:i]) |
||
| 562 | + sum(liste[len(liste) - delta_t + i :]) |
||
| 563 | ) |
||
| 564 | ) |
||
| 565 | ) |
||
| 566 | ) |
||
| 567 | else: |
||
| 568 | emin.append(-1 * sum(liste[i - delta_t : i])) |
||
| 569 | e_max.loc[index] = emax |
||
| 570 | e_min.loc[index] = emin |
||
| 571 | |||
| 572 | return p_max, p_min, e_max, e_min |
||
| 573 | |||
| 574 | |||
| 575 | def create_dsm_components(con, p_max, p_min, e_max, e_min, dsm): |
||
| 576 | """ |
||
| 577 | Create components representing DSM. |
||
| 578 | Parameters |
||
| 579 | ---------- |
||
| 580 | con : |
||
| 581 | Connection to database |
||
| 582 | p_max: DataFrame |
||
| 583 | Timeseries identifying maximum load increase |
||
| 584 | p_min: DataFrame |
||
| 585 | Timeseries identifying maximum load decrease |
||
| 586 | e_max: DataFrame |
||
| 587 | Timeseries identifying maximum energy amount to be preponed |
||
| 588 | e_min: DataFrame |
||
| 589 | Timeseries identifying maximum energy amount to be postponed |
||
| 590 | dsm: DataFrame |
||
| 591 | List of existing buses with DSM-potential including timeseries of loads |
||
| 592 | """ |
||
| 593 | |||
| 594 | # calculate P_nom and P per unit |
||
| 595 | p_nom = pd.Series(index=p_max.index, dtype=float) |
||
| 596 | for index, row in p_max.items(): |
||
| 597 | nom = max(max(row), abs(min(p_min.loc[index]))) |
||
| 598 | p_nom.loc[index] = nom |
||
| 599 | new = [element / nom for element in row] |
||
| 600 | p_max.loc[index] = new |
||
| 601 | new = [element / nom for element in p_min.loc[index]] |
||
| 602 | p_min.loc[index] = new |
||
| 603 | |||
| 604 | # calculate E_nom and E per unit |
||
| 605 | e_nom = pd.Series(index=p_min.index, dtype=float) |
||
| 606 | for index, row in e_max.items(): |
||
| 607 | nom = max(max(row), abs(min(e_min.loc[index]))) |
||
| 608 | e_nom.loc[index] = nom |
||
| 609 | new = [element / nom for element in row] |
||
| 610 | e_max.loc[index] = new |
||
| 611 | new = [element / nom for element in e_min.loc[index]] |
||
| 612 | e_min.loc[index] = new |
||
| 613 | |||
| 614 | # add DSM-buses to "original" buses |
||
| 615 | dsm_buses = gpd.GeoDataFrame(index=dsm.index) |
||
| 616 | dsm_buses["original_bus"] = dsm["bus"].copy() |
||
| 617 | dsm_buses["scn_name"] = dsm["scn_name"].copy() |
||
| 618 | |||
| 619 | # get original buses and add copy of relevant information |
||
| 620 | target1 = config.datasets()["DSM_CTS_industry"]["targets"]["bus"] |
||
| 621 | original_buses = db.select_geodataframe( |
||
| 622 | f"""SELECT bus_id, v_nom, scn_name, x, y, geom FROM |
||
| 623 | {target1['schema']}.{target1['table']}""", |
||
| 624 | geom_col="geom", |
||
| 625 | epsg=4326, |
||
| 626 | ) |
||
| 627 | |||
| 628 | # copy relevant information from original buses to DSM-buses |
||
| 629 | dsm_buses["index"] = dsm_buses.index |
||
| 630 | originals = original_buses[ |
||
| 631 | original_buses["bus_id"].isin(np.unique(dsm_buses["original_bus"])) |
||
| 632 | ] |
||
| 633 | dsm_buses = originals.merge( |
||
| 634 | dsm_buses, |
||
| 635 | left_on=["bus_id", "scn_name"], |
||
| 636 | right_on=["original_bus", "scn_name"], |
||
| 637 | ) |
||
| 638 | dsm_buses.index = dsm_buses["index"] |
||
| 639 | dsm_buses.drop(["bus_id", "index"], axis=1, inplace=True) |
||
| 640 | |||
| 641 | # new bus_ids for DSM-buses |
||
| 642 | max_id = original_buses["bus_id"].max() |
||
| 643 | if np.isnan(max_id): |
||
| 644 | max_id = 0 |
||
| 645 | dsm_id = max_id + 1 |
||
| 646 | bus_id = pd.Series(index=dsm_buses.index, dtype=int) |
||
| 647 | |||
| 648 | # Get number of DSM buses for both scenarios |
||
| 649 | rows_per_scenario = ( |
||
| 650 | dsm_buses.groupby("scn_name").count().original_bus.to_dict() |
||
| 651 | ) |
||
| 652 | |||
| 653 | # Assignment of DSM ids |
||
| 654 | bus_id.iloc[: rows_per_scenario.get("eGon2035", 0)] = range( |
||
| 655 | dsm_id, dsm_id + rows_per_scenario.get("eGon2035", 0) |
||
| 656 | ) |
||
| 657 | |||
| 658 | bus_id.iloc[ |
||
| 659 | rows_per_scenario.get("eGon2035", 0) : rows_per_scenario.get( |
||
| 660 | "eGon2035", 0 |
||
| 661 | ) |
||
| 662 | + rows_per_scenario.get("eGon100RE", 0) |
||
| 663 | ] = range(dsm_id, dsm_id + rows_per_scenario.get("eGon100RE", 0)) |
||
| 664 | |||
| 665 | dsm_buses["bus_id"] = bus_id |
||
| 666 | |||
| 667 | # add links from "orignal" buses to DSM-buses |
||
| 668 | |||
| 669 | dsm_links = pd.DataFrame(index=dsm_buses.index) |
||
| 670 | dsm_links["original_bus"] = dsm_buses["original_bus"].copy() |
||
| 671 | dsm_links["dsm_bus"] = dsm_buses["bus_id"].copy() |
||
| 672 | dsm_links["scn_name"] = dsm_buses["scn_name"].copy() |
||
| 673 | |||
| 674 | # set link_id |
||
| 675 | target2 = config.datasets()["DSM_CTS_industry"]["targets"]["link"] |
||
| 676 | sql = f"""SELECT link_id FROM {target2['schema']}.{target2['table']}""" |
||
| 677 | max_id = pd.read_sql_query(sql, con) |
||
| 678 | max_id = max_id["link_id"].max() |
||
| 679 | if np.isnan(max_id): |
||
| 680 | max_id = 0 |
||
| 681 | dsm_id = max_id + 1 |
||
| 682 | link_id = pd.Series(index=dsm_buses.index, dtype=int) |
||
| 683 | |||
| 684 | # Assignment of link ids |
||
| 685 | link_id.iloc[: rows_per_scenario.get("eGon2035", 0)] = range( |
||
| 686 | dsm_id, dsm_id + rows_per_scenario.get("eGon2035", 0) |
||
| 687 | ) |
||
| 688 | |||
| 689 | link_id.iloc[ |
||
| 690 | rows_per_scenario.get("eGon2035", 0) : rows_per_scenario.get( |
||
| 691 | "eGon2035", 0 |
||
| 692 | ) |
||
| 693 | + rows_per_scenario.get("eGon100RE", 0) |
||
| 694 | ] = range(dsm_id, dsm_id + rows_per_scenario.get("eGon100RE", 0)) |
||
| 695 | |||
| 696 | dsm_links["link_id"] = link_id |
||
| 697 | |||
| 698 | # add calculated timeseries to df to be returned |
||
| 699 | dsm_links["p_nom"] = p_nom |
||
| 700 | dsm_links["p_min"] = p_min |
||
| 701 | dsm_links["p_max"] = p_max |
||
| 702 | |||
| 703 | # add DSM-stores |
||
| 704 | |||
| 705 | dsm_stores = pd.DataFrame(index=dsm_buses.index) |
||
| 706 | dsm_stores["bus"] = dsm_buses["bus_id"].copy() |
||
| 707 | dsm_stores["scn_name"] = dsm_buses["scn_name"].copy() |
||
| 708 | dsm_stores["original_bus"] = dsm_buses["original_bus"].copy() |
||
| 709 | |||
| 710 | # set store_id |
||
| 711 | target3 = config.datasets()["DSM_CTS_industry"]["targets"]["store"] |
||
| 712 | sql = f"""SELECT store_id FROM {target3['schema']}.{target3['table']}""" |
||
| 713 | max_id = pd.read_sql_query(sql, con) |
||
| 714 | max_id = max_id["store_id"].max() |
||
| 715 | if np.isnan(max_id): |
||
| 716 | max_id = 0 |
||
| 717 | dsm_id = max_id + 1 |
||
| 718 | store_id = pd.Series(index=dsm_buses.index, dtype=int) |
||
| 719 | |||
| 720 | # Assignment of store ids |
||
| 721 | store_id.iloc[: rows_per_scenario.get("eGon2035", 0)] = range( |
||
| 722 | dsm_id, dsm_id + rows_per_scenario.get("eGon2035", 0) |
||
| 723 | ) |
||
| 724 | |||
| 725 | store_id.iloc[ |
||
| 726 | rows_per_scenario.get("eGon2035", 0) : rows_per_scenario.get( |
||
| 727 | "eGon2035", 0 |
||
| 728 | ) |
||
| 729 | + rows_per_scenario.get("eGon100RE", 0) |
||
| 730 | ] = range(dsm_id, dsm_id + rows_per_scenario.get("eGon100RE", 0)) |
||
| 731 | |||
| 732 | dsm_stores["store_id"] = store_id |
||
| 733 | |||
| 734 | # add calculated timeseries to df to be returned |
||
| 735 | dsm_stores["e_nom"] = e_nom |
||
| 736 | dsm_stores["e_min"] = e_min |
||
| 737 | dsm_stores["e_max"] = e_max |
||
| 738 | |||
| 739 | return dsm_buses, dsm_links, dsm_stores |
||
| 740 | |||
| 741 | |||
| 742 | def aggregate_components(df_dsm_buses, df_dsm_links, df_dsm_stores): |
||
| 743 | # aggregate buses |
||
| 744 | |||
| 745 | grouper = [df_dsm_buses.original_bus, df_dsm_buses.scn_name] |
||
| 746 | |||
| 747 | df_dsm_buses = df_dsm_buses.groupby(grouper).first() |
||
| 748 | |||
| 749 | df_dsm_buses.reset_index(inplace=True) |
||
| 750 | df_dsm_buses.sort_values("scn_name", inplace=True) |
||
| 751 | |||
| 752 | # aggregate links |
||
| 753 | |||
| 754 | df_dsm_links["p_max"] = df_dsm_links["p_max"].apply(lambda x: np.array(x)) |
||
| 755 | df_dsm_links["p_min"] = df_dsm_links["p_min"].apply(lambda x: np.array(x)) |
||
| 756 | |||
| 757 | grouper = [df_dsm_links.original_bus, df_dsm_links.scn_name] |
||
| 758 | p_nom = df_dsm_links.groupby(grouper)["p_nom"].sum() |
||
| 759 | p_max = df_dsm_links.groupby(grouper)["p_max"].apply(np.sum) |
||
| 760 | p_min = df_dsm_links.groupby(grouper)["p_min"].apply(np.sum) |
||
| 761 | |||
| 762 | df_dsm_links = df_dsm_links.groupby(grouper).first() |
||
| 763 | df_dsm_links.p_nom = p_nom |
||
| 764 | df_dsm_links.p_max = p_max |
||
| 765 | df_dsm_links.p_min = p_min |
||
| 766 | |||
| 767 | df_dsm_links["p_max"] = df_dsm_links["p_max"].apply(lambda x: list(x)) |
||
| 768 | df_dsm_links["p_min"] = df_dsm_links["p_min"].apply(lambda x: list(x)) |
||
| 769 | |||
| 770 | df_dsm_links.reset_index(inplace=True) |
||
| 771 | df_dsm_links.sort_values("scn_name", inplace=True) |
||
| 772 | |||
| 773 | # aggregate stores |
||
| 774 | |||
| 775 | df_dsm_stores["e_max"] = df_dsm_stores["e_max"].apply( |
||
| 776 | lambda x: np.array(x) |
||
| 777 | ) |
||
| 778 | df_dsm_stores["e_min"] = df_dsm_stores["e_min"].apply( |
||
| 779 | lambda x: np.array(x) |
||
| 780 | ) |
||
| 781 | |||
| 782 | grouper = [df_dsm_stores.original_bus, df_dsm_stores.scn_name] |
||
| 783 | e_nom = df_dsm_stores.groupby(grouper)["e_nom"].sum() |
||
| 784 | e_max = df_dsm_stores.groupby(grouper)["e_max"].apply(np.sum) |
||
| 785 | e_min = df_dsm_stores.groupby(grouper)["e_min"].apply(np.sum) |
||
| 786 | |||
| 787 | df_dsm_stores = df_dsm_stores.groupby(grouper).first() |
||
| 788 | df_dsm_stores.e_nom = e_nom |
||
| 789 | df_dsm_stores.e_max = e_max |
||
| 790 | df_dsm_stores.e_min = e_min |
||
| 791 | |||
| 792 | df_dsm_stores["e_max"] = df_dsm_stores["e_max"].apply(lambda x: list(x)) |
||
| 793 | df_dsm_stores["e_min"] = df_dsm_stores["e_min"].apply(lambda x: list(x)) |
||
| 794 | |||
| 795 | df_dsm_stores.reset_index(inplace=True) |
||
| 796 | df_dsm_stores.sort_values("scn_name", inplace=True) |
||
| 797 | |||
| 798 | # select new bus_ids for aggregated buses and add to links and stores |
||
| 799 | bus_id = db.next_etrago_id("Bus") + df_dsm_buses.index |
||
| 800 | |||
| 801 | df_dsm_buses["bus_id"] = bus_id |
||
| 802 | df_dsm_links["dsm_bus"] = bus_id |
||
| 803 | df_dsm_stores["bus"] = bus_id |
||
| 804 | |||
| 805 | # select new link_ids for aggregated links |
||
| 806 | link_id = db.next_etrago_id("Link") + df_dsm_links.index |
||
| 807 | |||
| 808 | df_dsm_links["link_id"] = link_id |
||
| 809 | |||
| 810 | # select new store_ids to aggregated stores |
||
| 811 | |||
| 812 | store_id = db.next_etrago_id("Store") + df_dsm_stores.index |
||
| 813 | |||
| 814 | df_dsm_stores["store_id"] = store_id |
||
| 815 | |||
| 816 | return df_dsm_buses, df_dsm_links, df_dsm_stores |
||
| 817 | |||
| 818 | |||
| 819 | def data_export(dsm_buses, dsm_links, dsm_stores, carrier): |
||
| 820 | """ |
||
| 821 | Export new components to database. |
||
| 822 | |||
| 823 | Parameters |
||
| 824 | ---------- |
||
| 825 | dsm_buses: DataFrame |
||
| 826 | Buses representing locations of DSM-potential |
||
| 827 | dsm_links: DataFrame |
||
| 828 | Links connecting DSM-buses and DSM-stores |
||
| 829 | dsm_stores: DataFrame |
||
| 830 | Stores representing DSM-potential |
||
| 831 | carrier: str |
||
| 832 | Remark to be filled in column 'carrier' identifying DSM-potential |
||
| 833 | """ |
||
| 834 | |||
| 835 | targets = config.datasets()["DSM_CTS_industry"]["targets"] |
||
| 836 | |||
| 837 | # dsm_buses |
||
| 838 | |||
| 839 | insert_buses = gpd.GeoDataFrame( |
||
| 840 | index=dsm_buses.index, |
||
| 841 | data=dsm_buses["geom"], |
||
| 842 | geometry="geom", |
||
| 843 | crs=dsm_buses.crs, |
||
| 844 | ) |
||
| 845 | insert_buses["scn_name"] = dsm_buses["scn_name"] |
||
| 846 | insert_buses["bus_id"] = dsm_buses["bus_id"] |
||
| 847 | insert_buses["v_nom"] = dsm_buses["v_nom"] |
||
| 848 | insert_buses["carrier"] = carrier |
||
| 849 | insert_buses["x"] = dsm_buses["x"] |
||
| 850 | insert_buses["y"] = dsm_buses["y"] |
||
| 851 | |||
| 852 | # insert into database |
||
| 853 | insert_buses.to_postgis( |
||
| 854 | targets["bus"]["table"], |
||
| 855 | con=db.engine(), |
||
| 856 | schema=targets["bus"]["schema"], |
||
| 857 | if_exists="append", |
||
| 858 | index=False, |
||
| 859 | dtype={"geom": "geometry"}, |
||
| 860 | ) |
||
| 861 | |||
| 862 | # dsm_links |
||
| 863 | |||
| 864 | insert_links = pd.DataFrame(index=dsm_links.index) |
||
| 865 | insert_links["scn_name"] = dsm_links["scn_name"] |
||
| 866 | insert_links["link_id"] = dsm_links["link_id"] |
||
| 867 | insert_links["bus0"] = dsm_links["original_bus"] |
||
| 868 | insert_links["bus1"] = dsm_links["dsm_bus"] |
||
| 869 | insert_links["carrier"] = carrier |
||
| 870 | insert_links["p_nom"] = dsm_links["p_nom"] |
||
| 871 | |||
| 872 | # insert into database |
||
| 873 | insert_links.to_sql( |
||
| 874 | targets["link"]["table"], |
||
| 875 | con=db.engine(), |
||
| 876 | schema=targets["link"]["schema"], |
||
| 877 | if_exists="append", |
||
| 878 | index=False, |
||
| 879 | ) |
||
| 880 | |||
| 881 | insert_links_timeseries = pd.DataFrame(index=dsm_links.index) |
||
| 882 | insert_links_timeseries["scn_name"] = dsm_links["scn_name"] |
||
| 883 | insert_links_timeseries["link_id"] = dsm_links["link_id"] |
||
| 884 | insert_links_timeseries["p_min_pu"] = dsm_links["p_min"] |
||
| 885 | insert_links_timeseries["p_max_pu"] = dsm_links["p_max"] |
||
| 886 | insert_links_timeseries["temp_id"] = 1 |
||
| 887 | |||
| 888 | # insert into database |
||
| 889 | insert_links_timeseries.to_sql( |
||
| 890 | targets["link_timeseries"]["table"], |
||
| 891 | con=db.engine(), |
||
| 892 | schema=targets["link_timeseries"]["schema"], |
||
| 893 | if_exists="append", |
||
| 894 | index=False, |
||
| 895 | ) |
||
| 896 | |||
| 897 | # dsm_stores |
||
| 898 | |||
| 899 | insert_stores = pd.DataFrame(index=dsm_stores.index) |
||
| 900 | insert_stores["scn_name"] = dsm_stores["scn_name"] |
||
| 901 | insert_stores["store_id"] = dsm_stores["store_id"] |
||
| 902 | insert_stores["bus"] = dsm_stores["bus"] |
||
| 903 | insert_stores["carrier"] = carrier |
||
| 904 | insert_stores["e_nom"] = dsm_stores["e_nom"] |
||
| 905 | |||
| 906 | # insert into database |
||
| 907 | insert_stores.to_sql( |
||
| 908 | targets["store"]["table"], |
||
| 909 | con=db.engine(), |
||
| 910 | schema=targets["store"]["schema"], |
||
| 911 | if_exists="append", |
||
| 912 | index=False, |
||
| 913 | ) |
||
| 914 | |||
| 915 | insert_stores_timeseries = pd.DataFrame(index=dsm_stores.index) |
||
| 916 | insert_stores_timeseries["scn_name"] = dsm_stores["scn_name"] |
||
| 917 | insert_stores_timeseries["store_id"] = dsm_stores["store_id"] |
||
| 918 | insert_stores_timeseries["e_min_pu"] = dsm_stores["e_min"] |
||
| 919 | insert_stores_timeseries["e_max_pu"] = dsm_stores["e_max"] |
||
| 920 | insert_stores_timeseries["temp_id"] = 1 |
||
| 921 | |||
| 922 | # insert into database |
||
| 923 | insert_stores_timeseries.to_sql( |
||
| 924 | targets["store_timeseries"]["table"], |
||
| 925 | con=db.engine(), |
||
| 926 | schema=targets["store_timeseries"]["schema"], |
||
| 927 | if_exists="append", |
||
| 928 | index=False, |
||
| 929 | ) |
||
| 930 | |||
| 931 | |||
| 932 | def delete_dsm_entries(carrier): |
||
| 933 | """ |
||
| 934 | Deletes DSM-components from database if they already exist before creating |
||
| 935 | new ones. |
||
| 936 | |||
| 937 | Parameters |
||
| 938 | ---------- |
||
| 939 | carrier: str |
||
| 940 | Remark in column 'carrier' identifying DSM-potential |
||
| 941 | """ |
||
| 942 | |||
| 943 | targets = config.datasets()["DSM_CTS_industry"]["targets"] |
||
| 944 | |||
| 945 | # buses |
||
| 946 | |||
| 947 | sql = f"""DELETE FROM {targets["bus"]["schema"]}.{targets["bus"]["table"]} b |
||
| 948 | WHERE (b.carrier LIKE '{carrier}');""" |
||
| 949 | db.execute_sql(sql) |
||
| 950 | |||
| 951 | # links |
||
| 952 | |||
| 953 | sql = f""" |
||
| 954 | DELETE FROM {targets["link_timeseries"]["schema"]}. |
||
| 955 | {targets["link_timeseries"]["table"]} t |
||
| 956 | WHERE t.link_id IN |
||
| 957 | ( |
||
| 958 | SELECT l.link_id FROM {targets["link"]["schema"]}. |
||
| 959 | {targets["link"]["table"]} l |
||
| 960 | WHERE l.carrier LIKE '{carrier}' |
||
| 961 | ); |
||
| 962 | """ |
||
| 963 | |||
| 964 | db.execute_sql(sql) |
||
| 965 | |||
| 966 | sql = f""" |
||
| 967 | DELETE FROM {targets["link"]["schema"]}. |
||
| 968 | {targets["link"]["table"]} l |
||
| 969 | WHERE (l.carrier LIKE '{carrier}'); |
||
| 970 | """ |
||
| 971 | |||
| 972 | db.execute_sql(sql) |
||
| 973 | |||
| 974 | # stores |
||
| 975 | |||
| 976 | sql = f""" |
||
| 977 | DELETE FROM {targets["store_timeseries"]["schema"]}. |
||
| 978 | {targets["store_timeseries"]["table"]} t |
||
| 979 | WHERE t.store_id IN |
||
| 980 | ( |
||
| 981 | SELECT s.store_id FROM {targets["store"]["schema"]}. |
||
| 982 | {targets["store"]["table"]} s |
||
| 983 | WHERE s.carrier LIKE '{carrier}' |
||
| 984 | ); |
||
| 985 | """ |
||
| 986 | |||
| 987 | db.execute_sql(sql) |
||
| 988 | |||
| 989 | sql = f""" |
||
| 990 | DELETE FROM {targets["store"]["schema"]}.{targets["store"]["table"]} s |
||
| 991 | WHERE (s.carrier LIKE '{carrier}'); |
||
| 992 | """ |
||
| 993 | |||
| 994 | db.execute_sql(sql) |
||
| 995 | |||
| 996 | |||
| 997 | def dsm_cts_ind( |
||
| 998 | con=db.engine(), |
||
| 999 | cts_cool_vent_ac_share=0.22, |
||
| 1000 | ind_vent_cool_share=0.039, |
||
| 1001 | ind_vent_share=0.017, |
||
| 1002 | ): |
||
| 1003 | """ |
||
| 1004 | Execute methodology to create and implement components for DSM considering |
||
| 1005 | a) CTS per osm-area: combined potentials of cooling, ventilation and air |
||
| 1006 | conditioning |
||
| 1007 | b) Industry per osm-are: combined potentials of cooling and ventilation |
||
| 1008 | c) Industrial Sites: potentials of ventilation in sites of |
||
| 1009 | "Wirtschaftszweig" (WZ) 23 |
||
| 1010 | d) Industrial Sites: potentials of sites specified by subsectors |
||
| 1011 | identified by Schmidt (https://zenodo.org/record/3613767#.YTsGwVtCRhG): |
||
| 1012 | Paper, Recycled Paper, Pulp, Cement |
||
| 1013 | |||
| 1014 | Modelled using the methods by Heitkoetter et. al.: |
||
| 1015 | https://doi.org/10.1016/j.adapen.2020.100001 |
||
| 1016 | |||
| 1017 | Parameters |
||
| 1018 | ---------- |
||
| 1019 | con : |
||
| 1020 | Connection to database |
||
| 1021 | cts_cool_vent_ac_share: float |
||
| 1022 | Share of cooling, ventilation and AC in CTS demand |
||
| 1023 | ind_vent_cool_share: float |
||
| 1024 | Share of cooling and ventilation in industry demand |
||
| 1025 | ind_vent_share: float |
||
| 1026 | Share of ventilation in industry demand in sites of WZ 23 |
||
| 1027 | |||
| 1028 | """ |
||
| 1029 | |||
| 1030 | # CTS per osm-area: cooling, ventilation and air conditioning |
||
| 1031 | |||
| 1032 | print(" ") |
||
| 1033 | print("CTS per osm-area: cooling, ventilation and air conditioning") |
||
| 1034 | print(" ") |
||
| 1035 | |||
| 1036 | dsm = cts_data_import(cts_cool_vent_ac_share) |
||
| 1037 | |||
| 1038 | # calculate combined potentials of cooling, ventilation and air |
||
| 1039 | # conditioning in CTS using combined parameters by Heitkoetter et. al. |
||
| 1040 | p_max, p_min, e_max, e_min = calculate_potentials( |
||
| 1041 | s_flex=S_FLEX_CTS, |
||
| 1042 | s_util=S_UTIL_CTS, |
||
| 1043 | s_inc=S_INC_CTS, |
||
| 1044 | s_dec=S_DEC_CTS, |
||
| 1045 | delta_t=DELTA_T_CTS, |
||
| 1046 | dsm=dsm, |
||
| 1047 | ) |
||
| 1048 | |||
| 1049 | dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
||
| 1050 | con, p_max, p_min, e_max, e_min, dsm |
||
| 1051 | ) |
||
| 1052 | |||
| 1053 | df_dsm_buses = dsm_buses.copy() |
||
| 1054 | df_dsm_links = dsm_links.copy() |
||
| 1055 | df_dsm_stores = dsm_stores.copy() |
||
| 1056 | |||
| 1057 | # industry per osm-area: cooling and ventilation |
||
| 1058 | |||
| 1059 | print(" ") |
||
| 1060 | print("industry per osm-area: cooling and ventilation") |
||
| 1061 | print(" ") |
||
| 1062 | |||
| 1063 | dsm = ind_osm_data_import(ind_vent_cool_share) |
||
| 1064 | |||
| 1065 | # calculate combined potentials of cooling and ventilation in industrial |
||
| 1066 | # sector using combined parameters by Heitkoetter et. al. |
||
| 1067 | p_max, p_min, e_max, e_min = calculate_potentials( |
||
| 1068 | s_flex=S_FLEX_OSM, |
||
| 1069 | s_util=S_UTIL_OSM, |
||
| 1070 | s_inc=S_INC_OSM, |
||
| 1071 | s_dec=S_DEC_OSM, |
||
| 1072 | delta_t=DELTA_T_OSM, |
||
| 1073 | dsm=dsm, |
||
| 1074 | ) |
||
| 1075 | |||
| 1076 | dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
||
| 1077 | con, p_max, p_min, e_max, e_min, dsm |
||
| 1078 | ) |
||
| 1079 | |||
| 1080 | df_dsm_buses = gpd.GeoDataFrame( |
||
| 1081 | pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
||
| 1082 | crs="EPSG:4326", |
||
| 1083 | ) |
||
| 1084 | df_dsm_links = pd.DataFrame( |
||
| 1085 | pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
||
| 1086 | ) |
||
| 1087 | df_dsm_stores = pd.DataFrame( |
||
| 1088 | pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
||
| 1089 | ) |
||
| 1090 | |||
| 1091 | # industry sites |
||
| 1092 | |||
| 1093 | # industry sites: different applications |
||
| 1094 | |||
| 1095 | dsm = ind_sites_data_import() |
||
| 1096 | |||
| 1097 | print(" ") |
||
| 1098 | print("industry sites: paper") |
||
| 1099 | print(" ") |
||
| 1100 | |||
| 1101 | dsm_paper = gpd.GeoDataFrame( |
||
| 1102 | dsm[ |
||
| 1103 | dsm["application"].isin( |
||
| 1104 | [ |
||
| 1105 | "Graphic Paper", |
||
| 1106 | "Packing Paper and Board", |
||
| 1107 | "Hygiene Paper", |
||
| 1108 | "Technical/Special Paper and Board", |
||
| 1109 | ] |
||
| 1110 | ) |
||
| 1111 | ] |
||
| 1112 | ) |
||
| 1113 | |||
| 1114 | # calculate potentials of industrial sites with paper-applications |
||
| 1115 | # using parameters by Heitkoetter et al. |
||
| 1116 | p_max, p_min, e_max, e_min = calculate_potentials( |
||
| 1117 | s_flex=S_FLEX_PAPER, |
||
| 1118 | s_util=S_UTIL_PAPER, |
||
| 1119 | s_inc=S_INC_PAPER, |
||
| 1120 | s_dec=S_DEC_PAPER, |
||
| 1121 | delta_t=DELTA_T_PAPER, |
||
| 1122 | dsm=dsm_paper, |
||
| 1123 | ) |
||
| 1124 | |||
| 1125 | dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
||
| 1126 | con, p_max, p_min, e_max, e_min, dsm_paper |
||
| 1127 | ) |
||
| 1128 | |||
| 1129 | df_dsm_buses = gpd.GeoDataFrame( |
||
| 1130 | pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
||
| 1131 | crs="EPSG:4326", |
||
| 1132 | ) |
||
| 1133 | df_dsm_links = pd.DataFrame( |
||
| 1134 | pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
||
| 1135 | ) |
||
| 1136 | df_dsm_stores = pd.DataFrame( |
||
| 1137 | pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
||
| 1138 | ) |
||
| 1139 | |||
| 1140 | print(" ") |
||
| 1141 | print("industry sites: recycled paper") |
||
| 1142 | print(" ") |
||
| 1143 | |||
| 1144 | # calculate potentials of industrial sites with recycled paper-applications |
||
| 1145 | # using parameters by Heitkoetter et. al. |
||
| 1146 | dsm_recycled_paper = gpd.GeoDataFrame( |
||
| 1147 | dsm[dsm["application"] == "Recycled Paper"] |
||
| 1148 | ) |
||
| 1149 | |||
| 1150 | p_max, p_min, e_max, e_min = calculate_potentials( |
||
| 1151 | s_flex=S_FLEX_RECYCLED_PAPER, |
||
| 1152 | s_util=S_UTIL_RECYCLED_PAPER, |
||
| 1153 | s_inc=S_INC_RECYCLED_PAPER, |
||
| 1154 | s_dec=S_DEC_RECYCLED_PAPER, |
||
| 1155 | delta_t=DELTA_T_RECYCLED_PAPER, |
||
| 1156 | dsm=dsm_recycled_paper, |
||
| 1157 | ) |
||
| 1158 | |||
| 1159 | dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
||
| 1160 | con, p_max, p_min, e_max, e_min, dsm_recycled_paper |
||
| 1161 | ) |
||
| 1162 | |||
| 1163 | df_dsm_buses = gpd.GeoDataFrame( |
||
| 1164 | pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
||
| 1165 | crs="EPSG:4326", |
||
| 1166 | ) |
||
| 1167 | df_dsm_links = pd.DataFrame( |
||
| 1168 | pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
||
| 1169 | ) |
||
| 1170 | df_dsm_stores = pd.DataFrame( |
||
| 1171 | pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
||
| 1172 | ) |
||
| 1173 | |||
| 1174 | print(" ") |
||
| 1175 | print("industry sites: pulp") |
||
| 1176 | print(" ") |
||
| 1177 | |||
| 1178 | dsm_pulp = gpd.GeoDataFrame(dsm[dsm["application"] == "Mechanical Pulp"]) |
||
| 1179 | |||
| 1180 | # calculate potentials of industrial sites with pulp-applications |
||
| 1181 | # using parameters by Heitkoetter et al. |
||
| 1182 | p_max, p_min, e_max, e_min = calculate_potentials( |
||
| 1183 | s_flex=S_FLEX_PULP, |
||
| 1184 | s_util=S_UTIL_PULP, |
||
| 1185 | s_inc=S_INC_PULP, |
||
| 1186 | s_dec=S_DEC_PULP, |
||
| 1187 | delta_t=DELTA_T_PULP, |
||
| 1188 | dsm=dsm_pulp, |
||
| 1189 | ) |
||
| 1190 | |||
| 1191 | dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
||
| 1192 | con, p_max, p_min, e_max, e_min, dsm_pulp |
||
| 1193 | ) |
||
| 1194 | |||
| 1195 | df_dsm_buses = gpd.GeoDataFrame( |
||
| 1196 | pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
||
| 1197 | crs="EPSG:4326", |
||
| 1198 | ) |
||
| 1199 | df_dsm_links = pd.DataFrame( |
||
| 1200 | pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
||
| 1201 | ) |
||
| 1202 | df_dsm_stores = pd.DataFrame( |
||
| 1203 | pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
||
| 1204 | ) |
||
| 1205 | |||
| 1206 | # industry sites: cement |
||
| 1207 | |||
| 1208 | print(" ") |
||
| 1209 | print("industry sites: cement") |
||
| 1210 | print(" ") |
||
| 1211 | |||
| 1212 | dsm_cement = gpd.GeoDataFrame(dsm[dsm["application"] == "Cement Mill"]) |
||
| 1213 | |||
| 1214 | # calculate potentials of industrial sites with cement-applications |
||
| 1215 | # using parameters by Heitkoetter et al. |
||
| 1216 | p_max, p_min, e_max, e_min = calculate_potentials( |
||
| 1217 | s_flex=S_FLEX_CEMENT, |
||
| 1218 | s_util=S_UTIL_CEMENT, |
||
| 1219 | s_inc=S_INC_CEMENT, |
||
| 1220 | s_dec=S_DEC_CEMENT, |
||
| 1221 | delta_t=DELTA_T_CEMENT, |
||
| 1222 | dsm=dsm_cement, |
||
| 1223 | ) |
||
| 1224 | |||
| 1225 | dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
||
| 1226 | con, p_max, p_min, e_max, e_min, dsm_cement |
||
| 1227 | ) |
||
| 1228 | |||
| 1229 | df_dsm_buses = gpd.GeoDataFrame( |
||
| 1230 | pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
||
| 1231 | crs="EPSG:4326", |
||
| 1232 | ) |
||
| 1233 | df_dsm_links = pd.DataFrame( |
||
| 1234 | pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
||
| 1235 | ) |
||
| 1236 | df_dsm_stores = pd.DataFrame( |
||
| 1237 | pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
||
| 1238 | ) |
||
| 1239 | |||
| 1240 | # industry sites: ventilation in WZ23 |
||
| 1241 | |||
| 1242 | print(" ") |
||
| 1243 | print("industry sites: ventilation in WZ23") |
||
| 1244 | print(" ") |
||
| 1245 | |||
| 1246 | dsm = ind_sites_vent_data_import(ind_vent_share, wz=WZ) |
||
| 1247 | |||
| 1248 | # drop entries of Cement Mills whose DSM-potentials have already been |
||
| 1249 | # modelled |
||
| 1250 | cement = np.unique(dsm_cement["bus"].values) |
||
| 1251 | index_names = np.array(dsm[dsm["bus"].isin(cement)].index) |
||
| 1252 | dsm.drop(index_names, inplace=True) |
||
| 1253 | |||
| 1254 | # calculate potentials of ventialtion in industrial sites of WZ 23 |
||
| 1255 | # using parameters by Heitkoetter et al. |
||
| 1256 | p_max, p_min, e_max, e_min = calculate_potentials( |
||
| 1257 | s_flex=S_FLEX_WZ, |
||
| 1258 | s_util=S_UTIL_WZ, |
||
| 1259 | s_inc=S_INC_WZ, |
||
| 1260 | s_dec=S_DEC_WZ, |
||
| 1261 | delta_t=DELTA_T_WZ, |
||
| 1262 | dsm=dsm, |
||
| 1263 | ) |
||
| 1264 | |||
| 1265 | dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
||
| 1266 | con, p_max, p_min, e_max, e_min, dsm |
||
| 1267 | ) |
||
| 1268 | |||
| 1269 | df_dsm_buses = gpd.GeoDataFrame( |
||
| 1270 | pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
||
| 1271 | crs="EPSG:4326", |
||
| 1272 | ) |
||
| 1273 | df_dsm_links = pd.DataFrame( |
||
| 1274 | pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
||
| 1275 | ) |
||
| 1276 | df_dsm_stores = pd.DataFrame( |
||
| 1277 | pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
||
| 1278 | ) |
||
| 1279 | |||
| 1280 | # aggregate DSM components per substation |
||
| 1281 | dsm_buses, dsm_links, dsm_stores = aggregate_components( |
||
| 1282 | df_dsm_buses, df_dsm_links, df_dsm_stores |
||
| 1283 | ) |
||
| 1284 | |||
| 1285 | # export aggregated DSM components to database |
||
| 1286 | |||
| 1287 | delete_dsm_entries("dsm-cts") |
||
| 1288 | delete_dsm_entries("dsm-ind-osm") |
||
| 1289 | delete_dsm_entries("dsm-ind-sites") |
||
| 1290 | delete_dsm_entries("dsm") |
||
| 1291 | |||
| 1292 | data_export(dsm_buses, dsm_links, dsm_stores, carrier="dsm") |
||
| 1293 | |||
| 1294 | |||
| 1295 | def get_p_nom_e_nom(df: pd.DataFrame): |
||
| 1296 | p_nom = [ |
||
| 1297 | max(max(val), max(abs(v) for v in df.p_min_pu.at[idx])) |
||
| 1298 | for idx, val in df.p_max_pu.items() |
||
| 1299 | ] |
||
| 1300 | |||
| 1301 | e_nom = [ |
||
| 1302 | max(max(val), max(abs(v) for v in df.e_min_pu.at[idx])) |
||
| 1303 | for idx, val in df.e_max_pu.items() |
||
| 1304 | ] |
||
| 1305 | |||
| 1306 | return df.assign(p_nom=p_nom, e_nom=e_nom) |
||
| 1307 | |||
| 1308 | |||
| 1309 | def calc_per_unit(df): |
||
| 1310 | df = get_p_nom_e_nom(df) |
||
| 1311 | |||
| 1312 | for col in ["p_max_pu", "p_min_pu"]: |
||
| 1313 | rslt = [] |
||
| 1314 | |||
| 1315 | for idx, lst in df[col].items(): |
||
| 1316 | p_nom = df.p_nom.at[idx] |
||
| 1317 | |||
| 1318 | rslt.append([v / p_nom for v in lst]) |
||
| 1319 | |||
| 1320 | df[col] = rslt |
||
| 1321 | |||
| 1322 | for col in ["e_max_pu", "e_min_pu"]: |
||
| 1323 | rslt = [] |
||
| 1324 | |||
| 1325 | for idx, lst in df[col].items(): |
||
| 1326 | e_nom = df.e_nom.at[idx] |
||
| 1327 | |||
| 1328 | rslt.append([v / e_nom for v in lst]) |
||
| 1329 | |||
| 1330 | df[col] = rslt |
||
| 1331 | |||
| 1332 | return df |
||
| 1333 | |||
| 1334 | |||
| 1335 | def create_table(df, table, engine=CON): |
||
| 1336 | """Create table""" |
||
| 1337 | table.__table__.drop(bind=engine, checkfirst=True) |
||
| 1338 | table.__table__.create(bind=engine, checkfirst=True) |
||
| 1339 | |||
| 1340 | df.to_sql( |
||
| 1341 | name=table.__table__.name, |
||
| 1342 | schema=table.__table__.schema, |
||
| 1343 | con=engine, |
||
| 1344 | if_exists="append", |
||
| 1345 | index=False, |
||
| 1346 | ) |
||
| 1347 | |||
| 1348 | |||
| 1349 | def dsm_cts_ind_individual( |
||
| 1350 | cts_cool_vent_ac_share=CTS_COOL_VENT_AC_SHARE, |
||
| 1351 | ind_vent_cool_share=IND_VENT_COOL_SHARE, |
||
| 1352 | ind_vent_share=IND_VENT_SHARE, |
||
| 1353 | ): |
||
| 1354 | """ |
||
| 1355 | Execute methodology to create and implement components for DSM considering |
||
| 1356 | a) CTS per osm-area: combined potentials of cooling, ventilation and air |
||
| 1357 | conditioning |
||
| 1358 | b) Industry per osm-are: combined potentials of cooling and ventilation |
||
| 1359 | c) Industrial Sites: potentials of ventilation in sites of |
||
| 1360 | "Wirtschaftszweig" (WZ) 23 |
||
| 1361 | d) Industrial Sites: potentials of sites specified by subsectors |
||
| 1362 | identified by Schmidt (https://zenodo.org/record/3613767#.YTsGwVtCRhG): |
||
| 1363 | Paper, Recycled Paper, Pulp, Cement |
||
| 1364 | |||
| 1365 | Modelled using the methods by Heitkoetter et. al.: |
||
| 1366 | https://doi.org/10.1016/j.adapen.2020.100001 |
||
| 1367 | |||
| 1368 | Parameters |
||
| 1369 | ---------- |
||
| 1370 | cts_cool_vent_ac_share: float |
||
| 1371 | Share of cooling, ventilation and AC in CTS demand |
||
| 1372 | ind_vent_cool_share: float |
||
| 1373 | Share of cooling and ventilation in industry demand |
||
| 1374 | ind_vent_share: float |
||
| 1375 | Share of ventilation in industry demand in sites of WZ 23 |
||
| 1376 | |||
| 1377 | """ |
||
| 1378 | |||
| 1379 | # CTS per osm-area: cooling, ventilation and air conditioning |
||
| 1380 | |||
| 1381 | print(" ") |
||
| 1382 | print("CTS per osm-area: cooling, ventilation and air conditioning") |
||
| 1383 | print(" ") |
||
| 1384 | |||
| 1385 | dsm = cts_data_import(cts_cool_vent_ac_share) |
||
| 1386 | |||
| 1387 | # calculate combined potentials of cooling, ventilation and air |
||
| 1388 | # conditioning in CTS using combined parameters by Heitkoetter et. al. |
||
| 1389 | vals = calculate_potentials( |
||
| 1390 | s_flex=S_FLEX_CTS, |
||
| 1391 | s_util=S_UTIL_CTS, |
||
| 1392 | s_inc=S_INC_CTS, |
||
| 1393 | s_dec=S_DEC_CTS, |
||
| 1394 | delta_t=DELTA_T_CTS, |
||
| 1395 | dsm=dsm, |
||
| 1396 | ) |
||
| 1397 | |||
| 1398 | base_columns = [ |
||
| 1399 | "bus", |
||
| 1400 | "scn_name", |
||
| 1401 | "p_set", |
||
| 1402 | "p_max_pu", |
||
| 1403 | "p_min_pu", |
||
| 1404 | "e_max_pu", |
||
| 1405 | "e_min_pu", |
||
| 1406 | ] |
||
| 1407 | |||
| 1408 | cts_df = pd.concat([dsm, *vals], axis=1, ignore_index=True) |
||
| 1409 | cts_df.columns = base_columns |
||
| 1410 | cts_df = calc_per_unit(cts_df) |
||
| 1411 | |||
| 1412 | print(" ") |
||
| 1413 | print("industry per osm-area: cooling and ventilation") |
||
| 1414 | print(" ") |
||
| 1415 | |||
| 1416 | dsm = ind_osm_data_import_individual(ind_vent_cool_share) |
||
| 1417 | |||
| 1418 | # calculate combined potentials of cooling and ventilation in industrial |
||
| 1419 | # sector using combined parameters by Heitkoetter et al. |
||
| 1420 | vals = calculate_potentials( |
||
| 1421 | s_flex=S_FLEX_OSM, |
||
| 1422 | s_util=S_UTIL_OSM, |
||
| 1423 | s_inc=S_INC_OSM, |
||
| 1424 | s_dec=S_DEC_OSM, |
||
| 1425 | delta_t=DELTA_T_OSM, |
||
| 1426 | dsm=dsm, |
||
| 1427 | ) |
||
| 1428 | |||
| 1429 | columns = ["osm_id"] + base_columns |
||
| 1430 | |||
| 1431 | osm_df = pd.concat([dsm, *vals], axis=1, ignore_index=True) |
||
| 1432 | osm_df.columns = columns |
||
| 1433 | osm_df = calc_per_unit(osm_df) |
||
| 1434 | |||
| 1435 | # industry sites |
||
| 1436 | |||
| 1437 | # industry sites: different applications |
||
| 1438 | |||
| 1439 | dsm = ind_sites_data_import() |
||
| 1440 | |||
| 1441 | print(" ") |
||
| 1442 | print("industry sites: paper") |
||
| 1443 | print(" ") |
||
| 1444 | |||
| 1445 | dsm_paper = gpd.GeoDataFrame( |
||
| 1446 | dsm[ |
||
| 1447 | dsm["application"].isin( |
||
| 1448 | [ |
||
| 1449 | "Graphic Paper", |
||
| 1450 | "Packing Paper and Board", |
||
| 1451 | "Hygiene Paper", |
||
| 1452 | "Technical/Special Paper and Board", |
||
| 1453 | ] |
||
| 1454 | ) |
||
| 1455 | ] |
||
| 1456 | ) |
||
| 1457 | |||
| 1458 | # calculate potentials of industrial sites with paper-applications |
||
| 1459 | # using parameters by Heitkoetter et al. |
||
| 1460 | vals = calculate_potentials( |
||
| 1461 | s_flex=S_FLEX_PAPER, |
||
| 1462 | s_util=S_UTIL_PAPER, |
||
| 1463 | s_inc=S_INC_PAPER, |
||
| 1464 | s_dec=S_DEC_PAPER, |
||
| 1465 | delta_t=DELTA_T_PAPER, |
||
| 1466 | dsm=dsm_paper, |
||
| 1467 | ) |
||
| 1468 | |||
| 1469 | columns = ["application", "industrial_sites_id"] + base_columns |
||
| 1470 | |||
| 1471 | paper_df = pd.concat([dsm_paper, *vals], axis=1, ignore_index=True) |
||
| 1472 | paper_df.columns = columns |
||
| 1473 | paper_df = calc_per_unit(paper_df) |
||
| 1474 | |||
| 1475 | print(" ") |
||
| 1476 | print("industry sites: recycled paper") |
||
| 1477 | print(" ") |
||
| 1478 | |||
| 1479 | # calculate potentials of industrial sites with recycled paper-applications |
||
| 1480 | # using parameters by Heitkoetter et. al. |
||
| 1481 | dsm_recycled_paper = gpd.GeoDataFrame( |
||
| 1482 | dsm[dsm["application"] == "Recycled Paper"] |
||
| 1483 | ) |
||
| 1484 | |||
| 1485 | vals = calculate_potentials( |
||
| 1486 | s_flex=S_FLEX_RECYCLED_PAPER, |
||
| 1487 | s_util=S_UTIL_RECYCLED_PAPER, |
||
| 1488 | s_inc=S_INC_RECYCLED_PAPER, |
||
| 1489 | s_dec=S_DEC_RECYCLED_PAPER, |
||
| 1490 | delta_t=DELTA_T_RECYCLED_PAPER, |
||
| 1491 | dsm=dsm_recycled_paper, |
||
| 1492 | ) |
||
| 1493 | |||
| 1494 | recycled_paper_df = pd.concat( |
||
| 1495 | [dsm_recycled_paper, *vals], axis=1, ignore_index=True |
||
| 1496 | ) |
||
| 1497 | recycled_paper_df.columns = columns |
||
| 1498 | recycled_paper_df = calc_per_unit(recycled_paper_df) |
||
| 1499 | |||
| 1500 | print(" ") |
||
| 1501 | print("industry sites: pulp") |
||
| 1502 | print(" ") |
||
| 1503 | |||
| 1504 | dsm_pulp = gpd.GeoDataFrame(dsm[dsm["application"] == "Mechanical Pulp"]) |
||
| 1505 | |||
| 1506 | # calculate potentials of industrial sites with pulp-applications |
||
| 1507 | # using parameters by Heitkoetter et al. |
||
| 1508 | vals = calculate_potentials( |
||
| 1509 | s_flex=S_FLEX_PULP, |
||
| 1510 | s_util=S_UTIL_PULP, |
||
| 1511 | s_inc=S_INC_PULP, |
||
| 1512 | s_dec=S_DEC_PULP, |
||
| 1513 | delta_t=DELTA_T_PULP, |
||
| 1514 | dsm=dsm_pulp, |
||
| 1515 | ) |
||
| 1516 | |||
| 1517 | pulp_df = pd.concat([dsm_pulp, *vals], axis=1, ignore_index=True) |
||
| 1518 | pulp_df.columns = columns |
||
| 1519 | pulp_df = calc_per_unit(pulp_df) |
||
| 1520 | |||
| 1521 | # industry sites: cement |
||
| 1522 | |||
| 1523 | print(" ") |
||
| 1524 | print("industry sites: cement") |
||
| 1525 | print(" ") |
||
| 1526 | |||
| 1527 | dsm_cement = gpd.GeoDataFrame(dsm[dsm["application"] == "Cement Mill"]) |
||
| 1528 | |||
| 1529 | # calculate potentials of industrial sites with cement-applications |
||
| 1530 | # using parameters by Heitkoetter et al. |
||
| 1531 | vals = calculate_potentials( |
||
| 1532 | s_flex=S_FLEX_CEMENT, |
||
| 1533 | s_util=S_UTIL_CEMENT, |
||
| 1534 | s_inc=S_INC_CEMENT, |
||
| 1535 | s_dec=S_DEC_CEMENT, |
||
| 1536 | delta_t=DELTA_T_CEMENT, |
||
| 1537 | dsm=dsm_cement, |
||
| 1538 | ) |
||
| 1539 | |||
| 1540 | cement_df = pd.concat([dsm_cement, *vals], axis=1, ignore_index=True) |
||
| 1541 | cement_df.columns = columns |
||
| 1542 | cement_df = calc_per_unit(cement_df) |
||
| 1543 | |||
| 1544 | ind_df = pd.concat( |
||
| 1545 | [paper_df, recycled_paper_df, pulp_df, cement_df], ignore_index=True |
||
| 1546 | ) |
||
| 1547 | |||
| 1548 | # industry sites: ventilation in WZ23 |
||
| 1549 | |||
| 1550 | print(" ") |
||
| 1551 | print("industry sites: ventilation in WZ23") |
||
| 1552 | print(" ") |
||
| 1553 | |||
| 1554 | dsm = ind_sites_vent_data_import_individual(ind_vent_share, wz=WZ) |
||
| 1555 | |||
| 1556 | # drop entries of Cement Mills whose DSM-potentials have already been |
||
| 1557 | # modelled |
||
| 1558 | cement = np.unique(dsm_cement["bus"].values) |
||
| 1559 | index_names = np.array(dsm[dsm["bus"].isin(cement)].index) |
||
| 1560 | dsm.drop(index_names, inplace=True) |
||
| 1561 | |||
| 1562 | # calculate potentials of ventialtion in industrial sites of WZ 23 |
||
| 1563 | # using parameters by Heitkoetter et al. |
||
| 1564 | vals = calculate_potentials( |
||
| 1565 | s_flex=S_FLEX_WZ, |
||
| 1566 | s_util=S_UTIL_WZ, |
||
| 1567 | s_inc=S_INC_WZ, |
||
| 1568 | s_dec=S_DEC_WZ, |
||
| 1569 | delta_t=DELTA_T_WZ, |
||
| 1570 | dsm=dsm, |
||
| 1571 | ) |
||
| 1572 | |||
| 1573 | columns = ["site_id"] + base_columns |
||
| 1574 | |||
| 1575 | ind_sites_df = pd.concat([dsm, *vals], axis=1, ignore_index=True) |
||
| 1576 | ind_sites_df.columns = columns |
||
| 1577 | ind_sites_df = calc_per_unit(ind_sites_df) |
||
| 1578 | |||
| 1579 | # create tables |
||
| 1580 | create_table( |
||
| 1581 | df=cts_df, table=EgonEtragoElectricityCtsDsmTimeseries, engine=CON |
||
| 1582 | ) |
||
| 1583 | create_table( |
||
| 1584 | df=osm_df, |
||
| 1585 | table=EgonOsmIndLoadCurvesIndividualDsmTimeseries, |
||
| 1586 | engine=CON, |
||
| 1587 | ) |
||
| 1588 | create_table( |
||
| 1589 | df=ind_df, |
||
| 1590 | table=EgonDemandregioSitesIndElectricityDsmTimeseries, |
||
| 1591 | engine=CON, |
||
| 1592 | ) |
||
| 1593 | create_table( |
||
| 1594 | df=ind_sites_df, |
||
| 1595 | table=EgonSitesIndLoadCurvesIndividualDsmTimeseries, |
||
| 1596 | engine=CON, |
||
| 1597 | ) |
||
| 1598 | |||
| 1599 | |||
| 1600 | def dsm_cts_ind_processing(): |
||
| 1601 | dsm_cts_ind() |
||
| 1602 | |||
| 1603 | dsm_cts_ind_individual() |
||
| 1604 |