1
|
|
|
from sqlalchemy import ARRAY, Column, Float, Integer, String |
2
|
|
|
from sqlalchemy.ext.declarative import declarative_base |
3
|
|
|
import geopandas as gpd |
4
|
|
|
import numpy as np |
5
|
|
|
import pandas as pd |
6
|
|
|
|
7
|
|
|
from egon.data import config, db |
8
|
|
|
from egon.data.datasets import Dataset |
9
|
|
|
from egon.data.datasets.electricity_demand.temporal import calc_load_curve |
10
|
|
|
from egon.data.datasets.industry.temporal import identify_bus |
11
|
|
|
|
12
|
|
|
# CONSTANTS |
13
|
|
|
# TODO: move to datasets.yml |
14
|
|
|
CON = db.engine() |
15
|
|
|
|
16
|
|
|
# CTS |
17
|
|
|
CTS_COOL_VENT_AC_SHARE = 0.22 |
18
|
|
|
|
19
|
|
|
S_FLEX_CTS = 0.5 |
20
|
|
|
S_UTIL_CTS = 0.67 |
21
|
|
|
S_INC_CTS = 1 |
22
|
|
|
S_DEC_CTS = 0 |
23
|
|
|
DELTA_T_CTS = 1 |
24
|
|
|
|
25
|
|
|
# industry |
26
|
|
|
IND_VENT_COOL_SHARE = 0.039 |
27
|
|
|
IND_VENT_SHARE = 0.017 |
28
|
|
|
|
29
|
|
|
# OSM |
30
|
|
|
S_FLEX_OSM = 0.5 |
31
|
|
|
S_UTIL_OSM = 0.73 |
32
|
|
|
S_INC_OSM = 0.9 |
33
|
|
|
S_DEC_OSM = 0.5 |
34
|
|
|
DELTA_T_OSM = 1 |
35
|
|
|
|
36
|
|
|
# paper |
37
|
|
|
S_FLEX_PAPER = 0.15 |
38
|
|
|
S_UTIL_PAPER = 0.86 |
39
|
|
|
S_INC_PAPER = 0.95 |
40
|
|
|
S_DEC_PAPER = 0 |
41
|
|
|
DELTA_T_PAPER = 3 |
42
|
|
|
|
43
|
|
|
# recycled paper |
44
|
|
|
S_FLEX_RECYCLED_PAPER = 0.7 |
45
|
|
|
S_UTIL_RECYCLED_PAPER = 0.85 |
46
|
|
|
S_INC_RECYCLED_PAPER = 0.95 |
47
|
|
|
S_DEC_RECYCLED_PAPER = 0 |
48
|
|
|
DELTA_T_RECYCLED_PAPER = 3 |
49
|
|
|
|
50
|
|
|
# pulp |
51
|
|
|
S_FLEX_PULP = 0.7 |
52
|
|
|
S_UTIL_PULP = 0.83 |
53
|
|
|
S_INC_PULP = 0.95 |
54
|
|
|
S_DEC_PULP = 0 |
55
|
|
|
DELTA_T_PULP = 2 |
56
|
|
|
|
57
|
|
|
# cement |
58
|
|
|
S_FLEX_CEMENT = 0.61 |
59
|
|
|
S_UTIL_CEMENT = 0.65 |
60
|
|
|
S_INC_CEMENT = 0.95 |
61
|
|
|
S_DEC_CEMENT = 0 |
62
|
|
|
DELTA_T_CEMENT = 4 |
63
|
|
|
|
64
|
|
|
# wz 23 |
65
|
|
|
WZ = 23 |
66
|
|
|
|
67
|
|
|
S_FLEX_WZ = 0.5 |
68
|
|
|
S_UTIL_WZ = 0.8 |
69
|
|
|
S_INC_WZ = 1 |
70
|
|
|
S_DEC_WZ = 0.5 |
71
|
|
|
DELTA_T_WZ = 1 |
72
|
|
|
|
73
|
|
|
Base = declarative_base() |
74
|
|
|
|
75
|
|
|
|
76
|
|
|
class DsmPotential(Dataset): |
77
|
|
|
def __init__(self, dependencies): |
78
|
|
|
super().__init__( |
79
|
|
|
name="DsmPotential", |
80
|
|
|
version="0.0.4.dev", |
81
|
|
|
dependencies=dependencies, |
82
|
|
|
tasks=(dsm_cts_ind_processing), |
83
|
|
|
) |
84
|
|
|
|
85
|
|
|
|
86
|
|
|
# Datasets |
87
|
|
View Code Duplication |
class EgonEtragoElectricityCtsDsmTimeseries(Base): |
|
|
|
|
88
|
|
|
target = config.datasets()["DSM_CTS_industry"]["targets"][ |
89
|
|
|
"cts_loadcurves_dsm" |
90
|
|
|
] |
91
|
|
|
|
92
|
|
|
__tablename__ = target["table"] |
93
|
|
|
__table_args__ = {"schema": target["schema"]} |
94
|
|
|
|
95
|
|
|
bus = Column(Integer, primary_key=True, index=True) |
96
|
|
|
scn_name = Column(String, primary_key=True, index=True) |
97
|
|
|
p_nom = Column(Float) |
98
|
|
|
e_nom = Column(Float) |
99
|
|
|
p_set = Column(ARRAY(Float)) |
100
|
|
|
p_max_pu = Column(ARRAY(Float)) |
101
|
|
|
p_min_pu = Column(ARRAY(Float)) |
102
|
|
|
e_max_pu = Column(ARRAY(Float)) |
103
|
|
|
e_min_pu = Column(ARRAY(Float)) |
104
|
|
|
|
105
|
|
|
|
106
|
|
View Code Duplication |
class EgonOsmIndLoadCurvesIndividualDsmTimeseries(Base): |
|
|
|
|
107
|
|
|
target = config.datasets()["DSM_CTS_industry"]["targets"][ |
108
|
|
|
"ind_osm_loadcurves_individual_dsm" |
109
|
|
|
] |
110
|
|
|
|
111
|
|
|
__tablename__ = target["table"] |
112
|
|
|
__table_args__ = {"schema": target["schema"]} |
113
|
|
|
|
114
|
|
|
osm_id = Column(Integer, primary_key=True, index=True) |
115
|
|
|
scn_name = Column(String, primary_key=True, index=True) |
116
|
|
|
bus = Column(Integer) |
117
|
|
|
p_nom = Column(Float) |
118
|
|
|
e_nom = Column(Float) |
119
|
|
|
p_set = Column(ARRAY(Float)) |
120
|
|
|
p_max_pu = Column(ARRAY(Float)) |
121
|
|
|
p_min_pu = Column(ARRAY(Float)) |
122
|
|
|
e_max_pu = Column(ARRAY(Float)) |
123
|
|
|
e_min_pu = Column(ARRAY(Float)) |
124
|
|
|
|
125
|
|
|
|
126
|
|
View Code Duplication |
class EgonDemandregioSitesIndElectricityDsmTimeseries(Base): |
|
|
|
|
127
|
|
|
target = config.datasets()["DSM_CTS_industry"]["targets"][ |
128
|
|
|
"demandregio_ind_sites_dsm" |
129
|
|
|
] |
130
|
|
|
|
131
|
|
|
__tablename__ = target["table"] |
132
|
|
|
__table_args__ = {"schema": target["schema"]} |
133
|
|
|
|
134
|
|
|
industrial_sites_id = Column(Integer, primary_key=True, index=True) |
135
|
|
|
scn_name = Column(String, primary_key=True, index=True) |
136
|
|
|
bus = Column(Integer) |
137
|
|
|
application = Column(String) |
138
|
|
|
p_nom = Column(Float) |
139
|
|
|
e_nom = Column(Float) |
140
|
|
|
p_set = Column(ARRAY(Float)) |
141
|
|
|
p_max_pu = Column(ARRAY(Float)) |
142
|
|
|
p_min_pu = Column(ARRAY(Float)) |
143
|
|
|
e_max_pu = Column(ARRAY(Float)) |
144
|
|
|
e_min_pu = Column(ARRAY(Float)) |
145
|
|
|
|
146
|
|
|
|
147
|
|
View Code Duplication |
class EgonSitesIndLoadCurvesIndividualDsmTimeseries(Base): |
|
|
|
|
148
|
|
|
target = config.datasets()["DSM_CTS_industry"]["targets"][ |
149
|
|
|
"ind_sites_loadcurves_individual" |
150
|
|
|
] |
151
|
|
|
|
152
|
|
|
__tablename__ = target["table"] |
153
|
|
|
__table_args__ = {"schema": target["schema"]} |
154
|
|
|
|
155
|
|
|
site_id = Column(Integer, primary_key=True, index=True) |
156
|
|
|
scn_name = Column(String, primary_key=True, index=True) |
157
|
|
|
bus = Column(Integer) |
158
|
|
|
p_nom = Column(Float) |
159
|
|
|
e_nom = Column(Float) |
160
|
|
|
p_set = Column(ARRAY(Float)) |
161
|
|
|
p_max_pu = Column(ARRAY(Float)) |
162
|
|
|
p_min_pu = Column(ARRAY(Float)) |
163
|
|
|
e_max_pu = Column(ARRAY(Float)) |
164
|
|
|
e_min_pu = Column(ARRAY(Float)) |
165
|
|
|
|
166
|
|
|
|
167
|
|
|
# Code |
168
|
|
|
def cts_data_import(cts_cool_vent_ac_share): |
169
|
|
|
""" |
170
|
|
|
Import CTS data necessary to identify DSM-potential. |
171
|
|
|
|
172
|
|
|
---------- |
173
|
|
|
cts_share: float |
174
|
|
|
Share of cooling, ventilation and AC in CTS demand |
175
|
|
|
""" |
176
|
|
|
|
177
|
|
|
# import load data |
178
|
|
|
|
179
|
|
|
sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
180
|
|
|
"cts_loadcurves" |
181
|
|
|
] |
182
|
|
|
|
183
|
|
|
ts = db.select_dataframe( |
184
|
|
|
f"""SELECT bus_id, scn_name, p_set FROM |
185
|
|
|
{sources['schema']}.{sources['table']}""" |
186
|
|
|
) |
187
|
|
|
|
188
|
|
|
# identify relevant columns and prepare df to be returned |
189
|
|
|
|
190
|
|
|
dsm = pd.DataFrame(index=ts.index) |
191
|
|
|
|
192
|
|
|
dsm["bus"] = ts["bus_id"].copy() |
193
|
|
|
dsm["scn_name"] = ts["scn_name"].copy() |
194
|
|
|
dsm["p_set"] = ts["p_set"].copy() |
195
|
|
|
|
196
|
|
|
# calculate share of timeseries for air conditioning, cooling and |
197
|
|
|
# ventilation out of CTS-data |
198
|
|
|
|
199
|
|
|
timeseries = dsm["p_set"].copy() |
200
|
|
|
|
201
|
|
|
for index, liste in timeseries.items(): |
202
|
|
|
share = [float(item) * cts_cool_vent_ac_share for item in liste] |
203
|
|
|
timeseries.loc[index] = share |
204
|
|
|
|
205
|
|
|
dsm["p_set"] = timeseries.copy() |
206
|
|
|
|
207
|
|
|
return dsm |
208
|
|
|
|
209
|
|
|
|
210
|
|
View Code Duplication |
def ind_osm_data_import(ind_vent_cool_share): |
|
|
|
|
211
|
|
|
""" |
212
|
|
|
Import industry data per osm-area necessary to identify DSM-potential. |
213
|
|
|
---------- |
214
|
|
|
ind_share: float |
215
|
|
|
Share of considered application in industry demand |
216
|
|
|
""" |
217
|
|
|
|
218
|
|
|
# import load data |
219
|
|
|
|
220
|
|
|
sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
221
|
|
|
"ind_osm_loadcurves" |
222
|
|
|
] |
223
|
|
|
|
224
|
|
|
dsm = db.select_dataframe( |
225
|
|
|
f""" |
226
|
|
|
SELECT bus, scn_name, p_set FROM |
227
|
|
|
{sources['schema']}.{sources['table']} |
228
|
|
|
""" |
229
|
|
|
) |
230
|
|
|
|
231
|
|
|
# calculate share of timeseries for cooling and ventilation out of |
232
|
|
|
# industry-data |
233
|
|
|
|
234
|
|
|
timeseries = dsm["p_set"].copy() |
235
|
|
|
|
236
|
|
|
for index, liste in timeseries.items(): |
237
|
|
|
share = [float(item) * ind_vent_cool_share for item in liste] |
238
|
|
|
|
239
|
|
|
timeseries.loc[index] = share |
240
|
|
|
|
241
|
|
|
dsm["p_set"] = timeseries.copy() |
242
|
|
|
|
243
|
|
|
return dsm |
244
|
|
|
|
245
|
|
|
|
246
|
|
View Code Duplication |
def ind_osm_data_import_individual(ind_vent_cool_share): |
|
|
|
|
247
|
|
|
""" |
248
|
|
|
Import industry data per osm-area necessary to identify DSM-potential. |
249
|
|
|
---------- |
250
|
|
|
ind_share: float |
251
|
|
|
Share of considered application in industry demand |
252
|
|
|
""" |
253
|
|
|
|
254
|
|
|
# import load data |
255
|
|
|
|
256
|
|
|
sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
257
|
|
|
"ind_osm_loadcurves_individual" |
258
|
|
|
] |
259
|
|
|
|
260
|
|
|
dsm = db.select_dataframe( |
261
|
|
|
f""" |
262
|
|
|
SELECT osm_id, bus_id as bus, scn_name, p_set FROM |
263
|
|
|
{sources['schema']}.{sources['table']} |
264
|
|
|
""" |
265
|
|
|
) |
266
|
|
|
|
267
|
|
|
# calculate share of timeseries for cooling and ventilation out of |
268
|
|
|
# industry-data |
269
|
|
|
|
270
|
|
|
timeseries = dsm["p_set"].copy() |
271
|
|
|
|
272
|
|
|
for index, liste in timeseries.items(): |
273
|
|
|
share = [float(item) * ind_vent_cool_share for item in liste] |
274
|
|
|
|
275
|
|
|
timeseries.loc[index] = share |
276
|
|
|
|
277
|
|
|
dsm["p_set"] = timeseries.copy() |
278
|
|
|
|
279
|
|
|
return dsm |
280
|
|
|
|
281
|
|
|
|
282
|
|
View Code Duplication |
def ind_sites_vent_data_import(ind_vent_share, wz): |
|
|
|
|
283
|
|
|
""" |
284
|
|
|
Import industry sites necessary to identify DSM-potential. |
285
|
|
|
---------- |
286
|
|
|
ind_vent_share: float |
287
|
|
|
Share of considered application in industry demand |
288
|
|
|
wz: int |
289
|
|
|
Wirtschaftszweig to be considered within industry sites |
290
|
|
|
""" |
291
|
|
|
|
292
|
|
|
# import load data |
293
|
|
|
|
294
|
|
|
sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
295
|
|
|
"ind_sites_loadcurves" |
296
|
|
|
] |
297
|
|
|
|
298
|
|
|
dsm = db.select_dataframe( |
299
|
|
|
f""" |
300
|
|
|
SELECT bus, scn_name, p_set FROM |
301
|
|
|
{sources['schema']}.{sources['table']} |
302
|
|
|
WHERE wz = {wz} |
303
|
|
|
""" |
304
|
|
|
) |
305
|
|
|
|
306
|
|
|
# calculate share of timeseries for ventilation |
307
|
|
|
|
308
|
|
|
timeseries = dsm["p_set"].copy() |
309
|
|
|
|
310
|
|
|
for index, liste in timeseries.items(): |
311
|
|
|
share = [float(item) * ind_vent_share for item in liste] |
312
|
|
|
timeseries.loc[index] = share |
313
|
|
|
|
314
|
|
|
dsm["p_set"] = timeseries.copy() |
315
|
|
|
|
316
|
|
|
return dsm |
317
|
|
|
|
318
|
|
|
|
319
|
|
View Code Duplication |
def ind_sites_vent_data_import_individual(ind_vent_share, wz): |
|
|
|
|
320
|
|
|
""" |
321
|
|
|
Import industry sites necessary to identify DSM-potential. |
322
|
|
|
---------- |
323
|
|
|
ind_vent_share: float |
324
|
|
|
Share of considered application in industry demand |
325
|
|
|
wz: int |
326
|
|
|
Wirtschaftszweig to be considered within industry sites |
327
|
|
|
""" |
328
|
|
|
|
329
|
|
|
# import load data |
330
|
|
|
|
331
|
|
|
sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
332
|
|
|
"ind_sites_loadcurves_individual" |
333
|
|
|
] |
334
|
|
|
|
335
|
|
|
dsm = db.select_dataframe( |
336
|
|
|
f""" |
337
|
|
|
SELECT site_id, bus_id as bus, scn_name, p_set FROM |
338
|
|
|
{sources['schema']}.{sources['table']} |
339
|
|
|
WHERE wz = {wz} |
340
|
|
|
""" |
341
|
|
|
) |
342
|
|
|
|
343
|
|
|
# calculate share of timeseries for ventilation |
344
|
|
|
|
345
|
|
|
timeseries = dsm["p_set"].copy() |
346
|
|
|
|
347
|
|
|
for index, liste in timeseries.items(): |
348
|
|
|
share = [float(item) * ind_vent_share for item in liste] |
349
|
|
|
timeseries.loc[index] = share |
350
|
|
|
|
351
|
|
|
dsm["p_set"] = timeseries.copy() |
352
|
|
|
|
353
|
|
|
return dsm |
354
|
|
|
|
355
|
|
|
|
356
|
|
|
def calc_ind_site_timeseries(scenario): |
357
|
|
|
# calculate timeseries per site |
358
|
|
|
# -> using code from egon.data.datasets.industry.temporal: |
359
|
|
|
# calc_load_curves_ind_sites |
360
|
|
|
|
361
|
|
|
# select demands per industrial site including the subsector information |
362
|
|
|
source1 = config.datasets()["DSM_CTS_industry"]["sources"][ |
363
|
|
|
"demandregio_ind_sites" |
364
|
|
|
] |
365
|
|
|
|
366
|
|
|
demands_ind_sites = db.select_dataframe( |
367
|
|
|
f"""SELECT industrial_sites_id, wz, demand |
368
|
|
|
FROM {source1['schema']}.{source1['table']} |
369
|
|
|
WHERE scenario = '{scenario}' |
370
|
|
|
AND demand > 0 |
371
|
|
|
""" |
372
|
|
|
).set_index(["industrial_sites_id"]) |
373
|
|
|
|
374
|
|
|
# select industrial sites as demand_areas from database |
375
|
|
|
source2 = config.datasets()["DSM_CTS_industry"]["sources"]["ind_sites"] |
376
|
|
|
|
377
|
|
|
demand_area = db.select_geodataframe( |
378
|
|
|
f"""SELECT id, geom, subsector FROM |
379
|
|
|
{source2['schema']}.{source2['table']}""", |
380
|
|
|
index_col="id", |
381
|
|
|
geom_col="geom", |
382
|
|
|
epsg=3035, |
383
|
|
|
) |
384
|
|
|
|
385
|
|
|
# replace entries to bring it in line with demandregio's subsector |
386
|
|
|
# definitions |
387
|
|
|
demands_ind_sites.replace(1718, 17, inplace=True) |
388
|
|
|
share_wz_sites = demands_ind_sites.copy() |
389
|
|
|
|
390
|
|
|
# create additional df on wz_share per industrial site, which is always set |
391
|
|
|
# to one as the industrial demand per site is subsector specific |
392
|
|
|
share_wz_sites.demand = 1 |
393
|
|
|
share_wz_sites.reset_index(inplace=True) |
394
|
|
|
|
395
|
|
|
share_transpose = pd.DataFrame( |
396
|
|
|
index=share_wz_sites.industrial_sites_id.unique(), |
397
|
|
|
columns=share_wz_sites.wz.unique(), |
398
|
|
|
) |
399
|
|
|
share_transpose.index.rename("industrial_sites_id", inplace=True) |
400
|
|
|
for wz in share_transpose.columns: |
401
|
|
|
share_transpose[wz] = ( |
402
|
|
|
share_wz_sites[share_wz_sites.wz == wz] |
403
|
|
|
.set_index("industrial_sites_id") |
404
|
|
|
.demand |
405
|
|
|
) |
406
|
|
|
|
407
|
|
|
# calculate load curves |
408
|
|
|
load_curves = calc_load_curve(share_transpose, demands_ind_sites["demand"]) |
409
|
|
|
|
410
|
|
|
# identify bus per industrial site |
411
|
|
|
curves_bus = identify_bus(load_curves, demand_area) |
412
|
|
|
curves_bus.index = curves_bus["id"].astype(int) |
413
|
|
|
|
414
|
|
|
# initialize dataframe to be returned |
415
|
|
|
|
416
|
|
|
ts = pd.DataFrame( |
417
|
|
|
data=curves_bus["bus_id"], index=curves_bus["id"].astype(int) |
418
|
|
|
) |
419
|
|
|
ts["scenario_name"] = scenario |
420
|
|
|
curves_bus.drop({"id", "bus_id", "geom"}, axis=1, inplace=True) |
421
|
|
|
ts["p_set"] = curves_bus.values.tolist() |
422
|
|
|
|
423
|
|
|
# add subsector to relate to Schmidt's tables afterwards |
424
|
|
|
ts["application"] = demand_area["subsector"] |
425
|
|
|
|
426
|
|
|
return ts |
427
|
|
|
|
428
|
|
|
|
429
|
|
|
def relate_to_schmidt_sites(dsm): |
430
|
|
|
# import industrial sites by Schmidt |
431
|
|
|
|
432
|
|
|
source = config.datasets()["DSM_CTS_industry"]["sources"][ |
433
|
|
|
"ind_sites_schmidt" |
434
|
|
|
] |
435
|
|
|
|
436
|
|
|
schmidt = db.select_dataframe( |
437
|
|
|
f"""SELECT application, geom FROM |
438
|
|
|
{source['schema']}.{source['table']}""" |
439
|
|
|
) |
440
|
|
|
|
441
|
|
|
# relate calculated timeseries (dsm) to Schmidt's industrial sites |
442
|
|
|
|
443
|
|
|
applications = np.unique(schmidt["application"]) |
444
|
|
|
dsm = pd.DataFrame(dsm[dsm["application"].isin(applications)]) |
445
|
|
|
|
446
|
|
|
# initialize dataframe to be returned |
447
|
|
|
|
448
|
|
|
dsm.rename( |
449
|
|
|
columns={"scenario_name": "scn_name", "bus_id": "bus"}, |
450
|
|
|
inplace=True, |
451
|
|
|
) |
452
|
|
|
|
453
|
|
|
return dsm |
454
|
|
|
|
455
|
|
|
|
456
|
|
|
def ind_sites_data_import(): |
457
|
|
|
""" |
458
|
|
|
Import industry sites data necessary to identify DSM-potential. |
459
|
|
|
""" |
460
|
|
|
# calculate timeseries per site |
461
|
|
|
|
462
|
|
|
# scenario eGon2035 |
463
|
|
|
dsm_2035 = calc_ind_site_timeseries("eGon2035") |
464
|
|
|
dsm_2035.reset_index(inplace=True) |
465
|
|
|
# scenario eGon100RE |
466
|
|
|
dsm_100 = calc_ind_site_timeseries("eGon100RE") |
467
|
|
|
dsm_100.reset_index(inplace=True) |
468
|
|
|
# bring df for both scenarios together |
469
|
|
|
dsm_100.index = range(len(dsm_2035), (len(dsm_2035) + len((dsm_100)))) |
470
|
|
|
dsm = dsm_2035.append(dsm_100) |
471
|
|
|
|
472
|
|
|
# relate calculated timeseries to Schmidt's industrial sites |
473
|
|
|
|
474
|
|
|
dsm = relate_to_schmidt_sites(dsm) |
475
|
|
|
|
476
|
|
|
return dsm[["application", "id", "bus", "scn_name", "p_set"]] |
477
|
|
|
|
478
|
|
|
|
479
|
|
|
def calculate_potentials(s_flex, s_util, s_inc, s_dec, delta_t, dsm): |
480
|
|
|
""" |
481
|
|
|
Calculate DSM-potential per bus using the methods by Heitkoetter et. al.: |
482
|
|
|
https://doi.org/10.1016/j.adapen.2020.100001 |
483
|
|
|
Parameters |
484
|
|
|
---------- |
485
|
|
|
s_flex: float |
486
|
|
|
Feasability factor to account for socio-technical restrictions |
487
|
|
|
s_util: float |
488
|
|
|
Average annual utilisation rate |
489
|
|
|
s_inc: float |
490
|
|
|
Shiftable share of installed capacity up to which load can be |
491
|
|
|
increased considering technical limitations |
492
|
|
|
s_dec: float |
493
|
|
|
Shiftable share of installed capacity up to which load can be |
494
|
|
|
decreased considering technical limitations |
495
|
|
|
delta_t: int |
496
|
|
|
Maximum shift duration in hours |
497
|
|
|
dsm: DataFrame |
498
|
|
|
List of existing buses with DSM-potential including timeseries of |
499
|
|
|
loads |
500
|
|
|
""" |
501
|
|
|
|
502
|
|
|
# copy relevant timeseries |
503
|
|
|
timeseries = dsm["p_set"].copy() |
504
|
|
|
|
505
|
|
|
# calculate scheduled load L(t) |
506
|
|
|
|
507
|
|
|
scheduled_load = timeseries.copy() |
508
|
|
|
|
509
|
|
|
for index, liste in scheduled_load.items(): |
510
|
|
|
share = [] |
511
|
|
|
for item in liste: |
512
|
|
|
share.append(item * s_flex) |
513
|
|
|
scheduled_load.loc[index] = share |
514
|
|
|
|
515
|
|
|
# calculate maximum capacity Lambda |
516
|
|
|
|
517
|
|
|
# calculate energy annual requirement |
518
|
|
|
energy_annual = pd.Series(index=timeseries.index, dtype=float) |
519
|
|
|
for index, liste in timeseries.items(): |
520
|
|
|
energy_annual.loc[index] = sum(liste) |
521
|
|
|
|
522
|
|
|
# calculate Lambda |
523
|
|
|
lam = (energy_annual * s_flex) / (8760 * s_util) |
524
|
|
|
|
525
|
|
|
# calculation of P_max and P_min |
526
|
|
|
|
527
|
|
|
# P_max |
528
|
|
|
p_max = scheduled_load.copy() |
529
|
|
|
for index, liste in scheduled_load.items(): |
530
|
|
|
lamb = lam.loc[index] |
531
|
|
|
p_max.loc[index] = [lamb * s_inc - item for item in liste] |
532
|
|
|
|
533
|
|
|
# P_min |
534
|
|
|
p_min = scheduled_load.copy() |
535
|
|
|
for index, liste in scheduled_load.items(): |
536
|
|
|
lamb = lam.loc[index] |
537
|
|
|
|
538
|
|
|
p_min.loc[index] = [-(item - lamb * s_dec) for item in liste] |
539
|
|
|
|
540
|
|
|
# calculation of E_max and E_min |
541
|
|
|
|
542
|
|
|
e_max = scheduled_load.copy() |
543
|
|
|
e_min = scheduled_load.copy() |
544
|
|
|
|
545
|
|
|
for index, liste in scheduled_load.items(): |
546
|
|
|
emin = [] |
547
|
|
|
emax = [] |
548
|
|
|
for i in range(len(liste)): |
549
|
|
|
if i + delta_t > len(liste): |
550
|
|
|
emax.append( |
551
|
|
|
(sum(liste[i:]) + sum(liste[: delta_t - (len(liste) - i)])) |
552
|
|
|
) |
553
|
|
|
else: |
554
|
|
|
emax.append(sum(liste[i : i + delta_t])) |
555
|
|
|
if i - delta_t < 0: |
556
|
|
|
emin.append( |
557
|
|
|
( |
558
|
|
|
-1 |
559
|
|
|
* ( |
560
|
|
|
( |
561
|
|
|
sum(liste[:i]) |
562
|
|
|
+ sum(liste[len(liste) - delta_t + i :]) |
563
|
|
|
) |
564
|
|
|
) |
565
|
|
|
) |
566
|
|
|
) |
567
|
|
|
else: |
568
|
|
|
emin.append(-1 * sum(liste[i - delta_t : i])) |
569
|
|
|
e_max.loc[index] = emax |
570
|
|
|
e_min.loc[index] = emin |
571
|
|
|
|
572
|
|
|
return p_max, p_min, e_max, e_min |
573
|
|
|
|
574
|
|
|
|
575
|
|
|
def create_dsm_components(con, p_max, p_min, e_max, e_min, dsm): |
576
|
|
|
""" |
577
|
|
|
Create components representing DSM. |
578
|
|
|
Parameters |
579
|
|
|
---------- |
580
|
|
|
con : |
581
|
|
|
Connection to database |
582
|
|
|
p_max: DataFrame |
583
|
|
|
Timeseries identifying maximum load increase |
584
|
|
|
p_min: DataFrame |
585
|
|
|
Timeseries identifying maximum load decrease |
586
|
|
|
e_max: DataFrame |
587
|
|
|
Timeseries identifying maximum energy amount to be preponed |
588
|
|
|
e_min: DataFrame |
589
|
|
|
Timeseries identifying maximum energy amount to be postponed |
590
|
|
|
dsm: DataFrame |
591
|
|
|
List of existing buses with DSM-potential including timeseries of loads |
592
|
|
|
""" |
593
|
|
|
|
594
|
|
|
# calculate P_nom and P per unit |
595
|
|
|
p_nom = pd.Series(index=p_max.index, dtype=float) |
596
|
|
|
for index, row in p_max.items(): |
597
|
|
|
nom = max(max(row), abs(min(p_min.loc[index]))) |
598
|
|
|
p_nom.loc[index] = nom |
599
|
|
|
new = [element / nom for element in row] |
600
|
|
|
p_max.loc[index] = new |
601
|
|
|
new = [element / nom for element in p_min.loc[index]] |
602
|
|
|
p_min.loc[index] = new |
603
|
|
|
|
604
|
|
|
# calculate E_nom and E per unit |
605
|
|
|
e_nom = pd.Series(index=p_min.index, dtype=float) |
606
|
|
|
for index, row in e_max.items(): |
607
|
|
|
nom = max(max(row), abs(min(e_min.loc[index]))) |
608
|
|
|
e_nom.loc[index] = nom |
609
|
|
|
new = [element / nom for element in row] |
610
|
|
|
e_max.loc[index] = new |
611
|
|
|
new = [element / nom for element in e_min.loc[index]] |
612
|
|
|
e_min.loc[index] = new |
613
|
|
|
|
614
|
|
|
# add DSM-buses to "original" buses |
615
|
|
|
dsm_buses = gpd.GeoDataFrame(index=dsm.index) |
616
|
|
|
dsm_buses["original_bus"] = dsm["bus"].copy() |
617
|
|
|
dsm_buses["scn_name"] = dsm["scn_name"].copy() |
618
|
|
|
|
619
|
|
|
# get original buses and add copy of relevant information |
620
|
|
|
target1 = config.datasets()["DSM_CTS_industry"]["targets"]["bus"] |
621
|
|
|
original_buses = db.select_geodataframe( |
622
|
|
|
f"""SELECT bus_id, v_nom, scn_name, x, y, geom FROM |
623
|
|
|
{target1['schema']}.{target1['table']}""", |
624
|
|
|
geom_col="geom", |
625
|
|
|
epsg=4326, |
626
|
|
|
) |
627
|
|
|
|
628
|
|
|
# copy relevant information from original buses to DSM-buses |
629
|
|
|
dsm_buses["index"] = dsm_buses.index |
630
|
|
|
originals = original_buses[ |
631
|
|
|
original_buses["bus_id"].isin(np.unique(dsm_buses["original_bus"])) |
632
|
|
|
] |
633
|
|
|
dsm_buses = originals.merge( |
634
|
|
|
dsm_buses, |
635
|
|
|
left_on=["bus_id", "scn_name"], |
636
|
|
|
right_on=["original_bus", "scn_name"], |
637
|
|
|
) |
638
|
|
|
dsm_buses.index = dsm_buses["index"] |
639
|
|
|
dsm_buses.drop(["bus_id", "index"], axis=1, inplace=True) |
640
|
|
|
|
641
|
|
|
# new bus_ids for DSM-buses |
642
|
|
|
max_id = original_buses["bus_id"].max() |
643
|
|
|
if np.isnan(max_id): |
644
|
|
|
max_id = 0 |
645
|
|
|
dsm_id = max_id + 1 |
646
|
|
|
bus_id = pd.Series(index=dsm_buses.index, dtype=int) |
647
|
|
|
|
648
|
|
|
# Get number of DSM buses for both scenarios |
649
|
|
|
rows_per_scenario = ( |
650
|
|
|
dsm_buses.groupby("scn_name").count().original_bus.to_dict() |
651
|
|
|
) |
652
|
|
|
|
653
|
|
|
# Assignment of DSM ids |
654
|
|
|
bus_id.iloc[: rows_per_scenario.get("eGon2035", 0)] = range( |
655
|
|
|
dsm_id, dsm_id + rows_per_scenario.get("eGon2035", 0) |
656
|
|
|
) |
657
|
|
|
|
658
|
|
|
bus_id.iloc[ |
659
|
|
|
rows_per_scenario.get("eGon2035", 0) : rows_per_scenario.get( |
660
|
|
|
"eGon2035", 0 |
661
|
|
|
) |
662
|
|
|
+ rows_per_scenario.get("eGon100RE", 0) |
663
|
|
|
] = range(dsm_id, dsm_id + rows_per_scenario.get("eGon100RE", 0)) |
664
|
|
|
|
665
|
|
|
dsm_buses["bus_id"] = bus_id |
666
|
|
|
|
667
|
|
|
# add links from "orignal" buses to DSM-buses |
668
|
|
|
|
669
|
|
|
dsm_links = pd.DataFrame(index=dsm_buses.index) |
670
|
|
|
dsm_links["original_bus"] = dsm_buses["original_bus"].copy() |
671
|
|
|
dsm_links["dsm_bus"] = dsm_buses["bus_id"].copy() |
672
|
|
|
dsm_links["scn_name"] = dsm_buses["scn_name"].copy() |
673
|
|
|
|
674
|
|
|
# set link_id |
675
|
|
|
target2 = config.datasets()["DSM_CTS_industry"]["targets"]["link"] |
676
|
|
|
sql = f"""SELECT link_id FROM {target2['schema']}.{target2['table']}""" |
677
|
|
|
max_id = pd.read_sql_query(sql, con) |
678
|
|
|
max_id = max_id["link_id"].max() |
679
|
|
|
if np.isnan(max_id): |
680
|
|
|
max_id = 0 |
681
|
|
|
dsm_id = max_id + 1 |
682
|
|
|
link_id = pd.Series(index=dsm_buses.index, dtype=int) |
683
|
|
|
|
684
|
|
|
# Assignment of link ids |
685
|
|
|
link_id.iloc[: rows_per_scenario.get("eGon2035", 0)] = range( |
686
|
|
|
dsm_id, dsm_id + rows_per_scenario.get("eGon2035", 0) |
687
|
|
|
) |
688
|
|
|
|
689
|
|
|
link_id.iloc[ |
690
|
|
|
rows_per_scenario.get("eGon2035", 0) : rows_per_scenario.get( |
691
|
|
|
"eGon2035", 0 |
692
|
|
|
) |
693
|
|
|
+ rows_per_scenario.get("eGon100RE", 0) |
694
|
|
|
] = range(dsm_id, dsm_id + rows_per_scenario.get("eGon100RE", 0)) |
695
|
|
|
|
696
|
|
|
dsm_links["link_id"] = link_id |
697
|
|
|
|
698
|
|
|
# add calculated timeseries to df to be returned |
699
|
|
|
dsm_links["p_nom"] = p_nom |
700
|
|
|
dsm_links["p_min"] = p_min |
701
|
|
|
dsm_links["p_max"] = p_max |
702
|
|
|
|
703
|
|
|
# add DSM-stores |
704
|
|
|
|
705
|
|
|
dsm_stores = pd.DataFrame(index=dsm_buses.index) |
706
|
|
|
dsm_stores["bus"] = dsm_buses["bus_id"].copy() |
707
|
|
|
dsm_stores["scn_name"] = dsm_buses["scn_name"].copy() |
708
|
|
|
dsm_stores["original_bus"] = dsm_buses["original_bus"].copy() |
709
|
|
|
|
710
|
|
|
# set store_id |
711
|
|
|
target3 = config.datasets()["DSM_CTS_industry"]["targets"]["store"] |
712
|
|
|
sql = f"""SELECT store_id FROM {target3['schema']}.{target3['table']}""" |
713
|
|
|
max_id = pd.read_sql_query(sql, con) |
714
|
|
|
max_id = max_id["store_id"].max() |
715
|
|
|
if np.isnan(max_id): |
716
|
|
|
max_id = 0 |
717
|
|
|
dsm_id = max_id + 1 |
718
|
|
|
store_id = pd.Series(index=dsm_buses.index, dtype=int) |
719
|
|
|
|
720
|
|
|
# Assignment of store ids |
721
|
|
|
store_id.iloc[: rows_per_scenario.get("eGon2035", 0)] = range( |
722
|
|
|
dsm_id, dsm_id + rows_per_scenario.get("eGon2035", 0) |
723
|
|
|
) |
724
|
|
|
|
725
|
|
|
store_id.iloc[ |
726
|
|
|
rows_per_scenario.get("eGon2035", 0) : rows_per_scenario.get( |
727
|
|
|
"eGon2035", 0 |
728
|
|
|
) |
729
|
|
|
+ rows_per_scenario.get("eGon100RE", 0) |
730
|
|
|
] = range(dsm_id, dsm_id + rows_per_scenario.get("eGon100RE", 0)) |
731
|
|
|
|
732
|
|
|
dsm_stores["store_id"] = store_id |
733
|
|
|
|
734
|
|
|
# add calculated timeseries to df to be returned |
735
|
|
|
dsm_stores["e_nom"] = e_nom |
736
|
|
|
dsm_stores["e_min"] = e_min |
737
|
|
|
dsm_stores["e_max"] = e_max |
738
|
|
|
|
739
|
|
|
return dsm_buses, dsm_links, dsm_stores |
740
|
|
|
|
741
|
|
|
|
742
|
|
|
def aggregate_components(df_dsm_buses, df_dsm_links, df_dsm_stores): |
743
|
|
|
# aggregate buses |
744
|
|
|
|
745
|
|
|
grouper = [df_dsm_buses.original_bus, df_dsm_buses.scn_name] |
746
|
|
|
|
747
|
|
|
df_dsm_buses = df_dsm_buses.groupby(grouper).first() |
748
|
|
|
|
749
|
|
|
df_dsm_buses.reset_index(inplace=True) |
750
|
|
|
df_dsm_buses.sort_values("scn_name", inplace=True) |
751
|
|
|
|
752
|
|
|
# aggregate links |
753
|
|
|
|
754
|
|
|
df_dsm_links["p_max"] = df_dsm_links["p_max"].apply(lambda x: np.array(x)) |
755
|
|
|
df_dsm_links["p_min"] = df_dsm_links["p_min"].apply(lambda x: np.array(x)) |
756
|
|
|
|
757
|
|
|
grouper = [df_dsm_links.original_bus, df_dsm_links.scn_name] |
758
|
|
|
p_nom = df_dsm_links.groupby(grouper)["p_nom"].sum() |
759
|
|
|
p_max = df_dsm_links.groupby(grouper)["p_max"].apply(np.sum) |
760
|
|
|
p_min = df_dsm_links.groupby(grouper)["p_min"].apply(np.sum) |
761
|
|
|
|
762
|
|
|
df_dsm_links = df_dsm_links.groupby(grouper).first() |
763
|
|
|
df_dsm_links.p_nom = p_nom |
764
|
|
|
df_dsm_links.p_max = p_max |
765
|
|
|
df_dsm_links.p_min = p_min |
766
|
|
|
|
767
|
|
|
df_dsm_links["p_max"] = df_dsm_links["p_max"].apply(lambda x: list(x)) |
768
|
|
|
df_dsm_links["p_min"] = df_dsm_links["p_min"].apply(lambda x: list(x)) |
769
|
|
|
|
770
|
|
|
df_dsm_links.reset_index(inplace=True) |
771
|
|
|
df_dsm_links.sort_values("scn_name", inplace=True) |
772
|
|
|
|
773
|
|
|
# aggregate stores |
774
|
|
|
|
775
|
|
|
df_dsm_stores["e_max"] = df_dsm_stores["e_max"].apply( |
776
|
|
|
lambda x: np.array(x) |
777
|
|
|
) |
778
|
|
|
df_dsm_stores["e_min"] = df_dsm_stores["e_min"].apply( |
779
|
|
|
lambda x: np.array(x) |
780
|
|
|
) |
781
|
|
|
|
782
|
|
|
grouper = [df_dsm_stores.original_bus, df_dsm_stores.scn_name] |
783
|
|
|
e_nom = df_dsm_stores.groupby(grouper)["e_nom"].sum() |
784
|
|
|
e_max = df_dsm_stores.groupby(grouper)["e_max"].apply(np.sum) |
785
|
|
|
e_min = df_dsm_stores.groupby(grouper)["e_min"].apply(np.sum) |
786
|
|
|
|
787
|
|
|
df_dsm_stores = df_dsm_stores.groupby(grouper).first() |
788
|
|
|
df_dsm_stores.e_nom = e_nom |
789
|
|
|
df_dsm_stores.e_max = e_max |
790
|
|
|
df_dsm_stores.e_min = e_min |
791
|
|
|
|
792
|
|
|
df_dsm_stores["e_max"] = df_dsm_stores["e_max"].apply(lambda x: list(x)) |
793
|
|
|
df_dsm_stores["e_min"] = df_dsm_stores["e_min"].apply(lambda x: list(x)) |
794
|
|
|
|
795
|
|
|
df_dsm_stores.reset_index(inplace=True) |
796
|
|
|
df_dsm_stores.sort_values("scn_name", inplace=True) |
797
|
|
|
|
798
|
|
|
# select new bus_ids for aggregated buses and add to links and stores |
799
|
|
|
bus_id = db.next_etrago_id("Bus") + df_dsm_buses.index |
800
|
|
|
|
801
|
|
|
df_dsm_buses["bus_id"] = bus_id |
802
|
|
|
df_dsm_links["dsm_bus"] = bus_id |
803
|
|
|
df_dsm_stores["bus"] = bus_id |
804
|
|
|
|
805
|
|
|
# select new link_ids for aggregated links |
806
|
|
|
link_id = db.next_etrago_id("Link") + df_dsm_links.index |
807
|
|
|
|
808
|
|
|
df_dsm_links["link_id"] = link_id |
809
|
|
|
|
810
|
|
|
# select new store_ids to aggregated stores |
811
|
|
|
|
812
|
|
|
store_id = db.next_etrago_id("Store") + df_dsm_stores.index |
813
|
|
|
|
814
|
|
|
df_dsm_stores["store_id"] = store_id |
815
|
|
|
|
816
|
|
|
return df_dsm_buses, df_dsm_links, df_dsm_stores |
817
|
|
|
|
818
|
|
|
|
819
|
|
|
def data_export(dsm_buses, dsm_links, dsm_stores, carrier): |
820
|
|
|
""" |
821
|
|
|
Export new components to database. |
822
|
|
|
|
823
|
|
|
Parameters |
824
|
|
|
---------- |
825
|
|
|
dsm_buses: DataFrame |
826
|
|
|
Buses representing locations of DSM-potential |
827
|
|
|
dsm_links: DataFrame |
828
|
|
|
Links connecting DSM-buses and DSM-stores |
829
|
|
|
dsm_stores: DataFrame |
830
|
|
|
Stores representing DSM-potential |
831
|
|
|
carrier: str |
832
|
|
|
Remark to be filled in column 'carrier' identifying DSM-potential |
833
|
|
|
""" |
834
|
|
|
|
835
|
|
|
targets = config.datasets()["DSM_CTS_industry"]["targets"] |
836
|
|
|
|
837
|
|
|
# dsm_buses |
838
|
|
|
|
839
|
|
|
insert_buses = gpd.GeoDataFrame( |
840
|
|
|
index=dsm_buses.index, |
841
|
|
|
data=dsm_buses["geom"], |
842
|
|
|
geometry="geom", |
843
|
|
|
crs=dsm_buses.crs, |
844
|
|
|
) |
845
|
|
|
insert_buses["scn_name"] = dsm_buses["scn_name"] |
846
|
|
|
insert_buses["bus_id"] = dsm_buses["bus_id"] |
847
|
|
|
insert_buses["v_nom"] = dsm_buses["v_nom"] |
848
|
|
|
insert_buses["carrier"] = carrier |
849
|
|
|
insert_buses["x"] = dsm_buses["x"] |
850
|
|
|
insert_buses["y"] = dsm_buses["y"] |
851
|
|
|
|
852
|
|
|
# insert into database |
853
|
|
|
insert_buses.to_postgis( |
854
|
|
|
targets["bus"]["table"], |
855
|
|
|
con=db.engine(), |
856
|
|
|
schema=targets["bus"]["schema"], |
857
|
|
|
if_exists="append", |
858
|
|
|
index=False, |
859
|
|
|
dtype={"geom": "geometry"}, |
860
|
|
|
) |
861
|
|
|
|
862
|
|
|
# dsm_links |
863
|
|
|
|
864
|
|
|
insert_links = pd.DataFrame(index=dsm_links.index) |
865
|
|
|
insert_links["scn_name"] = dsm_links["scn_name"] |
866
|
|
|
insert_links["link_id"] = dsm_links["link_id"] |
867
|
|
|
insert_links["bus0"] = dsm_links["original_bus"] |
868
|
|
|
insert_links["bus1"] = dsm_links["dsm_bus"] |
869
|
|
|
insert_links["carrier"] = carrier |
870
|
|
|
insert_links["p_nom"] = dsm_links["p_nom"] |
871
|
|
|
|
872
|
|
|
# insert into database |
873
|
|
|
insert_links.to_sql( |
874
|
|
|
targets["link"]["table"], |
875
|
|
|
con=db.engine(), |
876
|
|
|
schema=targets["link"]["schema"], |
877
|
|
|
if_exists="append", |
878
|
|
|
index=False, |
879
|
|
|
) |
880
|
|
|
|
881
|
|
|
insert_links_timeseries = pd.DataFrame(index=dsm_links.index) |
882
|
|
|
insert_links_timeseries["scn_name"] = dsm_links["scn_name"] |
883
|
|
|
insert_links_timeseries["link_id"] = dsm_links["link_id"] |
884
|
|
|
insert_links_timeseries["p_min_pu"] = dsm_links["p_min"] |
885
|
|
|
insert_links_timeseries["p_max_pu"] = dsm_links["p_max"] |
886
|
|
|
insert_links_timeseries["temp_id"] = 1 |
887
|
|
|
|
888
|
|
|
# insert into database |
889
|
|
|
insert_links_timeseries.to_sql( |
890
|
|
|
targets["link_timeseries"]["table"], |
891
|
|
|
con=db.engine(), |
892
|
|
|
schema=targets["link_timeseries"]["schema"], |
893
|
|
|
if_exists="append", |
894
|
|
|
index=False, |
895
|
|
|
) |
896
|
|
|
|
897
|
|
|
# dsm_stores |
898
|
|
|
|
899
|
|
|
insert_stores = pd.DataFrame(index=dsm_stores.index) |
900
|
|
|
insert_stores["scn_name"] = dsm_stores["scn_name"] |
901
|
|
|
insert_stores["store_id"] = dsm_stores["store_id"] |
902
|
|
|
insert_stores["bus"] = dsm_stores["bus"] |
903
|
|
|
insert_stores["carrier"] = carrier |
904
|
|
|
insert_stores["e_nom"] = dsm_stores["e_nom"] |
905
|
|
|
|
906
|
|
|
# insert into database |
907
|
|
|
insert_stores.to_sql( |
908
|
|
|
targets["store"]["table"], |
909
|
|
|
con=db.engine(), |
910
|
|
|
schema=targets["store"]["schema"], |
911
|
|
|
if_exists="append", |
912
|
|
|
index=False, |
913
|
|
|
) |
914
|
|
|
|
915
|
|
|
insert_stores_timeseries = pd.DataFrame(index=dsm_stores.index) |
916
|
|
|
insert_stores_timeseries["scn_name"] = dsm_stores["scn_name"] |
917
|
|
|
insert_stores_timeseries["store_id"] = dsm_stores["store_id"] |
918
|
|
|
insert_stores_timeseries["e_min_pu"] = dsm_stores["e_min"] |
919
|
|
|
insert_stores_timeseries["e_max_pu"] = dsm_stores["e_max"] |
920
|
|
|
insert_stores_timeseries["temp_id"] = 1 |
921
|
|
|
|
922
|
|
|
# insert into database |
923
|
|
|
insert_stores_timeseries.to_sql( |
924
|
|
|
targets["store_timeseries"]["table"], |
925
|
|
|
con=db.engine(), |
926
|
|
|
schema=targets["store_timeseries"]["schema"], |
927
|
|
|
if_exists="append", |
928
|
|
|
index=False, |
929
|
|
|
) |
930
|
|
|
|
931
|
|
|
|
932
|
|
|
def delete_dsm_entries(carrier): |
933
|
|
|
""" |
934
|
|
|
Deletes DSM-components from database if they already exist before creating |
935
|
|
|
new ones. |
936
|
|
|
|
937
|
|
|
Parameters |
938
|
|
|
---------- |
939
|
|
|
carrier: str |
940
|
|
|
Remark in column 'carrier' identifying DSM-potential |
941
|
|
|
""" |
942
|
|
|
|
943
|
|
|
targets = config.datasets()["DSM_CTS_industry"]["targets"] |
944
|
|
|
|
945
|
|
|
# buses |
946
|
|
|
|
947
|
|
|
sql = f"""DELETE FROM {targets["bus"]["schema"]}.{targets["bus"]["table"]} b |
948
|
|
|
WHERE (b.carrier LIKE '{carrier}');""" |
949
|
|
|
db.execute_sql(sql) |
950
|
|
|
|
951
|
|
|
# links |
952
|
|
|
|
953
|
|
|
sql = f""" |
954
|
|
|
DELETE FROM {targets["link_timeseries"]["schema"]}. |
955
|
|
|
{targets["link_timeseries"]["table"]} t |
956
|
|
|
WHERE t.link_id IN |
957
|
|
|
( |
958
|
|
|
SELECT l.link_id FROM {targets["link"]["schema"]}. |
959
|
|
|
{targets["link"]["table"]} l |
960
|
|
|
WHERE l.carrier LIKE '{carrier}' |
961
|
|
|
); |
962
|
|
|
""" |
963
|
|
|
|
964
|
|
|
db.execute_sql(sql) |
965
|
|
|
|
966
|
|
|
sql = f""" |
967
|
|
|
DELETE FROM {targets["link"]["schema"]}. |
968
|
|
|
{targets["link"]["table"]} l |
969
|
|
|
WHERE (l.carrier LIKE '{carrier}'); |
970
|
|
|
""" |
971
|
|
|
|
972
|
|
|
db.execute_sql(sql) |
973
|
|
|
|
974
|
|
|
# stores |
975
|
|
|
|
976
|
|
|
sql = f""" |
977
|
|
|
DELETE FROM {targets["store_timeseries"]["schema"]}. |
978
|
|
|
{targets["store_timeseries"]["table"]} t |
979
|
|
|
WHERE t.store_id IN |
980
|
|
|
( |
981
|
|
|
SELECT s.store_id FROM {targets["store"]["schema"]}. |
982
|
|
|
{targets["store"]["table"]} s |
983
|
|
|
WHERE s.carrier LIKE '{carrier}' |
984
|
|
|
); |
985
|
|
|
""" |
986
|
|
|
|
987
|
|
|
db.execute_sql(sql) |
988
|
|
|
|
989
|
|
|
sql = f""" |
990
|
|
|
DELETE FROM {targets["store"]["schema"]}.{targets["store"]["table"]} s |
991
|
|
|
WHERE (s.carrier LIKE '{carrier}'); |
992
|
|
|
""" |
993
|
|
|
|
994
|
|
|
db.execute_sql(sql) |
995
|
|
|
|
996
|
|
|
|
997
|
|
|
def dsm_cts_ind( |
998
|
|
|
con=db.engine(), |
999
|
|
|
cts_cool_vent_ac_share=0.22, |
1000
|
|
|
ind_vent_cool_share=0.039, |
1001
|
|
|
ind_vent_share=0.017, |
1002
|
|
|
): |
1003
|
|
|
""" |
1004
|
|
|
Execute methodology to create and implement components for DSM considering |
1005
|
|
|
a) CTS per osm-area: combined potentials of cooling, ventilation and air |
1006
|
|
|
conditioning |
1007
|
|
|
b) Industry per osm-are: combined potentials of cooling and ventilation |
1008
|
|
|
c) Industrial Sites: potentials of ventilation in sites of |
1009
|
|
|
"Wirtschaftszweig" (WZ) 23 |
1010
|
|
|
d) Industrial Sites: potentials of sites specified by subsectors |
1011
|
|
|
identified by Schmidt (https://zenodo.org/record/3613767#.YTsGwVtCRhG): |
1012
|
|
|
Paper, Recycled Paper, Pulp, Cement |
1013
|
|
|
|
1014
|
|
|
Modelled using the methods by Heitkoetter et. al.: |
1015
|
|
|
https://doi.org/10.1016/j.adapen.2020.100001 |
1016
|
|
|
|
1017
|
|
|
Parameters |
1018
|
|
|
---------- |
1019
|
|
|
con : |
1020
|
|
|
Connection to database |
1021
|
|
|
cts_cool_vent_ac_share: float |
1022
|
|
|
Share of cooling, ventilation and AC in CTS demand |
1023
|
|
|
ind_vent_cool_share: float |
1024
|
|
|
Share of cooling and ventilation in industry demand |
1025
|
|
|
ind_vent_share: float |
1026
|
|
|
Share of ventilation in industry demand in sites of WZ 23 |
1027
|
|
|
|
1028
|
|
|
""" |
1029
|
|
|
|
1030
|
|
|
# CTS per osm-area: cooling, ventilation and air conditioning |
1031
|
|
|
|
1032
|
|
|
print(" ") |
1033
|
|
|
print("CTS per osm-area: cooling, ventilation and air conditioning") |
1034
|
|
|
print(" ") |
1035
|
|
|
|
1036
|
|
|
dsm = cts_data_import(cts_cool_vent_ac_share) |
1037
|
|
|
|
1038
|
|
|
# calculate combined potentials of cooling, ventilation and air |
1039
|
|
|
# conditioning in CTS using combined parameters by Heitkoetter et. al. |
1040
|
|
|
p_max, p_min, e_max, e_min = calculate_potentials( |
1041
|
|
|
s_flex=S_FLEX_CTS, |
1042
|
|
|
s_util=S_UTIL_CTS, |
1043
|
|
|
s_inc=S_INC_CTS, |
1044
|
|
|
s_dec=S_DEC_CTS, |
1045
|
|
|
delta_t=DELTA_T_CTS, |
1046
|
|
|
dsm=dsm, |
1047
|
|
|
) |
1048
|
|
|
|
1049
|
|
|
dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
1050
|
|
|
con, p_max, p_min, e_max, e_min, dsm |
1051
|
|
|
) |
1052
|
|
|
|
1053
|
|
|
df_dsm_buses = dsm_buses.copy() |
1054
|
|
|
df_dsm_links = dsm_links.copy() |
1055
|
|
|
df_dsm_stores = dsm_stores.copy() |
1056
|
|
|
|
1057
|
|
|
# industry per osm-area: cooling and ventilation |
1058
|
|
|
|
1059
|
|
|
print(" ") |
1060
|
|
|
print("industry per osm-area: cooling and ventilation") |
1061
|
|
|
print(" ") |
1062
|
|
|
|
1063
|
|
|
dsm = ind_osm_data_import(ind_vent_cool_share) |
1064
|
|
|
|
1065
|
|
|
# calculate combined potentials of cooling and ventilation in industrial |
1066
|
|
|
# sector using combined parameters by Heitkoetter et. al. |
1067
|
|
|
p_max, p_min, e_max, e_min = calculate_potentials( |
1068
|
|
|
s_flex=S_FLEX_OSM, |
1069
|
|
|
s_util=S_UTIL_OSM, |
1070
|
|
|
s_inc=S_INC_OSM, |
1071
|
|
|
s_dec=S_DEC_OSM, |
1072
|
|
|
delta_t=DELTA_T_OSM, |
1073
|
|
|
dsm=dsm, |
1074
|
|
|
) |
1075
|
|
|
|
1076
|
|
|
dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
1077
|
|
|
con, p_max, p_min, e_max, e_min, dsm |
1078
|
|
|
) |
1079
|
|
|
|
1080
|
|
|
df_dsm_buses = gpd.GeoDataFrame( |
1081
|
|
|
pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
1082
|
|
|
crs="EPSG:4326", |
1083
|
|
|
) |
1084
|
|
|
df_dsm_links = pd.DataFrame( |
1085
|
|
|
pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
1086
|
|
|
) |
1087
|
|
|
df_dsm_stores = pd.DataFrame( |
1088
|
|
|
pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
1089
|
|
|
) |
1090
|
|
|
|
1091
|
|
|
# industry sites |
1092
|
|
|
|
1093
|
|
|
# industry sites: different applications |
1094
|
|
|
|
1095
|
|
|
dsm = ind_sites_data_import() |
1096
|
|
|
|
1097
|
|
|
print(" ") |
1098
|
|
|
print("industry sites: paper") |
1099
|
|
|
print(" ") |
1100
|
|
|
|
1101
|
|
|
dsm_paper = gpd.GeoDataFrame( |
1102
|
|
|
dsm[ |
1103
|
|
|
dsm["application"].isin( |
1104
|
|
|
[ |
1105
|
|
|
"Graphic Paper", |
1106
|
|
|
"Packing Paper and Board", |
1107
|
|
|
"Hygiene Paper", |
1108
|
|
|
"Technical/Special Paper and Board", |
1109
|
|
|
] |
1110
|
|
|
) |
1111
|
|
|
] |
1112
|
|
|
) |
1113
|
|
|
|
1114
|
|
|
# calculate potentials of industrial sites with paper-applications |
1115
|
|
|
# using parameters by Heitkoetter et al. |
1116
|
|
|
p_max, p_min, e_max, e_min = calculate_potentials( |
1117
|
|
|
s_flex=S_FLEX_PAPER, |
1118
|
|
|
s_util=S_UTIL_PAPER, |
1119
|
|
|
s_inc=S_INC_PAPER, |
1120
|
|
|
s_dec=S_DEC_PAPER, |
1121
|
|
|
delta_t=DELTA_T_PAPER, |
1122
|
|
|
dsm=dsm_paper, |
1123
|
|
|
) |
1124
|
|
|
|
1125
|
|
|
dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
1126
|
|
|
con, p_max, p_min, e_max, e_min, dsm_paper |
1127
|
|
|
) |
1128
|
|
|
|
1129
|
|
|
df_dsm_buses = gpd.GeoDataFrame( |
1130
|
|
|
pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
1131
|
|
|
crs="EPSG:4326", |
1132
|
|
|
) |
1133
|
|
|
df_dsm_links = pd.DataFrame( |
1134
|
|
|
pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
1135
|
|
|
) |
1136
|
|
|
df_dsm_stores = pd.DataFrame( |
1137
|
|
|
pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
1138
|
|
|
) |
1139
|
|
|
|
1140
|
|
|
print(" ") |
1141
|
|
|
print("industry sites: recycled paper") |
1142
|
|
|
print(" ") |
1143
|
|
|
|
1144
|
|
|
# calculate potentials of industrial sites with recycled paper-applications |
1145
|
|
|
# using parameters by Heitkoetter et. al. |
1146
|
|
|
dsm_recycled_paper = gpd.GeoDataFrame( |
1147
|
|
|
dsm[dsm["application"] == "Recycled Paper"] |
1148
|
|
|
) |
1149
|
|
|
|
1150
|
|
|
p_max, p_min, e_max, e_min = calculate_potentials( |
1151
|
|
|
s_flex=S_FLEX_RECYCLED_PAPER, |
1152
|
|
|
s_util=S_UTIL_RECYCLED_PAPER, |
1153
|
|
|
s_inc=S_INC_RECYCLED_PAPER, |
1154
|
|
|
s_dec=S_DEC_RECYCLED_PAPER, |
1155
|
|
|
delta_t=DELTA_T_RECYCLED_PAPER, |
1156
|
|
|
dsm=dsm_recycled_paper, |
1157
|
|
|
) |
1158
|
|
|
|
1159
|
|
|
dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
1160
|
|
|
con, p_max, p_min, e_max, e_min, dsm_recycled_paper |
1161
|
|
|
) |
1162
|
|
|
|
1163
|
|
|
df_dsm_buses = gpd.GeoDataFrame( |
1164
|
|
|
pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
1165
|
|
|
crs="EPSG:4326", |
1166
|
|
|
) |
1167
|
|
|
df_dsm_links = pd.DataFrame( |
1168
|
|
|
pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
1169
|
|
|
) |
1170
|
|
|
df_dsm_stores = pd.DataFrame( |
1171
|
|
|
pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
1172
|
|
|
) |
1173
|
|
|
|
1174
|
|
|
print(" ") |
1175
|
|
|
print("industry sites: pulp") |
1176
|
|
|
print(" ") |
1177
|
|
|
|
1178
|
|
|
dsm_pulp = gpd.GeoDataFrame(dsm[dsm["application"] == "Mechanical Pulp"]) |
1179
|
|
|
|
1180
|
|
|
# calculate potentials of industrial sites with pulp-applications |
1181
|
|
|
# using parameters by Heitkoetter et al. |
1182
|
|
|
p_max, p_min, e_max, e_min = calculate_potentials( |
1183
|
|
|
s_flex=S_FLEX_PULP, |
1184
|
|
|
s_util=S_UTIL_PULP, |
1185
|
|
|
s_inc=S_INC_PULP, |
1186
|
|
|
s_dec=S_DEC_PULP, |
1187
|
|
|
delta_t=DELTA_T_PULP, |
1188
|
|
|
dsm=dsm_pulp, |
1189
|
|
|
) |
1190
|
|
|
|
1191
|
|
|
dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
1192
|
|
|
con, p_max, p_min, e_max, e_min, dsm_pulp |
1193
|
|
|
) |
1194
|
|
|
|
1195
|
|
|
df_dsm_buses = gpd.GeoDataFrame( |
1196
|
|
|
pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
1197
|
|
|
crs="EPSG:4326", |
1198
|
|
|
) |
1199
|
|
|
df_dsm_links = pd.DataFrame( |
1200
|
|
|
pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
1201
|
|
|
) |
1202
|
|
|
df_dsm_stores = pd.DataFrame( |
1203
|
|
|
pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
1204
|
|
|
) |
1205
|
|
|
|
1206
|
|
|
# industry sites: cement |
1207
|
|
|
|
1208
|
|
|
print(" ") |
1209
|
|
|
print("industry sites: cement") |
1210
|
|
|
print(" ") |
1211
|
|
|
|
1212
|
|
|
dsm_cement = gpd.GeoDataFrame(dsm[dsm["application"] == "Cement Mill"]) |
1213
|
|
|
|
1214
|
|
|
# calculate potentials of industrial sites with cement-applications |
1215
|
|
|
# using parameters by Heitkoetter et al. |
1216
|
|
|
p_max, p_min, e_max, e_min = calculate_potentials( |
1217
|
|
|
s_flex=S_FLEX_CEMENT, |
1218
|
|
|
s_util=S_UTIL_CEMENT, |
1219
|
|
|
s_inc=S_INC_CEMENT, |
1220
|
|
|
s_dec=S_DEC_CEMENT, |
1221
|
|
|
delta_t=DELTA_T_CEMENT, |
1222
|
|
|
dsm=dsm_cement, |
1223
|
|
|
) |
1224
|
|
|
|
1225
|
|
|
dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
1226
|
|
|
con, p_max, p_min, e_max, e_min, dsm_cement |
1227
|
|
|
) |
1228
|
|
|
|
1229
|
|
|
df_dsm_buses = gpd.GeoDataFrame( |
1230
|
|
|
pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
1231
|
|
|
crs="EPSG:4326", |
1232
|
|
|
) |
1233
|
|
|
df_dsm_links = pd.DataFrame( |
1234
|
|
|
pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
1235
|
|
|
) |
1236
|
|
|
df_dsm_stores = pd.DataFrame( |
1237
|
|
|
pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
1238
|
|
|
) |
1239
|
|
|
|
1240
|
|
|
# industry sites: ventilation in WZ23 |
1241
|
|
|
|
1242
|
|
|
print(" ") |
1243
|
|
|
print("industry sites: ventilation in WZ23") |
1244
|
|
|
print(" ") |
1245
|
|
|
|
1246
|
|
|
dsm = ind_sites_vent_data_import(ind_vent_share, wz=WZ) |
1247
|
|
|
|
1248
|
|
|
# drop entries of Cement Mills whose DSM-potentials have already been |
1249
|
|
|
# modelled |
1250
|
|
|
cement = np.unique(dsm_cement["bus"].values) |
1251
|
|
|
index_names = np.array(dsm[dsm["bus"].isin(cement)].index) |
1252
|
|
|
dsm.drop(index_names, inplace=True) |
1253
|
|
|
|
1254
|
|
|
# calculate potentials of ventialtion in industrial sites of WZ 23 |
1255
|
|
|
# using parameters by Heitkoetter et al. |
1256
|
|
|
p_max, p_min, e_max, e_min = calculate_potentials( |
1257
|
|
|
s_flex=S_FLEX_WZ, |
1258
|
|
|
s_util=S_UTIL_WZ, |
1259
|
|
|
s_inc=S_INC_WZ, |
1260
|
|
|
s_dec=S_DEC_WZ, |
1261
|
|
|
delta_t=DELTA_T_WZ, |
1262
|
|
|
dsm=dsm, |
1263
|
|
|
) |
1264
|
|
|
|
1265
|
|
|
dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
1266
|
|
|
con, p_max, p_min, e_max, e_min, dsm |
1267
|
|
|
) |
1268
|
|
|
|
1269
|
|
|
df_dsm_buses = gpd.GeoDataFrame( |
1270
|
|
|
pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
1271
|
|
|
crs="EPSG:4326", |
1272
|
|
|
) |
1273
|
|
|
df_dsm_links = pd.DataFrame( |
1274
|
|
|
pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
1275
|
|
|
) |
1276
|
|
|
df_dsm_stores = pd.DataFrame( |
1277
|
|
|
pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
1278
|
|
|
) |
1279
|
|
|
|
1280
|
|
|
# aggregate DSM components per substation |
1281
|
|
|
dsm_buses, dsm_links, dsm_stores = aggregate_components( |
1282
|
|
|
df_dsm_buses, df_dsm_links, df_dsm_stores |
1283
|
|
|
) |
1284
|
|
|
|
1285
|
|
|
# export aggregated DSM components to database |
1286
|
|
|
|
1287
|
|
|
delete_dsm_entries("dsm-cts") |
1288
|
|
|
delete_dsm_entries("dsm-ind-osm") |
1289
|
|
|
delete_dsm_entries("dsm-ind-sites") |
1290
|
|
|
delete_dsm_entries("dsm") |
1291
|
|
|
|
1292
|
|
|
data_export(dsm_buses, dsm_links, dsm_stores, carrier="dsm") |
1293
|
|
|
|
1294
|
|
|
|
1295
|
|
|
def get_p_nom_e_nom(df: pd.DataFrame): |
1296
|
|
|
p_nom = [ |
1297
|
|
|
max(max(val), max(abs(v) for v in df.p_min_pu.at[idx])) |
1298
|
|
|
for idx, val in df.p_max_pu.items() |
1299
|
|
|
] |
1300
|
|
|
|
1301
|
|
|
e_nom = [ |
1302
|
|
|
max(max(val), max(abs(v) for v in df.e_min_pu.at[idx])) |
1303
|
|
|
for idx, val in df.e_max_pu.items() |
1304
|
|
|
] |
1305
|
|
|
|
1306
|
|
|
return df.assign(p_nom=p_nom, e_nom=e_nom) |
1307
|
|
|
|
1308
|
|
|
|
1309
|
|
|
def calc_per_unit(df): |
1310
|
|
|
df = get_p_nom_e_nom(df) |
1311
|
|
|
|
1312
|
|
|
for col in ["p_max_pu", "p_min_pu"]: |
1313
|
|
|
rslt = [] |
1314
|
|
|
|
1315
|
|
|
for idx, lst in df[col].items(): |
1316
|
|
|
p_nom = df.p_nom.at[idx] |
1317
|
|
|
|
1318
|
|
|
rslt.append([v / p_nom for v in lst]) |
1319
|
|
|
|
1320
|
|
|
df[col] = rslt |
1321
|
|
|
|
1322
|
|
|
for col in ["e_max_pu", "e_min_pu"]: |
1323
|
|
|
rslt = [] |
1324
|
|
|
|
1325
|
|
|
for idx, lst in df[col].items(): |
1326
|
|
|
e_nom = df.e_nom.at[idx] |
1327
|
|
|
|
1328
|
|
|
rslt.append([v / e_nom for v in lst]) |
1329
|
|
|
|
1330
|
|
|
df[col] = rslt |
1331
|
|
|
|
1332
|
|
|
return df |
1333
|
|
|
|
1334
|
|
|
|
1335
|
|
|
def create_table(df, table, engine=CON): |
1336
|
|
|
"""Create table""" |
1337
|
|
|
table.__table__.drop(bind=engine, checkfirst=True) |
1338
|
|
|
table.__table__.create(bind=engine, checkfirst=True) |
1339
|
|
|
|
1340
|
|
|
df.to_sql( |
1341
|
|
|
name=table.__table__.name, |
1342
|
|
|
schema=table.__table__.schema, |
1343
|
|
|
con=engine, |
1344
|
|
|
if_exists="append", |
1345
|
|
|
index=False, |
1346
|
|
|
) |
1347
|
|
|
|
1348
|
|
|
|
1349
|
|
|
def dsm_cts_ind_individual( |
1350
|
|
|
cts_cool_vent_ac_share=CTS_COOL_VENT_AC_SHARE, |
1351
|
|
|
ind_vent_cool_share=IND_VENT_COOL_SHARE, |
1352
|
|
|
ind_vent_share=IND_VENT_SHARE, |
1353
|
|
|
): |
1354
|
|
|
""" |
1355
|
|
|
Execute methodology to create and implement components for DSM considering |
1356
|
|
|
a) CTS per osm-area: combined potentials of cooling, ventilation and air |
1357
|
|
|
conditioning |
1358
|
|
|
b) Industry per osm-are: combined potentials of cooling and ventilation |
1359
|
|
|
c) Industrial Sites: potentials of ventilation in sites of |
1360
|
|
|
"Wirtschaftszweig" (WZ) 23 |
1361
|
|
|
d) Industrial Sites: potentials of sites specified by subsectors |
1362
|
|
|
identified by Schmidt (https://zenodo.org/record/3613767#.YTsGwVtCRhG): |
1363
|
|
|
Paper, Recycled Paper, Pulp, Cement |
1364
|
|
|
|
1365
|
|
|
Modelled using the methods by Heitkoetter et. al.: |
1366
|
|
|
https://doi.org/10.1016/j.adapen.2020.100001 |
1367
|
|
|
|
1368
|
|
|
Parameters |
1369
|
|
|
---------- |
1370
|
|
|
cts_cool_vent_ac_share: float |
1371
|
|
|
Share of cooling, ventilation and AC in CTS demand |
1372
|
|
|
ind_vent_cool_share: float |
1373
|
|
|
Share of cooling and ventilation in industry demand |
1374
|
|
|
ind_vent_share: float |
1375
|
|
|
Share of ventilation in industry demand in sites of WZ 23 |
1376
|
|
|
|
1377
|
|
|
""" |
1378
|
|
|
|
1379
|
|
|
# CTS per osm-area: cooling, ventilation and air conditioning |
1380
|
|
|
|
1381
|
|
|
print(" ") |
1382
|
|
|
print("CTS per osm-area: cooling, ventilation and air conditioning") |
1383
|
|
|
print(" ") |
1384
|
|
|
|
1385
|
|
|
dsm = cts_data_import(cts_cool_vent_ac_share) |
1386
|
|
|
|
1387
|
|
|
# calculate combined potentials of cooling, ventilation and air |
1388
|
|
|
# conditioning in CTS using combined parameters by Heitkoetter et. al. |
1389
|
|
|
vals = calculate_potentials( |
1390
|
|
|
s_flex=S_FLEX_CTS, |
1391
|
|
|
s_util=S_UTIL_CTS, |
1392
|
|
|
s_inc=S_INC_CTS, |
1393
|
|
|
s_dec=S_DEC_CTS, |
1394
|
|
|
delta_t=DELTA_T_CTS, |
1395
|
|
|
dsm=dsm, |
1396
|
|
|
) |
1397
|
|
|
|
1398
|
|
|
base_columns = [ |
1399
|
|
|
"bus", |
1400
|
|
|
"scn_name", |
1401
|
|
|
"p_set", |
1402
|
|
|
"p_max_pu", |
1403
|
|
|
"p_min_pu", |
1404
|
|
|
"e_max_pu", |
1405
|
|
|
"e_min_pu", |
1406
|
|
|
] |
1407
|
|
|
|
1408
|
|
|
cts_df = pd.concat([dsm, *vals], axis=1, ignore_index=True) |
1409
|
|
|
cts_df.columns = base_columns |
1410
|
|
|
cts_df = calc_per_unit(cts_df) |
1411
|
|
|
|
1412
|
|
|
print(" ") |
1413
|
|
|
print("industry per osm-area: cooling and ventilation") |
1414
|
|
|
print(" ") |
1415
|
|
|
|
1416
|
|
|
dsm = ind_osm_data_import_individual(ind_vent_cool_share) |
1417
|
|
|
|
1418
|
|
|
# calculate combined potentials of cooling and ventilation in industrial |
1419
|
|
|
# sector using combined parameters by Heitkoetter et al. |
1420
|
|
|
vals = calculate_potentials( |
1421
|
|
|
s_flex=S_FLEX_OSM, |
1422
|
|
|
s_util=S_UTIL_OSM, |
1423
|
|
|
s_inc=S_INC_OSM, |
1424
|
|
|
s_dec=S_DEC_OSM, |
1425
|
|
|
delta_t=DELTA_T_OSM, |
1426
|
|
|
dsm=dsm, |
1427
|
|
|
) |
1428
|
|
|
|
1429
|
|
|
columns = ["osm_id"] + base_columns |
1430
|
|
|
|
1431
|
|
|
osm_df = pd.concat([dsm, *vals], axis=1, ignore_index=True) |
1432
|
|
|
osm_df.columns = columns |
1433
|
|
|
osm_df = calc_per_unit(osm_df) |
1434
|
|
|
|
1435
|
|
|
# industry sites |
1436
|
|
|
|
1437
|
|
|
# industry sites: different applications |
1438
|
|
|
|
1439
|
|
|
dsm = ind_sites_data_import() |
1440
|
|
|
|
1441
|
|
|
print(" ") |
1442
|
|
|
print("industry sites: paper") |
1443
|
|
|
print(" ") |
1444
|
|
|
|
1445
|
|
|
dsm_paper = gpd.GeoDataFrame( |
1446
|
|
|
dsm[ |
1447
|
|
|
dsm["application"].isin( |
1448
|
|
|
[ |
1449
|
|
|
"Graphic Paper", |
1450
|
|
|
"Packing Paper and Board", |
1451
|
|
|
"Hygiene Paper", |
1452
|
|
|
"Technical/Special Paper and Board", |
1453
|
|
|
] |
1454
|
|
|
) |
1455
|
|
|
] |
1456
|
|
|
) |
1457
|
|
|
|
1458
|
|
|
# calculate potentials of industrial sites with paper-applications |
1459
|
|
|
# using parameters by Heitkoetter et al. |
1460
|
|
|
vals = calculate_potentials( |
1461
|
|
|
s_flex=S_FLEX_PAPER, |
1462
|
|
|
s_util=S_UTIL_PAPER, |
1463
|
|
|
s_inc=S_INC_PAPER, |
1464
|
|
|
s_dec=S_DEC_PAPER, |
1465
|
|
|
delta_t=DELTA_T_PAPER, |
1466
|
|
|
dsm=dsm_paper, |
1467
|
|
|
) |
1468
|
|
|
|
1469
|
|
|
columns = ["application", "industrial_sites_id"] + base_columns |
1470
|
|
|
|
1471
|
|
|
paper_df = pd.concat([dsm_paper, *vals], axis=1, ignore_index=True) |
1472
|
|
|
paper_df.columns = columns |
1473
|
|
|
paper_df = calc_per_unit(paper_df) |
1474
|
|
|
|
1475
|
|
|
print(" ") |
1476
|
|
|
print("industry sites: recycled paper") |
1477
|
|
|
print(" ") |
1478
|
|
|
|
1479
|
|
|
# calculate potentials of industrial sites with recycled paper-applications |
1480
|
|
|
# using parameters by Heitkoetter et. al. |
1481
|
|
|
dsm_recycled_paper = gpd.GeoDataFrame( |
1482
|
|
|
dsm[dsm["application"] == "Recycled Paper"] |
1483
|
|
|
) |
1484
|
|
|
|
1485
|
|
|
vals = calculate_potentials( |
1486
|
|
|
s_flex=S_FLEX_RECYCLED_PAPER, |
1487
|
|
|
s_util=S_UTIL_RECYCLED_PAPER, |
1488
|
|
|
s_inc=S_INC_RECYCLED_PAPER, |
1489
|
|
|
s_dec=S_DEC_RECYCLED_PAPER, |
1490
|
|
|
delta_t=DELTA_T_RECYCLED_PAPER, |
1491
|
|
|
dsm=dsm_recycled_paper, |
1492
|
|
|
) |
1493
|
|
|
|
1494
|
|
|
recycled_paper_df = pd.concat( |
1495
|
|
|
[dsm_recycled_paper, *vals], axis=1, ignore_index=True |
1496
|
|
|
) |
1497
|
|
|
recycled_paper_df.columns = columns |
1498
|
|
|
recycled_paper_df = calc_per_unit(recycled_paper_df) |
1499
|
|
|
|
1500
|
|
|
print(" ") |
1501
|
|
|
print("industry sites: pulp") |
1502
|
|
|
print(" ") |
1503
|
|
|
|
1504
|
|
|
dsm_pulp = gpd.GeoDataFrame(dsm[dsm["application"] == "Mechanical Pulp"]) |
1505
|
|
|
|
1506
|
|
|
# calculate potentials of industrial sites with pulp-applications |
1507
|
|
|
# using parameters by Heitkoetter et al. |
1508
|
|
|
vals = calculate_potentials( |
1509
|
|
|
s_flex=S_FLEX_PULP, |
1510
|
|
|
s_util=S_UTIL_PULP, |
1511
|
|
|
s_inc=S_INC_PULP, |
1512
|
|
|
s_dec=S_DEC_PULP, |
1513
|
|
|
delta_t=DELTA_T_PULP, |
1514
|
|
|
dsm=dsm_pulp, |
1515
|
|
|
) |
1516
|
|
|
|
1517
|
|
|
pulp_df = pd.concat([dsm_pulp, *vals], axis=1, ignore_index=True) |
1518
|
|
|
pulp_df.columns = columns |
1519
|
|
|
pulp_df = calc_per_unit(pulp_df) |
1520
|
|
|
|
1521
|
|
|
# industry sites: cement |
1522
|
|
|
|
1523
|
|
|
print(" ") |
1524
|
|
|
print("industry sites: cement") |
1525
|
|
|
print(" ") |
1526
|
|
|
|
1527
|
|
|
dsm_cement = gpd.GeoDataFrame(dsm[dsm["application"] == "Cement Mill"]) |
1528
|
|
|
|
1529
|
|
|
# calculate potentials of industrial sites with cement-applications |
1530
|
|
|
# using parameters by Heitkoetter et al. |
1531
|
|
|
vals = calculate_potentials( |
1532
|
|
|
s_flex=S_FLEX_CEMENT, |
1533
|
|
|
s_util=S_UTIL_CEMENT, |
1534
|
|
|
s_inc=S_INC_CEMENT, |
1535
|
|
|
s_dec=S_DEC_CEMENT, |
1536
|
|
|
delta_t=DELTA_T_CEMENT, |
1537
|
|
|
dsm=dsm_cement, |
1538
|
|
|
) |
1539
|
|
|
|
1540
|
|
|
cement_df = pd.concat([dsm_cement, *vals], axis=1, ignore_index=True) |
1541
|
|
|
cement_df.columns = columns |
1542
|
|
|
cement_df = calc_per_unit(cement_df) |
1543
|
|
|
|
1544
|
|
|
ind_df = pd.concat( |
1545
|
|
|
[paper_df, recycled_paper_df, pulp_df, cement_df], ignore_index=True |
1546
|
|
|
) |
1547
|
|
|
|
1548
|
|
|
# industry sites: ventilation in WZ23 |
1549
|
|
|
|
1550
|
|
|
print(" ") |
1551
|
|
|
print("industry sites: ventilation in WZ23") |
1552
|
|
|
print(" ") |
1553
|
|
|
|
1554
|
|
|
dsm = ind_sites_vent_data_import_individual(ind_vent_share, wz=WZ) |
1555
|
|
|
|
1556
|
|
|
# drop entries of Cement Mills whose DSM-potentials have already been |
1557
|
|
|
# modelled |
1558
|
|
|
cement = np.unique(dsm_cement["bus"].values) |
1559
|
|
|
index_names = np.array(dsm[dsm["bus"].isin(cement)].index) |
1560
|
|
|
dsm.drop(index_names, inplace=True) |
1561
|
|
|
|
1562
|
|
|
# calculate potentials of ventialtion in industrial sites of WZ 23 |
1563
|
|
|
# using parameters by Heitkoetter et al. |
1564
|
|
|
vals = calculate_potentials( |
1565
|
|
|
s_flex=S_FLEX_WZ, |
1566
|
|
|
s_util=S_UTIL_WZ, |
1567
|
|
|
s_inc=S_INC_WZ, |
1568
|
|
|
s_dec=S_DEC_WZ, |
1569
|
|
|
delta_t=DELTA_T_WZ, |
1570
|
|
|
dsm=dsm, |
1571
|
|
|
) |
1572
|
|
|
|
1573
|
|
|
columns = ["site_id"] + base_columns |
1574
|
|
|
|
1575
|
|
|
ind_sites_df = pd.concat([dsm, *vals], axis=1, ignore_index=True) |
1576
|
|
|
ind_sites_df.columns = columns |
1577
|
|
|
ind_sites_df = calc_per_unit(ind_sites_df) |
1578
|
|
|
|
1579
|
|
|
# create tables |
1580
|
|
|
create_table( |
1581
|
|
|
df=cts_df, table=EgonEtragoElectricityCtsDsmTimeseries, engine=CON |
1582
|
|
|
) |
1583
|
|
|
create_table( |
1584
|
|
|
df=osm_df, |
1585
|
|
|
table=EgonOsmIndLoadCurvesIndividualDsmTimeseries, |
1586
|
|
|
engine=CON, |
1587
|
|
|
) |
1588
|
|
|
create_table( |
1589
|
|
|
df=ind_df, |
1590
|
|
|
table=EgonDemandregioSitesIndElectricityDsmTimeseries, |
1591
|
|
|
engine=CON, |
1592
|
|
|
) |
1593
|
|
|
create_table( |
1594
|
|
|
df=ind_sites_df, |
1595
|
|
|
table=EgonSitesIndLoadCurvesIndividualDsmTimeseries, |
1596
|
|
|
engine=CON, |
1597
|
|
|
) |
1598
|
|
|
|
1599
|
|
|
|
1600
|
|
|
def dsm_cts_ind_processing(): |
1601
|
|
|
dsm_cts_ind() |
1602
|
|
|
|
1603
|
|
|
dsm_cts_ind_individual() |
1604
|
|
|
|