Total Complexity | 53 |
Total Lines | 1789 |
Duplicated Lines | 11.29 % |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like data.datasets.DSM_cts_ind often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | """ |
||
2 | Currently, there are differences in the aggregated and individual DSM time |
||
3 | series. These are caused by the truncation of the values at zero. |
||
4 | |||
5 | The sum of the individual time series is a more accurate value than the |
||
6 | aggregated time series used so far and should replace it in the future. Since |
||
7 | the deviations are relatively small, a tolerance is currently accepted in the |
||
8 | sanity checks. See [#1120](https://github.com/openego/eGon-data/issues/1120) |
||
9 | for updates. |
||
10 | """ |
||
11 | import datetime |
||
12 | import json |
||
13 | |||
14 | from omi.dialects import get_dialect |
||
15 | from sqlalchemy import ARRAY, Column, Float, Integer, String |
||
16 | from sqlalchemy.ext.declarative import declarative_base |
||
17 | import geopandas as gpd |
||
18 | import numpy as np |
||
19 | import pandas as pd |
||
20 | |||
21 | from egon.data import config, db |
||
22 | from egon.data.datasets import Dataset |
||
23 | from egon.data.datasets.electricity_demand.temporal import calc_load_curve |
||
24 | from egon.data.datasets.industry.temporal import identify_bus |
||
25 | from egon.data.metadata import ( |
||
26 | context, |
||
27 | contributors, |
||
28 | generate_resource_fields_from_db_table, |
||
29 | license_odbl, |
||
30 | meta_metadata, |
||
31 | oep_metadata_version, |
||
32 | sources, |
||
33 | ) |
||
34 | |||
35 | # CONSTANTS |
||
36 | # TODO: move to datasets.yml |
||
37 | CON = db.engine() |
||
38 | |||
39 | # CTS |
||
40 | CTS_COOL_VENT_AC_SHARE = 0.22 |
||
41 | |||
42 | S_FLEX_CTS = 0.5 |
||
43 | S_UTIL_CTS = 0.67 |
||
44 | S_INC_CTS = 1 |
||
45 | S_DEC_CTS = 0 |
||
46 | DELTA_T_CTS = 1 |
||
47 | |||
48 | # industry |
||
49 | IND_VENT_COOL_SHARE = 0.039 |
||
50 | IND_VENT_SHARE = 0.017 |
||
51 | |||
52 | # OSM |
||
53 | S_FLEX_OSM = 0.5 |
||
54 | S_UTIL_OSM = 0.73 |
||
55 | S_INC_OSM = 0.9 |
||
56 | S_DEC_OSM = 0.5 |
||
57 | DELTA_T_OSM = 1 |
||
58 | |||
59 | # paper |
||
60 | S_FLEX_PAPER = 0.15 |
||
61 | S_UTIL_PAPER = 0.86 |
||
62 | S_INC_PAPER = 0.95 |
||
63 | S_DEC_PAPER = 0 |
||
64 | DELTA_T_PAPER = 3 |
||
65 | |||
66 | # recycled paper |
||
67 | S_FLEX_RECYCLED_PAPER = 0.7 |
||
68 | S_UTIL_RECYCLED_PAPER = 0.85 |
||
69 | S_INC_RECYCLED_PAPER = 0.95 |
||
70 | S_DEC_RECYCLED_PAPER = 0 |
||
71 | DELTA_T_RECYCLED_PAPER = 3 |
||
72 | |||
73 | # pulp |
||
74 | S_FLEX_PULP = 0.7 |
||
75 | S_UTIL_PULP = 0.83 |
||
76 | S_INC_PULP = 0.95 |
||
77 | S_DEC_PULP = 0 |
||
78 | DELTA_T_PULP = 2 |
||
79 | |||
80 | # cement |
||
81 | S_FLEX_CEMENT = 0.61 |
||
82 | S_UTIL_CEMENT = 0.65 |
||
83 | S_INC_CEMENT = 0.95 |
||
84 | S_DEC_CEMENT = 0 |
||
85 | DELTA_T_CEMENT = 4 |
||
86 | |||
87 | # wz 23 |
||
88 | WZ = 23 |
||
89 | |||
90 | S_FLEX_WZ = 0.5 |
||
91 | S_UTIL_WZ = 0.8 |
||
92 | S_INC_WZ = 1 |
||
93 | S_DEC_WZ = 0.5 |
||
94 | DELTA_T_WZ = 1 |
||
95 | |||
96 | Base = declarative_base() |
||
97 | |||
98 | |||
99 | class DsmPotential(Dataset): |
||
100 | def __init__(self, dependencies): |
||
101 | super().__init__( |
||
102 | name="DsmPotential", |
||
103 | version="0.0.5", |
||
104 | dependencies=dependencies, |
||
105 | tasks=(dsm_cts_ind_processing,), |
||
106 | ) |
||
107 | |||
108 | |||
109 | # Datasets |
||
110 | View Code Duplication | class EgonEtragoElectricityCtsDsmTimeseries(Base): |
|
|
|||
111 | target = config.datasets()["DSM_CTS_industry"]["targets"][ |
||
112 | "cts_loadcurves_dsm" |
||
113 | ] |
||
114 | |||
115 | __tablename__ = target["table"] |
||
116 | __table_args__ = {"schema": target["schema"]} |
||
117 | |||
118 | bus = Column(Integer, primary_key=True, index=True) |
||
119 | scn_name = Column(String, primary_key=True, index=True) |
||
120 | p_set = Column(ARRAY(Float)) |
||
121 | p_max = Column(ARRAY(Float)) |
||
122 | p_min = Column(ARRAY(Float)) |
||
123 | e_max = Column(ARRAY(Float)) |
||
124 | e_min = Column(ARRAY(Float)) |
||
125 | |||
126 | |||
127 | View Code Duplication | class EgonOsmIndLoadCurvesIndividualDsmTimeseries(Base): |
|
128 | target = config.datasets()["DSM_CTS_industry"]["targets"][ |
||
129 | "ind_osm_loadcurves_individual_dsm" |
||
130 | ] |
||
131 | |||
132 | __tablename__ = target["table"] |
||
133 | __table_args__ = {"schema": target["schema"]} |
||
134 | |||
135 | osm_id = Column(Integer, primary_key=True, index=True) |
||
136 | scn_name = Column(String, primary_key=True, index=True) |
||
137 | bus = Column(Integer) |
||
138 | p_set = Column(ARRAY(Float)) |
||
139 | p_max = Column(ARRAY(Float)) |
||
140 | p_min = Column(ARRAY(Float)) |
||
141 | e_max = Column(ARRAY(Float)) |
||
142 | e_min = Column(ARRAY(Float)) |
||
143 | |||
144 | |||
145 | View Code Duplication | class EgonDemandregioSitesIndElectricityDsmTimeseries(Base): |
|
146 | target = config.datasets()["DSM_CTS_industry"]["targets"][ |
||
147 | "demandregio_ind_sites_dsm" |
||
148 | ] |
||
149 | |||
150 | __tablename__ = target["table"] |
||
151 | __table_args__ = {"schema": target["schema"]} |
||
152 | |||
153 | industrial_sites_id = Column(Integer, primary_key=True, index=True) |
||
154 | scn_name = Column(String, primary_key=True, index=True) |
||
155 | bus = Column(Integer) |
||
156 | application = Column(String) |
||
157 | p_set = Column(ARRAY(Float)) |
||
158 | p_max = Column(ARRAY(Float)) |
||
159 | p_min = Column(ARRAY(Float)) |
||
160 | e_max = Column(ARRAY(Float)) |
||
161 | e_min = Column(ARRAY(Float)) |
||
162 | |||
163 | |||
164 | View Code Duplication | class EgonSitesIndLoadCurvesIndividualDsmTimeseries(Base): |
|
165 | target = config.datasets()["DSM_CTS_industry"]["targets"][ |
||
166 | "ind_sites_loadcurves_individual" |
||
167 | ] |
||
168 | |||
169 | __tablename__ = target["table"] |
||
170 | __table_args__ = {"schema": target["schema"]} |
||
171 | |||
172 | site_id = Column(Integer, primary_key=True, index=True) |
||
173 | scn_name = Column(String, primary_key=True, index=True) |
||
174 | bus = Column(Integer) |
||
175 | p_set = Column(ARRAY(Float)) |
||
176 | p_max = Column(ARRAY(Float)) |
||
177 | p_min = Column(ARRAY(Float)) |
||
178 | e_max = Column(ARRAY(Float)) |
||
179 | e_min = Column(ARRAY(Float)) |
||
180 | |||
181 | |||
182 | def add_metadata_individual(): |
||
183 | targets = config.datasets()["DSM_CTS_industry"]["targets"] |
||
184 | |||
185 | targets = { |
||
186 | k: v for k, v in targets.items() if "dsm_timeseries" in v["table"] |
||
187 | } |
||
188 | |||
189 | title_dict = { |
||
190 | "egon_etrago_electricity_cts_dsm_timeseries": ( |
||
191 | "DSM flexibility band time series for CTS" |
||
192 | ), |
||
193 | "egon_osm_ind_load_curves_individual_dsm_timeseries": ( |
||
194 | "DSM flexibility band time series for OSM industry sites" |
||
195 | ), |
||
196 | "egon_demandregio_sites_ind_electricity_dsm_timeseries": ( |
||
197 | "DSM flexibility band time series for demandregio industry sites" |
||
198 | ), |
||
199 | "egon_sites_ind_load_curves_individual_dsm_timeseries": ( |
||
200 | "DSM flexibility band time series for other industry sites" |
||
201 | ), |
||
202 | } |
||
203 | |||
204 | description_dict = { |
||
205 | "egon_etrago_electricity_cts_dsm_timeseries": ( |
||
206 | "DSM flexibility band time series for CTS in 1 h resolution " |
||
207 | "including available store capacity and power potential" |
||
208 | ), |
||
209 | "egon_osm_ind_load_curves_individual_dsm_timeseries": ( |
||
210 | "DSM flexibility band time series for OSM industry sites in 1 h " |
||
211 | "resolution including available store capacity and power potential" |
||
212 | ), |
||
213 | "egon_demandregio_sites_ind_electricity_dsm_timeseries": ( |
||
214 | "DSM flexibility band time series for demandregio industry sites " |
||
215 | "in 1 h resolution including available store capacity and power " |
||
216 | "potential" |
||
217 | ), |
||
218 | "egon_sites_ind_load_curves_individual_dsm_timeseries": ( |
||
219 | "DSM flexibility band time series for other industry sites in 1 h " |
||
220 | "resolution including available store capacity and power potential" |
||
221 | ), |
||
222 | } |
||
223 | |||
224 | keywords_dict = { |
||
225 | "egon_etrago_electricity_cts_dsm_timeseries": ["cts"], |
||
226 | "egon_osm_ind_load_curves_individual_dsm_timeseries": [ |
||
227 | "osm", |
||
228 | "industry", |
||
229 | ], |
||
230 | "egon_demandregio_sites_ind_electricity_dsm_timeseries": [ |
||
231 | "demandregio", |
||
232 | "industry", |
||
233 | ], |
||
234 | "egon_sites_ind_load_curves_individual_dsm_timeseries": ["industry"], |
||
235 | } |
||
236 | |||
237 | primaryKey_dict = { |
||
238 | "egon_etrago_electricity_cts_dsm_timeseries": ["bus"], |
||
239 | "egon_osm_ind_load_curves_individual_dsm_timeseries": ["osm_id"], |
||
240 | "egon_demandregio_sites_ind_electricity_dsm_timeseries": [ |
||
241 | "industrial_sites_id", |
||
242 | ], |
||
243 | "egon_sites_ind_load_curves_individual_dsm_timeseries": ["site_id"], |
||
244 | } |
||
245 | |||
246 | sources_dict = { |
||
247 | "egon_etrago_electricity_cts_dsm_timeseries": [ |
||
248 | sources()["nep2021"], |
||
249 | sources()["zensus"], |
||
250 | ], |
||
251 | "egon_osm_ind_load_curves_individual_dsm_timeseries": [ |
||
252 | sources()["hotmaps_industrial_sites"], |
||
253 | sources()["schmidt"], |
||
254 | sources()["seenergies"], |
||
255 | ], |
||
256 | "egon_demandregio_sites_ind_electricity_dsm_timeseries": [ |
||
257 | sources()["openstreetmap"], |
||
258 | ], |
||
259 | "egon_sites_ind_load_curves_individual_dsm_timeseries": [ |
||
260 | sources()["hotmaps_industrial_sites"], |
||
261 | sources()["openstreetmap"], |
||
262 | sources()["schmidt"], |
||
263 | sources()["seenergies"], |
||
264 | ], |
||
265 | } |
||
266 | |||
267 | contris = contributors(["kh", "kh"]) |
||
268 | |||
269 | contris[0]["date"] = "2023-03-17" |
||
270 | |||
271 | contris[0]["object"] = "metadata" |
||
272 | contris[1]["object"] = "dataset" |
||
273 | |||
274 | contris[0]["comment"] = "Add metadata to dataset." |
||
275 | contris[1]["comment"] = "Add workflow to generate dataset." |
||
276 | |||
277 | for t_dict in targets.values(): |
||
278 | schema = t_dict["schema"] |
||
279 | table = t_dict["table"] |
||
280 | name = f"{schema}.{table}" |
||
281 | |||
282 | meta = { |
||
283 | "name": name, |
||
284 | "title": title_dict[table], |
||
285 | "id": "WILL_BE_SET_AT_PUBLICATION", |
||
286 | "description": description_dict[table], |
||
287 | "language": "en-US", |
||
288 | "keywords": ["dsm", "timeseries"] + keywords_dict[table], |
||
289 | "publicationDate": datetime.date.today().isoformat(), |
||
290 | "context": context(), |
||
291 | "spatial": { |
||
292 | "location": "none", |
||
293 | "extent": "Germany", |
||
294 | "resolution": "none", |
||
295 | }, |
||
296 | "temporal": { |
||
297 | "referenceDate": "2011-01-01", |
||
298 | "timeseries": { |
||
299 | "start": "2011-01-01", |
||
300 | "end": "2011-12-31", |
||
301 | "resolution": "1 h", |
||
302 | "alignment": "left", |
||
303 | "aggregationType": "average", |
||
304 | }, |
||
305 | }, |
||
306 | "sources": [ |
||
307 | sources()["egon-data"], |
||
308 | sources()["vg250"], |
||
309 | sources()["demandregio"], |
||
310 | ] |
||
311 | + sources_dict[table], |
||
312 | "licenses": [license_odbl("© eGon development team")], |
||
313 | "contributors": contris, |
||
314 | "resources": [ |
||
315 | { |
||
316 | "profile": "tabular-data-resource", |
||
317 | "name": name, |
||
318 | "path": "None", |
||
319 | "format": "PostgreSQL", |
||
320 | "encoding": "UTF-8", |
||
321 | "schema": { |
||
322 | "fields": generate_resource_fields_from_db_table( |
||
323 | schema, |
||
324 | table, |
||
325 | ), |
||
326 | "primaryKey": ["scn_name"] + primaryKey_dict[table], |
||
327 | }, |
||
328 | "dialect": {"delimiter": "", "decimalSeparator": ""}, |
||
329 | } |
||
330 | ], |
||
331 | "review": {"path": "", "badge": ""}, |
||
332 | "metaMetadata": meta_metadata(), |
||
333 | "_comment": { |
||
334 | "metadata": ( |
||
335 | "Metadata documentation and explanation (https://" |
||
336 | "github.com/OpenEnergyPlatform/oemetadata/blob/master/" |
||
337 | "metadata/v141/metadata_key_description.md)" |
||
338 | ), |
||
339 | "dates": ( |
||
340 | "Dates and time must follow the ISO8601 including time " |
||
341 | "zone (YYYY-MM-DD or YYYY-MM-DDThh:mm:ss±hh)" |
||
342 | ), |
||
343 | "units": "Use a space between numbers and units (100 m)", |
||
344 | "languages": ( |
||
345 | "Languages must follow the IETF (BCP47) format (en-GB, " |
||
346 | "en-US, de-DE)" |
||
347 | ), |
||
348 | "licenses": ( |
||
349 | "License name must follow the SPDX License List " |
||
350 | "(https://spdx.org/licenses/)" |
||
351 | ), |
||
352 | "review": ( |
||
353 | "Following the OEP Data Review (https://github.com/" |
||
354 | "OpenEnergyPlatform/data-preprocessing/wiki)" |
||
355 | ), |
||
356 | "none": "If not applicable use (none)", |
||
357 | }, |
||
358 | } |
||
359 | |||
360 | dialect = get_dialect(oep_metadata_version())() |
||
361 | |||
362 | meta = dialect.compile_and_render(dialect.parse(json.dumps(meta))) |
||
363 | |||
364 | db.submit_comment( |
||
365 | f"'{json.dumps(meta)}'", |
||
366 | schema, |
||
367 | table, |
||
368 | ) |
||
369 | |||
370 | |||
371 | # Code |
||
372 | def cts_data_import(cts_cool_vent_ac_share): |
||
373 | """ |
||
374 | Import CTS data necessary to identify DSM-potential. |
||
375 | |||
376 | ---------- |
||
377 | cts_share: float |
||
378 | Share of cooling, ventilation and AC in CTS demand |
||
379 | """ |
||
380 | |||
381 | # import load data |
||
382 | |||
383 | sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
||
384 | "cts_loadcurves" |
||
385 | ] |
||
386 | |||
387 | ts = db.select_dataframe( |
||
388 | f"""SELECT bus_id, scn_name, p_set FROM |
||
389 | {sources['schema']}.{sources['table']}""" |
||
390 | ) |
||
391 | |||
392 | # identify relevant columns and prepare df to be returned |
||
393 | |||
394 | dsm = pd.DataFrame(index=ts.index) |
||
395 | |||
396 | dsm["bus"] = ts["bus_id"].copy() |
||
397 | dsm["scn_name"] = ts["scn_name"].copy() |
||
398 | dsm["p_set"] = ts["p_set"].copy() |
||
399 | |||
400 | # calculate share of timeseries for air conditioning, cooling and |
||
401 | # ventilation out of CTS-data |
||
402 | |||
403 | timeseries = dsm["p_set"].copy() |
||
404 | |||
405 | for index, liste in timeseries.items(): |
||
406 | share = [float(item) * cts_cool_vent_ac_share for item in liste] |
||
407 | timeseries.loc[index] = share |
||
408 | |||
409 | dsm["p_set"] = timeseries.copy() |
||
410 | |||
411 | return dsm |
||
412 | |||
413 | |||
414 | View Code Duplication | def ind_osm_data_import(ind_vent_cool_share): |
|
415 | """ |
||
416 | Import industry data per osm-area necessary to identify DSM-potential. |
||
417 | ---------- |
||
418 | ind_share: float |
||
419 | Share of considered application in industry demand |
||
420 | """ |
||
421 | |||
422 | # import load data |
||
423 | |||
424 | sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
||
425 | "ind_osm_loadcurves" |
||
426 | ] |
||
427 | |||
428 | dsm = db.select_dataframe( |
||
429 | f""" |
||
430 | SELECT bus, scn_name, p_set FROM |
||
431 | {sources['schema']}.{sources['table']} |
||
432 | """ |
||
433 | ) |
||
434 | |||
435 | # calculate share of timeseries for cooling and ventilation out of |
||
436 | # industry-data |
||
437 | |||
438 | timeseries = dsm["p_set"].copy() |
||
439 | |||
440 | for index, liste in timeseries.items(): |
||
441 | share = [float(item) * ind_vent_cool_share for item in liste] |
||
442 | |||
443 | timeseries.loc[index] = share |
||
444 | |||
445 | dsm["p_set"] = timeseries.copy() |
||
446 | |||
447 | return dsm |
||
448 | |||
449 | |||
450 | View Code Duplication | def ind_osm_data_import_individual(ind_vent_cool_share): |
|
451 | """ |
||
452 | Import industry data per osm-area necessary to identify DSM-potential. |
||
453 | ---------- |
||
454 | ind_share: float |
||
455 | Share of considered application in industry demand |
||
456 | """ |
||
457 | |||
458 | # import load data |
||
459 | |||
460 | sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
||
461 | "ind_osm_loadcurves_individual" |
||
462 | ] |
||
463 | |||
464 | dsm = db.select_dataframe( |
||
465 | f""" |
||
466 | SELECT osm_id, bus_id as bus, scn_name, p_set FROM |
||
467 | {sources['schema']}.{sources['table']} |
||
468 | """ |
||
469 | ) |
||
470 | |||
471 | # calculate share of timeseries for cooling and ventilation out of |
||
472 | # industry-data |
||
473 | |||
474 | timeseries = dsm["p_set"].copy() |
||
475 | |||
476 | for index, liste in timeseries.items(): |
||
477 | share = [float(item) * ind_vent_cool_share for item in liste] |
||
478 | |||
479 | timeseries.loc[index] = share |
||
480 | |||
481 | dsm["p_set"] = timeseries.copy() |
||
482 | |||
483 | return dsm |
||
484 | |||
485 | |||
486 | View Code Duplication | def ind_sites_vent_data_import(ind_vent_share, wz): |
|
487 | """ |
||
488 | Import industry sites necessary to identify DSM-potential. |
||
489 | ---------- |
||
490 | ind_vent_share: float |
||
491 | Share of considered application in industry demand |
||
492 | wz: int |
||
493 | Wirtschaftszweig to be considered within industry sites |
||
494 | """ |
||
495 | |||
496 | # import load data |
||
497 | |||
498 | sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
||
499 | "ind_sites_loadcurves" |
||
500 | ] |
||
501 | |||
502 | dsm = db.select_dataframe( |
||
503 | f""" |
||
504 | SELECT bus, scn_name, p_set FROM |
||
505 | {sources['schema']}.{sources['table']} |
||
506 | WHERE wz = {wz} |
||
507 | """ |
||
508 | ) |
||
509 | |||
510 | # calculate share of timeseries for ventilation |
||
511 | |||
512 | timeseries = dsm["p_set"].copy() |
||
513 | |||
514 | for index, liste in timeseries.items(): |
||
515 | share = [float(item) * ind_vent_share for item in liste] |
||
516 | timeseries.loc[index] = share |
||
517 | |||
518 | dsm["p_set"] = timeseries.copy() |
||
519 | |||
520 | return dsm |
||
521 | |||
522 | |||
523 | View Code Duplication | def ind_sites_vent_data_import_individual(ind_vent_share, wz): |
|
524 | """ |
||
525 | Import industry sites necessary to identify DSM-potential. |
||
526 | ---------- |
||
527 | ind_vent_share: float |
||
528 | Share of considered application in industry demand |
||
529 | wz: int |
||
530 | Wirtschaftszweig to be considered within industry sites |
||
531 | """ |
||
532 | |||
533 | # import load data |
||
534 | |||
535 | sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
||
536 | "ind_sites_loadcurves_individual" |
||
537 | ] |
||
538 | |||
539 | dsm = db.select_dataframe( |
||
540 | f""" |
||
541 | SELECT site_id, bus_id as bus, scn_name, p_set FROM |
||
542 | {sources['schema']}.{sources['table']} |
||
543 | WHERE wz = {wz} |
||
544 | """ |
||
545 | ) |
||
546 | |||
547 | # calculate share of timeseries for ventilation |
||
548 | |||
549 | timeseries = dsm["p_set"].copy() |
||
550 | |||
551 | for index, liste in timeseries.items(): |
||
552 | share = [float(item) * ind_vent_share for item in liste] |
||
553 | timeseries.loc[index] = share |
||
554 | |||
555 | dsm["p_set"] = timeseries.copy() |
||
556 | |||
557 | return dsm |
||
558 | |||
559 | |||
560 | def calc_ind_site_timeseries(scenario): |
||
561 | # calculate timeseries per site |
||
562 | # -> using code from egon.data.datasets.industry.temporal: |
||
563 | # calc_load_curves_ind_sites |
||
564 | |||
565 | # select demands per industrial site including the subsector information |
||
566 | source1 = config.datasets()["DSM_CTS_industry"]["sources"][ |
||
567 | "demandregio_ind_sites" |
||
568 | ] |
||
569 | |||
570 | demands_ind_sites = db.select_dataframe( |
||
571 | f"""SELECT industrial_sites_id, wz, demand |
||
572 | FROM {source1['schema']}.{source1['table']} |
||
573 | WHERE scenario = '{scenario}' |
||
574 | AND demand > 0 |
||
575 | """ |
||
576 | ).set_index(["industrial_sites_id"]) |
||
577 | |||
578 | # select industrial sites as demand_areas from database |
||
579 | source2 = config.datasets()["DSM_CTS_industry"]["sources"]["ind_sites"] |
||
580 | |||
581 | demand_area = db.select_geodataframe( |
||
582 | f"""SELECT id, geom, subsector FROM |
||
583 | {source2['schema']}.{source2['table']}""", |
||
584 | index_col="id", |
||
585 | geom_col="geom", |
||
586 | epsg=3035, |
||
587 | ) |
||
588 | |||
589 | # replace entries to bring it in line with demandregio's subsector |
||
590 | # definitions |
||
591 | demands_ind_sites.replace(1718, 17, inplace=True) |
||
592 | share_wz_sites = demands_ind_sites.copy() |
||
593 | |||
594 | # create additional df on wz_share per industrial site, which is always set |
||
595 | # to one as the industrial demand per site is subsector specific |
||
596 | share_wz_sites.demand = 1 |
||
597 | share_wz_sites.reset_index(inplace=True) |
||
598 | |||
599 | share_transpose = pd.DataFrame( |
||
600 | index=share_wz_sites.industrial_sites_id.unique(), |
||
601 | columns=share_wz_sites.wz.unique(), |
||
602 | ) |
||
603 | share_transpose.index.rename("industrial_sites_id", inplace=True) |
||
604 | for wz in share_transpose.columns: |
||
605 | share_transpose[wz] = ( |
||
606 | share_wz_sites[share_wz_sites.wz == wz] |
||
607 | .set_index("industrial_sites_id") |
||
608 | .demand |
||
609 | ) |
||
610 | |||
611 | # calculate load curves |
||
612 | load_curves = calc_load_curve(share_transpose, demands_ind_sites["demand"]) |
||
613 | |||
614 | # identify bus per industrial site |
||
615 | curves_bus = identify_bus(load_curves, demand_area) |
||
616 | curves_bus.index = curves_bus["id"].astype(int) |
||
617 | |||
618 | # initialize dataframe to be returned |
||
619 | |||
620 | ts = pd.DataFrame( |
||
621 | data=curves_bus["bus_id"], index=curves_bus["id"].astype(int) |
||
622 | ) |
||
623 | ts["scenario_name"] = scenario |
||
624 | curves_bus.drop({"id", "bus_id", "geom"}, axis=1, inplace=True) |
||
625 | ts["p_set"] = curves_bus.values.tolist() |
||
626 | |||
627 | # add subsector to relate to Schmidt's tables afterwards |
||
628 | ts["application"] = demand_area["subsector"] |
||
629 | |||
630 | return ts |
||
631 | |||
632 | |||
633 | def relate_to_schmidt_sites(dsm): |
||
634 | # import industrial sites by Schmidt |
||
635 | |||
636 | source = config.datasets()["DSM_CTS_industry"]["sources"][ |
||
637 | "ind_sites_schmidt" |
||
638 | ] |
||
639 | |||
640 | schmidt = db.select_dataframe( |
||
641 | f"""SELECT application, geom FROM |
||
642 | {source['schema']}.{source['table']}""" |
||
643 | ) |
||
644 | |||
645 | # relate calculated timeseries (dsm) to Schmidt's industrial sites |
||
646 | |||
647 | applications = np.unique(schmidt["application"]) |
||
648 | dsm = pd.DataFrame(dsm[dsm["application"].isin(applications)]) |
||
649 | |||
650 | # initialize dataframe to be returned |
||
651 | |||
652 | dsm.rename( |
||
653 | columns={"scenario_name": "scn_name", "bus_id": "bus"}, |
||
654 | inplace=True, |
||
655 | ) |
||
656 | |||
657 | return dsm |
||
658 | |||
659 | |||
660 | def ind_sites_data_import(): |
||
661 | """ |
||
662 | Import industry sites data necessary to identify DSM-potential. |
||
663 | """ |
||
664 | # calculate timeseries per site |
||
665 | |||
666 | # scenario eGon2035 |
||
667 | dsm_2035 = calc_ind_site_timeseries("eGon2035") |
||
668 | dsm_2035.reset_index(inplace=True) |
||
669 | # scenario eGon100RE |
||
670 | dsm_100 = calc_ind_site_timeseries("eGon100RE") |
||
671 | dsm_100.reset_index(inplace=True) |
||
672 | # bring df for both scenarios together |
||
673 | dsm_100.index = range(len(dsm_2035), (len(dsm_2035) + len((dsm_100)))) |
||
674 | dsm = dsm_2035.append(dsm_100) |
||
675 | |||
676 | # relate calculated timeseries to Schmidt's industrial sites |
||
677 | |||
678 | dsm = relate_to_schmidt_sites(dsm) |
||
679 | |||
680 | return dsm[["application", "id", "bus", "scn_name", "p_set"]] |
||
681 | |||
682 | |||
683 | def calculate_potentials(s_flex, s_util, s_inc, s_dec, delta_t, dsm): |
||
684 | """ |
||
685 | Calculate DSM-potential per bus using the methods by Heitkoetter et. al.: |
||
686 | https://doi.org/10.1016/j.adapen.2020.100001 |
||
687 | Parameters |
||
688 | ---------- |
||
689 | s_flex: float |
||
690 | Feasability factor to account for socio-technical restrictions |
||
691 | s_util: float |
||
692 | Average annual utilisation rate |
||
693 | s_inc: float |
||
694 | Shiftable share of installed capacity up to which load can be |
||
695 | increased considering technical limitations |
||
696 | s_dec: float |
||
697 | Shiftable share of installed capacity up to which load can be |
||
698 | decreased considering technical limitations |
||
699 | delta_t: int |
||
700 | Maximum shift duration in hours |
||
701 | dsm: DataFrame |
||
702 | List of existing buses with DSM-potential including timeseries of |
||
703 | loads |
||
704 | """ |
||
705 | |||
706 | # copy relevant timeseries |
||
707 | timeseries = dsm["p_set"].copy() |
||
708 | |||
709 | # calculate scheduled load L(t) |
||
710 | |||
711 | scheduled_load = timeseries.copy() |
||
712 | |||
713 | for index, liste in scheduled_load.items(): |
||
714 | share = [item * s_flex for item in liste] |
||
715 | scheduled_load.loc[index] = share |
||
716 | |||
717 | # calculate maximum capacity Lambda |
||
718 | |||
719 | # calculate energy annual requirement |
||
720 | energy_annual = pd.Series(index=timeseries.index, dtype=float) |
||
721 | for index, liste in timeseries.items(): |
||
722 | energy_annual.loc[index] = sum(liste) |
||
723 | |||
724 | # calculate Lambda |
||
725 | lam = (energy_annual * s_flex) / (8760 * s_util) |
||
726 | |||
727 | # calculation of P_max and P_min |
||
728 | |||
729 | # P_max |
||
730 | p_max = scheduled_load.copy() |
||
731 | for index, liste in scheduled_load.items(): |
||
732 | lamb = lam.loc[index] |
||
733 | p_max.loc[index] = [max(0, lamb * s_inc - item) for item in liste] |
||
734 | |||
735 | # P_min |
||
736 | p_min = scheduled_load.copy() |
||
737 | for index, liste in scheduled_load.items(): |
||
738 | lamb = lam.loc[index] |
||
739 | p_min.loc[index] = [min(0, -(item - lamb * s_dec)) for item in liste] |
||
740 | |||
741 | # calculation of E_max and E_min |
||
742 | |||
743 | e_max = scheduled_load.copy() |
||
744 | e_min = scheduled_load.copy() |
||
745 | |||
746 | for index, liste in scheduled_load.items(): |
||
747 | emin = [] |
||
748 | emax = [] |
||
749 | for i in range(len(liste)): |
||
750 | if i + delta_t > len(liste): |
||
751 | emax.append( |
||
752 | (sum(liste[i:]) + sum(liste[: delta_t - (len(liste) - i)])) |
||
753 | ) |
||
754 | else: |
||
755 | emax.append(sum(liste[i : i + delta_t])) |
||
756 | if i - delta_t < 0: |
||
757 | emin.append( |
||
758 | ( |
||
759 | -1 |
||
760 | * ( |
||
761 | ( |
||
762 | sum(liste[:i]) |
||
763 | + sum(liste[len(liste) - delta_t + i :]) |
||
764 | ) |
||
765 | ) |
||
766 | ) |
||
767 | ) |
||
768 | else: |
||
769 | emin.append(-1 * sum(liste[i - delta_t : i])) |
||
770 | e_max.loc[index] = emax |
||
771 | e_min.loc[index] = emin |
||
772 | |||
773 | return p_max, p_min, e_max, e_min |
||
774 | |||
775 | |||
776 | def create_dsm_components( |
||
777 | con, p_max, p_min, e_max, e_min, dsm, export_aggregated=True |
||
778 | ): |
||
779 | """ |
||
780 | Create components representing DSM. |
||
781 | Parameters |
||
782 | ---------- |
||
783 | con : |
||
784 | Connection to database |
||
785 | p_max: DataFrame |
||
786 | Timeseries identifying maximum load increase |
||
787 | p_min: DataFrame |
||
788 | Timeseries identifying maximum load decrease |
||
789 | e_max: DataFrame |
||
790 | Timeseries identifying maximum energy amount to be preponed |
||
791 | e_min: DataFrame |
||
792 | Timeseries identifying maximum energy amount to be postponed |
||
793 | dsm: DataFrame |
||
794 | List of existing buses with DSM-potential including timeseries of loads |
||
795 | """ |
||
796 | if not export_aggregated: |
||
797 | # calculate P_nom and P per unit |
||
798 | p_nom = pd.Series(index=p_max.index, dtype=float) |
||
799 | for index, row in p_max.items(): |
||
800 | nom = max(max(row), abs(min(p_min.loc[index]))) |
||
801 | p_nom.loc[index] = nom |
||
802 | new = [element / nom for element in row] |
||
803 | p_max.loc[index] = new |
||
804 | new = [element / nom for element in p_min.loc[index]] |
||
805 | p_min.loc[index] = new |
||
806 | |||
807 | # calculate E_nom and E per unit |
||
808 | e_nom = pd.Series(index=p_min.index, dtype=float) |
||
809 | for index, row in e_max.items(): |
||
810 | nom = max(max(row), abs(min(e_min.loc[index]))) |
||
811 | e_nom.loc[index] = nom |
||
812 | new = [element / nom for element in row] |
||
813 | e_max.loc[index] = new |
||
814 | new = [element / nom for element in e_min.loc[index]] |
||
815 | e_min.loc[index] = new |
||
816 | |||
817 | # add DSM-buses to "original" buses |
||
818 | dsm_buses = gpd.GeoDataFrame(index=dsm.index) |
||
819 | dsm_buses["original_bus"] = dsm["bus"].copy() |
||
820 | dsm_buses["scn_name"] = dsm["scn_name"].copy() |
||
821 | |||
822 | # get original buses and add copy of relevant information |
||
823 | target1 = config.datasets()["DSM_CTS_industry"]["targets"]["bus"] |
||
824 | original_buses = db.select_geodataframe( |
||
825 | f"""SELECT bus_id, v_nom, scn_name, x, y, geom FROM |
||
826 | {target1['schema']}.{target1['table']}""", |
||
827 | geom_col="geom", |
||
828 | epsg=4326, |
||
829 | ) |
||
830 | |||
831 | # copy relevant information from original buses to DSM-buses |
||
832 | dsm_buses["index"] = dsm_buses.index |
||
833 | originals = original_buses[ |
||
834 | original_buses["bus_id"].isin(np.unique(dsm_buses["original_bus"])) |
||
835 | ] |
||
836 | dsm_buses = originals.merge( |
||
837 | dsm_buses, |
||
838 | left_on=["bus_id", "scn_name"], |
||
839 | right_on=["original_bus", "scn_name"], |
||
840 | ) |
||
841 | dsm_buses.index = dsm_buses["index"] |
||
842 | dsm_buses.drop(["bus_id", "index"], axis=1, inplace=True) |
||
843 | |||
844 | # new bus_ids for DSM-buses |
||
845 | max_id = original_buses["bus_id"].max() |
||
846 | if np.isnan(max_id): |
||
847 | max_id = 0 |
||
848 | dsm_id = max_id + 1 |
||
849 | bus_id = pd.Series(index=dsm_buses.index, dtype=int) |
||
850 | |||
851 | # Get number of DSM buses for both scenarios |
||
852 | rows_per_scenario = ( |
||
853 | dsm_buses.groupby("scn_name").count().original_bus.to_dict() |
||
854 | ) |
||
855 | |||
856 | # Assignment of DSM ids |
||
857 | bus_id.iloc[: rows_per_scenario.get("eGon2035", 0)] = range( |
||
858 | dsm_id, dsm_id + rows_per_scenario.get("eGon2035", 0) |
||
859 | ) |
||
860 | |||
861 | bus_id.iloc[ |
||
862 | rows_per_scenario.get("eGon2035", 0) : rows_per_scenario.get( |
||
863 | "eGon2035", 0 |
||
864 | ) |
||
865 | + rows_per_scenario.get("eGon100RE", 0) |
||
866 | ] = range(dsm_id, dsm_id + rows_per_scenario.get("eGon100RE", 0)) |
||
867 | |||
868 | dsm_buses["bus_id"] = bus_id |
||
869 | |||
870 | # add links from "orignal" buses to DSM-buses |
||
871 | |||
872 | dsm_links = pd.DataFrame(index=dsm_buses.index) |
||
873 | dsm_links["original_bus"] = dsm_buses["original_bus"].copy() |
||
874 | dsm_links["dsm_bus"] = dsm_buses["bus_id"].copy() |
||
875 | dsm_links["scn_name"] = dsm_buses["scn_name"].copy() |
||
876 | |||
877 | # set link_id |
||
878 | target2 = config.datasets()["DSM_CTS_industry"]["targets"]["link"] |
||
879 | sql = f"""SELECT link_id FROM {target2['schema']}.{target2['table']}""" |
||
880 | max_id = pd.read_sql_query(sql, con) |
||
881 | max_id = max_id["link_id"].max() |
||
882 | if np.isnan(max_id): |
||
883 | max_id = 0 |
||
884 | dsm_id = max_id + 1 |
||
885 | link_id = pd.Series(index=dsm_buses.index, dtype=int) |
||
886 | |||
887 | # Assignment of link ids |
||
888 | link_id.iloc[: rows_per_scenario.get("eGon2035", 0)] = range( |
||
889 | dsm_id, dsm_id + rows_per_scenario.get("eGon2035", 0) |
||
890 | ) |
||
891 | |||
892 | link_id.iloc[ |
||
893 | rows_per_scenario.get("eGon2035", 0) : rows_per_scenario.get( |
||
894 | "eGon2035", 0 |
||
895 | ) |
||
896 | + rows_per_scenario.get("eGon100RE", 0) |
||
897 | ] = range(dsm_id, dsm_id + rows_per_scenario.get("eGon100RE", 0)) |
||
898 | |||
899 | dsm_links["link_id"] = link_id |
||
900 | |||
901 | # add calculated timeseries to df to be returned |
||
902 | if not export_aggregated: |
||
903 | dsm_links["p_nom"] = p_nom |
||
904 | dsm_links["p_min"] = p_min |
||
905 | dsm_links["p_max"] = p_max |
||
906 | |||
907 | # add DSM-stores |
||
908 | |||
909 | dsm_stores = pd.DataFrame(index=dsm_buses.index) |
||
910 | dsm_stores["bus"] = dsm_buses["bus_id"].copy() |
||
911 | dsm_stores["scn_name"] = dsm_buses["scn_name"].copy() |
||
912 | dsm_stores["original_bus"] = dsm_buses["original_bus"].copy() |
||
913 | |||
914 | # set store_id |
||
915 | target3 = config.datasets()["DSM_CTS_industry"]["targets"]["store"] |
||
916 | sql = f"""SELECT store_id FROM {target3['schema']}.{target3['table']}""" |
||
917 | max_id = pd.read_sql_query(sql, con) |
||
918 | max_id = max_id["store_id"].max() |
||
919 | if np.isnan(max_id): |
||
920 | max_id = 0 |
||
921 | dsm_id = max_id + 1 |
||
922 | store_id = pd.Series(index=dsm_buses.index, dtype=int) |
||
923 | |||
924 | # Assignment of store ids |
||
925 | store_id.iloc[: rows_per_scenario.get("eGon2035", 0)] = range( |
||
926 | dsm_id, dsm_id + rows_per_scenario.get("eGon2035", 0) |
||
927 | ) |
||
928 | |||
929 | store_id.iloc[ |
||
930 | rows_per_scenario.get("eGon2035", 0) : rows_per_scenario.get( |
||
931 | "eGon2035", 0 |
||
932 | ) |
||
933 | + rows_per_scenario.get("eGon100RE", 0) |
||
934 | ] = range(dsm_id, dsm_id + rows_per_scenario.get("eGon100RE", 0)) |
||
935 | |||
936 | dsm_stores["store_id"] = store_id |
||
937 | |||
938 | # add calculated timeseries to df to be returned |
||
939 | if not export_aggregated: |
||
940 | dsm_stores["e_nom"] = e_nom |
||
941 | dsm_stores["e_min"] = e_min |
||
942 | dsm_stores["e_max"] = e_max |
||
943 | |||
944 | return dsm_buses, dsm_links, dsm_stores |
||
945 | |||
946 | |||
947 | def aggregate_components(df_dsm_buses, df_dsm_links, df_dsm_stores): |
||
948 | # aggregate buses |
||
949 | |||
950 | grouper = [df_dsm_buses.original_bus, df_dsm_buses.scn_name] |
||
951 | |||
952 | df_dsm_buses = df_dsm_buses.groupby(grouper).first() |
||
953 | |||
954 | df_dsm_buses.reset_index(inplace=True) |
||
955 | df_dsm_buses.sort_values("scn_name", inplace=True) |
||
956 | |||
957 | # aggregate links |
||
958 | |||
959 | df_dsm_links["p_max"] = df_dsm_links["p_max"].apply(lambda x: np.array(x)) |
||
960 | df_dsm_links["p_min"] = df_dsm_links["p_min"].apply(lambda x: np.array(x)) |
||
961 | |||
962 | grouper = [df_dsm_links.original_bus, df_dsm_links.scn_name] |
||
963 | |||
964 | p_max = df_dsm_links.groupby(grouper)["p_max"].apply(np.sum) |
||
965 | p_min = df_dsm_links.groupby(grouper)["p_min"].apply(np.sum) |
||
966 | |||
967 | df_dsm_links = df_dsm_links.groupby(grouper).first() |
||
968 | df_dsm_links.p_max = p_max |
||
969 | df_dsm_links.p_min = p_min |
||
970 | |||
971 | df_dsm_links.reset_index(inplace=True) |
||
972 | df_dsm_links.sort_values("scn_name", inplace=True) |
||
973 | |||
974 | # calculate P_nom and P per unit |
||
975 | for index, row in df_dsm_links.iterrows(): |
||
976 | nom = max(max(row.p_max), abs(min(row.p_min))) |
||
977 | df_dsm_links.at[index, "p_nom"] = nom |
||
978 | |||
979 | df_dsm_links["p_max"] = df_dsm_links["p_max"] / df_dsm_links["p_nom"] |
||
980 | df_dsm_links["p_min"] = df_dsm_links["p_min"] / df_dsm_links["p_nom"] |
||
981 | |||
982 | df_dsm_links["p_max"] = df_dsm_links["p_max"].apply(lambda x: list(x)) |
||
983 | df_dsm_links["p_min"] = df_dsm_links["p_min"].apply(lambda x: list(x)) |
||
984 | |||
985 | # aggregate stores |
||
986 | df_dsm_stores["e_max"] = df_dsm_stores["e_max"].apply( |
||
987 | lambda x: np.array(x) |
||
988 | ) |
||
989 | df_dsm_stores["e_min"] = df_dsm_stores["e_min"].apply( |
||
990 | lambda x: np.array(x) |
||
991 | ) |
||
992 | |||
993 | grouper = [df_dsm_stores.original_bus, df_dsm_stores.scn_name] |
||
994 | |||
995 | e_max = df_dsm_stores.groupby(grouper)["e_max"].apply(np.sum) |
||
996 | e_min = df_dsm_stores.groupby(grouper)["e_min"].apply(np.sum) |
||
997 | |||
998 | df_dsm_stores = df_dsm_stores.groupby(grouper).first() |
||
999 | df_dsm_stores.e_max = e_max |
||
1000 | df_dsm_stores.e_min = e_min |
||
1001 | |||
1002 | df_dsm_stores.reset_index(inplace=True) |
||
1003 | df_dsm_stores.sort_values("scn_name", inplace=True) |
||
1004 | |||
1005 | # calculate E_nom and E per unit |
||
1006 | for index, row in df_dsm_stores.iterrows(): |
||
1007 | nom = max(max(row.e_max), abs(min(row.e_min))) |
||
1008 | df_dsm_stores.at[index, "e_nom"] = nom |
||
1009 | |||
1010 | df_dsm_stores["e_max"] = df_dsm_stores["e_max"] / df_dsm_stores["e_nom"] |
||
1011 | df_dsm_stores["e_min"] = df_dsm_stores["e_min"] / df_dsm_stores["e_nom"] |
||
1012 | |||
1013 | df_dsm_stores["e_max"] = df_dsm_stores["e_max"].apply(lambda x: list(x)) |
||
1014 | df_dsm_stores["e_min"] = df_dsm_stores["e_min"].apply(lambda x: list(x)) |
||
1015 | |||
1016 | # select new bus_ids for aggregated buses and add to links and stores |
||
1017 | bus_id = db.next_etrago_id("Bus") + df_dsm_buses.index |
||
1018 | |||
1019 | df_dsm_buses["bus_id"] = bus_id |
||
1020 | df_dsm_links["dsm_bus"] = bus_id |
||
1021 | df_dsm_stores["bus"] = bus_id |
||
1022 | |||
1023 | # select new link_ids for aggregated links |
||
1024 | link_id = db.next_etrago_id("Link") + df_dsm_links.index |
||
1025 | |||
1026 | df_dsm_links["link_id"] = link_id |
||
1027 | |||
1028 | # select new store_ids to aggregated stores |
||
1029 | |||
1030 | store_id = db.next_etrago_id("Store") + df_dsm_stores.index |
||
1031 | |||
1032 | df_dsm_stores["store_id"] = store_id |
||
1033 | |||
1034 | return df_dsm_buses, df_dsm_links, df_dsm_stores |
||
1035 | |||
1036 | |||
1037 | def data_export(dsm_buses, dsm_links, dsm_stores, carrier): |
||
1038 | """ |
||
1039 | Export new components to database. |
||
1040 | |||
1041 | Parameters |
||
1042 | ---------- |
||
1043 | dsm_buses: DataFrame |
||
1044 | Buses representing locations of DSM-potential |
||
1045 | dsm_links: DataFrame |
||
1046 | Links connecting DSM-buses and DSM-stores |
||
1047 | dsm_stores: DataFrame |
||
1048 | Stores representing DSM-potential |
||
1049 | carrier: str |
||
1050 | Remark to be filled in column 'carrier' identifying DSM-potential |
||
1051 | """ |
||
1052 | |||
1053 | targets = config.datasets()["DSM_CTS_industry"]["targets"] |
||
1054 | |||
1055 | # dsm_buses |
||
1056 | |||
1057 | insert_buses = gpd.GeoDataFrame( |
||
1058 | index=dsm_buses.index, |
||
1059 | data=dsm_buses["geom"], |
||
1060 | geometry="geom", |
||
1061 | crs=dsm_buses.crs, |
||
1062 | ) |
||
1063 | insert_buses["scn_name"] = dsm_buses["scn_name"] |
||
1064 | insert_buses["bus_id"] = dsm_buses["bus_id"] |
||
1065 | insert_buses["v_nom"] = dsm_buses["v_nom"] |
||
1066 | insert_buses["carrier"] = carrier |
||
1067 | insert_buses["x"] = dsm_buses["x"] |
||
1068 | insert_buses["y"] = dsm_buses["y"] |
||
1069 | |||
1070 | # insert into database |
||
1071 | insert_buses.to_postgis( |
||
1072 | targets["bus"]["table"], |
||
1073 | con=db.engine(), |
||
1074 | schema=targets["bus"]["schema"], |
||
1075 | if_exists="append", |
||
1076 | index=False, |
||
1077 | dtype={"geom": "geometry"}, |
||
1078 | ) |
||
1079 | |||
1080 | # dsm_links |
||
1081 | |||
1082 | insert_links = pd.DataFrame(index=dsm_links.index) |
||
1083 | insert_links["scn_name"] = dsm_links["scn_name"] |
||
1084 | insert_links["link_id"] = dsm_links["link_id"] |
||
1085 | insert_links["bus0"] = dsm_links["original_bus"] |
||
1086 | insert_links["bus1"] = dsm_links["dsm_bus"] |
||
1087 | insert_links["carrier"] = carrier |
||
1088 | insert_links["p_nom"] = dsm_links["p_nom"] |
||
1089 | |||
1090 | # insert into database |
||
1091 | insert_links.to_sql( |
||
1092 | targets["link"]["table"], |
||
1093 | con=db.engine(), |
||
1094 | schema=targets["link"]["schema"], |
||
1095 | if_exists="append", |
||
1096 | index=False, |
||
1097 | ) |
||
1098 | |||
1099 | insert_links_timeseries = pd.DataFrame(index=dsm_links.index) |
||
1100 | insert_links_timeseries["scn_name"] = dsm_links["scn_name"] |
||
1101 | insert_links_timeseries["link_id"] = dsm_links["link_id"] |
||
1102 | insert_links_timeseries["p_min_pu"] = dsm_links["p_min"] |
||
1103 | insert_links_timeseries["p_max_pu"] = dsm_links["p_max"] |
||
1104 | insert_links_timeseries["temp_id"] = 1 |
||
1105 | |||
1106 | # insert into database |
||
1107 | insert_links_timeseries.to_sql( |
||
1108 | targets["link_timeseries"]["table"], |
||
1109 | con=db.engine(), |
||
1110 | schema=targets["link_timeseries"]["schema"], |
||
1111 | if_exists="append", |
||
1112 | index=False, |
||
1113 | ) |
||
1114 | |||
1115 | # dsm_stores |
||
1116 | |||
1117 | insert_stores = pd.DataFrame(index=dsm_stores.index) |
||
1118 | insert_stores["scn_name"] = dsm_stores["scn_name"] |
||
1119 | insert_stores["store_id"] = dsm_stores["store_id"] |
||
1120 | insert_stores["bus"] = dsm_stores["bus"] |
||
1121 | insert_stores["carrier"] = carrier |
||
1122 | insert_stores["e_nom"] = dsm_stores["e_nom"] |
||
1123 | |||
1124 | # insert into database |
||
1125 | insert_stores.to_sql( |
||
1126 | targets["store"]["table"], |
||
1127 | con=db.engine(), |
||
1128 | schema=targets["store"]["schema"], |
||
1129 | if_exists="append", |
||
1130 | index=False, |
||
1131 | ) |
||
1132 | |||
1133 | insert_stores_timeseries = pd.DataFrame(index=dsm_stores.index) |
||
1134 | insert_stores_timeseries["scn_name"] = dsm_stores["scn_name"] |
||
1135 | insert_stores_timeseries["store_id"] = dsm_stores["store_id"] |
||
1136 | insert_stores_timeseries["e_min_pu"] = dsm_stores["e_min"] |
||
1137 | insert_stores_timeseries["e_max_pu"] = dsm_stores["e_max"] |
||
1138 | insert_stores_timeseries["temp_id"] = 1 |
||
1139 | |||
1140 | # insert into database |
||
1141 | insert_stores_timeseries.to_sql( |
||
1142 | targets["store_timeseries"]["table"], |
||
1143 | con=db.engine(), |
||
1144 | schema=targets["store_timeseries"]["schema"], |
||
1145 | if_exists="append", |
||
1146 | index=False, |
||
1147 | ) |
||
1148 | |||
1149 | |||
1150 | def delete_dsm_entries(carrier): |
||
1151 | """ |
||
1152 | Deletes DSM-components from database if they already exist before creating |
||
1153 | new ones. |
||
1154 | |||
1155 | Parameters |
||
1156 | ---------- |
||
1157 | carrier: str |
||
1158 | Remark in column 'carrier' identifying DSM-potential |
||
1159 | """ |
||
1160 | |||
1161 | targets = config.datasets()["DSM_CTS_industry"]["targets"] |
||
1162 | |||
1163 | # buses |
||
1164 | |||
1165 | sql = ( |
||
1166 | f"DELETE FROM {targets['bus']['schema']}.{targets['bus']['table']} b " |
||
1167 | f"WHERE (b.carrier LIKE '{carrier}');" |
||
1168 | ) |
||
1169 | db.execute_sql(sql) |
||
1170 | |||
1171 | # links |
||
1172 | |||
1173 | sql = f""" |
||
1174 | DELETE FROM {targets["link_timeseries"]["schema"]}. |
||
1175 | {targets["link_timeseries"]["table"]} t |
||
1176 | WHERE t.link_id IN |
||
1177 | ( |
||
1178 | SELECT l.link_id FROM {targets["link"]["schema"]}. |
||
1179 | {targets["link"]["table"]} l |
||
1180 | WHERE l.carrier LIKE '{carrier}' |
||
1181 | ); |
||
1182 | """ |
||
1183 | |||
1184 | db.execute_sql(sql) |
||
1185 | |||
1186 | sql = f""" |
||
1187 | DELETE FROM {targets["link"]["schema"]}. |
||
1188 | {targets["link"]["table"]} l |
||
1189 | WHERE (l.carrier LIKE '{carrier}'); |
||
1190 | """ |
||
1191 | |||
1192 | db.execute_sql(sql) |
||
1193 | |||
1194 | # stores |
||
1195 | |||
1196 | sql = f""" |
||
1197 | DELETE FROM {targets["store_timeseries"]["schema"]}. |
||
1198 | {targets["store_timeseries"]["table"]} t |
||
1199 | WHERE t.store_id IN |
||
1200 | ( |
||
1201 | SELECT s.store_id FROM {targets["store"]["schema"]}. |
||
1202 | {targets["store"]["table"]} s |
||
1203 | WHERE s.carrier LIKE '{carrier}' |
||
1204 | ); |
||
1205 | """ |
||
1206 | |||
1207 | db.execute_sql(sql) |
||
1208 | |||
1209 | sql = f""" |
||
1210 | DELETE FROM {targets["store"]["schema"]}.{targets["store"]["table"]} s |
||
1211 | WHERE (s.carrier LIKE '{carrier}'); |
||
1212 | """ |
||
1213 | |||
1214 | db.execute_sql(sql) |
||
1215 | |||
1216 | |||
1217 | def dsm_cts_ind( |
||
1218 | con=db.engine(), |
||
1219 | cts_cool_vent_ac_share=0.22, |
||
1220 | ind_vent_cool_share=0.039, |
||
1221 | ind_vent_share=0.017, |
||
1222 | ): |
||
1223 | """ |
||
1224 | Execute methodology to create and implement components for DSM considering |
||
1225 | a) CTS per osm-area: combined potentials of cooling, ventilation and air |
||
1226 | conditioning |
||
1227 | b) Industry per osm-are: combined potentials of cooling and ventilation |
||
1228 | c) Industrial Sites: potentials of ventilation in sites of |
||
1229 | "Wirtschaftszweig" (WZ) 23 |
||
1230 | d) Industrial Sites: potentials of sites specified by subsectors |
||
1231 | identified by Schmidt (https://zenodo.org/record/3613767#.YTsGwVtCRhG): |
||
1232 | Paper, Recycled Paper, Pulp, Cement |
||
1233 | |||
1234 | Modelled using the methods by Heitkoetter et. al.: |
||
1235 | https://doi.org/10.1016/j.adapen.2020.100001 |
||
1236 | |||
1237 | Parameters |
||
1238 | ---------- |
||
1239 | con : |
||
1240 | Connection to database |
||
1241 | cts_cool_vent_ac_share: float |
||
1242 | Share of cooling, ventilation and AC in CTS demand |
||
1243 | ind_vent_cool_share: float |
||
1244 | Share of cooling and ventilation in industry demand |
||
1245 | ind_vent_share: float |
||
1246 | Share of ventilation in industry demand in sites of WZ 23 |
||
1247 | |||
1248 | """ |
||
1249 | |||
1250 | # CTS per osm-area: cooling, ventilation and air conditioning |
||
1251 | |||
1252 | print(" ") |
||
1253 | print("CTS per osm-area: cooling, ventilation and air conditioning") |
||
1254 | print(" ") |
||
1255 | |||
1256 | dsm = cts_data_import(cts_cool_vent_ac_share) |
||
1257 | |||
1258 | # calculate combined potentials of cooling, ventilation and air |
||
1259 | # conditioning in CTS using combined parameters by Heitkoetter et. al. |
||
1260 | p_max, p_min, e_max, e_min = calculate_potentials( |
||
1261 | s_flex=S_FLEX_CTS, |
||
1262 | s_util=S_UTIL_CTS, |
||
1263 | s_inc=S_INC_CTS, |
||
1264 | s_dec=S_DEC_CTS, |
||
1265 | delta_t=DELTA_T_CTS, |
||
1266 | dsm=dsm, |
||
1267 | ) |
||
1268 | |||
1269 | dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
||
1270 | con, p_max, p_min, e_max, e_min, dsm |
||
1271 | ) |
||
1272 | |||
1273 | df_dsm_buses = dsm_buses.copy() |
||
1274 | df_dsm_links = dsm_links.copy() |
||
1275 | df_dsm_stores = dsm_stores.copy() |
||
1276 | |||
1277 | # industry per osm-area: cooling and ventilation |
||
1278 | |||
1279 | print(" ") |
||
1280 | print("industry per osm-area: cooling and ventilation") |
||
1281 | print(" ") |
||
1282 | |||
1283 | dsm = ind_osm_data_import(ind_vent_cool_share) |
||
1284 | |||
1285 | # calculate combined potentials of cooling and ventilation in industrial |
||
1286 | # sector using combined parameters by Heitkoetter et. al. |
||
1287 | p_max, p_min, e_max, e_min = calculate_potentials( |
||
1288 | s_flex=S_FLEX_OSM, |
||
1289 | s_util=S_UTIL_OSM, |
||
1290 | s_inc=S_INC_OSM, |
||
1291 | s_dec=S_DEC_OSM, |
||
1292 | delta_t=DELTA_T_OSM, |
||
1293 | dsm=dsm, |
||
1294 | ) |
||
1295 | |||
1296 | dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
||
1297 | con, p_max, p_min, e_max, e_min, dsm |
||
1298 | ) |
||
1299 | |||
1300 | df_dsm_buses = gpd.GeoDataFrame( |
||
1301 | pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
||
1302 | crs="EPSG:4326", |
||
1303 | ) |
||
1304 | df_dsm_links = pd.DataFrame( |
||
1305 | pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
||
1306 | ) |
||
1307 | df_dsm_stores = pd.DataFrame( |
||
1308 | pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
||
1309 | ) |
||
1310 | |||
1311 | # industry sites |
||
1312 | |||
1313 | # industry sites: different applications |
||
1314 | |||
1315 | dsm = ind_sites_data_import() |
||
1316 | |||
1317 | print(" ") |
||
1318 | print("industry sites: paper") |
||
1319 | print(" ") |
||
1320 | |||
1321 | dsm_paper = gpd.GeoDataFrame( |
||
1322 | dsm[ |
||
1323 | dsm["application"].isin( |
||
1324 | [ |
||
1325 | "Graphic Paper", |
||
1326 | "Packing Paper and Board", |
||
1327 | "Hygiene Paper", |
||
1328 | "Technical/Special Paper and Board", |
||
1329 | ] |
||
1330 | ) |
||
1331 | ] |
||
1332 | ) |
||
1333 | |||
1334 | # calculate potentials of industrial sites with paper-applications |
||
1335 | # using parameters by Heitkoetter et al. |
||
1336 | p_max, p_min, e_max, e_min = calculate_potentials( |
||
1337 | s_flex=S_FLEX_PAPER, |
||
1338 | s_util=S_UTIL_PAPER, |
||
1339 | s_inc=S_INC_PAPER, |
||
1340 | s_dec=S_DEC_PAPER, |
||
1341 | delta_t=DELTA_T_PAPER, |
||
1342 | dsm=dsm_paper, |
||
1343 | ) |
||
1344 | |||
1345 | dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
||
1346 | con, p_max, p_min, e_max, e_min, dsm_paper |
||
1347 | ) |
||
1348 | |||
1349 | df_dsm_buses = gpd.GeoDataFrame( |
||
1350 | pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
||
1351 | crs="EPSG:4326", |
||
1352 | ) |
||
1353 | df_dsm_links = pd.DataFrame( |
||
1354 | pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
||
1355 | ) |
||
1356 | df_dsm_stores = pd.DataFrame( |
||
1357 | pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
||
1358 | ) |
||
1359 | |||
1360 | print(" ") |
||
1361 | print("industry sites: recycled paper") |
||
1362 | print(" ") |
||
1363 | |||
1364 | # calculate potentials of industrial sites with recycled paper-applications |
||
1365 | # using parameters by Heitkoetter et. al. |
||
1366 | dsm_recycled_paper = gpd.GeoDataFrame( |
||
1367 | dsm[dsm["application"] == "Recycled Paper"] |
||
1368 | ) |
||
1369 | |||
1370 | p_max, p_min, e_max, e_min = calculate_potentials( |
||
1371 | s_flex=S_FLEX_RECYCLED_PAPER, |
||
1372 | s_util=S_UTIL_RECYCLED_PAPER, |
||
1373 | s_inc=S_INC_RECYCLED_PAPER, |
||
1374 | s_dec=S_DEC_RECYCLED_PAPER, |
||
1375 | delta_t=DELTA_T_RECYCLED_PAPER, |
||
1376 | dsm=dsm_recycled_paper, |
||
1377 | ) |
||
1378 | |||
1379 | dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
||
1380 | con, p_max, p_min, e_max, e_min, dsm_recycled_paper |
||
1381 | ) |
||
1382 | |||
1383 | df_dsm_buses = gpd.GeoDataFrame( |
||
1384 | pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
||
1385 | crs="EPSG:4326", |
||
1386 | ) |
||
1387 | df_dsm_links = pd.DataFrame( |
||
1388 | pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
||
1389 | ) |
||
1390 | df_dsm_stores = pd.DataFrame( |
||
1391 | pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
||
1392 | ) |
||
1393 | |||
1394 | print(" ") |
||
1395 | print("industry sites: pulp") |
||
1396 | print(" ") |
||
1397 | |||
1398 | dsm_pulp = gpd.GeoDataFrame(dsm[dsm["application"] == "Mechanical Pulp"]) |
||
1399 | |||
1400 | # calculate potentials of industrial sites with pulp-applications |
||
1401 | # using parameters by Heitkoetter et al. |
||
1402 | p_max, p_min, e_max, e_min = calculate_potentials( |
||
1403 | s_flex=S_FLEX_PULP, |
||
1404 | s_util=S_UTIL_PULP, |
||
1405 | s_inc=S_INC_PULP, |
||
1406 | s_dec=S_DEC_PULP, |
||
1407 | delta_t=DELTA_T_PULP, |
||
1408 | dsm=dsm_pulp, |
||
1409 | ) |
||
1410 | |||
1411 | dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
||
1412 | con, p_max, p_min, e_max, e_min, dsm_pulp |
||
1413 | ) |
||
1414 | |||
1415 | df_dsm_buses = gpd.GeoDataFrame( |
||
1416 | pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
||
1417 | crs="EPSG:4326", |
||
1418 | ) |
||
1419 | df_dsm_links = pd.DataFrame( |
||
1420 | pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
||
1421 | ) |
||
1422 | df_dsm_stores = pd.DataFrame( |
||
1423 | pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
||
1424 | ) |
||
1425 | |||
1426 | # industry sites: cement |
||
1427 | |||
1428 | print(" ") |
||
1429 | print("industry sites: cement") |
||
1430 | print(" ") |
||
1431 | |||
1432 | dsm_cement = gpd.GeoDataFrame(dsm[dsm["application"] == "Cement Mill"]) |
||
1433 | |||
1434 | # calculate potentials of industrial sites with cement-applications |
||
1435 | # using parameters by Heitkoetter et al. |
||
1436 | p_max, p_min, e_max, e_min = calculate_potentials( |
||
1437 | s_flex=S_FLEX_CEMENT, |
||
1438 | s_util=S_UTIL_CEMENT, |
||
1439 | s_inc=S_INC_CEMENT, |
||
1440 | s_dec=S_DEC_CEMENT, |
||
1441 | delta_t=DELTA_T_CEMENT, |
||
1442 | dsm=dsm_cement, |
||
1443 | ) |
||
1444 | |||
1445 | dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
||
1446 | con, p_max, p_min, e_max, e_min, dsm_cement |
||
1447 | ) |
||
1448 | |||
1449 | df_dsm_buses = gpd.GeoDataFrame( |
||
1450 | pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
||
1451 | crs="EPSG:4326", |
||
1452 | ) |
||
1453 | df_dsm_links = pd.DataFrame( |
||
1454 | pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
||
1455 | ) |
||
1456 | df_dsm_stores = pd.DataFrame( |
||
1457 | pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
||
1458 | ) |
||
1459 | |||
1460 | # industry sites: ventilation in WZ23 |
||
1461 | |||
1462 | print(" ") |
||
1463 | print("industry sites: ventilation in WZ23") |
||
1464 | print(" ") |
||
1465 | |||
1466 | dsm = ind_sites_vent_data_import(ind_vent_share, wz=WZ) |
||
1467 | |||
1468 | # drop entries of Cement Mills whose DSM-potentials have already been |
||
1469 | # modelled |
||
1470 | cement = np.unique(dsm_cement["bus"].values) |
||
1471 | index_names = np.array(dsm[dsm["bus"].isin(cement)].index) |
||
1472 | dsm.drop(index_names, inplace=True) |
||
1473 | |||
1474 | # calculate potentials of ventialtion in industrial sites of WZ 23 |
||
1475 | # using parameters by Heitkoetter et al. |
||
1476 | p_max, p_min, e_max, e_min = calculate_potentials( |
||
1477 | s_flex=S_FLEX_WZ, |
||
1478 | s_util=S_UTIL_WZ, |
||
1479 | s_inc=S_INC_WZ, |
||
1480 | s_dec=S_DEC_WZ, |
||
1481 | delta_t=DELTA_T_WZ, |
||
1482 | dsm=dsm, |
||
1483 | ) |
||
1484 | |||
1485 | dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
||
1486 | con, p_max, p_min, e_max, e_min, dsm |
||
1487 | ) |
||
1488 | |||
1489 | df_dsm_buses = gpd.GeoDataFrame( |
||
1490 | pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
||
1491 | crs="EPSG:4326", |
||
1492 | ) |
||
1493 | df_dsm_links = pd.DataFrame( |
||
1494 | pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
||
1495 | ) |
||
1496 | df_dsm_stores = pd.DataFrame( |
||
1497 | pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
||
1498 | ) |
||
1499 | |||
1500 | # aggregate DSM components per substation |
||
1501 | dsm_buses, dsm_links, dsm_stores = aggregate_components( |
||
1502 | df_dsm_buses, df_dsm_links, df_dsm_stores |
||
1503 | ) |
||
1504 | |||
1505 | # export aggregated DSM components to database |
||
1506 | |||
1507 | delete_dsm_entries("dsm-cts") |
||
1508 | delete_dsm_entries("dsm-ind-osm") |
||
1509 | delete_dsm_entries("dsm-ind-sites") |
||
1510 | delete_dsm_entries("dsm") |
||
1511 | |||
1512 | data_export(dsm_buses, dsm_links, dsm_stores, carrier="dsm") |
||
1513 | |||
1514 | |||
1515 | def create_table(df, table, engine=CON): |
||
1516 | """Create table""" |
||
1517 | table.__table__.drop(bind=engine, checkfirst=True) |
||
1518 | table.__table__.create(bind=engine, checkfirst=True) |
||
1519 | |||
1520 | df.to_sql( |
||
1521 | name=table.__table__.name, |
||
1522 | schema=table.__table__.schema, |
||
1523 | con=engine, |
||
1524 | if_exists="append", |
||
1525 | index=False, |
||
1526 | ) |
||
1527 | |||
1528 | |||
1529 | def div_list(lst: list, div: float): |
||
1530 | return [v / div for v in lst] |
||
1531 | |||
1532 | |||
1533 | def dsm_cts_ind_individual( |
||
1534 | cts_cool_vent_ac_share=CTS_COOL_VENT_AC_SHARE, |
||
1535 | ind_vent_cool_share=IND_VENT_COOL_SHARE, |
||
1536 | ind_vent_share=IND_VENT_SHARE, |
||
1537 | ): |
||
1538 | """ |
||
1539 | Execute methodology to create and implement components for DSM considering |
||
1540 | a) CTS per osm-area: combined potentials of cooling, ventilation and air |
||
1541 | conditioning |
||
1542 | b) Industry per osm-are: combined potentials of cooling and ventilation |
||
1543 | c) Industrial Sites: potentials of ventilation in sites of |
||
1544 | "Wirtschaftszweig" (WZ) 23 |
||
1545 | d) Industrial Sites: potentials of sites specified by subsectors |
||
1546 | identified by Schmidt (https://zenodo.org/record/3613767#.YTsGwVtCRhG): |
||
1547 | Paper, Recycled Paper, Pulp, Cement |
||
1548 | |||
1549 | Modelled using the methods by Heitkoetter et. al.: |
||
1550 | https://doi.org/10.1016/j.adapen.2020.100001 |
||
1551 | |||
1552 | Parameters |
||
1553 | ---------- |
||
1554 | cts_cool_vent_ac_share: float |
||
1555 | Share of cooling, ventilation and AC in CTS demand |
||
1556 | ind_vent_cool_share: float |
||
1557 | Share of cooling and ventilation in industry demand |
||
1558 | ind_vent_share: float |
||
1559 | Share of ventilation in industry demand in sites of WZ 23 |
||
1560 | |||
1561 | """ |
||
1562 | |||
1563 | # CTS per osm-area: cooling, ventilation and air conditioning |
||
1564 | |||
1565 | print(" ") |
||
1566 | print("CTS per osm-area: cooling, ventilation and air conditioning") |
||
1567 | print(" ") |
||
1568 | |||
1569 | dsm = cts_data_import(cts_cool_vent_ac_share) |
||
1570 | |||
1571 | # calculate combined potentials of cooling, ventilation and air |
||
1572 | # conditioning in CTS using combined parameters by Heitkoetter et. al. |
||
1573 | vals = calculate_potentials( |
||
1574 | s_flex=S_FLEX_CTS, |
||
1575 | s_util=S_UTIL_CTS, |
||
1576 | s_inc=S_INC_CTS, |
||
1577 | s_dec=S_DEC_CTS, |
||
1578 | delta_t=DELTA_T_CTS, |
||
1579 | dsm=dsm, |
||
1580 | ) |
||
1581 | |||
1582 | dsm = dsm.assign( |
||
1583 | p_set=dsm.p_set.apply(div_list, div=cts_cool_vent_ac_share) |
||
1584 | ) |
||
1585 | |||
1586 | base_columns = [ |
||
1587 | "bus", |
||
1588 | "scn_name", |
||
1589 | "p_set", |
||
1590 | "p_max", |
||
1591 | "p_min", |
||
1592 | "e_max", |
||
1593 | "e_min", |
||
1594 | ] |
||
1595 | |||
1596 | cts_df = pd.concat([dsm, *vals], axis=1, ignore_index=True) |
||
1597 | cts_df.columns = base_columns |
||
1598 | |||
1599 | print(" ") |
||
1600 | print("industry per osm-area: cooling and ventilation") |
||
1601 | print(" ") |
||
1602 | |||
1603 | dsm = ind_osm_data_import_individual(ind_vent_cool_share) |
||
1604 | |||
1605 | # calculate combined potentials of cooling and ventilation in industrial |
||
1606 | # sector using combined parameters by Heitkoetter et al. |
||
1607 | vals = calculate_potentials( |
||
1608 | s_flex=S_FLEX_OSM, |
||
1609 | s_util=S_UTIL_OSM, |
||
1610 | s_inc=S_INC_OSM, |
||
1611 | s_dec=S_DEC_OSM, |
||
1612 | delta_t=DELTA_T_OSM, |
||
1613 | dsm=dsm, |
||
1614 | ) |
||
1615 | |||
1616 | dsm = dsm.assign(p_set=dsm.p_set.apply(div_list, div=ind_vent_cool_share)) |
||
1617 | |||
1618 | columns = ["osm_id"] + base_columns |
||
1619 | |||
1620 | osm_df = pd.concat([dsm, *vals], axis=1, ignore_index=True) |
||
1621 | osm_df.columns = columns |
||
1622 | |||
1623 | # industry sites |
||
1624 | |||
1625 | # industry sites: different applications |
||
1626 | |||
1627 | dsm = ind_sites_data_import() |
||
1628 | |||
1629 | print(" ") |
||
1630 | print("industry sites: paper") |
||
1631 | print(" ") |
||
1632 | |||
1633 | dsm_paper = gpd.GeoDataFrame( |
||
1634 | dsm[ |
||
1635 | dsm["application"].isin( |
||
1636 | [ |
||
1637 | "Graphic Paper", |
||
1638 | "Packing Paper and Board", |
||
1639 | "Hygiene Paper", |
||
1640 | "Technical/Special Paper and Board", |
||
1641 | ] |
||
1642 | ) |
||
1643 | ] |
||
1644 | ) |
||
1645 | |||
1646 | # calculate potentials of industrial sites with paper-applications |
||
1647 | # using parameters by Heitkoetter et al. |
||
1648 | vals = calculate_potentials( |
||
1649 | s_flex=S_FLEX_PAPER, |
||
1650 | s_util=S_UTIL_PAPER, |
||
1651 | s_inc=S_INC_PAPER, |
||
1652 | s_dec=S_DEC_PAPER, |
||
1653 | delta_t=DELTA_T_PAPER, |
||
1654 | dsm=dsm_paper, |
||
1655 | ) |
||
1656 | |||
1657 | columns = ["application", "industrial_sites_id"] + base_columns |
||
1658 | |||
1659 | paper_df = pd.concat([dsm_paper, *vals], axis=1, ignore_index=True) |
||
1660 | paper_df.columns = columns |
||
1661 | |||
1662 | print(" ") |
||
1663 | print("industry sites: recycled paper") |
||
1664 | print(" ") |
||
1665 | |||
1666 | # calculate potentials of industrial sites with recycled paper-applications |
||
1667 | # using parameters by Heitkoetter et. al. |
||
1668 | dsm_recycled_paper = gpd.GeoDataFrame( |
||
1669 | dsm[dsm["application"] == "Recycled Paper"] |
||
1670 | ) |
||
1671 | |||
1672 | vals = calculate_potentials( |
||
1673 | s_flex=S_FLEX_RECYCLED_PAPER, |
||
1674 | s_util=S_UTIL_RECYCLED_PAPER, |
||
1675 | s_inc=S_INC_RECYCLED_PAPER, |
||
1676 | s_dec=S_DEC_RECYCLED_PAPER, |
||
1677 | delta_t=DELTA_T_RECYCLED_PAPER, |
||
1678 | dsm=dsm_recycled_paper, |
||
1679 | ) |
||
1680 | |||
1681 | recycled_paper_df = pd.concat( |
||
1682 | [dsm_recycled_paper, *vals], axis=1, ignore_index=True |
||
1683 | ) |
||
1684 | recycled_paper_df.columns = columns |
||
1685 | |||
1686 | print(" ") |
||
1687 | print("industry sites: pulp") |
||
1688 | print(" ") |
||
1689 | |||
1690 | dsm_pulp = gpd.GeoDataFrame(dsm[dsm["application"] == "Mechanical Pulp"]) |
||
1691 | |||
1692 | # calculate potentials of industrial sites with pulp-applications |
||
1693 | # using parameters by Heitkoetter et al. |
||
1694 | vals = calculate_potentials( |
||
1695 | s_flex=S_FLEX_PULP, |
||
1696 | s_util=S_UTIL_PULP, |
||
1697 | s_inc=S_INC_PULP, |
||
1698 | s_dec=S_DEC_PULP, |
||
1699 | delta_t=DELTA_T_PULP, |
||
1700 | dsm=dsm_pulp, |
||
1701 | ) |
||
1702 | |||
1703 | pulp_df = pd.concat([dsm_pulp, *vals], axis=1, ignore_index=True) |
||
1704 | pulp_df.columns = columns |
||
1705 | |||
1706 | # industry sites: cement |
||
1707 | |||
1708 | print(" ") |
||
1709 | print("industry sites: cement") |
||
1710 | print(" ") |
||
1711 | |||
1712 | dsm_cement = gpd.GeoDataFrame(dsm[dsm["application"] == "Cement Mill"]) |
||
1713 | |||
1714 | # calculate potentials of industrial sites with cement-applications |
||
1715 | # using parameters by Heitkoetter et al. |
||
1716 | vals = calculate_potentials( |
||
1717 | s_flex=S_FLEX_CEMENT, |
||
1718 | s_util=S_UTIL_CEMENT, |
||
1719 | s_inc=S_INC_CEMENT, |
||
1720 | s_dec=S_DEC_CEMENT, |
||
1721 | delta_t=DELTA_T_CEMENT, |
||
1722 | dsm=dsm_cement, |
||
1723 | ) |
||
1724 | |||
1725 | cement_df = pd.concat([dsm_cement, *vals], axis=1, ignore_index=True) |
||
1726 | cement_df.columns = columns |
||
1727 | |||
1728 | ind_df = pd.concat( |
||
1729 | [paper_df, recycled_paper_df, pulp_df, cement_df], ignore_index=True |
||
1730 | ) |
||
1731 | |||
1732 | # industry sites: ventilation in WZ23 |
||
1733 | |||
1734 | print(" ") |
||
1735 | print("industry sites: ventilation in WZ23") |
||
1736 | print(" ") |
||
1737 | |||
1738 | dsm = ind_sites_vent_data_import_individual(ind_vent_share, wz=WZ) |
||
1739 | |||
1740 | # drop entries of Cement Mills whose DSM-potentials have already been |
||
1741 | # modelled |
||
1742 | cement = np.unique(dsm_cement["bus"].values) |
||
1743 | index_names = np.array(dsm[dsm["bus"].isin(cement)].index) |
||
1744 | dsm.drop(index_names, inplace=True) |
||
1745 | |||
1746 | # calculate potentials of ventialtion in industrial sites of WZ 23 |
||
1747 | # using parameters by Heitkoetter et al. |
||
1748 | vals = calculate_potentials( |
||
1749 | s_flex=S_FLEX_WZ, |
||
1750 | s_util=S_UTIL_WZ, |
||
1751 | s_inc=S_INC_WZ, |
||
1752 | s_dec=S_DEC_WZ, |
||
1753 | delta_t=DELTA_T_WZ, |
||
1754 | dsm=dsm, |
||
1755 | ) |
||
1756 | |||
1757 | columns = ["site_id"] + base_columns |
||
1758 | |||
1759 | ind_sites_df = pd.concat([dsm, *vals], axis=1, ignore_index=True) |
||
1760 | ind_sites_df.columns = columns |
||
1761 | |||
1762 | # create tables |
||
1763 | create_table( |
||
1764 | df=cts_df, table=EgonEtragoElectricityCtsDsmTimeseries, engine=CON |
||
1765 | ) |
||
1766 | create_table( |
||
1767 | df=osm_df, |
||
1768 | table=EgonOsmIndLoadCurvesIndividualDsmTimeseries, |
||
1769 | engine=CON, |
||
1770 | ) |
||
1771 | create_table( |
||
1772 | df=ind_df, |
||
1773 | table=EgonDemandregioSitesIndElectricityDsmTimeseries, |
||
1774 | engine=CON, |
||
1775 | ) |
||
1776 | create_table( |
||
1777 | df=ind_sites_df, |
||
1778 | table=EgonSitesIndLoadCurvesIndividualDsmTimeseries, |
||
1779 | engine=CON, |
||
1780 | ) |
||
1781 | |||
1782 | |||
1783 | def dsm_cts_ind_processing(): |
||
1784 | dsm_cts_ind() |
||
1785 | |||
1786 | dsm_cts_ind_individual() |
||
1787 | |||
1788 | add_metadata_individual() |
||
1789 |