Code Duplication    Length = 32-35 lines in 2 locations

src/egon/data/datasets/DSM_cts_ind.py 2 locations

@@ 450-484 (lines=35) @@
447
    return dsm
448
449
450
def ind_osm_data_import_individual(ind_vent_cool_share):
451
    """
452
    Import industry data per osm-area necessary to identify DSM-potential.
453
        ----------
454
    ind_share: float
455
        Share of considered application in industry demand
456
    """
457
458
    # import load data
459
460
    sources = config.datasets()["DSM_CTS_industry"]["sources"][
461
        "ind_osm_loadcurves_individual"
462
    ]
463
464
    dsm = db.select_dataframe(
465
        f"""
466
        SELECT osm_id, bus_id as bus, scn_name, p_set FROM
467
        {sources['schema']}.{sources['table']}
468
        """
469
    )
470
471
    # calculate share of timeseries for cooling and ventilation out of
472
    # industry-data
473
474
    timeseries = dsm["p_set"].copy()
475
476
    for index, liste in timeseries.items():
477
        share = [float(item) * ind_vent_cool_share for item in liste]
478
479
        timeseries.loc[index] = share
480
481
    dsm["p_set"] = timeseries.copy()
482
483
    return dsm
484
485
486
def ind_sites_vent_data_import(ind_vent_share, wz):
487
    """
@@ 414-445 (lines=32) @@
411
    return dsm
412
413
414
def ind_osm_data_import(ind_vent_cool_share):
415
    """
416
    Import industry data per osm-area necessary to identify DSM-potential.
417
        ----------
418
    ind_share: float
419
        Share of considered application in industry demand
420
    """
421
422
    # import load data
423
424
    sources = config.datasets()["DSM_CTS_industry"]["sources"][
425
        "ind_osm_loadcurves"
426
    ]
427
428
    dsm = db.select_dataframe(
429
        f"""
430
        SELECT bus, scn_name, p_set FROM
431
        {sources['schema']}.{sources['table']}
432
        """
433
    )
434
435
    # calculate share of timeseries for cooling and ventilation out of
436
    # industry-data
437
438
    timeseries = dsm["p_set"].copy()
439
440
    for index, liste in timeseries.items():
441
        share = [float(item) * ind_vent_cool_share for item in liste]
442
443
        timeseries.loc[index] = share
444
445
    dsm["p_set"] = timeseries.copy()
446
447
    return dsm
448