Total Complexity | 59 |
Total Lines | 1542 |
Duplicated Lines | 5.9 % |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like data.datasets.sanity_checks often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | """ |
||
2 | This module does sanity checks for both the eGon2035 and the eGon100RE scenario |
||
3 | separately where a percentage error is given to showcase difference in output |
||
4 | and input values. Please note that there are missing input technologies in the |
||
5 | supply tables. |
||
6 | Authors: @ALonso, @dana, @nailend, @nesnoj, @khelfen |
||
7 | """ |
||
8 | from math import isclose |
||
9 | from pathlib import Path |
||
10 | |||
11 | from sqlalchemy import Numeric |
||
12 | from sqlalchemy.sql import and_, cast, func, or_ |
||
13 | import matplotlib.pyplot as plt |
||
14 | import numpy as np |
||
15 | import pandas as pd |
||
16 | import seaborn as sns |
||
17 | |||
18 | from egon.data import config, db, logger |
||
19 | from egon.data.datasets import Dataset |
||
20 | from egon.data.datasets.electricity_demand_timeseries.cts_buildings import ( |
||
21 | EgonCtsElectricityDemandBuildingShare, |
||
22 | EgonCtsHeatDemandBuildingShare, |
||
23 | ) |
||
24 | from egon.data.datasets.emobility.motorized_individual_travel.db_classes import ( # noqa: E501 |
||
25 | EgonEvCountMunicipality, |
||
26 | EgonEvCountMvGridDistrict, |
||
27 | EgonEvCountRegistrationDistrict, |
||
28 | EgonEvMvGridDistrict, |
||
29 | EgonEvPool, |
||
30 | EgonEvTrip, |
||
31 | ) |
||
32 | from egon.data.datasets.emobility.motorized_individual_travel.helpers import ( |
||
33 | DATASET_CFG, |
||
34 | read_simbev_metadata_file, |
||
35 | ) |
||
36 | from egon.data.datasets.etrago_setup import ( |
||
37 | EgonPfHvLink, |
||
38 | EgonPfHvLinkTimeseries, |
||
39 | EgonPfHvLoad, |
||
40 | EgonPfHvLoadTimeseries, |
||
41 | EgonPfHvStore, |
||
42 | EgonPfHvStoreTimeseries, |
||
43 | ) |
||
44 | from egon.data.datasets.power_plants.pv_rooftop_buildings import ( |
||
45 | PV_CAP_PER_SQ_M, |
||
46 | ROOF_FACTOR, |
||
47 | SCENARIOS, |
||
48 | load_building_data, |
||
49 | scenario_data, |
||
50 | ) |
||
51 | from egon.data.datasets.scenario_parameters import get_sector_parameters |
||
52 | from egon.data.datasets.storages.home_batteries import get_cbat_pbat_ratio |
||
53 | import egon.data |
||
54 | |||
55 | TESTMODE_OFF = ( |
||
56 | config.settings()["egon-data"]["--dataset-boundary"] == "Everything" |
||
57 | ) |
||
58 | |||
59 | |||
60 | class SanityChecks(Dataset): |
||
61 | def __init__(self, dependencies): |
||
62 | super().__init__( |
||
63 | name="SanityChecks", |
||
64 | version="0.0.7", |
||
65 | dependencies=dependencies, |
||
66 | tasks={ |
||
67 | etrago_eGon2035_electricity, |
||
68 | etrago_eGon2035_heat, |
||
69 | residential_electricity_annual_sum, |
||
70 | residential_electricity_hh_refinement, |
||
71 | cts_electricity_demand_share, |
||
72 | cts_heat_demand_share, |
||
73 | sanitycheck_emobility_mit, |
||
74 | sanitycheck_pv_rooftop_buildings, |
||
75 | sanitycheck_home_batteries, |
||
76 | sanitycheck_dsm, |
||
77 | }, |
||
78 | ) |
||
79 | |||
80 | |||
81 | def etrago_eGon2035_electricity(): |
||
82 | """Execute basic sanity checks. |
||
83 | |||
84 | Returns print statements as sanity checks for the electricity sector in |
||
85 | the eGon2035 scenario. |
||
86 | |||
87 | Parameters |
||
88 | ---------- |
||
89 | None |
||
90 | |||
91 | Returns |
||
92 | ------- |
||
93 | None |
||
94 | """ |
||
95 | |||
96 | scn = "eGon2035" |
||
97 | |||
98 | # Section to check generator capacities |
||
99 | logger.info(f"Sanity checks for scenario {scn}") |
||
100 | logger.info( |
||
101 | "For German electricity generators the following deviations between " |
||
102 | "the inputs and outputs can be observed:" |
||
103 | ) |
||
104 | |||
105 | carriers_electricity = [ |
||
106 | "others", |
||
107 | "reservoir", |
||
108 | "run_of_river", |
||
109 | "oil", |
||
110 | "wind_onshore", |
||
111 | "wind_offshore", |
||
112 | "solar", |
||
113 | "solar_rooftop", |
||
114 | "biomass", |
||
115 | ] |
||
116 | |||
117 | for carrier in carriers_electricity: |
||
118 | |||
119 | if carrier == "biomass": |
||
120 | sum_output = db.select_dataframe( |
||
121 | """SELECT scn_name, SUM(p_nom::numeric) as output_capacity_mw |
||
122 | FROM grid.egon_etrago_generator |
||
123 | WHERE bus IN ( |
||
124 | SELECT bus_id FROM grid.egon_etrago_bus |
||
125 | WHERE scn_name = 'eGon2035' |
||
126 | AND country = 'DE') |
||
127 | AND carrier IN ('biomass', 'industrial_biomass_CHP', |
||
128 | 'central_biomass_CHP') |
||
129 | GROUP BY (scn_name); |
||
130 | """, |
||
131 | warning=False, |
||
132 | ) |
||
133 | |||
134 | else: |
||
135 | sum_output = db.select_dataframe( |
||
136 | f"""SELECT scn_name, |
||
137 | SUM(p_nom::numeric) as output_capacity_mw |
||
138 | FROM grid.egon_etrago_generator |
||
139 | WHERE scn_name = '{scn}' |
||
140 | AND carrier IN ('{carrier}') |
||
141 | AND bus IN |
||
142 | (SELECT bus_id |
||
143 | FROM grid.egon_etrago_bus |
||
144 | WHERE scn_name = 'eGon2035' |
||
145 | AND country = 'DE') |
||
146 | GROUP BY (scn_name); |
||
147 | """, |
||
148 | warning=False, |
||
149 | ) |
||
150 | |||
151 | sum_input = db.select_dataframe( |
||
152 | f"""SELECT carrier, SUM(capacity::numeric) as input_capacity_mw |
||
153 | FROM supply.egon_scenario_capacities |
||
154 | WHERE carrier= '{carrier}' |
||
155 | AND scenario_name ='{scn}' |
||
156 | GROUP BY (carrier); |
||
157 | """, |
||
158 | warning=False, |
||
159 | ) |
||
160 | |||
161 | View Code Duplication | if ( |
|
|
|||
162 | sum_output.output_capacity_mw.sum() == 0 |
||
163 | and sum_input.input_capacity_mw.sum() == 0 |
||
164 | ): |
||
165 | logger.info( |
||
166 | f"No capacity for carrier '{carrier}' needed to be" |
||
167 | f" distributed. Everything is fine" |
||
168 | ) |
||
169 | |||
170 | elif ( |
||
171 | sum_input.input_capacity_mw.sum() > 0 |
||
172 | and sum_output.output_capacity_mw.sum() == 0 |
||
173 | ): |
||
174 | logger.info( |
||
175 | f"Error: Capacity for carrier '{carrier}' was not distributed " |
||
176 | f"at all!" |
||
177 | ) |
||
178 | |||
179 | elif ( |
||
180 | sum_output.output_capacity_mw.sum() > 0 |
||
181 | and sum_input.input_capacity_mw.sum() == 0 |
||
182 | ): |
||
183 | logger.info( |
||
184 | f"Error: Eventhough no input capacity was provided for carrier" |
||
185 | f"'{carrier}' a capacity got distributed!" |
||
186 | ) |
||
187 | |||
188 | else: |
||
189 | sum_input["error"] = ( |
||
190 | (sum_output.output_capacity_mw - sum_input.input_capacity_mw) |
||
191 | / sum_input.input_capacity_mw |
||
192 | ) * 100 |
||
193 | g = sum_input["error"].values[0] |
||
194 | |||
195 | logger.info(f"{carrier}: " + str(round(g, 2)) + " %") |
||
196 | |||
197 | # Section to check storage units |
||
198 | |||
199 | logger.info(f"Sanity checks for scenario {scn}") |
||
200 | logger.info( |
||
201 | "For German electrical storage units the following deviations between" |
||
202 | "the inputs and outputs can be observed:" |
||
203 | ) |
||
204 | |||
205 | carriers_electricity = ["pumped_hydro"] |
||
206 | |||
207 | for carrier in carriers_electricity: |
||
208 | |||
209 | sum_output = db.select_dataframe( |
||
210 | f"""SELECT scn_name, SUM(p_nom::numeric) as output_capacity_mw |
||
211 | FROM grid.egon_etrago_storage |
||
212 | WHERE scn_name = '{scn}' |
||
213 | AND carrier IN ('{carrier}') |
||
214 | AND bus IN |
||
215 | (SELECT bus_id |
||
216 | FROM grid.egon_etrago_bus |
||
217 | WHERE scn_name = 'eGon2035' |
||
218 | AND country = 'DE') |
||
219 | GROUP BY (scn_name); |
||
220 | """, |
||
221 | warning=False, |
||
222 | ) |
||
223 | |||
224 | sum_input = db.select_dataframe( |
||
225 | f"""SELECT carrier, SUM(capacity::numeric) as input_capacity_mw |
||
226 | FROM supply.egon_scenario_capacities |
||
227 | WHERE carrier= '{carrier}' |
||
228 | AND scenario_name ='{scn}' |
||
229 | GROUP BY (carrier); |
||
230 | """, |
||
231 | warning=False, |
||
232 | ) |
||
233 | |||
234 | View Code Duplication | if ( |
|
235 | sum_output.output_capacity_mw.sum() == 0 |
||
236 | and sum_input.input_capacity_mw.sum() == 0 |
||
237 | ): |
||
238 | print( |
||
239 | f"No capacity for carrier '{carrier}' needed to be " |
||
240 | f"distributed. Everything is fine" |
||
241 | ) |
||
242 | |||
243 | elif ( |
||
244 | sum_input.input_capacity_mw.sum() > 0 |
||
245 | and sum_output.output_capacity_mw.sum() == 0 |
||
246 | ): |
||
247 | print( |
||
248 | f"Error: Capacity for carrier '{carrier}' was not distributed" |
||
249 | f" at all!" |
||
250 | ) |
||
251 | |||
252 | elif ( |
||
253 | sum_output.output_capacity_mw.sum() > 0 |
||
254 | and sum_input.input_capacity_mw.sum() == 0 |
||
255 | ): |
||
256 | print( |
||
257 | f"Error: Eventhough no input capacity was provided for carrier" |
||
258 | f" '{carrier}' a capacity got distributed!" |
||
259 | ) |
||
260 | |||
261 | else: |
||
262 | sum_input["error"] = ( |
||
263 | (sum_output.output_capacity_mw - sum_input.input_capacity_mw) |
||
264 | / sum_input.input_capacity_mw |
||
265 | ) * 100 |
||
266 | g = sum_input["error"].values[0] |
||
267 | |||
268 | print(f"{carrier}: " + str(round(g, 2)) + " %") |
||
269 | |||
270 | # Section to check loads |
||
271 | |||
272 | print( |
||
273 | "For German electricity loads the following deviations between the" |
||
274 | " input and output can be observed:" |
||
275 | ) |
||
276 | |||
277 | output_demand = db.select_dataframe( |
||
278 | """SELECT a.scn_name, a.carrier, SUM((SELECT SUM(p) |
||
279 | FROM UNNEST(b.p_set) p))/1000000::numeric as load_twh |
||
280 | FROM grid.egon_etrago_load a |
||
281 | JOIN grid.egon_etrago_load_timeseries b |
||
282 | ON (a.load_id = b.load_id) |
||
283 | JOIN grid.egon_etrago_bus c |
||
284 | ON (a.bus=c.bus_id) |
||
285 | AND b.scn_name = 'eGon2035' |
||
286 | AND a.scn_name = 'eGon2035' |
||
287 | AND a.carrier = 'AC' |
||
288 | AND c.scn_name= 'eGon2035' |
||
289 | AND c.country='DE' |
||
290 | GROUP BY (a.scn_name, a.carrier); |
||
291 | |||
292 | """, |
||
293 | warning=False, |
||
294 | )["load_twh"].values[0] |
||
295 | |||
296 | input_cts_ind = db.select_dataframe( |
||
297 | """SELECT scenario, |
||
298 | SUM(demand::numeric/1000000) as demand_mw_regio_cts_ind |
||
299 | FROM demand.egon_demandregio_cts_ind |
||
300 | WHERE scenario= 'eGon2035' |
||
301 | AND year IN ('2035') |
||
302 | GROUP BY (scenario); |
||
303 | |||
304 | """, |
||
305 | warning=False, |
||
306 | )["demand_mw_regio_cts_ind"].values[0] |
||
307 | |||
308 | input_hh = db.select_dataframe( |
||
309 | """SELECT scenario, SUM(demand::numeric/1000000) as demand_mw_regio_hh |
||
310 | FROM demand.egon_demandregio_hh |
||
311 | WHERE scenario= 'eGon2035' |
||
312 | AND year IN ('2035') |
||
313 | GROUP BY (scenario); |
||
314 | """, |
||
315 | warning=False, |
||
316 | )["demand_mw_regio_hh"].values[0] |
||
317 | |||
318 | input_demand = input_hh + input_cts_ind |
||
319 | |||
320 | e = round((output_demand - input_demand) / input_demand, 2) * 100 |
||
321 | |||
322 | print(f"electricity demand: {e} %") |
||
323 | |||
324 | |||
325 | def etrago_eGon2035_heat(): |
||
326 | """Execute basic sanity checks. |
||
327 | |||
328 | Returns print statements as sanity checks for the heat sector in |
||
329 | the eGon2035 scenario. |
||
330 | |||
331 | Parameters |
||
332 | ---------- |
||
333 | None |
||
334 | |||
335 | Returns |
||
336 | ------- |
||
337 | None |
||
338 | """ |
||
339 | |||
340 | # Check input and output values for the carriers "others", |
||
341 | # "reservoir", "run_of_river" and "oil" |
||
342 | |||
343 | scn = "eGon2035" |
||
344 | |||
345 | # Section to check generator capacities |
||
346 | print(f"Sanity checks for scenario {scn}") |
||
347 | print( |
||
348 | "For German heat demands the following deviations between the inputs" |
||
349 | " and outputs can be observed:" |
||
350 | ) |
||
351 | |||
352 | # Sanity checks for heat demand |
||
353 | |||
354 | output_heat_demand = db.select_dataframe( |
||
355 | """SELECT a.scn_name, |
||
356 | (SUM( |
||
357 | (SELECT SUM(p) FROM UNNEST(b.p_set) p))/1000000)::numeric as load_twh |
||
358 | FROM grid.egon_etrago_load a |
||
359 | JOIN grid.egon_etrago_load_timeseries b |
||
360 | ON (a.load_id = b.load_id) |
||
361 | JOIN grid.egon_etrago_bus c |
||
362 | ON (a.bus=c.bus_id) |
||
363 | AND b.scn_name = 'eGon2035' |
||
364 | AND a.scn_name = 'eGon2035' |
||
365 | AND c.scn_name= 'eGon2035' |
||
366 | AND c.country='DE' |
||
367 | AND a.carrier IN ('rural_heat', 'central_heat') |
||
368 | GROUP BY (a.scn_name); |
||
369 | """, |
||
370 | warning=False, |
||
371 | )["load_twh"].values[0] |
||
372 | |||
373 | input_heat_demand = db.select_dataframe( |
||
374 | """SELECT scenario, SUM(demand::numeric/1000000) as demand_mw_peta_heat |
||
375 | FROM demand.egon_peta_heat |
||
376 | WHERE scenario= 'eGon2035' |
||
377 | GROUP BY (scenario); |
||
378 | """, |
||
379 | warning=False, |
||
380 | )["demand_mw_peta_heat"].values[0] |
||
381 | |||
382 | e_demand = ( |
||
383 | round((output_heat_demand - input_heat_demand) / input_heat_demand, 2) |
||
384 | * 100 |
||
385 | ) |
||
386 | |||
387 | logger.info(f"heat demand: {e_demand} %") |
||
388 | |||
389 | # Sanity checks for heat supply |
||
390 | |||
391 | logger.info( |
||
392 | "For German heat supplies the following deviations between the inputs " |
||
393 | "and outputs can be observed:" |
||
394 | ) |
||
395 | |||
396 | # Comparison for central heat pumps |
||
397 | heat_pump_input = db.select_dataframe( |
||
398 | """SELECT carrier, SUM(capacity::numeric) as Urban_central_heat_pump_mw |
||
399 | FROM supply.egon_scenario_capacities |
||
400 | WHERE carrier= 'urban_central_heat_pump' |
||
401 | AND scenario_name IN ('eGon2035') |
||
402 | GROUP BY (carrier); |
||
403 | """, |
||
404 | warning=False, |
||
405 | )["urban_central_heat_pump_mw"].values[0] |
||
406 | |||
407 | heat_pump_output = db.select_dataframe( |
||
408 | """SELECT carrier, SUM(p_nom::numeric) as Central_heat_pump_mw |
||
409 | FROM grid.egon_etrago_link |
||
410 | WHERE carrier= 'central_heat_pump' |
||
411 | AND scn_name IN ('eGon2035') |
||
412 | GROUP BY (carrier); |
||
413 | """, |
||
414 | warning=False, |
||
415 | )["central_heat_pump_mw"].values[0] |
||
416 | |||
417 | e_heat_pump = ( |
||
418 | round((heat_pump_output - heat_pump_input) / heat_pump_output, 2) * 100 |
||
419 | ) |
||
420 | |||
421 | logger.info(f"'central_heat_pump': {e_heat_pump} % ") |
||
422 | |||
423 | # Comparison for residential heat pumps |
||
424 | |||
425 | input_residential_heat_pump = db.select_dataframe( |
||
426 | """SELECT carrier, SUM(capacity::numeric) as residential_heat_pump_mw |
||
427 | FROM supply.egon_scenario_capacities |
||
428 | WHERE carrier= 'residential_rural_heat_pump' |
||
429 | AND scenario_name IN ('eGon2035') |
||
430 | GROUP BY (carrier); |
||
431 | """, |
||
432 | warning=False, |
||
433 | )["residential_heat_pump_mw"].values[0] |
||
434 | |||
435 | output_residential_heat_pump = db.select_dataframe( |
||
436 | """SELECT carrier, SUM(p_nom::numeric) as rural_heat_pump_mw |
||
437 | FROM grid.egon_etrago_link |
||
438 | WHERE carrier= 'rural_heat_pump' |
||
439 | AND scn_name IN ('eGon2035') |
||
440 | GROUP BY (carrier); |
||
441 | """, |
||
442 | warning=False, |
||
443 | )["rural_heat_pump_mw"].values[0] |
||
444 | |||
445 | e_residential_heat_pump = ( |
||
446 | round( |
||
447 | (output_residential_heat_pump - input_residential_heat_pump) |
||
448 | / input_residential_heat_pump, |
||
449 | 2, |
||
450 | ) |
||
451 | * 100 |
||
452 | ) |
||
453 | logger.info(f"'residential heat pumps': {e_residential_heat_pump} %") |
||
454 | |||
455 | # Comparison for resistive heater |
||
456 | resistive_heater_input = db.select_dataframe( |
||
457 | """SELECT carrier, |
||
458 | SUM(capacity::numeric) as Urban_central_resistive_heater_MW |
||
459 | FROM supply.egon_scenario_capacities |
||
460 | WHERE carrier= 'urban_central_resistive_heater' |
||
461 | AND scenario_name IN ('eGon2035') |
||
462 | GROUP BY (carrier); |
||
463 | """, |
||
464 | warning=False, |
||
465 | )["urban_central_resistive_heater_mw"].values[0] |
||
466 | |||
467 | resistive_heater_output = db.select_dataframe( |
||
468 | """SELECT carrier, SUM(p_nom::numeric) as central_resistive_heater_MW |
||
469 | FROM grid.egon_etrago_link |
||
470 | WHERE carrier= 'central_resistive_heater' |
||
471 | AND scn_name IN ('eGon2035') |
||
472 | GROUP BY (carrier); |
||
473 | """, |
||
474 | warning=False, |
||
475 | )["central_resistive_heater_mw"].values[0] |
||
476 | |||
477 | e_resistive_heater = ( |
||
478 | round( |
||
479 | (resistive_heater_output - resistive_heater_input) |
||
480 | / resistive_heater_input, |
||
481 | 2, |
||
482 | ) |
||
483 | * 100 |
||
484 | ) |
||
485 | |||
486 | logger.info(f"'resistive heater': {e_resistive_heater} %") |
||
487 | |||
488 | # Comparison for solar thermal collectors |
||
489 | |||
490 | input_solar_thermal = db.select_dataframe( |
||
491 | """SELECT carrier, SUM(capacity::numeric) as solar_thermal_collector_mw |
||
492 | FROM supply.egon_scenario_capacities |
||
493 | WHERE carrier= 'urban_central_solar_thermal_collector' |
||
494 | AND scenario_name IN ('eGon2035') |
||
495 | GROUP BY (carrier); |
||
496 | """, |
||
497 | warning=False, |
||
498 | )["solar_thermal_collector_mw"].values[0] |
||
499 | |||
500 | output_solar_thermal = db.select_dataframe( |
||
501 | """SELECT carrier, SUM(p_nom::numeric) as solar_thermal_collector_mw |
||
502 | FROM grid.egon_etrago_generator |
||
503 | WHERE carrier= 'solar_thermal_collector' |
||
504 | AND scn_name IN ('eGon2035') |
||
505 | GROUP BY (carrier); |
||
506 | """, |
||
507 | warning=False, |
||
508 | )["solar_thermal_collector_mw"].values[0] |
||
509 | |||
510 | e_solar_thermal = ( |
||
511 | round( |
||
512 | (output_solar_thermal - input_solar_thermal) / input_solar_thermal, |
||
513 | 2, |
||
514 | ) |
||
515 | * 100 |
||
516 | ) |
||
517 | logger.info(f"'solar thermal collector': {e_solar_thermal} %") |
||
518 | |||
519 | # Comparison for geothermal |
||
520 | |||
521 | input_geo_thermal = db.select_dataframe( |
||
522 | """SELECT carrier, |
||
523 | SUM(capacity::numeric) as Urban_central_geo_thermal_MW |
||
524 | FROM supply.egon_scenario_capacities |
||
525 | WHERE carrier= 'urban_central_geo_thermal' |
||
526 | AND scenario_name IN ('eGon2035') |
||
527 | GROUP BY (carrier); |
||
528 | """, |
||
529 | warning=False, |
||
530 | )["urban_central_geo_thermal_mw"].values[0] |
||
531 | |||
532 | output_geo_thermal = db.select_dataframe( |
||
533 | """SELECT carrier, SUM(p_nom::numeric) as geo_thermal_MW |
||
534 | FROM grid.egon_etrago_generator |
||
535 | WHERE carrier= 'geo_thermal' |
||
536 | AND scn_name IN ('eGon2035') |
||
537 | GROUP BY (carrier); |
||
538 | """, |
||
539 | warning=False, |
||
540 | )["geo_thermal_mw"].values[0] |
||
541 | |||
542 | e_geo_thermal = ( |
||
543 | round((output_geo_thermal - input_geo_thermal) / input_geo_thermal, 2) |
||
544 | * 100 |
||
545 | ) |
||
546 | logger.info(f"'geothermal': {e_geo_thermal} %") |
||
547 | |||
548 | |||
549 | def residential_electricity_annual_sum(rtol=1e-5): |
||
550 | """Sanity check for dataset electricity_demand_timeseries : |
||
551 | Demand_Building_Assignment |
||
552 | |||
553 | Aggregate the annual demand of all census cells at NUTS3 to compare |
||
554 | with initial scaling parameters from DemandRegio. |
||
555 | """ |
||
556 | |||
557 | df_nuts3_annual_sum = db.select_dataframe( |
||
558 | sql=""" |
||
559 | SELECT dr.nuts3, dr.scenario, dr.demand_regio_sum, profiles.profile_sum |
||
560 | FROM ( |
||
561 | SELECT scenario, SUM(demand) AS profile_sum, vg250_nuts3 |
||
562 | FROM demand.egon_demandregio_zensus_electricity AS egon, |
||
563 | boundaries.egon_map_zensus_vg250 AS boundaries |
||
564 | Where egon.zensus_population_id = boundaries.zensus_population_id |
||
565 | AND sector = 'residential' |
||
566 | GROUP BY vg250_nuts3, scenario |
||
567 | ) AS profiles |
||
568 | JOIN ( |
||
569 | SELECT nuts3, scenario, sum(demand) AS demand_regio_sum |
||
570 | FROM demand.egon_demandregio_hh |
||
571 | GROUP BY year, scenario, nuts3 |
||
572 | ) AS dr |
||
573 | ON profiles.vg250_nuts3 = dr.nuts3 and profiles.scenario = dr.scenario |
||
574 | """ |
||
575 | ) |
||
576 | |||
577 | np.testing.assert_allclose( |
||
578 | actual=df_nuts3_annual_sum["profile_sum"], |
||
579 | desired=df_nuts3_annual_sum["demand_regio_sum"], |
||
580 | rtol=rtol, |
||
581 | verbose=False, |
||
582 | ) |
||
583 | |||
584 | logger.info( |
||
585 | "Aggregated annual residential electricity demand" |
||
586 | " matches with DemandRegio at NUTS-3." |
||
587 | ) |
||
588 | |||
589 | |||
590 | def residential_electricity_hh_refinement(rtol=1e-5): |
||
591 | """Sanity check for dataset electricity_demand_timeseries : |
||
592 | Household Demands |
||
593 | |||
594 | Check sum of aggregated household types after refinement method |
||
595 | was applied and compare it to the original census values.""" |
||
596 | |||
597 | df_refinement = db.select_dataframe( |
||
598 | sql=""" |
||
599 | SELECT refined.nuts3, refined.characteristics_code, |
||
600 | refined.sum_refined::int, census.sum_census::int |
||
601 | FROM( |
||
602 | SELECT nuts3, characteristics_code, SUM(hh_10types) as sum_refined |
||
603 | FROM society.egon_destatis_zensus_household_per_ha_refined |
||
604 | GROUP BY nuts3, characteristics_code) |
||
605 | AS refined |
||
606 | JOIN( |
||
607 | SELECT t.nuts3, t.characteristics_code, sum(orig) as sum_census |
||
608 | FROM( |
||
609 | SELECT nuts3, cell_id, characteristics_code, |
||
610 | sum(DISTINCT(hh_5types))as orig |
||
611 | FROM society.egon_destatis_zensus_household_per_ha_refined |
||
612 | GROUP BY cell_id, characteristics_code, nuts3) AS t |
||
613 | GROUP BY t.nuts3, t.characteristics_code ) AS census |
||
614 | ON refined.nuts3 = census.nuts3 |
||
615 | AND refined.characteristics_code = census.characteristics_code |
||
616 | """ |
||
617 | ) |
||
618 | |||
619 | np.testing.assert_allclose( |
||
620 | actual=df_refinement["sum_refined"], |
||
621 | desired=df_refinement["sum_census"], |
||
622 | rtol=rtol, |
||
623 | verbose=False, |
||
624 | ) |
||
625 | |||
626 | logger.info("All Aggregated household types match at NUTS-3.") |
||
627 | |||
628 | |||
629 | def cts_electricity_demand_share(rtol=1e-5): |
||
630 | """Sanity check for dataset electricity_demand_timeseries : |
||
631 | CtsBuildings |
||
632 | |||
633 | Check sum of aggregated cts electricity demand share which equals to one |
||
634 | for every substation as the substation profile is linearly disaggregated |
||
635 | to all buildings.""" |
||
636 | |||
637 | with db.session_scope() as session: |
||
638 | cells_query = session.query(EgonCtsElectricityDemandBuildingShare) |
||
639 | |||
640 | df_demand_share = pd.read_sql( |
||
641 | cells_query.statement, cells_query.session.bind, index_col=None |
||
642 | ) |
||
643 | |||
644 | np.testing.assert_allclose( |
||
645 | actual=df_demand_share.groupby(["bus_id", "scenario"])[ |
||
646 | "profile_share" |
||
647 | ].sum(), |
||
648 | desired=1, |
||
649 | rtol=rtol, |
||
650 | verbose=False, |
||
651 | ) |
||
652 | |||
653 | logger.info("The aggregated demand shares equal to one!.") |
||
654 | |||
655 | |||
656 | def cts_heat_demand_share(rtol=1e-5): |
||
657 | """Sanity check for dataset electricity_demand_timeseries |
||
658 | : CtsBuildings |
||
659 | |||
660 | Check sum of aggregated cts heat demand share which equals to one |
||
661 | for every substation as the substation profile is linearly disaggregated |
||
662 | to all buildings.""" |
||
663 | |||
664 | with db.session_scope() as session: |
||
665 | cells_query = session.query(EgonCtsHeatDemandBuildingShare) |
||
666 | |||
667 | df_demand_share = pd.read_sql( |
||
668 | cells_query.statement, cells_query.session.bind, index_col=None |
||
669 | ) |
||
670 | |||
671 | np.testing.assert_allclose( |
||
672 | actual=df_demand_share.groupby(["bus_id", "scenario"])[ |
||
673 | "profile_share" |
||
674 | ].sum(), |
||
675 | desired=1, |
||
676 | rtol=rtol, |
||
677 | verbose=False, |
||
678 | ) |
||
679 | |||
680 | logger.info("The aggregated demand shares equal to one!.") |
||
681 | |||
682 | |||
683 | def sanitycheck_pv_rooftop_buildings(): |
||
684 | def egon_power_plants_pv_roof_building(): |
||
685 | sql = """ |
||
686 | SELECT * |
||
687 | FROM supply.egon_power_plants_pv_roof_building |
||
688 | """ |
||
689 | |||
690 | return db.select_dataframe(sql, index_col="index") |
||
691 | |||
692 | pv_roof_df = egon_power_plants_pv_roof_building() |
||
693 | |||
694 | valid_buildings_gdf = load_building_data() |
||
695 | |||
696 | valid_buildings_gdf = valid_buildings_gdf.assign( |
||
697 | bus_id=valid_buildings_gdf.bus_id.astype(int), |
||
698 | overlay_id=valid_buildings_gdf.overlay_id.astype(int), |
||
699 | max_cap=valid_buildings_gdf.building_area.multiply( |
||
700 | ROOF_FACTOR * PV_CAP_PER_SQ_M |
||
701 | ), |
||
702 | ) |
||
703 | |||
704 | merge_df = pv_roof_df.merge( |
||
705 | valid_buildings_gdf[["building_area"]], |
||
706 | how="left", |
||
707 | left_on="building_id", |
||
708 | right_index=True, |
||
709 | ) |
||
710 | |||
711 | assert ( |
||
712 | len(merge_df.loc[merge_df.building_area.isna()]) == 0 |
||
713 | ), f"{len(merge_df.loc[merge_df.building_area.isna()])} != 0" |
||
714 | |||
715 | scenarios = ["status_quo", "eGon2035"] |
||
716 | |||
717 | base_path = Path(egon.data.__path__[0]).resolve() |
||
718 | |||
719 | res_dir = base_path / "sanity_checks" |
||
720 | |||
721 | res_dir.mkdir(parents=True, exist_ok=True) |
||
722 | |||
723 | for scenario in scenarios: |
||
724 | fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 8)) |
||
725 | |||
726 | scenario_df = merge_df.loc[merge_df.scenario == scenario] |
||
727 | |||
728 | logger.info( |
||
729 | scenario + " Capacity:\n" + str(scenario_df.capacity.describe()) |
||
730 | ) |
||
731 | |||
732 | small_gens_df = scenario_df.loc[scenario_df.capacity < 100] |
||
733 | |||
734 | sns.histplot(data=small_gens_df, x="capacity", ax=ax1).set_title( |
||
735 | scenario |
||
736 | ) |
||
737 | |||
738 | sns.scatterplot( |
||
739 | data=small_gens_df, x="capacity", y="building_area", ax=ax2 |
||
740 | ).set_title(scenario) |
||
741 | |||
742 | plt.tight_layout() |
||
743 | |||
744 | plt.savefig( |
||
745 | res_dir / f"{scenario}_pv_rooftop_distribution.png", |
||
746 | bbox_inches="tight", |
||
747 | ) |
||
748 | |||
749 | for scenario in SCENARIOS: |
||
750 | if scenario == "eGon2035": |
||
751 | assert isclose( |
||
752 | scenario_data(scenario=scenario).capacity.sum(), |
||
753 | merge_df.loc[merge_df.scenario == scenario].capacity.sum(), |
||
754 | rel_tol=1e-02, |
||
755 | ), ( |
||
756 | f"{scenario_data(scenario=scenario).capacity.sum()} != " |
||
757 | f"{merge_df.loc[merge_df.scenario == scenario].capacity.sum()}" |
||
758 | ) |
||
759 | elif scenario == "eGon100RE": |
||
760 | sources = config.datasets()["solar_rooftop"]["sources"] |
||
761 | |||
762 | target = db.select_dataframe( |
||
763 | f""" |
||
764 | SELECT capacity |
||
765 | FROM {sources['scenario_capacities']['schema']}. |
||
766 | {sources['scenario_capacities']['table']} a |
||
767 | WHERE carrier = 'solar_rooftop' |
||
768 | AND scenario_name = '{scenario}' |
||
769 | """ |
||
770 | ).capacity[0] |
||
771 | |||
772 | dataset = config.settings()["egon-data"]["--dataset-boundary"] |
||
773 | |||
774 | View Code Duplication | if dataset == "Schleswig-Holstein": |
|
775 | sources = config.datasets()["scenario_input"]["sources"] |
||
776 | |||
777 | path = Path( |
||
778 | f"./data_bundle_egon_data/nep2035_version2021/" |
||
779 | f"{sources['eGon2035']['capacities']}" |
||
780 | ).resolve() |
||
781 | |||
782 | total_2035 = ( |
||
783 | pd.read_excel( |
||
784 | path, |
||
785 | sheet_name="1.Entwurf_NEP2035_V2021", |
||
786 | index_col="Unnamed: 0", |
||
787 | ).at["PV (Aufdach)", "Summe"] |
||
788 | * 1000 |
||
789 | ) |
||
790 | sh_2035 = scenario_data(scenario="eGon2035").capacity.sum() |
||
791 | |||
792 | share = sh_2035 / total_2035 |
||
793 | |||
794 | target *= share |
||
795 | |||
796 | assert isclose( |
||
797 | target, |
||
798 | merge_df.loc[merge_df.scenario == scenario].capacity.sum(), |
||
799 | rel_tol=1e-02, |
||
800 | ), ( |
||
801 | f"{target} != " |
||
802 | f"{merge_df.loc[merge_df.scenario == scenario].capacity.sum()}" |
||
803 | ) |
||
804 | else: |
||
805 | raise ValueError(f"Scenario {scenario} is not valid.") |
||
806 | |||
807 | |||
808 | def sanitycheck_emobility_mit(): |
||
809 | """Execute sanity checks for eMobility: motorized individual travel |
||
810 | |||
811 | Checks data integrity for eGon2035, eGon2035_lowflex and eGon100RE scenario |
||
812 | using assertions: |
||
813 | 1. Allocated EV numbers and EVs allocated to grid districts |
||
814 | 2. Trip data (original inout data from simBEV) |
||
815 | 3. Model data in eTraGo PF tables (grid.egon_etrago_*) |
||
816 | |||
817 | Parameters |
||
818 | ---------- |
||
819 | None |
||
820 | |||
821 | Returns |
||
822 | ------- |
||
823 | None |
||
824 | """ |
||
825 | |||
826 | def check_ev_allocation(): |
||
827 | # Get target number for scenario |
||
828 | ev_count_target = scenario_variation_parameters["ev_count"] |
||
829 | print(f" Target count: {str(ev_count_target)}") |
||
830 | |||
831 | # Get allocated numbers |
||
832 | ev_counts_dict = {} |
||
833 | with db.session_scope() as session: |
||
834 | for table, level in zip( |
||
835 | [ |
||
836 | EgonEvCountMvGridDistrict, |
||
837 | EgonEvCountMunicipality, |
||
838 | EgonEvCountRegistrationDistrict, |
||
839 | ], |
||
840 | ["Grid District", "Municipality", "Registration District"], |
||
841 | ): |
||
842 | query = session.query( |
||
843 | func.sum( |
||
844 | table.bev_mini |
||
845 | + table.bev_medium |
||
846 | + table.bev_luxury |
||
847 | + table.phev_mini |
||
848 | + table.phev_medium |
||
849 | + table.phev_luxury |
||
850 | ).label("ev_count") |
||
851 | ).filter( |
||
852 | table.scenario == scenario_name, |
||
853 | table.scenario_variation == scenario_var_name, |
||
854 | ) |
||
855 | |||
856 | ev_counts = pd.read_sql( |
||
857 | query.statement, query.session.bind, index_col=None |
||
858 | ) |
||
859 | ev_counts_dict[level] = ev_counts.iloc[0].ev_count |
||
860 | print( |
||
861 | f" Count table: Total count for level {level} " |
||
862 | f"(table: {table.__table__}): " |
||
863 | f"{str(ev_counts_dict[level])}" |
||
864 | ) |
||
865 | |||
866 | # Compare with scenario target (only if not in testmode) |
||
867 | if TESTMODE_OFF: |
||
868 | for level, count in ev_counts_dict.items(): |
||
869 | np.testing.assert_allclose( |
||
870 | count, |
||
871 | ev_count_target, |
||
872 | rtol=0.0001, |
||
873 | err_msg=f"EV numbers in {level} seems to be flawed.", |
||
874 | ) |
||
875 | else: |
||
876 | print(" Testmode is on, skipping sanity check...") |
||
877 | |||
878 | # Get allocated EVs in grid districts |
||
879 | with db.session_scope() as session: |
||
880 | query = session.query( |
||
881 | func.count(EgonEvMvGridDistrict.egon_ev_pool_ev_id).label( |
||
882 | "ev_count" |
||
883 | ), |
||
884 | ).filter( |
||
885 | EgonEvMvGridDistrict.scenario == scenario_name, |
||
886 | EgonEvMvGridDistrict.scenario_variation == scenario_var_name, |
||
887 | ) |
||
888 | ev_count_alloc = ( |
||
889 | pd.read_sql(query.statement, query.session.bind, index_col=None) |
||
890 | .iloc[0] |
||
891 | .ev_count |
||
892 | ) |
||
893 | print( |
||
894 | f" EVs allocated to Grid Districts " |
||
895 | f"(table: {EgonEvMvGridDistrict.__table__}) total count: " |
||
896 | f"{str(ev_count_alloc)}" |
||
897 | ) |
||
898 | |||
899 | # Compare with scenario target (only if not in testmode) |
||
900 | if TESTMODE_OFF: |
||
901 | np.testing.assert_allclose( |
||
902 | ev_count_alloc, |
||
903 | ev_count_target, |
||
904 | rtol=0.0001, |
||
905 | err_msg=( |
||
906 | "EV numbers allocated to Grid Districts seems to be " |
||
907 | "flawed." |
||
908 | ), |
||
909 | ) |
||
910 | else: |
||
911 | print(" Testmode is on, skipping sanity check...") |
||
912 | |||
913 | return ev_count_alloc |
||
914 | |||
915 | def check_trip_data(): |
||
916 | # Check if trips start at timestep 0 and have a max. of 35040 steps |
||
917 | # (8760h in 15min steps) |
||
918 | print(" Checking timeranges...") |
||
919 | with db.session_scope() as session: |
||
920 | query = session.query( |
||
921 | func.count(EgonEvTrip.event_id).label("cnt") |
||
922 | ).filter( |
||
923 | or_( |
||
924 | and_( |
||
925 | EgonEvTrip.park_start > 0, |
||
926 | EgonEvTrip.simbev_event_id == 0, |
||
927 | ), |
||
928 | EgonEvTrip.park_end |
||
929 | > (60 / int(meta_run_config.stepsize)) * 8760, |
||
930 | ), |
||
931 | EgonEvTrip.scenario == scenario_name, |
||
932 | ) |
||
933 | invalid_trips = pd.read_sql( |
||
934 | query.statement, query.session.bind, index_col=None |
||
935 | ) |
||
936 | np.testing.assert_equal( |
||
937 | invalid_trips.iloc[0].cnt, |
||
938 | 0, |
||
939 | err_msg=( |
||
940 | f"{str(invalid_trips.iloc[0].cnt)} trips in table " |
||
941 | f"{EgonEvTrip.__table__} have invalid timesteps." |
||
942 | ), |
||
943 | ) |
||
944 | |||
945 | # Check if charging demand can be covered by available charging energy |
||
946 | # while parking |
||
947 | print(" Compare charging demand with available power...") |
||
948 | with db.session_scope() as session: |
||
949 | query = session.query( |
||
950 | func.count(EgonEvTrip.event_id).label("cnt") |
||
951 | ).filter( |
||
952 | func.round( |
||
953 | cast( |
||
954 | (EgonEvTrip.park_end - EgonEvTrip.park_start + 1) |
||
955 | * EgonEvTrip.charging_capacity_nominal |
||
956 | * (int(meta_run_config.stepsize) / 60), |
||
957 | Numeric, |
||
958 | ), |
||
959 | 3, |
||
960 | ) |
||
961 | < cast(EgonEvTrip.charging_demand, Numeric), |
||
962 | EgonEvTrip.scenario == scenario_name, |
||
963 | ) |
||
964 | invalid_trips = pd.read_sql( |
||
965 | query.statement, query.session.bind, index_col=None |
||
966 | ) |
||
967 | np.testing.assert_equal( |
||
968 | invalid_trips.iloc[0].cnt, |
||
969 | 0, |
||
970 | err_msg=( |
||
971 | f"In {str(invalid_trips.iloc[0].cnt)} trips (table: " |
||
972 | f"{EgonEvTrip.__table__}) the charging demand cannot be " |
||
973 | f"covered by available charging power." |
||
974 | ), |
||
975 | ) |
||
976 | |||
977 | def check_model_data(): |
||
978 | # Check if model components were fully created |
||
979 | print(" Check if all model components were created...") |
||
980 | # Get MVGDs which got EV allocated |
||
981 | with db.session_scope() as session: |
||
982 | query = ( |
||
983 | session.query( |
||
984 | EgonEvMvGridDistrict.bus_id, |
||
985 | ) |
||
986 | .filter( |
||
987 | EgonEvMvGridDistrict.scenario == scenario_name, |
||
988 | EgonEvMvGridDistrict.scenario_variation |
||
989 | == scenario_var_name, |
||
990 | ) |
||
991 | .group_by(EgonEvMvGridDistrict.bus_id) |
||
992 | ) |
||
993 | mvgds_with_ev = ( |
||
994 | pd.read_sql(query.statement, query.session.bind, index_col=None) |
||
995 | .bus_id.sort_values() |
||
996 | .to_list() |
||
997 | ) |
||
998 | |||
999 | # Load model components |
||
1000 | with db.session_scope() as session: |
||
1001 | query = ( |
||
1002 | session.query( |
||
1003 | EgonPfHvLink.bus0.label("mvgd_bus_id"), |
||
1004 | EgonPfHvLoad.bus.label("emob_bus_id"), |
||
1005 | EgonPfHvLoad.load_id.label("load_id"), |
||
1006 | EgonPfHvStore.store_id.label("store_id"), |
||
1007 | ) |
||
1008 | .select_from(EgonPfHvLoad, EgonPfHvStore) |
||
1009 | .join( |
||
1010 | EgonPfHvLoadTimeseries, |
||
1011 | EgonPfHvLoadTimeseries.load_id == EgonPfHvLoad.load_id, |
||
1012 | ) |
||
1013 | .join( |
||
1014 | EgonPfHvStoreTimeseries, |
||
1015 | EgonPfHvStoreTimeseries.store_id == EgonPfHvStore.store_id, |
||
1016 | ) |
||
1017 | .filter( |
||
1018 | EgonPfHvLoad.carrier == "land transport EV", |
||
1019 | EgonPfHvLoad.scn_name == scenario_name, |
||
1020 | EgonPfHvLoadTimeseries.scn_name == scenario_name, |
||
1021 | EgonPfHvStore.carrier == "battery storage", |
||
1022 | EgonPfHvStore.scn_name == scenario_name, |
||
1023 | EgonPfHvStoreTimeseries.scn_name == scenario_name, |
||
1024 | EgonPfHvLink.scn_name == scenario_name, |
||
1025 | EgonPfHvLink.bus1 == EgonPfHvLoad.bus, |
||
1026 | EgonPfHvLink.bus1 == EgonPfHvStore.bus, |
||
1027 | ) |
||
1028 | ) |
||
1029 | model_components = pd.read_sql( |
||
1030 | query.statement, query.session.bind, index_col=None |
||
1031 | ) |
||
1032 | |||
1033 | # Check number of buses with model components connected |
||
1034 | mvgd_buses_with_ev = model_components.loc[ |
||
1035 | model_components.mvgd_bus_id.isin(mvgds_with_ev) |
||
1036 | ] |
||
1037 | np.testing.assert_equal( |
||
1038 | len(mvgds_with_ev), |
||
1039 | len(mvgd_buses_with_ev), |
||
1040 | err_msg=( |
||
1041 | f"Number of Grid Districts with connected model components " |
||
1042 | f"({str(len(mvgd_buses_with_ev))} in tables egon_etrago_*) " |
||
1043 | f"differ from number of Grid Districts that got EVs " |
||
1044 | f"allocated ({len(mvgds_with_ev)} in table " |
||
1045 | f"{EgonEvMvGridDistrict.__table__})." |
||
1046 | ), |
||
1047 | ) |
||
1048 | |||
1049 | # Check if all required components exist (if no id is NaN) |
||
1050 | np.testing.assert_equal( |
||
1051 | model_components.drop_duplicates().isna().any().any(), |
||
1052 | False, |
||
1053 | err_msg=( |
||
1054 | f"Some components are missing (see True values): " |
||
1055 | f"{model_components.drop_duplicates().isna().any()}" |
||
1056 | ), |
||
1057 | ) |
||
1058 | |||
1059 | # Get all model timeseries |
||
1060 | print(" Loading model timeseries...") |
||
1061 | # Get all model timeseries |
||
1062 | model_ts_dict = { |
||
1063 | "Load": { |
||
1064 | "carrier": "land transport EV", |
||
1065 | "table": EgonPfHvLoad, |
||
1066 | "table_ts": EgonPfHvLoadTimeseries, |
||
1067 | "column_id": "load_id", |
||
1068 | "columns_ts": ["p_set"], |
||
1069 | "ts": None, |
||
1070 | }, |
||
1071 | "Link": { |
||
1072 | "carrier": "BEV charger", |
||
1073 | "table": EgonPfHvLink, |
||
1074 | "table_ts": EgonPfHvLinkTimeseries, |
||
1075 | "column_id": "link_id", |
||
1076 | "columns_ts": ["p_max_pu"], |
||
1077 | "ts": None, |
||
1078 | }, |
||
1079 | "Store": { |
||
1080 | "carrier": "battery storage", |
||
1081 | "table": EgonPfHvStore, |
||
1082 | "table_ts": EgonPfHvStoreTimeseries, |
||
1083 | "column_id": "store_id", |
||
1084 | "columns_ts": ["e_min_pu", "e_max_pu"], |
||
1085 | "ts": None, |
||
1086 | }, |
||
1087 | } |
||
1088 | |||
1089 | with db.session_scope() as session: |
||
1090 | for node, attrs in model_ts_dict.items(): |
||
1091 | print(f" Loading {node} timeseries...") |
||
1092 | subquery = ( |
||
1093 | session.query(getattr(attrs["table"], attrs["column_id"])) |
||
1094 | .filter(attrs["table"].carrier == attrs["carrier"]) |
||
1095 | .filter(attrs["table"].scn_name == scenario_name) |
||
1096 | .subquery() |
||
1097 | ) |
||
1098 | |||
1099 | cols = [ |
||
1100 | getattr(attrs["table_ts"], c) for c in attrs["columns_ts"] |
||
1101 | ] |
||
1102 | query = session.query( |
||
1103 | getattr(attrs["table_ts"], attrs["column_id"]), *cols |
||
1104 | ).filter( |
||
1105 | getattr(attrs["table_ts"], attrs["column_id"]).in_( |
||
1106 | subquery |
||
1107 | ), |
||
1108 | attrs["table_ts"].scn_name == scenario_name, |
||
1109 | ) |
||
1110 | attrs["ts"] = pd.read_sql( |
||
1111 | query.statement, |
||
1112 | query.session.bind, |
||
1113 | index_col=attrs["column_id"], |
||
1114 | ) |
||
1115 | |||
1116 | # Check if all timeseries have 8760 steps |
||
1117 | print(" Checking timeranges...") |
||
1118 | for node, attrs in model_ts_dict.items(): |
||
1119 | for col in attrs["columns_ts"]: |
||
1120 | ts = attrs["ts"] |
||
1121 | invalid_ts = ts.loc[ts[col].apply(lambda _: len(_)) != 8760][ |
||
1122 | col |
||
1123 | ].apply(len) |
||
1124 | np.testing.assert_equal( |
||
1125 | len(invalid_ts), |
||
1126 | 0, |
||
1127 | err_msg=( |
||
1128 | f"{str(len(invalid_ts))} rows in timeseries do not " |
||
1129 | f"have 8760 timesteps. Table: " |
||
1130 | f"{attrs['table_ts'].__table__}, Column: {col}, IDs: " |
||
1131 | f"{str(list(invalid_ts.index))}" |
||
1132 | ), |
||
1133 | ) |
||
1134 | |||
1135 | # Compare total energy demand in model with some approximate values |
||
1136 | # (per EV: 14,000 km/a, 0.17 kWh/km) |
||
1137 | print(" Checking energy demand in model...") |
||
1138 | total_energy_model = ( |
||
1139 | model_ts_dict["Load"]["ts"].p_set.apply(lambda _: sum(_)).sum() |
||
1140 | / 1e6 |
||
1141 | ) |
||
1142 | print(f" Total energy amount in model: {total_energy_model} TWh") |
||
1143 | total_energy_scenario_approx = ev_count_alloc * 14000 * 0.17 / 1e9 |
||
1144 | print( |
||
1145 | f" Total approximated energy amount in scenario: " |
||
1146 | f"{total_energy_scenario_approx} TWh" |
||
1147 | ) |
||
1148 | np.testing.assert_allclose( |
||
1149 | total_energy_model, |
||
1150 | total_energy_scenario_approx, |
||
1151 | rtol=0.1, |
||
1152 | err_msg=( |
||
1153 | "The total energy amount in the model deviates heavily " |
||
1154 | "from the approximated value for current scenario." |
||
1155 | ), |
||
1156 | ) |
||
1157 | |||
1158 | # Compare total storage capacity |
||
1159 | print(" Checking storage capacity...") |
||
1160 | # Load storage capacities from model |
||
1161 | with db.session_scope() as session: |
||
1162 | query = session.query( |
||
1163 | func.sum(EgonPfHvStore.e_nom).label("e_nom") |
||
1164 | ).filter( |
||
1165 | EgonPfHvStore.scn_name == scenario_name, |
||
1166 | EgonPfHvStore.carrier == "battery storage", |
||
1167 | ) |
||
1168 | storage_capacity_model = ( |
||
1169 | pd.read_sql( |
||
1170 | query.statement, query.session.bind, index_col=None |
||
1171 | ).e_nom.sum() |
||
1172 | / 1e3 |
||
1173 | ) |
||
1174 | print( |
||
1175 | f" Total storage capacity ({EgonPfHvStore.__table__}): " |
||
1176 | f"{round(storage_capacity_model, 1)} GWh" |
||
1177 | ) |
||
1178 | |||
1179 | # Load occurences of each EV |
||
1180 | with db.session_scope() as session: |
||
1181 | query = ( |
||
1182 | session.query( |
||
1183 | EgonEvMvGridDistrict.bus_id, |
||
1184 | EgonEvPool.type, |
||
1185 | func.count(EgonEvMvGridDistrict.egon_ev_pool_ev_id).label( |
||
1186 | "count" |
||
1187 | ), |
||
1188 | ) |
||
1189 | .join( |
||
1190 | EgonEvPool, |
||
1191 | EgonEvPool.ev_id |
||
1192 | == EgonEvMvGridDistrict.egon_ev_pool_ev_id, |
||
1193 | ) |
||
1194 | .filter( |
||
1195 | EgonEvMvGridDistrict.scenario == scenario_name, |
||
1196 | EgonEvMvGridDistrict.scenario_variation |
||
1197 | == scenario_var_name, |
||
1198 | EgonEvPool.scenario == scenario_name, |
||
1199 | ) |
||
1200 | .group_by(EgonEvMvGridDistrict.bus_id, EgonEvPool.type) |
||
1201 | ) |
||
1202 | count_per_ev_all = pd.read_sql( |
||
1203 | query.statement, query.session.bind, index_col="bus_id" |
||
1204 | ) |
||
1205 | count_per_ev_all["bat_cap"] = count_per_ev_all.type.map( |
||
1206 | meta_tech_data.battery_capacity |
||
1207 | ) |
||
1208 | count_per_ev_all["bat_cap_total_MWh"] = ( |
||
1209 | count_per_ev_all["count"] * count_per_ev_all.bat_cap / 1e3 |
||
1210 | ) |
||
1211 | storage_capacity_simbev = count_per_ev_all.bat_cap_total_MWh.div( |
||
1212 | 1e3 |
||
1213 | ).sum() |
||
1214 | print( |
||
1215 | f" Total storage capacity (simBEV): " |
||
1216 | f"{round(storage_capacity_simbev, 1)} GWh" |
||
1217 | ) |
||
1218 | |||
1219 | np.testing.assert_allclose( |
||
1220 | storage_capacity_model, |
||
1221 | storage_capacity_simbev, |
||
1222 | rtol=0.01, |
||
1223 | err_msg=( |
||
1224 | "The total storage capacity in the model deviates heavily " |
||
1225 | "from the input data provided by simBEV for current scenario." |
||
1226 | ), |
||
1227 | ) |
||
1228 | |||
1229 | # Check SoC storage constraint: e_min_pu < e_max_pu for all timesteps |
||
1230 | print(" Validating SoC constraints...") |
||
1231 | stores_with_invalid_soc = [] |
||
1232 | for idx, row in model_ts_dict["Store"]["ts"].iterrows(): |
||
1233 | ts = row[["e_min_pu", "e_max_pu"]] |
||
1234 | x = np.array(ts.e_min_pu) > np.array(ts.e_max_pu) |
||
1235 | if x.any(): |
||
1236 | stores_with_invalid_soc.append(idx) |
||
1237 | |||
1238 | np.testing.assert_equal( |
||
1239 | len(stores_with_invalid_soc), |
||
1240 | 0, |
||
1241 | err_msg=( |
||
1242 | f"The store constraint e_min_pu < e_max_pu does not apply " |
||
1243 | f"for some storages in {EgonPfHvStoreTimeseries.__table__}. " |
||
1244 | f"Invalid store_ids: {stores_with_invalid_soc}" |
||
1245 | ), |
||
1246 | ) |
||
1247 | |||
1248 | def check_model_data_lowflex_eGon2035(): |
||
1249 | # TODO: Add eGon100RE_lowflex |
||
1250 | print("") |
||
1251 | print("SCENARIO: eGon2035_lowflex") |
||
1252 | |||
1253 | # Compare driving load and charging load |
||
1254 | print(" Loading eGon2035 model timeseries: driving load...") |
||
1255 | with db.session_scope() as session: |
||
1256 | query = ( |
||
1257 | session.query( |
||
1258 | EgonPfHvLoad.load_id, |
||
1259 | EgonPfHvLoadTimeseries.p_set, |
||
1260 | ) |
||
1261 | .join( |
||
1262 | EgonPfHvLoadTimeseries, |
||
1263 | EgonPfHvLoadTimeseries.load_id == EgonPfHvLoad.load_id, |
||
1264 | ) |
||
1265 | .filter( |
||
1266 | EgonPfHvLoad.carrier == "land transport EV", |
||
1267 | EgonPfHvLoad.scn_name == "eGon2035", |
||
1268 | EgonPfHvLoadTimeseries.scn_name == "eGon2035", |
||
1269 | ) |
||
1270 | ) |
||
1271 | model_driving_load = pd.read_sql( |
||
1272 | query.statement, query.session.bind, index_col=None |
||
1273 | ) |
||
1274 | driving_load = np.array(model_driving_load.p_set.to_list()).sum(axis=0) |
||
1275 | |||
1276 | print( |
||
1277 | " Loading eGon2035_lowflex model timeseries: dumb charging " |
||
1278 | "load..." |
||
1279 | ) |
||
1280 | with db.session_scope() as session: |
||
1281 | query = ( |
||
1282 | session.query( |
||
1283 | EgonPfHvLoad.load_id, |
||
1284 | EgonPfHvLoadTimeseries.p_set, |
||
1285 | ) |
||
1286 | .join( |
||
1287 | EgonPfHvLoadTimeseries, |
||
1288 | EgonPfHvLoadTimeseries.load_id == EgonPfHvLoad.load_id, |
||
1289 | ) |
||
1290 | .filter( |
||
1291 | EgonPfHvLoad.carrier == "land transport EV", |
||
1292 | EgonPfHvLoad.scn_name == "eGon2035_lowflex", |
||
1293 | EgonPfHvLoadTimeseries.scn_name == "eGon2035_lowflex", |
||
1294 | ) |
||
1295 | ) |
||
1296 | model_charging_load_lowflex = pd.read_sql( |
||
1297 | query.statement, query.session.bind, index_col=None |
||
1298 | ) |
||
1299 | charging_load = np.array( |
||
1300 | model_charging_load_lowflex.p_set.to_list() |
||
1301 | ).sum(axis=0) |
||
1302 | |||
1303 | # Ratio of driving and charging load should be 0.9 due to charging |
||
1304 | # efficiency |
||
1305 | print(" Compare cumulative loads...") |
||
1306 | print(f" Driving load (eGon2035): {driving_load.sum() / 1e6} TWh") |
||
1307 | print( |
||
1308 | f" Dumb charging load (eGon2035_lowflex): " |
||
1309 | f"{charging_load.sum() / 1e6} TWh" |
||
1310 | ) |
||
1311 | driving_load_theoretical = ( |
||
1312 | float(meta_run_config.eta_cp) * charging_load.sum() |
||
1313 | ) |
||
1314 | np.testing.assert_allclose( |
||
1315 | driving_load.sum(), |
||
1316 | driving_load_theoretical, |
||
1317 | rtol=0.01, |
||
1318 | err_msg=( |
||
1319 | f"The driving load (eGon2035) deviates by more than 1% " |
||
1320 | f"from the theoretical driving load calculated from charging " |
||
1321 | f"load (eGon2035_lowflex) with an efficiency of " |
||
1322 | f"{float(meta_run_config.eta_cp)}." |
||
1323 | ), |
||
1324 | ) |
||
1325 | |||
1326 | print("=====================================================") |
||
1327 | print("=== SANITY CHECKS FOR MOTORIZED INDIVIDUAL TRAVEL ===") |
||
1328 | print("=====================================================") |
||
1329 | |||
1330 | for scenario_name in ["eGon2035", "eGon100RE"]: |
||
1331 | scenario_var_name = DATASET_CFG["scenario"]["variation"][scenario_name] |
||
1332 | |||
1333 | print("") |
||
1334 | print(f"SCENARIO: {scenario_name}, VARIATION: {scenario_var_name}") |
||
1335 | |||
1336 | # Load scenario params for scenario and scenario variation |
||
1337 | scenario_variation_parameters = get_sector_parameters( |
||
1338 | "mobility", scenario=scenario_name |
||
1339 | )["motorized_individual_travel"][scenario_var_name] |
||
1340 | |||
1341 | # Load simBEV run config and tech data |
||
1342 | meta_run_config = read_simbev_metadata_file( |
||
1343 | scenario_name, "config" |
||
1344 | ).loc["basic"] |
||
1345 | meta_tech_data = read_simbev_metadata_file(scenario_name, "tech_data") |
||
1346 | |||
1347 | print("") |
||
1348 | print("Checking EV counts...") |
||
1349 | ev_count_alloc = check_ev_allocation() |
||
1350 | |||
1351 | print("") |
||
1352 | print("Checking trip data...") |
||
1353 | check_trip_data() |
||
1354 | |||
1355 | print("") |
||
1356 | print("Checking model data...") |
||
1357 | check_model_data() |
||
1358 | |||
1359 | print("") |
||
1360 | check_model_data_lowflex_eGon2035() |
||
1361 | |||
1362 | print("=====================================================") |
||
1363 | |||
1364 | |||
1365 | def sanitycheck_home_batteries(): |
||
1366 | # get constants |
||
1367 | constants = config.datasets()["home_batteries"]["constants"] |
||
1368 | scenarios = constants["scenarios"] |
||
1369 | cbat_pbat_ratio = get_cbat_pbat_ratio() |
||
1370 | |||
1371 | sources = config.datasets()["home_batteries"]["sources"] |
||
1372 | targets = config.datasets()["home_batteries"]["targets"] |
||
1373 | |||
1374 | for scenario in scenarios: |
||
1375 | # get home battery capacity per mv grid id |
||
1376 | sql = f""" |
||
1377 | SELECT el_capacity as p_nom, bus_id FROM |
||
1378 | {sources["storage"]["schema"]} |
||
1379 | .{sources["storage"]["table"]} |
||
1380 | WHERE carrier = 'home_battery' |
||
1381 | AND scenario = '{scenario}' |
||
1382 | """ |
||
1383 | |||
1384 | home_batteries_df = db.select_dataframe(sql, index_col="bus_id") |
||
1385 | |||
1386 | home_batteries_df = home_batteries_df.assign( |
||
1387 | capacity=home_batteries_df.p_nom * cbat_pbat_ratio |
||
1388 | ) |
||
1389 | |||
1390 | sql = f""" |
||
1391 | SELECT * FROM |
||
1392 | {targets["home_batteries"]["schema"]} |
||
1393 | .{targets["home_batteries"]["table"]} |
||
1394 | WHERE scenario = '{scenario}' |
||
1395 | """ |
||
1396 | |||
1397 | home_batteries_buildings_df = db.select_dataframe( |
||
1398 | sql, index_col="index" |
||
1399 | ) |
||
1400 | |||
1401 | df = ( |
||
1402 | home_batteries_buildings_df[["bus_id", "p_nom", "capacity"]] |
||
1403 | .groupby("bus_id") |
||
1404 | .sum() |
||
1405 | ) |
||
1406 | |||
1407 | assert (home_batteries_df.round(6) == df.round(6)).all().all() |
||
1408 | |||
1409 | |||
1410 | def sanitycheck_dsm(): |
||
1411 | def df_from_series(s): |
||
1412 | return pd.DataFrame.from_dict(dict(zip(s.index, s.values))) |
||
1413 | |||
1414 | for scenario in ["eGon2035", "eGon100RE"]: |
||
1415 | # p_min and p_max |
||
1416 | sql = f""" |
||
1417 | SELECT link_id, bus0 as bus, p_nom FROM grid.egon_etrago_link |
||
1418 | WHERE carrier = 'dsm' |
||
1419 | AND scn_name = '{scenario}' |
||
1420 | ORDER BY link_id |
||
1421 | """ |
||
1422 | |||
1423 | meta_df = db.select_dataframe(sql, index_col="link_id") |
||
1424 | link_ids = str(meta_df.index.tolist())[1:-1] |
||
1425 | |||
1426 | sql = f""" |
||
1427 | SELECT link_id, p_min_pu, p_max_pu |
||
1428 | FROM grid.egon_etrago_link_timeseries |
||
1429 | WHERE scn_name = '{scenario}' |
||
1430 | AND link_id IN ({link_ids}) |
||
1431 | ORDER BY link_id |
||
1432 | """ |
||
1433 | |||
1434 | ts_df = db.select_dataframe(sql, index_col="link_id") |
||
1435 | |||
1436 | p_max_df = df_from_series(ts_df.p_max_pu).mul(meta_df.p_nom) |
||
1437 | p_min_df = df_from_series(ts_df.p_min_pu).mul(meta_df.p_nom) |
||
1438 | |||
1439 | p_max_df.columns = meta_df.bus.tolist() |
||
1440 | p_min_df.columns = meta_df.bus.tolist() |
||
1441 | |||
1442 | targets = config.datasets()["DSM_CTS_industry"]["targets"] |
||
1443 | |||
1444 | tables = [ |
||
1445 | "cts_loadcurves_dsm", |
||
1446 | "ind_osm_loadcurves_individual_dsm", |
||
1447 | "demandregio_ind_sites_dsm", |
||
1448 | "ind_sites_loadcurves_individual", |
||
1449 | ] |
||
1450 | |||
1451 | df_list = [] |
||
1452 | |||
1453 | for table in tables: |
||
1454 | target = targets[table] |
||
1455 | sql = f""" |
||
1456 | SELECT bus, p_nom, e_nom, p_min_pu, p_max_pu, e_max_pu, e_min_pu |
||
1457 | FROM {target["schema"]}.{target["table"]} |
||
1458 | WHERE scn_name = '{scenario}' |
||
1459 | ORDER BY bus |
||
1460 | """ |
||
1461 | |||
1462 | df_list.append(db.select_dataframe(sql)) |
||
1463 | |||
1464 | individual_ts_df = pd.concat(df_list, ignore_index=True) |
||
1465 | |||
1466 | groups = individual_ts_df[["bus"]].reset_index().groupby("bus").groups |
||
1467 | |||
1468 | individual_p_max_df = df_from_series(individual_ts_df.p_max_pu).mul( |
||
1469 | individual_ts_df.p_nom |
||
1470 | ) |
||
1471 | individual_p_max_df = pd.DataFrame( |
||
1472 | [ |
||
1473 | individual_p_max_df[idxs].sum(axis=1) |
||
1474 | for idxs in groups.values() |
||
1475 | ], |
||
1476 | index=groups.keys(), |
||
1477 | ).T |
||
1478 | individual_p_min_df = df_from_series(individual_ts_df.p_min_pu).mul( |
||
1479 | individual_ts_df.p_nom |
||
1480 | ) |
||
1481 | individual_p_min_df = pd.DataFrame( |
||
1482 | [ |
||
1483 | individual_p_min_df[idxs].sum(axis=1) |
||
1484 | for idxs in groups.values() |
||
1485 | ], |
||
1486 | index=groups.keys(), |
||
1487 | ).T |
||
1488 | |||
1489 | assert np.isclose(p_max_df, individual_p_max_df).all() |
||
1490 | assert np.isclose(p_min_df, individual_p_min_df).all() |
||
1491 | |||
1492 | # e_min and e_max |
||
1493 | sql = f""" |
||
1494 | SELECT store_id, bus, e_nom FROM grid.egon_etrago_store |
||
1495 | WHERE carrier = 'dsm' |
||
1496 | AND scn_name = '{scenario}' |
||
1497 | ORDER BY store_id |
||
1498 | """ |
||
1499 | |||
1500 | meta_df = db.select_dataframe(sql, index_col="store_id") |
||
1501 | store_ids = str(meta_df.index.tolist())[1:-1] |
||
1502 | |||
1503 | sql = f""" |
||
1504 | SELECT store_id, e_min_pu, e_max_pu |
||
1505 | FROM grid.egon_etrago_store_timeseries |
||
1506 | WHERE scn_name = '{scenario}' |
||
1507 | AND store_id IN ({store_ids}) |
||
1508 | ORDER BY store_id |
||
1509 | """ |
||
1510 | |||
1511 | ts_df = db.select_dataframe(sql, index_col="store_id") |
||
1512 | |||
1513 | e_max_df = df_from_series(ts_df.e_max_pu).mul(meta_df.e_nom) |
||
1514 | e_min_df = df_from_series(ts_df.e_min_pu).mul(meta_df.e_nom) |
||
1515 | |||
1516 | e_max_df.columns = meta_df.bus.tolist() |
||
1517 | e_min_df.columns = meta_df.bus.tolist() |
||
1518 | |||
1519 | individual_e_max_df = df_from_series(individual_ts_df.e_max_pu).mul( |
||
1520 | individual_ts_df.e_nom |
||
1521 | ) |
||
1522 | individual_e_max_df = pd.DataFrame( |
||
1523 | [ |
||
1524 | individual_e_max_df[idxs].sum(axis=1) |
||
1525 | for idxs in groups.values() |
||
1526 | ], |
||
1527 | index=groups.keys(), |
||
1528 | ).T |
||
1529 | individual_e_min_df = df_from_series(individual_ts_df.e_min_pu).mul( |
||
1530 | individual_ts_df.e_nom |
||
1531 | ) |
||
1532 | individual_e_min_df = pd.DataFrame( |
||
1533 | [ |
||
1534 | individual_e_min_df[idxs].sum(axis=1) |
||
1535 | for idxs in groups.values() |
||
1536 | ], |
||
1537 | index=groups.keys(), |
||
1538 | ).T |
||
1539 | |||
1540 | assert np.isclose(e_max_df, individual_e_max_df).all() |
||
1541 | assert np.isclose(e_min_df, individual_e_min_df).all() |
||
1542 |