1
|
|
|
""" |
2
|
|
|
This module does sanity checks for both the eGon2035 and the eGon100RE scenario |
3
|
|
|
separately where a percentage error is given to showcase difference in output |
4
|
|
|
and input values. Please note that there are missing input technologies in the |
5
|
|
|
supply tables. |
6
|
|
|
Authors: @ALonso, @dana, @nailend, @nesnoj, @khelfen |
7
|
|
|
""" |
8
|
|
|
from math import isclose |
9
|
|
|
from pathlib import Path |
10
|
|
|
|
11
|
|
|
from sqlalchemy import Numeric |
12
|
|
|
from sqlalchemy.sql import and_, cast, func, or_ |
13
|
|
|
import matplotlib.pyplot as plt |
14
|
|
|
import numpy as np |
15
|
|
|
import pandas as pd |
16
|
|
|
import seaborn as sns |
17
|
|
|
|
18
|
|
|
from egon.data import config, db, logger |
19
|
|
|
from egon.data.datasets import Dataset |
20
|
|
|
from egon.data.datasets.electricity_demand_timeseries.cts_buildings import ( |
21
|
|
|
EgonCtsElectricityDemandBuildingShare, |
22
|
|
|
EgonCtsHeatDemandBuildingShare, |
23
|
|
|
) |
24
|
|
|
from egon.data.datasets.emobility.motorized_individual_travel.db_classes import ( # noqa: E501 |
25
|
|
|
EgonEvCountMunicipality, |
26
|
|
|
EgonEvCountMvGridDistrict, |
27
|
|
|
EgonEvCountRegistrationDistrict, |
28
|
|
|
EgonEvMvGridDistrict, |
29
|
|
|
EgonEvPool, |
30
|
|
|
EgonEvTrip, |
31
|
|
|
) |
32
|
|
|
from egon.data.datasets.emobility.motorized_individual_travel.helpers import ( |
33
|
|
|
DATASET_CFG, |
34
|
|
|
read_simbev_metadata_file, |
35
|
|
|
) |
36
|
|
|
from egon.data.datasets.etrago_setup import ( |
37
|
|
|
EgonPfHvLink, |
38
|
|
|
EgonPfHvLinkTimeseries, |
39
|
|
|
EgonPfHvLoad, |
40
|
|
|
EgonPfHvLoadTimeseries, |
41
|
|
|
EgonPfHvStore, |
42
|
|
|
EgonPfHvStoreTimeseries, |
43
|
|
|
) |
44
|
|
|
from egon.data.datasets.power_plants.pv_rooftop_buildings import ( |
45
|
|
|
PV_CAP_PER_SQ_M, |
46
|
|
|
ROOF_FACTOR, |
47
|
|
|
SCENARIOS, |
48
|
|
|
load_building_data, |
49
|
|
|
scenario_data, |
50
|
|
|
) |
51
|
|
|
from egon.data.datasets.scenario_parameters import get_sector_parameters |
52
|
|
|
from egon.data.datasets.storages.home_batteries import get_cbat_pbat_ratio |
53
|
|
|
import egon.data |
54
|
|
|
|
55
|
|
|
TESTMODE_OFF = ( |
56
|
|
|
config.settings()["egon-data"]["--dataset-boundary"] == "Everything" |
57
|
|
|
) |
58
|
|
|
|
59
|
|
|
|
60
|
|
|
class SanityChecks(Dataset): |
61
|
|
|
def __init__(self, dependencies): |
62
|
|
|
super().__init__( |
63
|
|
|
name="SanityChecks", |
64
|
|
|
version="0.0.7", |
65
|
|
|
dependencies=dependencies, |
66
|
|
|
tasks={ |
67
|
|
|
etrago_eGon2035_electricity, |
68
|
|
|
etrago_eGon2035_heat, |
69
|
|
|
residential_electricity_annual_sum, |
70
|
|
|
residential_electricity_hh_refinement, |
71
|
|
|
cts_electricity_demand_share, |
72
|
|
|
cts_heat_demand_share, |
73
|
|
|
sanitycheck_emobility_mit, |
74
|
|
|
sanitycheck_pv_rooftop_buildings, |
75
|
|
|
sanitycheck_home_batteries, |
76
|
|
|
sanitycheck_dsm, |
77
|
|
|
}, |
78
|
|
|
) |
79
|
|
|
|
80
|
|
|
|
81
|
|
|
def etrago_eGon2035_electricity(): |
82
|
|
|
"""Execute basic sanity checks. |
83
|
|
|
|
84
|
|
|
Returns print statements as sanity checks for the electricity sector in |
85
|
|
|
the eGon2035 scenario. |
86
|
|
|
|
87
|
|
|
Parameters |
88
|
|
|
---------- |
89
|
|
|
None |
90
|
|
|
|
91
|
|
|
Returns |
92
|
|
|
------- |
93
|
|
|
None |
94
|
|
|
""" |
95
|
|
|
|
96
|
|
|
scn = "eGon2035" |
97
|
|
|
|
98
|
|
|
# Section to check generator capacities |
99
|
|
|
logger.info(f"Sanity checks for scenario {scn}") |
100
|
|
|
logger.info( |
101
|
|
|
"For German electricity generators the following deviations between " |
102
|
|
|
"the inputs and outputs can be observed:" |
103
|
|
|
) |
104
|
|
|
|
105
|
|
|
carriers_electricity = [ |
106
|
|
|
"others", |
107
|
|
|
"reservoir", |
108
|
|
|
"run_of_river", |
109
|
|
|
"oil", |
110
|
|
|
"wind_onshore", |
111
|
|
|
"wind_offshore", |
112
|
|
|
"solar", |
113
|
|
|
"solar_rooftop", |
114
|
|
|
"biomass", |
115
|
|
|
] |
116
|
|
|
|
117
|
|
|
for carrier in carriers_electricity: |
118
|
|
|
|
119
|
|
|
if carrier == "biomass": |
120
|
|
|
sum_output = db.select_dataframe( |
121
|
|
|
"""SELECT scn_name, SUM(p_nom::numeric) as output_capacity_mw |
122
|
|
|
FROM grid.egon_etrago_generator |
123
|
|
|
WHERE bus IN ( |
124
|
|
|
SELECT bus_id FROM grid.egon_etrago_bus |
125
|
|
|
WHERE scn_name = 'eGon2035' |
126
|
|
|
AND country = 'DE') |
127
|
|
|
AND carrier IN ('biomass', 'industrial_biomass_CHP', |
128
|
|
|
'central_biomass_CHP') |
129
|
|
|
GROUP BY (scn_name); |
130
|
|
|
""", |
131
|
|
|
warning=False, |
132
|
|
|
) |
133
|
|
|
|
134
|
|
|
else: |
135
|
|
|
sum_output = db.select_dataframe( |
136
|
|
|
f"""SELECT scn_name, |
137
|
|
|
SUM(p_nom::numeric) as output_capacity_mw |
138
|
|
|
FROM grid.egon_etrago_generator |
139
|
|
|
WHERE scn_name = '{scn}' |
140
|
|
|
AND carrier IN ('{carrier}') |
141
|
|
|
AND bus IN |
142
|
|
|
(SELECT bus_id |
143
|
|
|
FROM grid.egon_etrago_bus |
144
|
|
|
WHERE scn_name = 'eGon2035' |
145
|
|
|
AND country = 'DE') |
146
|
|
|
GROUP BY (scn_name); |
147
|
|
|
""", |
148
|
|
|
warning=False, |
149
|
|
|
) |
150
|
|
|
|
151
|
|
|
sum_input = db.select_dataframe( |
152
|
|
|
f"""SELECT carrier, SUM(capacity::numeric) as input_capacity_mw |
153
|
|
|
FROM supply.egon_scenario_capacities |
154
|
|
|
WHERE carrier= '{carrier}' |
155
|
|
|
AND scenario_name ='{scn}' |
156
|
|
|
GROUP BY (carrier); |
157
|
|
|
""", |
158
|
|
|
warning=False, |
159
|
|
|
) |
160
|
|
|
|
161
|
|
View Code Duplication |
if ( |
|
|
|
|
162
|
|
|
sum_output.output_capacity_mw.sum() == 0 |
163
|
|
|
and sum_input.input_capacity_mw.sum() == 0 |
164
|
|
|
): |
165
|
|
|
logger.info( |
166
|
|
|
f"No capacity for carrier '{carrier}' needed to be" |
167
|
|
|
f" distributed. Everything is fine" |
168
|
|
|
) |
169
|
|
|
|
170
|
|
|
elif ( |
171
|
|
|
sum_input.input_capacity_mw.sum() > 0 |
172
|
|
|
and sum_output.output_capacity_mw.sum() == 0 |
173
|
|
|
): |
174
|
|
|
logger.info( |
175
|
|
|
f"Error: Capacity for carrier '{carrier}' was not distributed " |
176
|
|
|
f"at all!" |
177
|
|
|
) |
178
|
|
|
|
179
|
|
|
elif ( |
180
|
|
|
sum_output.output_capacity_mw.sum() > 0 |
181
|
|
|
and sum_input.input_capacity_mw.sum() == 0 |
182
|
|
|
): |
183
|
|
|
logger.info( |
184
|
|
|
f"Error: Eventhough no input capacity was provided for carrier" |
185
|
|
|
f"'{carrier}' a capacity got distributed!" |
186
|
|
|
) |
187
|
|
|
|
188
|
|
|
else: |
189
|
|
|
sum_input["error"] = ( |
190
|
|
|
(sum_output.output_capacity_mw - sum_input.input_capacity_mw) |
191
|
|
|
/ sum_input.input_capacity_mw |
192
|
|
|
) * 100 |
193
|
|
|
g = sum_input["error"].values[0] |
194
|
|
|
|
195
|
|
|
logger.info(f"{carrier}: " + str(round(g, 2)) + " %") |
196
|
|
|
|
197
|
|
|
# Section to check storage units |
198
|
|
|
|
199
|
|
|
logger.info(f"Sanity checks for scenario {scn}") |
200
|
|
|
logger.info( |
201
|
|
|
"For German electrical storage units the following deviations between" |
202
|
|
|
"the inputs and outputs can be observed:" |
203
|
|
|
) |
204
|
|
|
|
205
|
|
|
carriers_electricity = ["pumped_hydro"] |
206
|
|
|
|
207
|
|
|
for carrier in carriers_electricity: |
208
|
|
|
|
209
|
|
|
sum_output = db.select_dataframe( |
210
|
|
|
f"""SELECT scn_name, SUM(p_nom::numeric) as output_capacity_mw |
211
|
|
|
FROM grid.egon_etrago_storage |
212
|
|
|
WHERE scn_name = '{scn}' |
213
|
|
|
AND carrier IN ('{carrier}') |
214
|
|
|
AND bus IN |
215
|
|
|
(SELECT bus_id |
216
|
|
|
FROM grid.egon_etrago_bus |
217
|
|
|
WHERE scn_name = 'eGon2035' |
218
|
|
|
AND country = 'DE') |
219
|
|
|
GROUP BY (scn_name); |
220
|
|
|
""", |
221
|
|
|
warning=False, |
222
|
|
|
) |
223
|
|
|
|
224
|
|
|
sum_input = db.select_dataframe( |
225
|
|
|
f"""SELECT carrier, SUM(capacity::numeric) as input_capacity_mw |
226
|
|
|
FROM supply.egon_scenario_capacities |
227
|
|
|
WHERE carrier= '{carrier}' |
228
|
|
|
AND scenario_name ='{scn}' |
229
|
|
|
GROUP BY (carrier); |
230
|
|
|
""", |
231
|
|
|
warning=False, |
232
|
|
|
) |
233
|
|
|
|
234
|
|
View Code Duplication |
if ( |
|
|
|
|
235
|
|
|
sum_output.output_capacity_mw.sum() == 0 |
236
|
|
|
and sum_input.input_capacity_mw.sum() == 0 |
237
|
|
|
): |
238
|
|
|
print( |
239
|
|
|
f"No capacity for carrier '{carrier}' needed to be " |
240
|
|
|
f"distributed. Everything is fine" |
241
|
|
|
) |
242
|
|
|
|
243
|
|
|
elif ( |
244
|
|
|
sum_input.input_capacity_mw.sum() > 0 |
245
|
|
|
and sum_output.output_capacity_mw.sum() == 0 |
246
|
|
|
): |
247
|
|
|
print( |
248
|
|
|
f"Error: Capacity for carrier '{carrier}' was not distributed" |
249
|
|
|
f" at all!" |
250
|
|
|
) |
251
|
|
|
|
252
|
|
|
elif ( |
253
|
|
|
sum_output.output_capacity_mw.sum() > 0 |
254
|
|
|
and sum_input.input_capacity_mw.sum() == 0 |
255
|
|
|
): |
256
|
|
|
print( |
257
|
|
|
f"Error: Eventhough no input capacity was provided for carrier" |
258
|
|
|
f" '{carrier}' a capacity got distributed!" |
259
|
|
|
) |
260
|
|
|
|
261
|
|
|
else: |
262
|
|
|
sum_input["error"] = ( |
263
|
|
|
(sum_output.output_capacity_mw - sum_input.input_capacity_mw) |
264
|
|
|
/ sum_input.input_capacity_mw |
265
|
|
|
) * 100 |
266
|
|
|
g = sum_input["error"].values[0] |
267
|
|
|
|
268
|
|
|
print(f"{carrier}: " + str(round(g, 2)) + " %") |
269
|
|
|
|
270
|
|
|
# Section to check loads |
271
|
|
|
|
272
|
|
|
print( |
273
|
|
|
"For German electricity loads the following deviations between the" |
274
|
|
|
" input and output can be observed:" |
275
|
|
|
) |
276
|
|
|
|
277
|
|
|
output_demand = db.select_dataframe( |
278
|
|
|
"""SELECT a.scn_name, a.carrier, SUM((SELECT SUM(p) |
279
|
|
|
FROM UNNEST(b.p_set) p))/1000000::numeric as load_twh |
280
|
|
|
FROM grid.egon_etrago_load a |
281
|
|
|
JOIN grid.egon_etrago_load_timeseries b |
282
|
|
|
ON (a.load_id = b.load_id) |
283
|
|
|
JOIN grid.egon_etrago_bus c |
284
|
|
|
ON (a.bus=c.bus_id) |
285
|
|
|
AND b.scn_name = 'eGon2035' |
286
|
|
|
AND a.scn_name = 'eGon2035' |
287
|
|
|
AND a.carrier = 'AC' |
288
|
|
|
AND c.scn_name= 'eGon2035' |
289
|
|
|
AND c.country='DE' |
290
|
|
|
GROUP BY (a.scn_name, a.carrier); |
291
|
|
|
|
292
|
|
|
""", |
293
|
|
|
warning=False, |
294
|
|
|
)["load_twh"].values[0] |
295
|
|
|
|
296
|
|
|
input_cts_ind = db.select_dataframe( |
297
|
|
|
"""SELECT scenario, |
298
|
|
|
SUM(demand::numeric/1000000) as demand_mw_regio_cts_ind |
299
|
|
|
FROM demand.egon_demandregio_cts_ind |
300
|
|
|
WHERE scenario= 'eGon2035' |
301
|
|
|
AND year IN ('2035') |
302
|
|
|
GROUP BY (scenario); |
303
|
|
|
|
304
|
|
|
""", |
305
|
|
|
warning=False, |
306
|
|
|
)["demand_mw_regio_cts_ind"].values[0] |
307
|
|
|
|
308
|
|
|
input_hh = db.select_dataframe( |
309
|
|
|
"""SELECT scenario, SUM(demand::numeric/1000000) as demand_mw_regio_hh |
310
|
|
|
FROM demand.egon_demandregio_hh |
311
|
|
|
WHERE scenario= 'eGon2035' |
312
|
|
|
AND year IN ('2035') |
313
|
|
|
GROUP BY (scenario); |
314
|
|
|
""", |
315
|
|
|
warning=False, |
316
|
|
|
)["demand_mw_regio_hh"].values[0] |
317
|
|
|
|
318
|
|
|
input_demand = input_hh + input_cts_ind |
319
|
|
|
|
320
|
|
|
e = round((output_demand - input_demand) / input_demand, 2) * 100 |
321
|
|
|
|
322
|
|
|
print(f"electricity demand: {e} %") |
323
|
|
|
|
324
|
|
|
|
325
|
|
|
def etrago_eGon2035_heat(): |
326
|
|
|
"""Execute basic sanity checks. |
327
|
|
|
|
328
|
|
|
Returns print statements as sanity checks for the heat sector in |
329
|
|
|
the eGon2035 scenario. |
330
|
|
|
|
331
|
|
|
Parameters |
332
|
|
|
---------- |
333
|
|
|
None |
334
|
|
|
|
335
|
|
|
Returns |
336
|
|
|
------- |
337
|
|
|
None |
338
|
|
|
""" |
339
|
|
|
|
340
|
|
|
# Check input and output values for the carriers "others", |
341
|
|
|
# "reservoir", "run_of_river" and "oil" |
342
|
|
|
|
343
|
|
|
scn = "eGon2035" |
344
|
|
|
|
345
|
|
|
# Section to check generator capacities |
346
|
|
|
print(f"Sanity checks for scenario {scn}") |
347
|
|
|
print( |
348
|
|
|
"For German heat demands the following deviations between the inputs" |
349
|
|
|
" and outputs can be observed:" |
350
|
|
|
) |
351
|
|
|
|
352
|
|
|
# Sanity checks for heat demand |
353
|
|
|
|
354
|
|
|
output_heat_demand = db.select_dataframe( |
355
|
|
|
"""SELECT a.scn_name, |
356
|
|
|
(SUM( |
357
|
|
|
(SELECT SUM(p) FROM UNNEST(b.p_set) p))/1000000)::numeric as load_twh |
358
|
|
|
FROM grid.egon_etrago_load a |
359
|
|
|
JOIN grid.egon_etrago_load_timeseries b |
360
|
|
|
ON (a.load_id = b.load_id) |
361
|
|
|
JOIN grid.egon_etrago_bus c |
362
|
|
|
ON (a.bus=c.bus_id) |
363
|
|
|
AND b.scn_name = 'eGon2035' |
364
|
|
|
AND a.scn_name = 'eGon2035' |
365
|
|
|
AND c.scn_name= 'eGon2035' |
366
|
|
|
AND c.country='DE' |
367
|
|
|
AND a.carrier IN ('rural_heat', 'central_heat') |
368
|
|
|
GROUP BY (a.scn_name); |
369
|
|
|
""", |
370
|
|
|
warning=False, |
371
|
|
|
)["load_twh"].values[0] |
372
|
|
|
|
373
|
|
|
input_heat_demand = db.select_dataframe( |
374
|
|
|
"""SELECT scenario, SUM(demand::numeric/1000000) as demand_mw_peta_heat |
375
|
|
|
FROM demand.egon_peta_heat |
376
|
|
|
WHERE scenario= 'eGon2035' |
377
|
|
|
GROUP BY (scenario); |
378
|
|
|
""", |
379
|
|
|
warning=False, |
380
|
|
|
)["demand_mw_peta_heat"].values[0] |
381
|
|
|
|
382
|
|
|
e_demand = ( |
383
|
|
|
round((output_heat_demand - input_heat_demand) / input_heat_demand, 2) |
384
|
|
|
* 100 |
385
|
|
|
) |
386
|
|
|
|
387
|
|
|
logger.info(f"heat demand: {e_demand} %") |
388
|
|
|
|
389
|
|
|
# Sanity checks for heat supply |
390
|
|
|
|
391
|
|
|
logger.info( |
392
|
|
|
"For German heat supplies the following deviations between the inputs " |
393
|
|
|
"and outputs can be observed:" |
394
|
|
|
) |
395
|
|
|
|
396
|
|
|
# Comparison for central heat pumps |
397
|
|
|
heat_pump_input = db.select_dataframe( |
398
|
|
|
"""SELECT carrier, SUM(capacity::numeric) as Urban_central_heat_pump_mw |
399
|
|
|
FROM supply.egon_scenario_capacities |
400
|
|
|
WHERE carrier= 'urban_central_heat_pump' |
401
|
|
|
AND scenario_name IN ('eGon2035') |
402
|
|
|
GROUP BY (carrier); |
403
|
|
|
""", |
404
|
|
|
warning=False, |
405
|
|
|
)["urban_central_heat_pump_mw"].values[0] |
406
|
|
|
|
407
|
|
|
heat_pump_output = db.select_dataframe( |
408
|
|
|
"""SELECT carrier, SUM(p_nom::numeric) as Central_heat_pump_mw |
409
|
|
|
FROM grid.egon_etrago_link |
410
|
|
|
WHERE carrier= 'central_heat_pump' |
411
|
|
|
AND scn_name IN ('eGon2035') |
412
|
|
|
GROUP BY (carrier); |
413
|
|
|
""", |
414
|
|
|
warning=False, |
415
|
|
|
)["central_heat_pump_mw"].values[0] |
416
|
|
|
|
417
|
|
|
e_heat_pump = ( |
418
|
|
|
round((heat_pump_output - heat_pump_input) / heat_pump_output, 2) * 100 |
419
|
|
|
) |
420
|
|
|
|
421
|
|
|
logger.info(f"'central_heat_pump': {e_heat_pump} % ") |
422
|
|
|
|
423
|
|
|
# Comparison for residential heat pumps |
424
|
|
|
|
425
|
|
|
input_residential_heat_pump = db.select_dataframe( |
426
|
|
|
"""SELECT carrier, SUM(capacity::numeric) as residential_heat_pump_mw |
427
|
|
|
FROM supply.egon_scenario_capacities |
428
|
|
|
WHERE carrier= 'residential_rural_heat_pump' |
429
|
|
|
AND scenario_name IN ('eGon2035') |
430
|
|
|
GROUP BY (carrier); |
431
|
|
|
""", |
432
|
|
|
warning=False, |
433
|
|
|
)["residential_heat_pump_mw"].values[0] |
434
|
|
|
|
435
|
|
|
output_residential_heat_pump = db.select_dataframe( |
436
|
|
|
"""SELECT carrier, SUM(p_nom::numeric) as rural_heat_pump_mw |
437
|
|
|
FROM grid.egon_etrago_link |
438
|
|
|
WHERE carrier= 'rural_heat_pump' |
439
|
|
|
AND scn_name IN ('eGon2035') |
440
|
|
|
GROUP BY (carrier); |
441
|
|
|
""", |
442
|
|
|
warning=False, |
443
|
|
|
)["rural_heat_pump_mw"].values[0] |
444
|
|
|
|
445
|
|
|
e_residential_heat_pump = ( |
446
|
|
|
round( |
447
|
|
|
(output_residential_heat_pump - input_residential_heat_pump) |
448
|
|
|
/ input_residential_heat_pump, |
449
|
|
|
2, |
450
|
|
|
) |
451
|
|
|
* 100 |
452
|
|
|
) |
453
|
|
|
logger.info(f"'residential heat pumps': {e_residential_heat_pump} %") |
454
|
|
|
|
455
|
|
|
# Comparison for resistive heater |
456
|
|
|
resistive_heater_input = db.select_dataframe( |
457
|
|
|
"""SELECT carrier, |
458
|
|
|
SUM(capacity::numeric) as Urban_central_resistive_heater_MW |
459
|
|
|
FROM supply.egon_scenario_capacities |
460
|
|
|
WHERE carrier= 'urban_central_resistive_heater' |
461
|
|
|
AND scenario_name IN ('eGon2035') |
462
|
|
|
GROUP BY (carrier); |
463
|
|
|
""", |
464
|
|
|
warning=False, |
465
|
|
|
)["urban_central_resistive_heater_mw"].values[0] |
466
|
|
|
|
467
|
|
|
resistive_heater_output = db.select_dataframe( |
468
|
|
|
"""SELECT carrier, SUM(p_nom::numeric) as central_resistive_heater_MW |
469
|
|
|
FROM grid.egon_etrago_link |
470
|
|
|
WHERE carrier= 'central_resistive_heater' |
471
|
|
|
AND scn_name IN ('eGon2035') |
472
|
|
|
GROUP BY (carrier); |
473
|
|
|
""", |
474
|
|
|
warning=False, |
475
|
|
|
)["central_resistive_heater_mw"].values[0] |
476
|
|
|
|
477
|
|
|
e_resistive_heater = ( |
478
|
|
|
round( |
479
|
|
|
(resistive_heater_output - resistive_heater_input) |
480
|
|
|
/ resistive_heater_input, |
481
|
|
|
2, |
482
|
|
|
) |
483
|
|
|
* 100 |
484
|
|
|
) |
485
|
|
|
|
486
|
|
|
logger.info(f"'resistive heater': {e_resistive_heater} %") |
487
|
|
|
|
488
|
|
|
# Comparison for solar thermal collectors |
489
|
|
|
|
490
|
|
|
input_solar_thermal = db.select_dataframe( |
491
|
|
|
"""SELECT carrier, SUM(capacity::numeric) as solar_thermal_collector_mw |
492
|
|
|
FROM supply.egon_scenario_capacities |
493
|
|
|
WHERE carrier= 'urban_central_solar_thermal_collector' |
494
|
|
|
AND scenario_name IN ('eGon2035') |
495
|
|
|
GROUP BY (carrier); |
496
|
|
|
""", |
497
|
|
|
warning=False, |
498
|
|
|
)["solar_thermal_collector_mw"].values[0] |
499
|
|
|
|
500
|
|
|
output_solar_thermal = db.select_dataframe( |
501
|
|
|
"""SELECT carrier, SUM(p_nom::numeric) as solar_thermal_collector_mw |
502
|
|
|
FROM grid.egon_etrago_generator |
503
|
|
|
WHERE carrier= 'solar_thermal_collector' |
504
|
|
|
AND scn_name IN ('eGon2035') |
505
|
|
|
GROUP BY (carrier); |
506
|
|
|
""", |
507
|
|
|
warning=False, |
508
|
|
|
)["solar_thermal_collector_mw"].values[0] |
509
|
|
|
|
510
|
|
|
e_solar_thermal = ( |
511
|
|
|
round( |
512
|
|
|
(output_solar_thermal - input_solar_thermal) / input_solar_thermal, |
513
|
|
|
2, |
514
|
|
|
) |
515
|
|
|
* 100 |
516
|
|
|
) |
517
|
|
|
logger.info(f"'solar thermal collector': {e_solar_thermal} %") |
518
|
|
|
|
519
|
|
|
# Comparison for geothermal |
520
|
|
|
|
521
|
|
|
input_geo_thermal = db.select_dataframe( |
522
|
|
|
"""SELECT carrier, |
523
|
|
|
SUM(capacity::numeric) as Urban_central_geo_thermal_MW |
524
|
|
|
FROM supply.egon_scenario_capacities |
525
|
|
|
WHERE carrier= 'urban_central_geo_thermal' |
526
|
|
|
AND scenario_name IN ('eGon2035') |
527
|
|
|
GROUP BY (carrier); |
528
|
|
|
""", |
529
|
|
|
warning=False, |
530
|
|
|
)["urban_central_geo_thermal_mw"].values[0] |
531
|
|
|
|
532
|
|
|
output_geo_thermal = db.select_dataframe( |
533
|
|
|
"""SELECT carrier, SUM(p_nom::numeric) as geo_thermal_MW |
534
|
|
|
FROM grid.egon_etrago_generator |
535
|
|
|
WHERE carrier= 'geo_thermal' |
536
|
|
|
AND scn_name IN ('eGon2035') |
537
|
|
|
GROUP BY (carrier); |
538
|
|
|
""", |
539
|
|
|
warning=False, |
540
|
|
|
)["geo_thermal_mw"].values[0] |
541
|
|
|
|
542
|
|
|
e_geo_thermal = ( |
543
|
|
|
round((output_geo_thermal - input_geo_thermal) / input_geo_thermal, 2) |
544
|
|
|
* 100 |
545
|
|
|
) |
546
|
|
|
logger.info(f"'geothermal': {e_geo_thermal} %") |
547
|
|
|
|
548
|
|
|
|
549
|
|
|
def residential_electricity_annual_sum(rtol=1e-5): |
550
|
|
|
"""Sanity check for dataset electricity_demand_timeseries : |
551
|
|
|
Demand_Building_Assignment |
552
|
|
|
|
553
|
|
|
Aggregate the annual demand of all census cells at NUTS3 to compare |
554
|
|
|
with initial scaling parameters from DemandRegio. |
555
|
|
|
""" |
556
|
|
|
|
557
|
|
|
df_nuts3_annual_sum = db.select_dataframe( |
558
|
|
|
sql=""" |
559
|
|
|
SELECT dr.nuts3, dr.scenario, dr.demand_regio_sum, profiles.profile_sum |
560
|
|
|
FROM ( |
561
|
|
|
SELECT scenario, SUM(demand) AS profile_sum, vg250_nuts3 |
562
|
|
|
FROM demand.egon_demandregio_zensus_electricity AS egon, |
563
|
|
|
boundaries.egon_map_zensus_vg250 AS boundaries |
564
|
|
|
Where egon.zensus_population_id = boundaries.zensus_population_id |
565
|
|
|
AND sector = 'residential' |
566
|
|
|
GROUP BY vg250_nuts3, scenario |
567
|
|
|
) AS profiles |
568
|
|
|
JOIN ( |
569
|
|
|
SELECT nuts3, scenario, sum(demand) AS demand_regio_sum |
570
|
|
|
FROM demand.egon_demandregio_hh |
571
|
|
|
GROUP BY year, scenario, nuts3 |
572
|
|
|
) AS dr |
573
|
|
|
ON profiles.vg250_nuts3 = dr.nuts3 and profiles.scenario = dr.scenario |
574
|
|
|
""" |
575
|
|
|
) |
576
|
|
|
|
577
|
|
|
np.testing.assert_allclose( |
578
|
|
|
actual=df_nuts3_annual_sum["profile_sum"], |
579
|
|
|
desired=df_nuts3_annual_sum["demand_regio_sum"], |
580
|
|
|
rtol=rtol, |
581
|
|
|
verbose=False, |
582
|
|
|
) |
583
|
|
|
|
584
|
|
|
logger.info( |
585
|
|
|
"Aggregated annual residential electricity demand" |
586
|
|
|
" matches with DemandRegio at NUTS-3." |
587
|
|
|
) |
588
|
|
|
|
589
|
|
|
|
590
|
|
|
def residential_electricity_hh_refinement(rtol=1e-5): |
591
|
|
|
"""Sanity check for dataset electricity_demand_timeseries : |
592
|
|
|
Household Demands |
593
|
|
|
|
594
|
|
|
Check sum of aggregated household types after refinement method |
595
|
|
|
was applied and compare it to the original census values.""" |
596
|
|
|
|
597
|
|
|
df_refinement = db.select_dataframe( |
598
|
|
|
sql=""" |
599
|
|
|
SELECT refined.nuts3, refined.characteristics_code, |
600
|
|
|
refined.sum_refined::int, census.sum_census::int |
601
|
|
|
FROM( |
602
|
|
|
SELECT nuts3, characteristics_code, SUM(hh_10types) as sum_refined |
603
|
|
|
FROM society.egon_destatis_zensus_household_per_ha_refined |
604
|
|
|
GROUP BY nuts3, characteristics_code) |
605
|
|
|
AS refined |
606
|
|
|
JOIN( |
607
|
|
|
SELECT t.nuts3, t.characteristics_code, sum(orig) as sum_census |
608
|
|
|
FROM( |
609
|
|
|
SELECT nuts3, cell_id, characteristics_code, |
610
|
|
|
sum(DISTINCT(hh_5types))as orig |
611
|
|
|
FROM society.egon_destatis_zensus_household_per_ha_refined |
612
|
|
|
GROUP BY cell_id, characteristics_code, nuts3) AS t |
613
|
|
|
GROUP BY t.nuts3, t.characteristics_code ) AS census |
614
|
|
|
ON refined.nuts3 = census.nuts3 |
615
|
|
|
AND refined.characteristics_code = census.characteristics_code |
616
|
|
|
""" |
617
|
|
|
) |
618
|
|
|
|
619
|
|
|
np.testing.assert_allclose( |
620
|
|
|
actual=df_refinement["sum_refined"], |
621
|
|
|
desired=df_refinement["sum_census"], |
622
|
|
|
rtol=rtol, |
623
|
|
|
verbose=False, |
624
|
|
|
) |
625
|
|
|
|
626
|
|
|
logger.info("All Aggregated household types match at NUTS-3.") |
627
|
|
|
|
628
|
|
|
|
629
|
|
|
def cts_electricity_demand_share(rtol=1e-5): |
630
|
|
|
"""Sanity check for dataset electricity_demand_timeseries : |
631
|
|
|
CtsBuildings |
632
|
|
|
|
633
|
|
|
Check sum of aggregated cts electricity demand share which equals to one |
634
|
|
|
for every substation as the substation profile is linearly disaggregated |
635
|
|
|
to all buildings.""" |
636
|
|
|
|
637
|
|
|
with db.session_scope() as session: |
638
|
|
|
cells_query = session.query(EgonCtsElectricityDemandBuildingShare) |
639
|
|
|
|
640
|
|
|
df_demand_share = pd.read_sql( |
641
|
|
|
cells_query.statement, cells_query.session.bind, index_col=None |
642
|
|
|
) |
643
|
|
|
|
644
|
|
|
np.testing.assert_allclose( |
645
|
|
|
actual=df_demand_share.groupby(["bus_id", "scenario"])[ |
646
|
|
|
"profile_share" |
647
|
|
|
].sum(), |
648
|
|
|
desired=1, |
649
|
|
|
rtol=rtol, |
650
|
|
|
verbose=False, |
651
|
|
|
) |
652
|
|
|
|
653
|
|
|
logger.info("The aggregated demand shares equal to one!.") |
654
|
|
|
|
655
|
|
|
|
656
|
|
|
def cts_heat_demand_share(rtol=1e-5): |
657
|
|
|
"""Sanity check for dataset electricity_demand_timeseries |
658
|
|
|
: CtsBuildings |
659
|
|
|
|
660
|
|
|
Check sum of aggregated cts heat demand share which equals to one |
661
|
|
|
for every substation as the substation profile is linearly disaggregated |
662
|
|
|
to all buildings.""" |
663
|
|
|
|
664
|
|
|
with db.session_scope() as session: |
665
|
|
|
cells_query = session.query(EgonCtsHeatDemandBuildingShare) |
666
|
|
|
|
667
|
|
|
df_demand_share = pd.read_sql( |
668
|
|
|
cells_query.statement, cells_query.session.bind, index_col=None |
669
|
|
|
) |
670
|
|
|
|
671
|
|
|
np.testing.assert_allclose( |
672
|
|
|
actual=df_demand_share.groupby(["bus_id", "scenario"])[ |
673
|
|
|
"profile_share" |
674
|
|
|
].sum(), |
675
|
|
|
desired=1, |
676
|
|
|
rtol=rtol, |
677
|
|
|
verbose=False, |
678
|
|
|
) |
679
|
|
|
|
680
|
|
|
logger.info("The aggregated demand shares equal to one!.") |
681
|
|
|
|
682
|
|
|
|
683
|
|
|
def sanitycheck_pv_rooftop_buildings(): |
684
|
|
|
def egon_power_plants_pv_roof_building(): |
685
|
|
|
sql = """ |
686
|
|
|
SELECT * |
687
|
|
|
FROM supply.egon_power_plants_pv_roof_building |
688
|
|
|
""" |
689
|
|
|
|
690
|
|
|
return db.select_dataframe(sql, index_col="index") |
691
|
|
|
|
692
|
|
|
pv_roof_df = egon_power_plants_pv_roof_building() |
693
|
|
|
|
694
|
|
|
valid_buildings_gdf = load_building_data() |
695
|
|
|
|
696
|
|
|
valid_buildings_gdf = valid_buildings_gdf.assign( |
697
|
|
|
bus_id=valid_buildings_gdf.bus_id.astype(int), |
698
|
|
|
overlay_id=valid_buildings_gdf.overlay_id.astype(int), |
699
|
|
|
max_cap=valid_buildings_gdf.building_area.multiply( |
700
|
|
|
ROOF_FACTOR * PV_CAP_PER_SQ_M |
701
|
|
|
), |
702
|
|
|
) |
703
|
|
|
|
704
|
|
|
merge_df = pv_roof_df.merge( |
705
|
|
|
valid_buildings_gdf[["building_area"]], |
706
|
|
|
how="left", |
707
|
|
|
left_on="building_id", |
708
|
|
|
right_index=True, |
709
|
|
|
) |
710
|
|
|
|
711
|
|
|
assert ( |
712
|
|
|
len(merge_df.loc[merge_df.building_area.isna()]) == 0 |
713
|
|
|
), f"{len(merge_df.loc[merge_df.building_area.isna()])} != 0" |
714
|
|
|
|
715
|
|
|
scenarios = ["status_quo", "eGon2035"] |
716
|
|
|
|
717
|
|
|
base_path = Path(egon.data.__path__[0]).resolve() |
718
|
|
|
|
719
|
|
|
res_dir = base_path / "sanity_checks" |
720
|
|
|
|
721
|
|
|
res_dir.mkdir(parents=True, exist_ok=True) |
722
|
|
|
|
723
|
|
|
for scenario in scenarios: |
724
|
|
|
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 8)) |
725
|
|
|
|
726
|
|
|
scenario_df = merge_df.loc[merge_df.scenario == scenario] |
727
|
|
|
|
728
|
|
|
logger.info( |
729
|
|
|
scenario + " Capacity:\n" + str(scenario_df.capacity.describe()) |
730
|
|
|
) |
731
|
|
|
|
732
|
|
|
small_gens_df = scenario_df.loc[scenario_df.capacity < 100] |
733
|
|
|
|
734
|
|
|
sns.histplot(data=small_gens_df, x="capacity", ax=ax1).set_title( |
735
|
|
|
scenario |
736
|
|
|
) |
737
|
|
|
|
738
|
|
|
sns.scatterplot( |
739
|
|
|
data=small_gens_df, x="capacity", y="building_area", ax=ax2 |
740
|
|
|
).set_title(scenario) |
741
|
|
|
|
742
|
|
|
plt.tight_layout() |
743
|
|
|
|
744
|
|
|
plt.savefig( |
745
|
|
|
res_dir / f"{scenario}_pv_rooftop_distribution.png", |
746
|
|
|
bbox_inches="tight", |
747
|
|
|
) |
748
|
|
|
|
749
|
|
|
for scenario in SCENARIOS: |
750
|
|
|
if scenario == "eGon2035": |
751
|
|
|
assert isclose( |
752
|
|
|
scenario_data(scenario=scenario).capacity.sum(), |
753
|
|
|
merge_df.loc[merge_df.scenario == scenario].capacity.sum(), |
754
|
|
|
rel_tol=1e-02, |
755
|
|
|
), ( |
756
|
|
|
f"{scenario_data(scenario=scenario).capacity.sum()} != " |
757
|
|
|
f"{merge_df.loc[merge_df.scenario == scenario].capacity.sum()}" |
758
|
|
|
) |
759
|
|
|
elif scenario == "eGon100RE": |
760
|
|
|
sources = config.datasets()["solar_rooftop"]["sources"] |
761
|
|
|
|
762
|
|
|
target = db.select_dataframe( |
763
|
|
|
f""" |
764
|
|
|
SELECT capacity |
765
|
|
|
FROM {sources['scenario_capacities']['schema']}. |
766
|
|
|
{sources['scenario_capacities']['table']} a |
767
|
|
|
WHERE carrier = 'solar_rooftop' |
768
|
|
|
AND scenario_name = '{scenario}' |
769
|
|
|
""" |
770
|
|
|
).capacity[0] |
771
|
|
|
|
772
|
|
|
dataset = config.settings()["egon-data"]["--dataset-boundary"] |
773
|
|
|
|
774
|
|
View Code Duplication |
if dataset == "Schleswig-Holstein": |
|
|
|
|
775
|
|
|
sources = config.datasets()["scenario_input"]["sources"] |
776
|
|
|
|
777
|
|
|
path = Path( |
778
|
|
|
f"./data_bundle_egon_data/nep2035_version2021/" |
779
|
|
|
f"{sources['eGon2035']['capacities']}" |
780
|
|
|
).resolve() |
781
|
|
|
|
782
|
|
|
total_2035 = ( |
783
|
|
|
pd.read_excel( |
784
|
|
|
path, |
785
|
|
|
sheet_name="1.Entwurf_NEP2035_V2021", |
786
|
|
|
index_col="Unnamed: 0", |
787
|
|
|
).at["PV (Aufdach)", "Summe"] |
788
|
|
|
* 1000 |
789
|
|
|
) |
790
|
|
|
sh_2035 = scenario_data(scenario="eGon2035").capacity.sum() |
791
|
|
|
|
792
|
|
|
share = sh_2035 / total_2035 |
793
|
|
|
|
794
|
|
|
target *= share |
795
|
|
|
|
796
|
|
|
assert isclose( |
797
|
|
|
target, |
798
|
|
|
merge_df.loc[merge_df.scenario == scenario].capacity.sum(), |
799
|
|
|
rel_tol=1e-02, |
800
|
|
|
), ( |
801
|
|
|
f"{target} != " |
802
|
|
|
f"{merge_df.loc[merge_df.scenario == scenario].capacity.sum()}" |
803
|
|
|
) |
804
|
|
|
else: |
805
|
|
|
raise ValueError(f"Scenario {scenario} is not valid.") |
806
|
|
|
|
807
|
|
|
|
808
|
|
|
def sanitycheck_emobility_mit(): |
809
|
|
|
"""Execute sanity checks for eMobility: motorized individual travel |
810
|
|
|
|
811
|
|
|
Checks data integrity for eGon2035, eGon2035_lowflex and eGon100RE scenario |
812
|
|
|
using assertions: |
813
|
|
|
1. Allocated EV numbers and EVs allocated to grid districts |
814
|
|
|
2. Trip data (original inout data from simBEV) |
815
|
|
|
3. Model data in eTraGo PF tables (grid.egon_etrago_*) |
816
|
|
|
|
817
|
|
|
Parameters |
818
|
|
|
---------- |
819
|
|
|
None |
820
|
|
|
|
821
|
|
|
Returns |
822
|
|
|
------- |
823
|
|
|
None |
824
|
|
|
""" |
825
|
|
|
|
826
|
|
|
def check_ev_allocation(): |
827
|
|
|
# Get target number for scenario |
828
|
|
|
ev_count_target = scenario_variation_parameters["ev_count"] |
829
|
|
|
print(f" Target count: {str(ev_count_target)}") |
830
|
|
|
|
831
|
|
|
# Get allocated numbers |
832
|
|
|
ev_counts_dict = {} |
833
|
|
|
with db.session_scope() as session: |
834
|
|
|
for table, level in zip( |
835
|
|
|
[ |
836
|
|
|
EgonEvCountMvGridDistrict, |
837
|
|
|
EgonEvCountMunicipality, |
838
|
|
|
EgonEvCountRegistrationDistrict, |
839
|
|
|
], |
840
|
|
|
["Grid District", "Municipality", "Registration District"], |
841
|
|
|
): |
842
|
|
|
query = session.query( |
843
|
|
|
func.sum( |
844
|
|
|
table.bev_mini |
845
|
|
|
+ table.bev_medium |
846
|
|
|
+ table.bev_luxury |
847
|
|
|
+ table.phev_mini |
848
|
|
|
+ table.phev_medium |
849
|
|
|
+ table.phev_luxury |
850
|
|
|
).label("ev_count") |
851
|
|
|
).filter( |
852
|
|
|
table.scenario == scenario_name, |
853
|
|
|
table.scenario_variation == scenario_var_name, |
854
|
|
|
) |
855
|
|
|
|
856
|
|
|
ev_counts = pd.read_sql( |
857
|
|
|
query.statement, query.session.bind, index_col=None |
858
|
|
|
) |
859
|
|
|
ev_counts_dict[level] = ev_counts.iloc[0].ev_count |
860
|
|
|
print( |
861
|
|
|
f" Count table: Total count for level {level} " |
862
|
|
|
f"(table: {table.__table__}): " |
863
|
|
|
f"{str(ev_counts_dict[level])}" |
864
|
|
|
) |
865
|
|
|
|
866
|
|
|
# Compare with scenario target (only if not in testmode) |
867
|
|
|
if TESTMODE_OFF: |
868
|
|
|
for level, count in ev_counts_dict.items(): |
869
|
|
|
np.testing.assert_allclose( |
870
|
|
|
count, |
871
|
|
|
ev_count_target, |
872
|
|
|
rtol=0.0001, |
873
|
|
|
err_msg=f"EV numbers in {level} seems to be flawed.", |
874
|
|
|
) |
875
|
|
|
else: |
876
|
|
|
print(" Testmode is on, skipping sanity check...") |
877
|
|
|
|
878
|
|
|
# Get allocated EVs in grid districts |
879
|
|
|
with db.session_scope() as session: |
880
|
|
|
query = session.query( |
881
|
|
|
func.count(EgonEvMvGridDistrict.egon_ev_pool_ev_id).label( |
882
|
|
|
"ev_count" |
883
|
|
|
), |
884
|
|
|
).filter( |
885
|
|
|
EgonEvMvGridDistrict.scenario == scenario_name, |
886
|
|
|
EgonEvMvGridDistrict.scenario_variation == scenario_var_name, |
887
|
|
|
) |
888
|
|
|
ev_count_alloc = ( |
889
|
|
|
pd.read_sql(query.statement, query.session.bind, index_col=None) |
890
|
|
|
.iloc[0] |
891
|
|
|
.ev_count |
892
|
|
|
) |
893
|
|
|
print( |
894
|
|
|
f" EVs allocated to Grid Districts " |
895
|
|
|
f"(table: {EgonEvMvGridDistrict.__table__}) total count: " |
896
|
|
|
f"{str(ev_count_alloc)}" |
897
|
|
|
) |
898
|
|
|
|
899
|
|
|
# Compare with scenario target (only if not in testmode) |
900
|
|
|
if TESTMODE_OFF: |
901
|
|
|
np.testing.assert_allclose( |
902
|
|
|
ev_count_alloc, |
903
|
|
|
ev_count_target, |
904
|
|
|
rtol=0.0001, |
905
|
|
|
err_msg=( |
906
|
|
|
"EV numbers allocated to Grid Districts seems to be " |
907
|
|
|
"flawed." |
908
|
|
|
), |
909
|
|
|
) |
910
|
|
|
else: |
911
|
|
|
print(" Testmode is on, skipping sanity check...") |
912
|
|
|
|
913
|
|
|
return ev_count_alloc |
914
|
|
|
|
915
|
|
|
def check_trip_data(): |
916
|
|
|
# Check if trips start at timestep 0 and have a max. of 35040 steps |
917
|
|
|
# (8760h in 15min steps) |
918
|
|
|
print(" Checking timeranges...") |
919
|
|
|
with db.session_scope() as session: |
920
|
|
|
query = session.query( |
921
|
|
|
func.count(EgonEvTrip.event_id).label("cnt") |
922
|
|
|
).filter( |
923
|
|
|
or_( |
924
|
|
|
and_( |
925
|
|
|
EgonEvTrip.park_start > 0, |
926
|
|
|
EgonEvTrip.simbev_event_id == 0, |
927
|
|
|
), |
928
|
|
|
EgonEvTrip.park_end |
929
|
|
|
> (60 / int(meta_run_config.stepsize)) * 8760, |
930
|
|
|
), |
931
|
|
|
EgonEvTrip.scenario == scenario_name, |
932
|
|
|
) |
933
|
|
|
invalid_trips = pd.read_sql( |
934
|
|
|
query.statement, query.session.bind, index_col=None |
935
|
|
|
) |
936
|
|
|
np.testing.assert_equal( |
937
|
|
|
invalid_trips.iloc[0].cnt, |
938
|
|
|
0, |
939
|
|
|
err_msg=( |
940
|
|
|
f"{str(invalid_trips.iloc[0].cnt)} trips in table " |
941
|
|
|
f"{EgonEvTrip.__table__} have invalid timesteps." |
942
|
|
|
), |
943
|
|
|
) |
944
|
|
|
|
945
|
|
|
# Check if charging demand can be covered by available charging energy |
946
|
|
|
# while parking |
947
|
|
|
print(" Compare charging demand with available power...") |
948
|
|
|
with db.session_scope() as session: |
949
|
|
|
query = session.query( |
950
|
|
|
func.count(EgonEvTrip.event_id).label("cnt") |
951
|
|
|
).filter( |
952
|
|
|
func.round( |
953
|
|
|
cast( |
954
|
|
|
(EgonEvTrip.park_end - EgonEvTrip.park_start + 1) |
955
|
|
|
* EgonEvTrip.charging_capacity_nominal |
956
|
|
|
* (int(meta_run_config.stepsize) / 60), |
957
|
|
|
Numeric, |
958
|
|
|
), |
959
|
|
|
3, |
960
|
|
|
) |
961
|
|
|
< cast(EgonEvTrip.charging_demand, Numeric), |
962
|
|
|
EgonEvTrip.scenario == scenario_name, |
963
|
|
|
) |
964
|
|
|
invalid_trips = pd.read_sql( |
965
|
|
|
query.statement, query.session.bind, index_col=None |
966
|
|
|
) |
967
|
|
|
np.testing.assert_equal( |
968
|
|
|
invalid_trips.iloc[0].cnt, |
969
|
|
|
0, |
970
|
|
|
err_msg=( |
971
|
|
|
f"In {str(invalid_trips.iloc[0].cnt)} trips (table: " |
972
|
|
|
f"{EgonEvTrip.__table__}) the charging demand cannot be " |
973
|
|
|
f"covered by available charging power." |
974
|
|
|
), |
975
|
|
|
) |
976
|
|
|
|
977
|
|
|
def check_model_data(): |
978
|
|
|
# Check if model components were fully created |
979
|
|
|
print(" Check if all model components were created...") |
980
|
|
|
# Get MVGDs which got EV allocated |
981
|
|
|
with db.session_scope() as session: |
982
|
|
|
query = ( |
983
|
|
|
session.query( |
984
|
|
|
EgonEvMvGridDistrict.bus_id, |
985
|
|
|
) |
986
|
|
|
.filter( |
987
|
|
|
EgonEvMvGridDistrict.scenario == scenario_name, |
988
|
|
|
EgonEvMvGridDistrict.scenario_variation |
989
|
|
|
== scenario_var_name, |
990
|
|
|
) |
991
|
|
|
.group_by(EgonEvMvGridDistrict.bus_id) |
992
|
|
|
) |
993
|
|
|
mvgds_with_ev = ( |
994
|
|
|
pd.read_sql(query.statement, query.session.bind, index_col=None) |
995
|
|
|
.bus_id.sort_values() |
996
|
|
|
.to_list() |
997
|
|
|
) |
998
|
|
|
|
999
|
|
|
# Load model components |
1000
|
|
|
with db.session_scope() as session: |
1001
|
|
|
query = ( |
1002
|
|
|
session.query( |
1003
|
|
|
EgonPfHvLink.bus0.label("mvgd_bus_id"), |
1004
|
|
|
EgonPfHvLoad.bus.label("emob_bus_id"), |
1005
|
|
|
EgonPfHvLoad.load_id.label("load_id"), |
1006
|
|
|
EgonPfHvStore.store_id.label("store_id"), |
1007
|
|
|
) |
1008
|
|
|
.select_from(EgonPfHvLoad, EgonPfHvStore) |
1009
|
|
|
.join( |
1010
|
|
|
EgonPfHvLoadTimeseries, |
1011
|
|
|
EgonPfHvLoadTimeseries.load_id == EgonPfHvLoad.load_id, |
1012
|
|
|
) |
1013
|
|
|
.join( |
1014
|
|
|
EgonPfHvStoreTimeseries, |
1015
|
|
|
EgonPfHvStoreTimeseries.store_id == EgonPfHvStore.store_id, |
1016
|
|
|
) |
1017
|
|
|
.filter( |
1018
|
|
|
EgonPfHvLoad.carrier == "land transport EV", |
1019
|
|
|
EgonPfHvLoad.scn_name == scenario_name, |
1020
|
|
|
EgonPfHvLoadTimeseries.scn_name == scenario_name, |
1021
|
|
|
EgonPfHvStore.carrier == "battery storage", |
1022
|
|
|
EgonPfHvStore.scn_name == scenario_name, |
1023
|
|
|
EgonPfHvStoreTimeseries.scn_name == scenario_name, |
1024
|
|
|
EgonPfHvLink.scn_name == scenario_name, |
1025
|
|
|
EgonPfHvLink.bus1 == EgonPfHvLoad.bus, |
1026
|
|
|
EgonPfHvLink.bus1 == EgonPfHvStore.bus, |
1027
|
|
|
) |
1028
|
|
|
) |
1029
|
|
|
model_components = pd.read_sql( |
1030
|
|
|
query.statement, query.session.bind, index_col=None |
1031
|
|
|
) |
1032
|
|
|
|
1033
|
|
|
# Check number of buses with model components connected |
1034
|
|
|
mvgd_buses_with_ev = model_components.loc[ |
1035
|
|
|
model_components.mvgd_bus_id.isin(mvgds_with_ev) |
1036
|
|
|
] |
1037
|
|
|
np.testing.assert_equal( |
1038
|
|
|
len(mvgds_with_ev), |
1039
|
|
|
len(mvgd_buses_with_ev), |
1040
|
|
|
err_msg=( |
1041
|
|
|
f"Number of Grid Districts with connected model components " |
1042
|
|
|
f"({str(len(mvgd_buses_with_ev))} in tables egon_etrago_*) " |
1043
|
|
|
f"differ from number of Grid Districts that got EVs " |
1044
|
|
|
f"allocated ({len(mvgds_with_ev)} in table " |
1045
|
|
|
f"{EgonEvMvGridDistrict.__table__})." |
1046
|
|
|
), |
1047
|
|
|
) |
1048
|
|
|
|
1049
|
|
|
# Check if all required components exist (if no id is NaN) |
1050
|
|
|
np.testing.assert_equal( |
1051
|
|
|
model_components.drop_duplicates().isna().any().any(), |
1052
|
|
|
False, |
1053
|
|
|
err_msg=( |
1054
|
|
|
f"Some components are missing (see True values): " |
1055
|
|
|
f"{model_components.drop_duplicates().isna().any()}" |
1056
|
|
|
), |
1057
|
|
|
) |
1058
|
|
|
|
1059
|
|
|
# Get all model timeseries |
1060
|
|
|
print(" Loading model timeseries...") |
1061
|
|
|
# Get all model timeseries |
1062
|
|
|
model_ts_dict = { |
1063
|
|
|
"Load": { |
1064
|
|
|
"carrier": "land transport EV", |
1065
|
|
|
"table": EgonPfHvLoad, |
1066
|
|
|
"table_ts": EgonPfHvLoadTimeseries, |
1067
|
|
|
"column_id": "load_id", |
1068
|
|
|
"columns_ts": ["p_set"], |
1069
|
|
|
"ts": None, |
1070
|
|
|
}, |
1071
|
|
|
"Link": { |
1072
|
|
|
"carrier": "BEV charger", |
1073
|
|
|
"table": EgonPfHvLink, |
1074
|
|
|
"table_ts": EgonPfHvLinkTimeseries, |
1075
|
|
|
"column_id": "link_id", |
1076
|
|
|
"columns_ts": ["p_max_pu"], |
1077
|
|
|
"ts": None, |
1078
|
|
|
}, |
1079
|
|
|
"Store": { |
1080
|
|
|
"carrier": "battery storage", |
1081
|
|
|
"table": EgonPfHvStore, |
1082
|
|
|
"table_ts": EgonPfHvStoreTimeseries, |
1083
|
|
|
"column_id": "store_id", |
1084
|
|
|
"columns_ts": ["e_min_pu", "e_max_pu"], |
1085
|
|
|
"ts": None, |
1086
|
|
|
}, |
1087
|
|
|
} |
1088
|
|
|
|
1089
|
|
|
with db.session_scope() as session: |
1090
|
|
|
for node, attrs in model_ts_dict.items(): |
1091
|
|
|
print(f" Loading {node} timeseries...") |
1092
|
|
|
subquery = ( |
1093
|
|
|
session.query(getattr(attrs["table"], attrs["column_id"])) |
1094
|
|
|
.filter(attrs["table"].carrier == attrs["carrier"]) |
1095
|
|
|
.filter(attrs["table"].scn_name == scenario_name) |
1096
|
|
|
.subquery() |
1097
|
|
|
) |
1098
|
|
|
|
1099
|
|
|
cols = [ |
1100
|
|
|
getattr(attrs["table_ts"], c) for c in attrs["columns_ts"] |
1101
|
|
|
] |
1102
|
|
|
query = session.query( |
1103
|
|
|
getattr(attrs["table_ts"], attrs["column_id"]), *cols |
1104
|
|
|
).filter( |
1105
|
|
|
getattr(attrs["table_ts"], attrs["column_id"]).in_( |
1106
|
|
|
subquery |
1107
|
|
|
), |
1108
|
|
|
attrs["table_ts"].scn_name == scenario_name, |
1109
|
|
|
) |
1110
|
|
|
attrs["ts"] = pd.read_sql( |
1111
|
|
|
query.statement, |
1112
|
|
|
query.session.bind, |
1113
|
|
|
index_col=attrs["column_id"], |
1114
|
|
|
) |
1115
|
|
|
|
1116
|
|
|
# Check if all timeseries have 8760 steps |
1117
|
|
|
print(" Checking timeranges...") |
1118
|
|
|
for node, attrs in model_ts_dict.items(): |
1119
|
|
|
for col in attrs["columns_ts"]: |
1120
|
|
|
ts = attrs["ts"] |
1121
|
|
|
invalid_ts = ts.loc[ts[col].apply(lambda _: len(_)) != 8760][ |
1122
|
|
|
col |
1123
|
|
|
].apply(len) |
1124
|
|
|
np.testing.assert_equal( |
1125
|
|
|
len(invalid_ts), |
1126
|
|
|
0, |
1127
|
|
|
err_msg=( |
1128
|
|
|
f"{str(len(invalid_ts))} rows in timeseries do not " |
1129
|
|
|
f"have 8760 timesteps. Table: " |
1130
|
|
|
f"{attrs['table_ts'].__table__}, Column: {col}, IDs: " |
1131
|
|
|
f"{str(list(invalid_ts.index))}" |
1132
|
|
|
), |
1133
|
|
|
) |
1134
|
|
|
|
1135
|
|
|
# Compare total energy demand in model with some approximate values |
1136
|
|
|
# (per EV: 14,000 km/a, 0.17 kWh/km) |
1137
|
|
|
print(" Checking energy demand in model...") |
1138
|
|
|
total_energy_model = ( |
1139
|
|
|
model_ts_dict["Load"]["ts"].p_set.apply(lambda _: sum(_)).sum() |
1140
|
|
|
/ 1e6 |
1141
|
|
|
) |
1142
|
|
|
print(f" Total energy amount in model: {total_energy_model} TWh") |
1143
|
|
|
total_energy_scenario_approx = ev_count_alloc * 14000 * 0.17 / 1e9 |
1144
|
|
|
print( |
1145
|
|
|
f" Total approximated energy amount in scenario: " |
1146
|
|
|
f"{total_energy_scenario_approx} TWh" |
1147
|
|
|
) |
1148
|
|
|
np.testing.assert_allclose( |
1149
|
|
|
total_energy_model, |
1150
|
|
|
total_energy_scenario_approx, |
1151
|
|
|
rtol=0.1, |
1152
|
|
|
err_msg=( |
1153
|
|
|
"The total energy amount in the model deviates heavily " |
1154
|
|
|
"from the approximated value for current scenario." |
1155
|
|
|
), |
1156
|
|
|
) |
1157
|
|
|
|
1158
|
|
|
# Compare total storage capacity |
1159
|
|
|
print(" Checking storage capacity...") |
1160
|
|
|
# Load storage capacities from model |
1161
|
|
|
with db.session_scope() as session: |
1162
|
|
|
query = session.query( |
1163
|
|
|
func.sum(EgonPfHvStore.e_nom).label("e_nom") |
1164
|
|
|
).filter( |
1165
|
|
|
EgonPfHvStore.scn_name == scenario_name, |
1166
|
|
|
EgonPfHvStore.carrier == "battery storage", |
1167
|
|
|
) |
1168
|
|
|
storage_capacity_model = ( |
1169
|
|
|
pd.read_sql( |
1170
|
|
|
query.statement, query.session.bind, index_col=None |
1171
|
|
|
).e_nom.sum() |
1172
|
|
|
/ 1e3 |
1173
|
|
|
) |
1174
|
|
|
print( |
1175
|
|
|
f" Total storage capacity ({EgonPfHvStore.__table__}): " |
1176
|
|
|
f"{round(storage_capacity_model, 1)} GWh" |
1177
|
|
|
) |
1178
|
|
|
|
1179
|
|
|
# Load occurences of each EV |
1180
|
|
|
with db.session_scope() as session: |
1181
|
|
|
query = ( |
1182
|
|
|
session.query( |
1183
|
|
|
EgonEvMvGridDistrict.bus_id, |
1184
|
|
|
EgonEvPool.type, |
1185
|
|
|
func.count(EgonEvMvGridDistrict.egon_ev_pool_ev_id).label( |
1186
|
|
|
"count" |
1187
|
|
|
), |
1188
|
|
|
) |
1189
|
|
|
.join( |
1190
|
|
|
EgonEvPool, |
1191
|
|
|
EgonEvPool.ev_id |
1192
|
|
|
== EgonEvMvGridDistrict.egon_ev_pool_ev_id, |
1193
|
|
|
) |
1194
|
|
|
.filter( |
1195
|
|
|
EgonEvMvGridDistrict.scenario == scenario_name, |
1196
|
|
|
EgonEvMvGridDistrict.scenario_variation |
1197
|
|
|
== scenario_var_name, |
1198
|
|
|
EgonEvPool.scenario == scenario_name, |
1199
|
|
|
) |
1200
|
|
|
.group_by(EgonEvMvGridDistrict.bus_id, EgonEvPool.type) |
1201
|
|
|
) |
1202
|
|
|
count_per_ev_all = pd.read_sql( |
1203
|
|
|
query.statement, query.session.bind, index_col="bus_id" |
1204
|
|
|
) |
1205
|
|
|
count_per_ev_all["bat_cap"] = count_per_ev_all.type.map( |
1206
|
|
|
meta_tech_data.battery_capacity |
1207
|
|
|
) |
1208
|
|
|
count_per_ev_all["bat_cap_total_MWh"] = ( |
1209
|
|
|
count_per_ev_all["count"] * count_per_ev_all.bat_cap / 1e3 |
1210
|
|
|
) |
1211
|
|
|
storage_capacity_simbev = count_per_ev_all.bat_cap_total_MWh.div( |
1212
|
|
|
1e3 |
1213
|
|
|
).sum() |
1214
|
|
|
print( |
1215
|
|
|
f" Total storage capacity (simBEV): " |
1216
|
|
|
f"{round(storage_capacity_simbev, 1)} GWh" |
1217
|
|
|
) |
1218
|
|
|
|
1219
|
|
|
np.testing.assert_allclose( |
1220
|
|
|
storage_capacity_model, |
1221
|
|
|
storage_capacity_simbev, |
1222
|
|
|
rtol=0.01, |
1223
|
|
|
err_msg=( |
1224
|
|
|
"The total storage capacity in the model deviates heavily " |
1225
|
|
|
"from the input data provided by simBEV for current scenario." |
1226
|
|
|
), |
1227
|
|
|
) |
1228
|
|
|
|
1229
|
|
|
# Check SoC storage constraint: e_min_pu < e_max_pu for all timesteps |
1230
|
|
|
print(" Validating SoC constraints...") |
1231
|
|
|
stores_with_invalid_soc = [] |
1232
|
|
|
for idx, row in model_ts_dict["Store"]["ts"].iterrows(): |
1233
|
|
|
ts = row[["e_min_pu", "e_max_pu"]] |
1234
|
|
|
x = np.array(ts.e_min_pu) > np.array(ts.e_max_pu) |
1235
|
|
|
if x.any(): |
1236
|
|
|
stores_with_invalid_soc.append(idx) |
1237
|
|
|
|
1238
|
|
|
np.testing.assert_equal( |
1239
|
|
|
len(stores_with_invalid_soc), |
1240
|
|
|
0, |
1241
|
|
|
err_msg=( |
1242
|
|
|
f"The store constraint e_min_pu < e_max_pu does not apply " |
1243
|
|
|
f"for some storages in {EgonPfHvStoreTimeseries.__table__}. " |
1244
|
|
|
f"Invalid store_ids: {stores_with_invalid_soc}" |
1245
|
|
|
), |
1246
|
|
|
) |
1247
|
|
|
|
1248
|
|
|
def check_model_data_lowflex_eGon2035(): |
1249
|
|
|
# TODO: Add eGon100RE_lowflex |
1250
|
|
|
print("") |
1251
|
|
|
print("SCENARIO: eGon2035_lowflex") |
1252
|
|
|
|
1253
|
|
|
# Compare driving load and charging load |
1254
|
|
|
print(" Loading eGon2035 model timeseries: driving load...") |
1255
|
|
|
with db.session_scope() as session: |
1256
|
|
|
query = ( |
1257
|
|
|
session.query( |
1258
|
|
|
EgonPfHvLoad.load_id, |
1259
|
|
|
EgonPfHvLoadTimeseries.p_set, |
1260
|
|
|
) |
1261
|
|
|
.join( |
1262
|
|
|
EgonPfHvLoadTimeseries, |
1263
|
|
|
EgonPfHvLoadTimeseries.load_id == EgonPfHvLoad.load_id, |
1264
|
|
|
) |
1265
|
|
|
.filter( |
1266
|
|
|
EgonPfHvLoad.carrier == "land transport EV", |
1267
|
|
|
EgonPfHvLoad.scn_name == "eGon2035", |
1268
|
|
|
EgonPfHvLoadTimeseries.scn_name == "eGon2035", |
1269
|
|
|
) |
1270
|
|
|
) |
1271
|
|
|
model_driving_load = pd.read_sql( |
1272
|
|
|
query.statement, query.session.bind, index_col=None |
1273
|
|
|
) |
1274
|
|
|
driving_load = np.array(model_driving_load.p_set.to_list()).sum(axis=0) |
1275
|
|
|
|
1276
|
|
|
print( |
1277
|
|
|
" Loading eGon2035_lowflex model timeseries: dumb charging " |
1278
|
|
|
"load..." |
1279
|
|
|
) |
1280
|
|
|
with db.session_scope() as session: |
1281
|
|
|
query = ( |
1282
|
|
|
session.query( |
1283
|
|
|
EgonPfHvLoad.load_id, |
1284
|
|
|
EgonPfHvLoadTimeseries.p_set, |
1285
|
|
|
) |
1286
|
|
|
.join( |
1287
|
|
|
EgonPfHvLoadTimeseries, |
1288
|
|
|
EgonPfHvLoadTimeseries.load_id == EgonPfHvLoad.load_id, |
1289
|
|
|
) |
1290
|
|
|
.filter( |
1291
|
|
|
EgonPfHvLoad.carrier == "land transport EV", |
1292
|
|
|
EgonPfHvLoad.scn_name == "eGon2035_lowflex", |
1293
|
|
|
EgonPfHvLoadTimeseries.scn_name == "eGon2035_lowflex", |
1294
|
|
|
) |
1295
|
|
|
) |
1296
|
|
|
model_charging_load_lowflex = pd.read_sql( |
1297
|
|
|
query.statement, query.session.bind, index_col=None |
1298
|
|
|
) |
1299
|
|
|
charging_load = np.array( |
1300
|
|
|
model_charging_load_lowflex.p_set.to_list() |
1301
|
|
|
).sum(axis=0) |
1302
|
|
|
|
1303
|
|
|
# Ratio of driving and charging load should be 0.9 due to charging |
1304
|
|
|
# efficiency |
1305
|
|
|
print(" Compare cumulative loads...") |
1306
|
|
|
print(f" Driving load (eGon2035): {driving_load.sum() / 1e6} TWh") |
1307
|
|
|
print( |
1308
|
|
|
f" Dumb charging load (eGon2035_lowflex): " |
1309
|
|
|
f"{charging_load.sum() / 1e6} TWh" |
1310
|
|
|
) |
1311
|
|
|
driving_load_theoretical = ( |
1312
|
|
|
float(meta_run_config.eta_cp) * charging_load.sum() |
|
|
|
|
1313
|
|
|
) |
1314
|
|
|
np.testing.assert_allclose( |
1315
|
|
|
driving_load.sum(), |
1316
|
|
|
driving_load_theoretical, |
1317
|
|
|
rtol=0.01, |
1318
|
|
|
err_msg=( |
1319
|
|
|
f"The driving load (eGon2035) deviates by more than 1% " |
1320
|
|
|
f"from the theoretical driving load calculated from charging " |
1321
|
|
|
f"load (eGon2035_lowflex) with an efficiency of " |
1322
|
|
|
f"{float(meta_run_config.eta_cp)}." |
1323
|
|
|
), |
1324
|
|
|
) |
1325
|
|
|
|
1326
|
|
|
print("=====================================================") |
1327
|
|
|
print("=== SANITY CHECKS FOR MOTORIZED INDIVIDUAL TRAVEL ===") |
1328
|
|
|
print("=====================================================") |
1329
|
|
|
|
1330
|
|
|
for scenario_name in ["eGon2035", "eGon100RE"]: |
1331
|
|
|
scenario_var_name = DATASET_CFG["scenario"]["variation"][scenario_name] |
1332
|
|
|
|
1333
|
|
|
print("") |
1334
|
|
|
print(f"SCENARIO: {scenario_name}, VARIATION: {scenario_var_name}") |
1335
|
|
|
|
1336
|
|
|
# Load scenario params for scenario and scenario variation |
1337
|
|
|
scenario_variation_parameters = get_sector_parameters( |
1338
|
|
|
"mobility", scenario=scenario_name |
1339
|
|
|
)["motorized_individual_travel"][scenario_var_name] |
1340
|
|
|
|
1341
|
|
|
# Load simBEV run config and tech data |
1342
|
|
|
meta_run_config = read_simbev_metadata_file( |
1343
|
|
|
scenario_name, "config" |
1344
|
|
|
).loc["basic"] |
1345
|
|
|
meta_tech_data = read_simbev_metadata_file(scenario_name, "tech_data") |
1346
|
|
|
|
1347
|
|
|
print("") |
1348
|
|
|
print("Checking EV counts...") |
1349
|
|
|
ev_count_alloc = check_ev_allocation() |
1350
|
|
|
|
1351
|
|
|
print("") |
1352
|
|
|
print("Checking trip data...") |
1353
|
|
|
check_trip_data() |
1354
|
|
|
|
1355
|
|
|
print("") |
1356
|
|
|
print("Checking model data...") |
1357
|
|
|
check_model_data() |
1358
|
|
|
|
1359
|
|
|
print("") |
1360
|
|
|
check_model_data_lowflex_eGon2035() |
1361
|
|
|
|
1362
|
|
|
print("=====================================================") |
1363
|
|
|
|
1364
|
|
|
|
1365
|
|
|
def sanitycheck_home_batteries(): |
1366
|
|
|
# get constants |
1367
|
|
|
constants = config.datasets()["home_batteries"]["constants"] |
1368
|
|
|
scenarios = constants["scenarios"] |
1369
|
|
|
cbat_pbat_ratio = get_cbat_pbat_ratio() |
1370
|
|
|
|
1371
|
|
|
sources = config.datasets()["home_batteries"]["sources"] |
1372
|
|
|
targets = config.datasets()["home_batteries"]["targets"] |
1373
|
|
|
|
1374
|
|
|
for scenario in scenarios: |
1375
|
|
|
# get home battery capacity per mv grid id |
1376
|
|
|
sql = f""" |
1377
|
|
|
SELECT el_capacity as p_nom, bus_id FROM |
1378
|
|
|
{sources["storage"]["schema"]} |
1379
|
|
|
.{sources["storage"]["table"]} |
1380
|
|
|
WHERE carrier = 'home_battery' |
1381
|
|
|
AND scenario = '{scenario}' |
1382
|
|
|
""" |
1383
|
|
|
|
1384
|
|
|
home_batteries_df = db.select_dataframe(sql, index_col="bus_id") |
1385
|
|
|
|
1386
|
|
|
home_batteries_df = home_batteries_df.assign( |
1387
|
|
|
capacity=home_batteries_df.p_nom * cbat_pbat_ratio |
1388
|
|
|
) |
1389
|
|
|
|
1390
|
|
|
sql = f""" |
1391
|
|
|
SELECT * FROM |
1392
|
|
|
{targets["home_batteries"]["schema"]} |
1393
|
|
|
.{targets["home_batteries"]["table"]} |
1394
|
|
|
WHERE scenario = '{scenario}' |
1395
|
|
|
""" |
1396
|
|
|
|
1397
|
|
|
home_batteries_buildings_df = db.select_dataframe( |
1398
|
|
|
sql, index_col="index" |
1399
|
|
|
) |
1400
|
|
|
|
1401
|
|
|
df = ( |
1402
|
|
|
home_batteries_buildings_df[["bus_id", "p_nom", "capacity"]] |
1403
|
|
|
.groupby("bus_id") |
1404
|
|
|
.sum() |
1405
|
|
|
) |
1406
|
|
|
|
1407
|
|
|
assert (home_batteries_df.round(6) == df.round(6)).all().all() |
1408
|
|
|
|
1409
|
|
|
|
1410
|
|
|
def sanitycheck_dsm(): |
1411
|
|
|
def df_from_series(s): |
1412
|
|
|
return pd.DataFrame.from_dict(dict(zip(s.index, s.values))) |
1413
|
|
|
|
1414
|
|
|
for scenario in ["eGon2035", "eGon100RE"]: |
1415
|
|
|
# p_min and p_max |
1416
|
|
|
sql = f""" |
1417
|
|
|
SELECT link_id, bus0 as bus, p_nom FROM grid.egon_etrago_link |
1418
|
|
|
WHERE carrier = 'dsm' |
1419
|
|
|
AND scn_name = '{scenario}' |
1420
|
|
|
ORDER BY link_id |
1421
|
|
|
""" |
1422
|
|
|
|
1423
|
|
|
meta_df = db.select_dataframe(sql, index_col="link_id") |
1424
|
|
|
link_ids = str(meta_df.index.tolist())[1:-1] |
1425
|
|
|
|
1426
|
|
|
sql = f""" |
1427
|
|
|
SELECT link_id, p_min_pu, p_max_pu |
1428
|
|
|
FROM grid.egon_etrago_link_timeseries |
1429
|
|
|
WHERE scn_name = '{scenario}' |
1430
|
|
|
AND link_id IN ({link_ids}) |
1431
|
|
|
ORDER BY link_id |
1432
|
|
|
""" |
1433
|
|
|
|
1434
|
|
|
ts_df = db.select_dataframe(sql, index_col="link_id") |
1435
|
|
|
|
1436
|
|
|
p_max_df = df_from_series(ts_df.p_max_pu).mul(meta_df.p_nom) |
1437
|
|
|
p_min_df = df_from_series(ts_df.p_min_pu).mul(meta_df.p_nom) |
1438
|
|
|
|
1439
|
|
|
p_max_df.columns = meta_df.bus.tolist() |
1440
|
|
|
p_min_df.columns = meta_df.bus.tolist() |
1441
|
|
|
|
1442
|
|
|
targets = config.datasets()["DSM_CTS_industry"]["targets"] |
1443
|
|
|
|
1444
|
|
|
tables = [ |
1445
|
|
|
"cts_loadcurves_dsm", |
1446
|
|
|
"ind_osm_loadcurves_individual_dsm", |
1447
|
|
|
"demandregio_ind_sites_dsm", |
1448
|
|
|
"ind_sites_loadcurves_individual", |
1449
|
|
|
] |
1450
|
|
|
|
1451
|
|
|
df_list = [] |
1452
|
|
|
|
1453
|
|
|
for table in tables: |
1454
|
|
|
target = targets[table] |
1455
|
|
|
sql = f""" |
1456
|
|
|
SELECT bus, p_nom, e_nom, p_min_pu, p_max_pu, e_max_pu, e_min_pu |
1457
|
|
|
FROM {target["schema"]}.{target["table"]} |
1458
|
|
|
WHERE scn_name = '{scenario}' |
1459
|
|
|
ORDER BY bus |
1460
|
|
|
""" |
1461
|
|
|
|
1462
|
|
|
df_list.append(db.select_dataframe(sql)) |
1463
|
|
|
|
1464
|
|
|
individual_ts_df = pd.concat(df_list, ignore_index=True) |
1465
|
|
|
|
1466
|
|
|
groups = individual_ts_df[["bus"]].reset_index().groupby("bus").groups |
1467
|
|
|
|
1468
|
|
|
individual_p_max_df = df_from_series(individual_ts_df.p_max_pu).mul( |
1469
|
|
|
individual_ts_df.p_nom |
1470
|
|
|
) |
1471
|
|
|
individual_p_max_df = pd.DataFrame( |
1472
|
|
|
[ |
1473
|
|
|
individual_p_max_df[idxs].sum(axis=1) |
1474
|
|
|
for idxs in groups.values() |
1475
|
|
|
], |
1476
|
|
|
index=groups.keys(), |
1477
|
|
|
).T |
1478
|
|
|
individual_p_min_df = df_from_series(individual_ts_df.p_min_pu).mul( |
1479
|
|
|
individual_ts_df.p_nom |
1480
|
|
|
) |
1481
|
|
|
individual_p_min_df = pd.DataFrame( |
1482
|
|
|
[ |
1483
|
|
|
individual_p_min_df[idxs].sum(axis=1) |
1484
|
|
|
for idxs in groups.values() |
1485
|
|
|
], |
1486
|
|
|
index=groups.keys(), |
1487
|
|
|
).T |
1488
|
|
|
|
1489
|
|
|
assert np.isclose(p_max_df, individual_p_max_df).all() |
1490
|
|
|
assert np.isclose(p_min_df, individual_p_min_df).all() |
1491
|
|
|
|
1492
|
|
|
# e_min and e_max |
1493
|
|
|
sql = f""" |
1494
|
|
|
SELECT store_id, bus, e_nom FROM grid.egon_etrago_store |
1495
|
|
|
WHERE carrier = 'dsm' |
1496
|
|
|
AND scn_name = '{scenario}' |
1497
|
|
|
ORDER BY store_id |
1498
|
|
|
""" |
1499
|
|
|
|
1500
|
|
|
meta_df = db.select_dataframe(sql, index_col="store_id") |
1501
|
|
|
store_ids = str(meta_df.index.tolist())[1:-1] |
1502
|
|
|
|
1503
|
|
|
sql = f""" |
1504
|
|
|
SELECT store_id, e_min_pu, e_max_pu |
1505
|
|
|
FROM grid.egon_etrago_store_timeseries |
1506
|
|
|
WHERE scn_name = '{scenario}' |
1507
|
|
|
AND store_id IN ({store_ids}) |
1508
|
|
|
ORDER BY store_id |
1509
|
|
|
""" |
1510
|
|
|
|
1511
|
|
|
ts_df = db.select_dataframe(sql, index_col="store_id") |
1512
|
|
|
|
1513
|
|
|
e_max_df = df_from_series(ts_df.e_max_pu).mul(meta_df.e_nom) |
1514
|
|
|
e_min_df = df_from_series(ts_df.e_min_pu).mul(meta_df.e_nom) |
1515
|
|
|
|
1516
|
|
|
e_max_df.columns = meta_df.bus.tolist() |
1517
|
|
|
e_min_df.columns = meta_df.bus.tolist() |
1518
|
|
|
|
1519
|
|
|
individual_e_max_df = df_from_series(individual_ts_df.e_max_pu).mul( |
1520
|
|
|
individual_ts_df.e_nom |
1521
|
|
|
) |
1522
|
|
|
individual_e_max_df = pd.DataFrame( |
1523
|
|
|
[ |
1524
|
|
|
individual_e_max_df[idxs].sum(axis=1) |
1525
|
|
|
for idxs in groups.values() |
1526
|
|
|
], |
1527
|
|
|
index=groups.keys(), |
1528
|
|
|
).T |
1529
|
|
|
individual_e_min_df = df_from_series(individual_ts_df.e_min_pu).mul( |
1530
|
|
|
individual_ts_df.e_nom |
1531
|
|
|
) |
1532
|
|
|
individual_e_min_df = pd.DataFrame( |
1533
|
|
|
[ |
1534
|
|
|
individual_e_min_df[idxs].sum(axis=1) |
1535
|
|
|
for idxs in groups.values() |
1536
|
|
|
], |
1537
|
|
|
index=groups.keys(), |
1538
|
|
|
).T |
1539
|
|
|
|
1540
|
|
|
assert np.isclose(e_max_df, individual_e_max_df).all() |
1541
|
|
|
assert np.isclose(e_min_df, individual_e_min_df).all() |
1542
|
|
|
|