Total Complexity | 65 |
Total Lines | 1670 |
Duplicated Lines | 15.45 % |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like data.datasets.electricity_demand_timeseries.cts_buildings often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | """ |
||
2 | CTS electricity and heat demand time series for scenarios in 2035 and 2050 |
||
3 | assigned to OSM-buildings. |
||
4 | |||
5 | Disaggregation of cts heat & electricity demand time series from MV Substation |
||
6 | to census cells via annual demand and then to OSM buildings via |
||
7 | amenity tags or randomly if no sufficient OSM-data is available in the |
||
8 | respective census cell. If no OSM-buildings or synthetic residential buildings |
||
9 | are available new synthetic 5x5m buildings are generated. |
||
10 | |||
11 | The resulting data is stored in separate tables |
||
12 | |||
13 | * `openstreetmap.osm_buildings_synthetic`: |
||
14 | Lists generated synthetic building with id, zensus_population_id and |
||
15 | building type. This table is already created within |
||
16 | :func:`hh_buildings.map_houseprofiles_to_buildings()` |
||
17 | * `openstreetmap.egon_cts_buildings`: |
||
18 | Table of all selected cts buildings with id, census cell id, geometry and |
||
19 | amenity count in building. This table is created within |
||
20 | :func:`cts_buildings()` |
||
21 | * `demand.egon_cts_electricity_demand_building_share`: |
||
22 | Table including the mv substation electricity profile share of all selected |
||
23 | cts buildings for scenario eGon2035 and eGon100RE. This table is created |
||
24 | within :func:`cts_electricity()` |
||
25 | * `demand.egon_cts_heat_demand_building_share`: |
||
26 | Table including the mv substation heat profile share of all selected |
||
27 | cts buildings for scenario eGon2035 and eGon100RE. This table is created |
||
28 | within :func:`cts_heat()` |
||
29 | * `demand.egon_building_electricity_peak_loads`: |
||
30 | Mapping of electricity demand time series and buildings including cell_id, |
||
31 | building area and peak load. This table is already created within |
||
32 | :func:`hh_buildings.get_building_peak_loads()` |
||
33 | * `boundaries.egon_map_zensus_mvgd_buildings`: |
||
34 | A final mapping table including all buildings used for residential and |
||
35 | cts, heat and electricity timeseries. Including census cells, mvgd bus_id, |
||
36 | building type (osm or synthetic) |
||
37 | |||
38 | **The following datasets from the database are mainly used for creation:** |
||
39 | |||
40 | * `openstreetmap.osm_buildings_filtered`: |
||
41 | Table of OSM-buildings filtered by tags to selecting residential and cts |
||
42 | buildings only. |
||
43 | * `openstreetmap.osm_amenities_shops_filtered`: |
||
44 | Table of OSM-amenities filtered by tags to select cts only. |
||
45 | * `openstreetmap.osm_amenities_not_in_buildings_filtered`: |
||
46 | Table of amenities which do not intersect with any building from |
||
47 | `openstreetmap.osm_buildings_filtered` |
||
48 | * `openstreetmap.osm_buildings_synthetic`: |
||
49 | Table of synthetic residential buildings |
||
50 | * `boundaries.egon_map_zensus_buildings_filtered_all`: |
||
51 | Mapping table of census cells and buildings filtered even if population |
||
52 | in census cell = 0. |
||
53 | * `demand.egon_demandregio_zensus_electricity`: |
||
54 | Table of annual electricity load demand for residential and cts at census |
||
55 | cell level. Residential load demand is derived from aggregated residential |
||
56 | building profiles. DemandRegio CTS load demand at NUTS3 is distributed to |
||
57 | census cells linearly to heat demand from peta5. |
||
58 | * `demand.egon_peta_heat`: |
||
59 | Table of annual heat load demand for residential and cts at census cell |
||
60 | level from peta5. |
||
61 | * `demand.egon_etrago_electricity_cts`: |
||
62 | Scaled cts electricity time series for every MV substation. Derived from |
||
63 | DemandRegio SLP for selected economic sectors at nuts3. Scaled with annual |
||
64 | demand from `demand.egon_demandregio_zensus_electricity` |
||
65 | * `demand.egon_etrago_heat_cts`: |
||
66 | Scaled cts heat time series for every MV substation. Derived from |
||
67 | DemandRegio SLP Gas for selected economic sectors at nuts3. Scaled with |
||
68 | annual demand from `demand.egon_peta_heat`. |
||
69 | |||
70 | **What is the goal?** |
||
71 | |||
72 | To disaggregate cts heat and electricity time series from MV substation level |
||
73 | to geo-referenced buildings, the annual demand from DemandRegio and Peta5 is |
||
74 | used to identify census cells with load demand. We use Openstreetmap data and |
||
75 | filter tags to identify buildings and count the amenities within. The number |
||
76 | of amenities and the annual demand serve to assign a demand share of the MV |
||
77 | substation profile to the building. |
||
78 | |||
79 | **What is the challenge?** |
||
80 | |||
81 | The OSM, DemandRegio and Peta5 dataset differ from each other. The OSM dataset |
||
82 | is a community based dataset which is extended throughout and does not claim to |
||
83 | be complete. Therefore, not all census cells which have a demand assigned by |
||
84 | DemandRegio or Peta5 methodology also have buildings with respective tags or |
||
85 | sometimes even any building at all. Furthermore, the substation load areas are |
||
86 | determined dynamically in a previous dataset. Merging these datasets different |
||
87 | scopes (census cell shapes, building shapes) and their inconsistencies need to |
||
88 | be addressed. For example: not yet tagged buildings or amenities in OSM, or |
||
89 | building shapes exceeding census cells. |
||
90 | |||
91 | |||
92 | **How are these datasets combined?** |
||
93 | |||
94 | |||
95 | The methodology for heat and electricity is the same and only differs in the |
||
96 | annual demand and MV/HV Substation profile. In a previous dataset |
||
97 | (openstreetmap), we filter all OSM buildings and amenities for tags, we relate |
||
98 | to the cts sector. Amenities are mapped to intersecting buildings and then |
||
99 | intersected with the annual demand which exists at census cell level. We obtain |
||
100 | census cells with demand and amenities and without amenities. If there is no |
||
101 | data on amenities, n synthetic ones are assigned to existing buildings. We use |
||
102 | the median value of amenities/census cell for n and all filtered buildings + |
||
103 | synthetic residential buildings. If no building data is available a synthetic |
||
104 | buildings is randomly generated. This also happens for amenities which couldn't |
||
105 | be assigned to any osm building. All census cells with an annual demand are |
||
106 | covered this way, and we obtain four different categories of buildings with |
||
107 | amenities: |
||
108 | |||
109 | * Buildings with amenities |
||
110 | * Synthetic buildings with amenities |
||
111 | * Buildings with synthetic amenities |
||
112 | * Synthetics buildings with synthetic amenities |
||
113 | |||
114 | The amenities are summed per census cell (of amenity) and building to derive |
||
115 | the building amenity share per census cell. Multiplied with the annual demand, |
||
116 | we receive the profile demand share for each cell. Some buildings exceed the |
||
117 | census cell shape and have amenities in different cells although mapped to one |
||
118 | building only. To have unique buildings the demand share is summed once more |
||
119 | per building id. This factor can now be used to obtain the profile for each |
||
120 | building. |
||
121 | |||
122 | A schematic flow chart exist in the correspondent issue #671: |
||
123 | https://github.com/openego/eGon-data/issues/671#issuecomment-1260740258 |
||
124 | |||
125 | |||
126 | **What are central assumptions during the data processing?** |
||
127 | |||
128 | * We assume OSM data to be the most reliable and complete open source dataset. |
||
129 | * We assume building and amenity tags to be truthful and accurate. |
||
130 | * Mapping census to OSM data is not trivial. Discrepancies are substituted. |
||
131 | * Missing OSM buildings are generated for each amenity. |
||
132 | * Missing amenities are generated by median value of amenities/census cell. |
||
133 | |||
134 | |||
135 | **Drawbacks and limitations of the data** |
||
136 | |||
137 | * Shape of profiles for each building is similar within a MVGD and only scaled |
||
138 | with a different factor. |
||
139 | * MVGDs are generated dynamically. In case of buildings with amenities |
||
140 | exceeding MVGD borders, amenities which are assigned to a different MVGD than |
||
141 | the assigned building centroid, the amenities are dropped for sake of |
||
142 | simplicity. One building should not have a connection to two MVGDs. |
||
143 | * The completeness of the OSM data depends on community contribution and is |
||
144 | crucial to the quality of our results. |
||
145 | * Randomly selected buildings and generated amenities may inadequately reflect |
||
146 | reality, but are chosen for sake of simplicity as a measure to fill data gaps. |
||
147 | * Since this dataset is a cascade after generation of synthetic residential |
||
148 | buildings also check drawbacks and limitations in hh_buildings.py. |
||
149 | * Synthetic buildings may be placed within osm buildings which exceed multiple |
||
150 | census cells. This is currently accepted but may be solved in #953 |
||
151 | * Scattered high peak loads occur and might lead to single MV grid connections |
||
152 | in ding0. In some cases this might not be viable. Postprocessing is needed and |
||
153 | may be solved in #954. |
||
154 | |||
155 | |||
156 | Example Query |
||
157 | ----- |
||
158 | |||
159 | |||
160 | Notes |
||
161 | ----- |
||
162 | |||
163 | This module docstring is rather a dataset documentation. Once, a decision |
||
164 | is made in ... the content of this module docstring needs to be moved to |
||
165 | docs attribute of the respective dataset class. |
||
166 | """ |
||
167 | |||
168 | from geoalchemy2 import Geometry |
||
169 | from geoalchemy2.shape import to_shape |
||
170 | from psycopg2.extensions import AsIs, register_adapter |
||
171 | from sqlalchemy import REAL, Column, Integer, String, func |
||
172 | from sqlalchemy.ext.declarative import declarative_base |
||
173 | import geopandas as gpd |
||
174 | import numpy as np |
||
175 | import pandas as pd |
||
176 | import saio |
||
177 | |||
178 | from egon.data import db |
||
179 | from egon.data import logger as log |
||
180 | from egon.data.datasets import Dataset |
||
181 | from egon.data.datasets.electricity_demand import ( |
||
182 | EgonDemandRegioZensusElectricity, |
||
183 | ) |
||
184 | from egon.data.datasets.electricity_demand.temporal import ( |
||
185 | EgonEtragoElectricityCts, |
||
186 | ) |
||
187 | from egon.data.datasets.electricity_demand_timeseries.hh_buildings import ( |
||
188 | BuildingElectricityPeakLoads, |
||
189 | OsmBuildingsSynthetic, |
||
190 | ) |
||
191 | from egon.data.datasets.electricity_demand_timeseries.mapping import ( |
||
192 | map_all_used_buildings, |
||
193 | ) |
||
194 | from egon.data.datasets.electricity_demand_timeseries.tools import ( |
||
195 | random_ints_until_sum, |
||
196 | random_point_in_square, |
||
197 | specific_int_until_sum, |
||
198 | write_table_to_postgis, |
||
199 | write_table_to_postgres, |
||
200 | ) |
||
201 | from egon.data.datasets.heat_demand import EgonPetaHeat |
||
202 | from egon.data.datasets.heat_demand_timeseries import EgonEtragoHeatCts |
||
203 | from egon.data.datasets.zensus_mv_grid_districts import MapZensusGridDistricts |
||
204 | from egon.data.datasets.zensus_vg250 import DestatisZensusPopulationPerHa |
||
205 | |||
206 | engine = db.engine() |
||
207 | Base = declarative_base() |
||
208 | |||
209 | # import db tables |
||
210 | saio.register_schema("openstreetmap", engine=engine) |
||
211 | saio.register_schema("boundaries", engine=engine) |
||
212 | |||
213 | |||
214 | class EgonCtsElectricityDemandBuildingShare(Base): |
||
215 | __tablename__ = "egon_cts_electricity_demand_building_share" |
||
216 | __table_args__ = {"schema": "demand"} |
||
217 | |||
218 | building_id = Column(Integer, primary_key=True) |
||
219 | scenario = Column(String, primary_key=True) |
||
220 | bus_id = Column(Integer, index=True) |
||
221 | profile_share = Column(REAL) |
||
222 | |||
223 | |||
224 | class EgonCtsHeatDemandBuildingShare(Base): |
||
225 | __tablename__ = "egon_cts_heat_demand_building_share" |
||
226 | __table_args__ = {"schema": "demand"} |
||
227 | |||
228 | building_id = Column(Integer, primary_key=True) |
||
229 | scenario = Column(String, primary_key=True) |
||
230 | bus_id = Column(Integer, index=True) |
||
231 | profile_share = Column(REAL) |
||
232 | |||
233 | |||
234 | class CtsBuildings(Base): |
||
235 | __tablename__ = "egon_cts_buildings" |
||
236 | __table_args__ = {"schema": "openstreetmap"} |
||
237 | |||
238 | serial = Column(Integer, primary_key=True) |
||
239 | id = Column(Integer, index=True) |
||
240 | zensus_population_id = Column(Integer, index=True) |
||
241 | geom_building = Column(Geometry("Polygon", 3035)) |
||
242 | n_amenities_inside = Column(Integer) |
||
243 | source = Column(String) |
||
244 | |||
245 | |||
246 | class BuildingHeatPeakLoads(Base): |
||
247 | __tablename__ = "egon_building_heat_peak_loads" |
||
248 | __table_args__ = {"schema": "demand"} |
||
249 | |||
250 | building_id = Column(Integer, primary_key=True) |
||
251 | scenario = Column(String, primary_key=True) |
||
252 | sector = Column(String, primary_key=True) |
||
253 | peak_load_in_w = Column(REAL) |
||
254 | |||
255 | |||
256 | class CtsDemandBuildings(Dataset): |
||
257 | def __init__(self, dependencies): |
||
258 | super().__init__( |
||
259 | name="CtsDemandBuildings", |
||
260 | version="0.0.3", |
||
261 | dependencies=dependencies, |
||
262 | tasks=( |
||
263 | cts_buildings, |
||
264 | {cts_electricity, cts_heat}, |
||
265 | get_cts_electricity_peak_load, |
||
266 | map_all_used_buildings, |
||
267 | assign_voltage_level_to_buildings, |
||
268 | ), |
||
269 | ) |
||
270 | |||
271 | |||
272 | def amenities_without_buildings(): |
||
273 | """ |
||
274 | Amenities which have no buildings assigned and are in a cell with cts |
||
275 | demand are determined. |
||
276 | |||
277 | Returns |
||
278 | ------- |
||
279 | pd.DataFrame |
||
280 | Table of amenities without buildings |
||
281 | """ |
||
282 | from saio.openstreetmap import osm_amenities_not_in_buildings_filtered |
||
283 | |||
284 | with db.session_scope() as session: |
||
285 | cells_query = ( |
||
286 | session.query( |
||
287 | DestatisZensusPopulationPerHa.id.label("zensus_population_id"), |
||
288 | osm_amenities_not_in_buildings_filtered.geom_amenity, |
||
289 | osm_amenities_not_in_buildings_filtered.egon_amenity_id, |
||
290 | ) |
||
291 | .filter( |
||
292 | func.st_within( |
||
293 | osm_amenities_not_in_buildings_filtered.geom_amenity, |
||
294 | DestatisZensusPopulationPerHa.geom, |
||
295 | ) |
||
296 | ) |
||
297 | .filter( |
||
298 | DestatisZensusPopulationPerHa.id |
||
299 | == EgonDemandRegioZensusElectricity.zensus_population_id |
||
300 | ) |
||
301 | .filter( |
||
302 | EgonDemandRegioZensusElectricity.sector == "service", |
||
303 | EgonDemandRegioZensusElectricity.scenario == "eGon2035", |
||
304 | ) |
||
305 | ) |
||
306 | |||
307 | df_amenities_without_buildings = gpd.read_postgis( |
||
308 | cells_query.statement, |
||
309 | cells_query.session.bind, |
||
310 | geom_col="geom_amenity", |
||
311 | ) |
||
312 | return df_amenities_without_buildings |
||
313 | |||
314 | |||
315 | def place_buildings_with_amenities(df, amenities=None, max_amenities=None): |
||
316 | """ |
||
317 | Building centroids are placed randomly within census cells. |
||
318 | The Number of buildings is derived from n_amenity_inside, the selected |
||
319 | method and number of amenities per building. |
||
320 | |||
321 | Returns |
||
322 | ------- |
||
323 | df: gpd.GeoDataFrame |
||
324 | Table of buildings centroids |
||
325 | """ |
||
326 | if isinstance(max_amenities, int): |
||
327 | # amount of amenities is randomly generated within bounds |
||
328 | # (max_amenities, amenities per cell) |
||
329 | df["n_amenities_inside"] = df["n_amenities_inside"].apply( |
||
330 | random_ints_until_sum, args=[max_amenities] |
||
331 | ) |
||
332 | if isinstance(amenities, int): |
||
333 | # Specific amount of amenities per building |
||
334 | df["n_amenities_inside"] = df["n_amenities_inside"].apply( |
||
335 | specific_int_until_sum, args=[amenities] |
||
336 | ) |
||
337 | |||
338 | # Unnest each building |
||
339 | df = df.explode(column="n_amenities_inside") |
||
340 | |||
341 | # building count per cell |
||
342 | df["building_count"] = df.groupby(["zensus_population_id"]).cumcount() + 1 |
||
343 | |||
344 | # generate random synthetic buildings |
||
345 | edge_length = 5 |
||
346 | # create random points within census cells |
||
347 | points = random_point_in_square(geom=df["geom"], tol=edge_length / 2) |
||
348 | |||
349 | df.reset_index(drop=True, inplace=True) |
||
350 | # Store center of polygon |
||
351 | df["geom_point"] = points |
||
352 | # Drop geometry of census cell |
||
353 | df = df.drop(columns=["geom"]) |
||
354 | |||
355 | return df |
||
356 | |||
357 | |||
358 | def create_synthetic_buildings(df, points=None, crs="EPSG:3035"): |
||
359 | """ |
||
360 | Synthetic buildings are generated around points. |
||
361 | |||
362 | Parameters |
||
363 | ---------- |
||
364 | df: pd.DataFrame |
||
365 | Table of census cells |
||
366 | points: gpd.GeoSeries or str |
||
367 | List of points to place buildings around or column name of df |
||
368 | crs: str |
||
369 | CRS of result table |
||
370 | |||
371 | Returns |
||
372 | ------- |
||
373 | df: gpd.GeoDataFrame |
||
374 | Synthetic buildings |
||
375 | """ |
||
376 | |||
377 | if isinstance(points, str) and points in df.columns: |
||
378 | points = df[points] |
||
379 | elif isinstance(points, gpd.GeoSeries): |
||
380 | pass |
||
381 | else: |
||
382 | raise ValueError("Points are of the wrong type") |
||
383 | |||
384 | # Create building using a square around point |
||
385 | edge_length = 5 |
||
386 | df["geom_building"] = points.buffer(distance=edge_length / 2, cap_style=3) |
||
387 | |||
388 | if "geom_point" not in df.columns: |
||
389 | df["geom_point"] = df["geom_building"].centroid |
||
390 | |||
391 | df = gpd.GeoDataFrame( |
||
392 | df, |
||
393 | crs=crs, |
||
394 | geometry="geom_building", |
||
395 | ) |
||
396 | |||
397 | # TODO remove after #772 implementation of egon_building_id |
||
398 | df.rename(columns={"id": "egon_building_id"}, inplace=True) |
||
399 | |||
400 | # get max number of building ids from synthetic residential table |
||
401 | with db.session_scope() as session: |
||
402 | max_synth_residential_id = session.execute( |
||
403 | func.max(OsmBuildingsSynthetic.id) |
||
404 | ).scalar() |
||
405 | max_synth_residential_id = int(max_synth_residential_id) |
||
406 | |||
407 | # create sequential ids |
||
408 | df["egon_building_id"] = range( |
||
409 | max_synth_residential_id + 1, |
||
410 | max_synth_residential_id + df.shape[0] + 1, |
||
411 | ) |
||
412 | |||
413 | df["area"] = df["geom_building"].area |
||
414 | # set building type of synthetic building |
||
415 | df["building"] = "cts" |
||
416 | # TODO remove after #772 |
||
417 | df = df.rename( |
||
418 | columns={ |
||
419 | # "zensus_population_id": "cell_id", |
||
420 | "egon_building_id": "id", |
||
421 | } |
||
422 | ) |
||
423 | return df |
||
424 | |||
425 | |||
426 | def buildings_with_amenities(): |
||
427 | """ |
||
428 | Amenities which are assigned to buildings are determined and grouped per |
||
429 | building and zensus cell. Buildings covering multiple cells therefore |
||
430 | exists multiple times but in different zensus cells. This is necessary to |
||
431 | cover as many cells with a cts demand as possible. If buildings exist in |
||
432 | multiple mvgds (bus_id) , only the amenities within the same as the |
||
433 | building centroid are kept. If as a result, a census cell is uncovered |
||
434 | by any buildings, a synthetic amenity is placed. The buildings are |
||
435 | aggregated afterwards during the calculation of the profile_share. |
||
436 | |||
437 | Returns |
||
438 | ------- |
||
439 | df_buildings_with_amenities: gpd.GeoDataFrame |
||
440 | Contains all buildings with amenities per zensus cell. |
||
441 | df_lost_cells: gpd.GeoDataFrame |
||
442 | Contains synthetic amenities in lost cells. Might be empty |
||
443 | """ |
||
444 | |||
445 | from saio.boundaries import egon_map_zensus_buildings_filtered_all |
||
446 | from saio.openstreetmap import osm_amenities_in_buildings_filtered |
||
447 | |||
448 | with db.session_scope() as session: |
||
449 | cells_query = ( |
||
450 | session.query( |
||
451 | osm_amenities_in_buildings_filtered, |
||
452 | MapZensusGridDistricts.bus_id, |
||
453 | ) |
||
454 | .filter( |
||
455 | MapZensusGridDistricts.zensus_population_id |
||
456 | == osm_amenities_in_buildings_filtered.zensus_population_id |
||
457 | ) |
||
458 | .filter( |
||
459 | EgonDemandRegioZensusElectricity.zensus_population_id |
||
460 | == osm_amenities_in_buildings_filtered.zensus_population_id |
||
461 | ) |
||
462 | .filter( |
||
463 | EgonDemandRegioZensusElectricity.sector == "service", |
||
464 | EgonDemandRegioZensusElectricity.scenario == "eGon2035", |
||
465 | ) |
||
466 | ) |
||
467 | df_amenities_in_buildings = pd.read_sql( |
||
468 | cells_query.statement, con=session.connection(), index_col=None |
||
469 | ) |
||
470 | |||
471 | df_amenities_in_buildings["geom_building"] = df_amenities_in_buildings[ |
||
472 | "geom_building" |
||
473 | ].apply(to_shape) |
||
474 | df_amenities_in_buildings["geom_amenity"] = df_amenities_in_buildings[ |
||
475 | "geom_amenity" |
||
476 | ].apply(to_shape) |
||
477 | |||
478 | # retrieve building centroid bus_id |
||
479 | with db.session_scope() as session: |
||
480 | |||
481 | cells_query = session.query( |
||
482 | egon_map_zensus_buildings_filtered_all.id, |
||
483 | MapZensusGridDistricts.bus_id.label("building_bus_id"), |
||
484 | ).filter( |
||
485 | egon_map_zensus_buildings_filtered_all.zensus_population_id |
||
486 | == MapZensusGridDistricts.zensus_population_id |
||
487 | ) |
||
488 | |||
489 | df_building_bus_id = pd.read_sql( |
||
490 | cells_query.statement, con=session.connection(), index_col=None |
||
491 | ) |
||
492 | |||
493 | df_amenities_in_buildings = pd.merge( |
||
494 | left=df_amenities_in_buildings, right=df_building_bus_id, on="id" |
||
495 | ) |
||
496 | |||
497 | # identify amenities with differing bus_id as building |
||
498 | identified_amenities = df_amenities_in_buildings.loc[ |
||
499 | df_amenities_in_buildings["bus_id"] |
||
500 | != df_amenities_in_buildings["building_bus_id"] |
||
501 | ].index |
||
502 | |||
503 | lost_cells = df_amenities_in_buildings.loc[ |
||
504 | identified_amenities, "zensus_population_id" |
||
505 | ].unique() |
||
506 | |||
507 | # check if lost zensus cells are already covered |
||
508 | if not ( |
||
509 | df_amenities_in_buildings["zensus_population_id"] |
||
510 | .isin(lost_cells) |
||
511 | .empty |
||
512 | ): |
||
513 | # query geom data for cell if not |
||
514 | with db.session_scope() as session: |
||
515 | cells_query = session.query( |
||
516 | DestatisZensusPopulationPerHa.id, |
||
517 | DestatisZensusPopulationPerHa.geom, |
||
518 | ).filter( |
||
519 | DestatisZensusPopulationPerHa.id.in_(pd.Index(lost_cells)) |
||
520 | ) |
||
521 | |||
522 | df_lost_cells = gpd.read_postgis( |
||
523 | cells_query.statement, |
||
524 | cells_query.session.bind, |
||
525 | geom_col="geom", |
||
526 | ) |
||
527 | |||
528 | # place random amenity in cell |
||
529 | df_lost_cells["n_amenities_inside"] = 1 |
||
530 | df_lost_cells.rename( |
||
531 | columns={ |
||
532 | "id": "zensus_population_id", |
||
533 | }, |
||
534 | inplace=True, |
||
535 | ) |
||
536 | df_lost_cells = place_buildings_with_amenities( |
||
537 | df_lost_cells, amenities=1 |
||
538 | ) |
||
539 | df_lost_cells.rename( |
||
540 | columns={ |
||
541 | # "id": "zensus_population_id", |
||
542 | "geom_point": "geom_amenity", |
||
543 | }, |
||
544 | inplace=True, |
||
545 | ) |
||
546 | df_lost_cells.drop( |
||
547 | columns=["building_count", "n_amenities_inside"], inplace=True |
||
548 | ) |
||
549 | else: |
||
550 | df_lost_cells = None |
||
551 | |||
552 | df_amenities_in_buildings.drop(identified_amenities, inplace=True) |
||
553 | df_amenities_in_buildings.drop(columns="building_bus_id", inplace=True) |
||
554 | |||
555 | df_amenities_in_buildings["n_amenities_inside"] = 1 |
||
556 | |||
557 | # sum amenities per building and cell |
||
558 | df_amenities_in_buildings[ |
||
559 | "n_amenities_inside" |
||
560 | ] = df_amenities_in_buildings.groupby(["zensus_population_id", "id"])[ |
||
561 | "n_amenities_inside" |
||
562 | ].transform( |
||
563 | "sum" |
||
564 | ) |
||
565 | # drop duplicated buildings |
||
566 | df_buildings_with_amenities = df_amenities_in_buildings.drop_duplicates( |
||
567 | ["id", "zensus_population_id"] |
||
568 | ) |
||
569 | df_buildings_with_amenities.reset_index(inplace=True, drop=True) |
||
570 | |||
571 | df_buildings_with_amenities = df_buildings_with_amenities[ |
||
572 | ["id", "zensus_population_id", "geom_building", "n_amenities_inside"] |
||
573 | ] |
||
574 | df_buildings_with_amenities.rename( |
||
575 | columns={ |
||
576 | # "zensus_population_id": "cell_id", |
||
577 | "egon_building_id": "id" |
||
578 | }, |
||
579 | inplace=True, |
||
580 | ) |
||
581 | |||
582 | return df_buildings_with_amenities, df_lost_cells |
||
583 | |||
584 | |||
585 | def buildings_without_amenities(): |
||
586 | """ |
||
587 | Buildings (filtered and synthetic) in cells with |
||
588 | cts demand but no amenities are determined. |
||
589 | |||
590 | Returns |
||
591 | ------- |
||
592 | df_buildings_without_amenities: gpd.GeoDataFrame |
||
593 | Table of buildings without amenities in zensus cells |
||
594 | with cts demand. |
||
595 | """ |
||
596 | from saio.boundaries import egon_map_zensus_buildings_filtered_all |
||
597 | from saio.openstreetmap import ( |
||
598 | osm_amenities_shops_filtered, |
||
599 | osm_buildings_filtered, |
||
600 | osm_buildings_synthetic, |
||
601 | ) |
||
602 | |||
603 | # buildings_filtered in cts-demand-cells without amenities |
||
604 | with db.session_scope() as session: |
||
605 | |||
606 | # Synthetic Buildings |
||
607 | q_synth_buildings = session.query( |
||
608 | osm_buildings_synthetic.cell_id.cast(Integer).label( |
||
609 | "zensus_population_id" |
||
610 | ), |
||
611 | osm_buildings_synthetic.id.cast(Integer).label("id"), |
||
612 | osm_buildings_synthetic.area.label("area"), |
||
613 | osm_buildings_synthetic.geom_building.label("geom_building"), |
||
614 | osm_buildings_synthetic.geom_point.label("geom_point"), |
||
615 | ) |
||
616 | |||
617 | # Buildings filtered |
||
618 | q_buildings_filtered = session.query( |
||
619 | egon_map_zensus_buildings_filtered_all.zensus_population_id, |
||
620 | osm_buildings_filtered.id, |
||
621 | osm_buildings_filtered.area, |
||
622 | osm_buildings_filtered.geom_building, |
||
623 | osm_buildings_filtered.geom_point, |
||
624 | ).filter( |
||
625 | osm_buildings_filtered.id |
||
626 | == egon_map_zensus_buildings_filtered_all.id |
||
627 | ) |
||
628 | |||
629 | # Amenities + zensus_population_id |
||
630 | q_amenities = ( |
||
631 | session.query( |
||
632 | DestatisZensusPopulationPerHa.id.label("zensus_population_id"), |
||
633 | ) |
||
634 | .filter( |
||
635 | func.st_within( |
||
636 | osm_amenities_shops_filtered.geom_amenity, |
||
637 | DestatisZensusPopulationPerHa.geom, |
||
638 | ) |
||
639 | ) |
||
640 | .distinct(DestatisZensusPopulationPerHa.id) |
||
641 | ) |
||
642 | |||
643 | # Cells with CTS demand but without amenities |
||
644 | q_cts_without_amenities = ( |
||
645 | session.query( |
||
646 | EgonDemandRegioZensusElectricity.zensus_population_id, |
||
647 | ) |
||
648 | .filter( |
||
649 | EgonDemandRegioZensusElectricity.sector == "service", |
||
650 | EgonDemandRegioZensusElectricity.scenario == "eGon2035", |
||
651 | ) |
||
652 | .filter( |
||
653 | EgonDemandRegioZensusElectricity.zensus_population_id.notin_( |
||
654 | q_amenities |
||
655 | ) |
||
656 | ) |
||
657 | .distinct() |
||
658 | ) |
||
659 | |||
660 | # Buildings filtered + synthetic buildings residential in |
||
661 | # cells with CTS demand but without amenities |
||
662 | cells_query = q_synth_buildings.union(q_buildings_filtered).filter( |
||
663 | egon_map_zensus_buildings_filtered_all.zensus_population_id.in_( |
||
664 | q_cts_without_amenities |
||
665 | ) |
||
666 | ) |
||
667 | |||
668 | # df_buildings_without_amenities = pd.read_sql( |
||
669 | # cells_query.statement, cells_query.session.bind, index_col=None) |
||
670 | df_buildings_without_amenities = gpd.read_postgis( |
||
671 | cells_query.statement, |
||
672 | cells_query.session.bind, |
||
673 | geom_col="geom_building", |
||
674 | ) |
||
675 | |||
676 | df_buildings_without_amenities = df_buildings_without_amenities.rename( |
||
677 | columns={ |
||
678 | # "zensus_population_id": "cell_id", |
||
679 | "egon_building_id": "id", |
||
680 | } |
||
681 | ) |
||
682 | |||
683 | return df_buildings_without_amenities |
||
684 | |||
685 | |||
686 | def select_cts_buildings(df_buildings_wo_amenities, max_n): |
||
687 | """ |
||
688 | N Buildings (filtered and synthetic) in each cell with |
||
689 | cts demand are selected. Only the first n buildings |
||
690 | are taken for each cell. The buildings are sorted by surface |
||
691 | area. |
||
692 | |||
693 | Returns |
||
694 | ------- |
||
695 | df_buildings_with_cts_demand: gpd.GeoDataFrame |
||
696 | Table of buildings |
||
697 | """ |
||
698 | |||
699 | df_buildings_wo_amenities.sort_values( |
||
700 | "area", ascending=False, inplace=True |
||
701 | ) |
||
702 | # select first n ids each census cell if available |
||
703 | df_buildings_with_cts_demand = ( |
||
704 | df_buildings_wo_amenities.groupby("zensus_population_id") |
||
705 | .nth(list(range(max_n))) |
||
706 | .reset_index() |
||
707 | ) |
||
708 | df_buildings_with_cts_demand.reset_index(drop=True, inplace=True) |
||
709 | |||
710 | return df_buildings_with_cts_demand |
||
711 | |||
712 | |||
713 | def cells_with_cts_demand_only(df_buildings_without_amenities): |
||
714 | """ |
||
715 | Cells with cts demand but no amenities or buildilngs |
||
716 | are determined. |
||
717 | |||
718 | Returns |
||
719 | ------- |
||
720 | df_cells_only_cts_demand: gpd.GeoDataFrame |
||
721 | Table of cells with cts demand but no amenities or buildings |
||
722 | """ |
||
723 | from saio.openstreetmap import osm_amenities_shops_filtered |
||
724 | |||
725 | # cells mit amenities |
||
726 | with db.session_scope() as session: |
||
727 | sub_query = ( |
||
728 | session.query( |
||
729 | DestatisZensusPopulationPerHa.id.label("zensus_population_id"), |
||
730 | ) |
||
731 | .filter( |
||
732 | func.st_within( |
||
733 | osm_amenities_shops_filtered.geom_amenity, |
||
734 | DestatisZensusPopulationPerHa.geom, |
||
735 | ) |
||
736 | ) |
||
737 | .distinct(DestatisZensusPopulationPerHa.id) |
||
738 | ) |
||
739 | |||
740 | cells_query = ( |
||
741 | session.query( |
||
742 | EgonDemandRegioZensusElectricity.zensus_population_id, |
||
743 | EgonDemandRegioZensusElectricity.scenario, |
||
744 | EgonDemandRegioZensusElectricity.sector, |
||
745 | EgonDemandRegioZensusElectricity.demand, |
||
746 | DestatisZensusPopulationPerHa.geom, |
||
747 | ) |
||
748 | .filter( |
||
749 | EgonDemandRegioZensusElectricity.sector == "service", |
||
750 | EgonDemandRegioZensusElectricity.scenario == "eGon2035", |
||
751 | ) |
||
752 | .filter( |
||
753 | EgonDemandRegioZensusElectricity.zensus_population_id.notin_( |
||
754 | sub_query |
||
755 | ) |
||
756 | ) |
||
757 | .filter( |
||
758 | EgonDemandRegioZensusElectricity.zensus_population_id |
||
759 | == DestatisZensusPopulationPerHa.id |
||
760 | ) |
||
761 | ) |
||
762 | |||
763 | df_cts_cell_without_amenities = gpd.read_postgis( |
||
764 | cells_query.statement, |
||
765 | cells_query.session.bind, |
||
766 | geom_col="geom", |
||
767 | index_col=None, |
||
768 | ) |
||
769 | |||
770 | # TODO remove after #722 |
||
771 | df_buildings_without_amenities = df_buildings_without_amenities.rename( |
||
772 | columns={"cell_id": "zensus_population_id"} |
||
773 | ) |
||
774 | |||
775 | # Census cells with only cts demand |
||
776 | df_cells_only_cts_demand = df_cts_cell_without_amenities.loc[ |
||
777 | ~df_cts_cell_without_amenities["zensus_population_id"].isin( |
||
778 | df_buildings_without_amenities["zensus_population_id"].unique() |
||
779 | ) |
||
780 | ] |
||
781 | |||
782 | df_cells_only_cts_demand.reset_index(drop=True, inplace=True) |
||
783 | |||
784 | return df_cells_only_cts_demand |
||
785 | |||
786 | |||
787 | def calc_census_cell_share(scenario, sector): |
||
788 | """ |
||
789 | The profile share for each census cell is calculated by it's |
||
790 | share of annual demand per substation bus. The annual demand |
||
791 | per cell is defined by DemandRegio/Peta5. The share is for both |
||
792 | scenarios identical as the annual demand is linearly scaled. |
||
793 | |||
794 | Parameters |
||
795 | ---------- |
||
796 | scenario: str |
||
797 | Scenario for which the share is calculated: "eGon2035" or "eGon100RE" |
||
798 | sector: str |
||
799 | Scenario for which the share is calculated: "electricity" or "heat" |
||
800 | |||
801 | Returns |
||
802 | ------- |
||
803 | df_census_share: pd.DataFrame |
||
804 | """ |
||
805 | if sector == "electricity": |
||
806 | with db.session_scope() as session: |
||
807 | cells_query = ( |
||
808 | session.query( |
||
809 | EgonDemandRegioZensusElectricity, |
||
810 | MapZensusGridDistricts.bus_id, |
||
811 | ) |
||
812 | .filter(EgonDemandRegioZensusElectricity.sector == "service") |
||
813 | .filter(EgonDemandRegioZensusElectricity.scenario == scenario) |
||
814 | .filter( |
||
815 | EgonDemandRegioZensusElectricity.zensus_population_id |
||
816 | == MapZensusGridDistricts.zensus_population_id |
||
817 | ) |
||
818 | ) |
||
819 | |||
820 | elif sector == "heat": |
||
821 | with db.session_scope() as session: |
||
822 | cells_query = ( |
||
823 | session.query(EgonPetaHeat, MapZensusGridDistricts.bus_id) |
||
824 | .filter(EgonPetaHeat.sector == "service") |
||
825 | .filter(EgonPetaHeat.scenario == scenario) |
||
826 | .filter( |
||
827 | EgonPetaHeat.zensus_population_id |
||
828 | == MapZensusGridDistricts.zensus_population_id |
||
829 | ) |
||
830 | ) |
||
831 | |||
832 | df_demand = pd.read_sql( |
||
833 | cells_query.statement, |
||
|
|||
834 | cells_query.session.bind, |
||
835 | index_col="zensus_population_id", |
||
836 | ) |
||
837 | |||
838 | # get demand share of cell per bus |
||
839 | df_census_share = df_demand["demand"] / df_demand.groupby("bus_id")[ |
||
840 | "demand" |
||
841 | ].transform("sum") |
||
842 | df_census_share = df_census_share.rename("cell_share") |
||
843 | |||
844 | df_census_share = pd.concat( |
||
845 | [ |
||
846 | df_census_share, |
||
847 | df_demand[["bus_id", "scenario"]], |
||
848 | ], |
||
849 | axis=1, |
||
850 | ) |
||
851 | |||
852 | df_census_share.reset_index(inplace=True) |
||
853 | return df_census_share |
||
854 | |||
855 | |||
856 | def calc_building_demand_profile_share( |
||
857 | df_cts_buildings, scenario="eGon2035", sector="electricity" |
||
858 | ): |
||
859 | """ |
||
860 | Share of cts electricity demand profile per bus for every selected building |
||
861 | is calculated. Building-amenity share is multiplied with census cell share |
||
862 | to get the substation bus profile share for each building. The share is |
||
863 | grouped and aggregated per building as some buildings exceed the shape of |
||
864 | census cells and have amenities assigned from multiple cells. Building |
||
865 | therefore get the amenity share of all census cells. |
||
866 | |||
867 | Parameters |
||
868 | ---------- |
||
869 | df_cts_buildings: gpd.GeoDataFrame |
||
870 | Table of all buildings with cts demand assigned |
||
871 | scenario: str |
||
872 | Scenario for which the share is calculated. |
||
873 | sector: str |
||
874 | Sector for which the share is calculated. |
||
875 | |||
876 | Returns |
||
877 | ------- |
||
878 | df_building_share: pd.DataFrame |
||
879 | Table of bus profile share per building |
||
880 | |||
881 | """ |
||
882 | |||
883 | def calc_building_amenity_share(df_cts_buildings): |
||
884 | """ |
||
885 | Calculate the building share by the number amenities per building |
||
886 | within a census cell. Building ids can exist multiple time but with |
||
887 | different zensus_population_ids. |
||
888 | """ |
||
889 | df_building_amenity_share = df_cts_buildings[ |
||
890 | "n_amenities_inside" |
||
891 | ] / df_cts_buildings.groupby("zensus_population_id")[ |
||
892 | "n_amenities_inside" |
||
893 | ].transform( |
||
894 | "sum" |
||
895 | ) |
||
896 | df_building_amenity_share = pd.concat( |
||
897 | [ |
||
898 | df_building_amenity_share.rename("building_amenity_share"), |
||
899 | df_cts_buildings[["zensus_population_id", "id"]], |
||
900 | ], |
||
901 | axis=1, |
||
902 | ) |
||
903 | return df_building_amenity_share |
||
904 | |||
905 | df_building_amenity_share = calc_building_amenity_share(df_cts_buildings) |
||
906 | |||
907 | df_census_cell_share = calc_census_cell_share( |
||
908 | scenario=scenario, sector=sector |
||
909 | ) |
||
910 | |||
911 | df_demand_share = pd.merge( |
||
912 | left=df_building_amenity_share, |
||
913 | right=df_census_cell_share, |
||
914 | left_on="zensus_population_id", |
||
915 | right_on="zensus_population_id", |
||
916 | ) |
||
917 | df_demand_share["profile_share"] = df_demand_share[ |
||
918 | "building_amenity_share" |
||
919 | ].multiply(df_demand_share["cell_share"]) |
||
920 | |||
921 | # only pass selected columns |
||
922 | df_demand_share = df_demand_share[ |
||
923 | ["id", "bus_id", "scenario", "profile_share"] |
||
924 | ] |
||
925 | |||
926 | # Group and aggregate per building for multi cell buildings |
||
927 | df_demand_share = ( |
||
928 | df_demand_share.groupby(["scenario", "id", "bus_id"]) |
||
929 | .sum() |
||
930 | .reset_index() |
||
931 | ) |
||
932 | if df_demand_share.duplicated("id", keep=False).any(): |
||
933 | print( |
||
934 | df_demand_share.loc[df_demand_share.duplicated("id", keep=False)] |
||
935 | ) |
||
936 | return df_demand_share |
||
937 | |||
938 | |||
939 | View Code Duplication | def get_peta_demand(mvgd, scenario): |
|
940 | """ |
||
941 | Retrieve annual peta heat demand for CTS for either |
||
942 | eGon2035 or eGon100RE scenario. |
||
943 | |||
944 | Parameters |
||
945 | ---------- |
||
946 | mvgd : int |
||
947 | ID of substation for which to get CTS demand. |
||
948 | scenario : str |
||
949 | Possible options are eGon2035 or eGon100RE |
||
950 | |||
951 | Returns |
||
952 | ------- |
||
953 | df_peta_demand : pd.DataFrame |
||
954 | Annual residential heat demand per building and scenario. Columns of |
||
955 | the dataframe are zensus_population_id and demand. |
||
956 | |||
957 | """ |
||
958 | |||
959 | with db.session_scope() as session: |
||
960 | query = ( |
||
961 | session.query( |
||
962 | MapZensusGridDistricts.zensus_population_id, |
||
963 | EgonPetaHeat.demand, |
||
964 | ) |
||
965 | .filter(MapZensusGridDistricts.bus_id == int(mvgd)) |
||
966 | .filter( |
||
967 | MapZensusGridDistricts.zensus_population_id |
||
968 | == EgonPetaHeat.zensus_population_id |
||
969 | ) |
||
970 | .filter( |
||
971 | EgonPetaHeat.sector == "service", |
||
972 | EgonPetaHeat.scenario == scenario, |
||
973 | ) |
||
974 | ) |
||
975 | |||
976 | df_peta_demand = pd.read_sql( |
||
977 | query.statement, query.session.bind, index_col=None |
||
978 | ) |
||
979 | |||
980 | return df_peta_demand |
||
981 | |||
982 | |||
983 | def calc_cts_building_profiles( |
||
984 | bus_ids, |
||
985 | scenario, |
||
986 | sector, |
||
987 | ): |
||
988 | """ |
||
989 | Calculate the cts demand profile for each building. The profile is |
||
990 | calculated by the demand share of the building per substation bus. |
||
991 | |||
992 | Parameters |
||
993 | ---------- |
||
994 | bus_ids: list of int |
||
995 | Ids of the substation for which selected building profiles are |
||
996 | calculated. |
||
997 | scenario: str |
||
998 | Scenario for which the share is calculated: "eGon2035" or "eGon100RE" |
||
999 | sector: str |
||
1000 | Sector for which the share is calculated: "electricity" or "heat" |
||
1001 | |||
1002 | Returns |
||
1003 | ------- |
||
1004 | df_building_profiles: pd.DataFrame |
||
1005 | Table of demand profile per building. Column names are building IDs |
||
1006 | and index is hour of the year as int (0-8759). |
||
1007 | |||
1008 | """ |
||
1009 | if sector == "electricity": |
||
1010 | # Get cts building electricity demand share of selected buildings |
||
1011 | with db.session_scope() as session: |
||
1012 | cells_query = ( |
||
1013 | session.query( |
||
1014 | EgonCtsElectricityDemandBuildingShare, |
||
1015 | ) |
||
1016 | .filter( |
||
1017 | EgonCtsElectricityDemandBuildingShare.scenario == scenario |
||
1018 | ) |
||
1019 | .filter( |
||
1020 | EgonCtsElectricityDemandBuildingShare.bus_id.in_(bus_ids) |
||
1021 | ) |
||
1022 | ) |
||
1023 | |||
1024 | df_demand_share = pd.read_sql( |
||
1025 | cells_query.statement, cells_query.session.bind, index_col=None |
||
1026 | ) |
||
1027 | |||
1028 | # Get substation cts electricity load profiles of selected bus_ids |
||
1029 | with db.session_scope() as session: |
||
1030 | cells_query = ( |
||
1031 | session.query(EgonEtragoElectricityCts).filter( |
||
1032 | EgonEtragoElectricityCts.scn_name == scenario |
||
1033 | ) |
||
1034 | ).filter(EgonEtragoElectricityCts.bus_id.in_(bus_ids)) |
||
1035 | |||
1036 | df_cts_substation_profiles = pd.read_sql( |
||
1037 | cells_query.statement, |
||
1038 | cells_query.session.bind, |
||
1039 | ) |
||
1040 | df_cts_substation_profiles = pd.DataFrame.from_dict( |
||
1041 | df_cts_substation_profiles.set_index("bus_id")["p_set"].to_dict(), |
||
1042 | orient="index", |
||
1043 | ) |
||
1044 | # df_cts_profiles = calc_load_curves_cts(scenario) |
||
1045 | |||
1046 | elif sector == "heat": |
||
1047 | # Get cts building heat demand share of selected buildings |
||
1048 | with db.session_scope() as session: |
||
1049 | cells_query = ( |
||
1050 | session.query( |
||
1051 | EgonCtsHeatDemandBuildingShare, |
||
1052 | ) |
||
1053 | .filter(EgonCtsHeatDemandBuildingShare.scenario == scenario) |
||
1054 | .filter(EgonCtsHeatDemandBuildingShare.bus_id.in_(bus_ids)) |
||
1055 | ) |
||
1056 | |||
1057 | df_demand_share = pd.read_sql( |
||
1058 | cells_query.statement, cells_query.session.bind, index_col=None |
||
1059 | ) |
||
1060 | |||
1061 | # Get substation cts heat load profiles of selected bus_ids |
||
1062 | # (this profile only contains zensus cells with individual heating; |
||
1063 | # in order to obtain a profile for the whole MV grid it is afterwards |
||
1064 | # scaled by the grids total CTS demand from peta) |
||
1065 | with db.session_scope() as session: |
||
1066 | cells_query = ( |
||
1067 | session.query(EgonEtragoHeatCts).filter( |
||
1068 | EgonEtragoHeatCts.scn_name == scenario |
||
1069 | ) |
||
1070 | ).filter(EgonEtragoHeatCts.bus_id.in_(bus_ids)) |
||
1071 | |||
1072 | df_cts_substation_profiles = pd.read_sql( |
||
1073 | cells_query.statement, |
||
1074 | cells_query.session.bind, |
||
1075 | ) |
||
1076 | df_cts_substation_profiles = pd.DataFrame.from_dict( |
||
1077 | df_cts_substation_profiles.set_index("bus_id")["p_set"].to_dict(), |
||
1078 | orient="index", |
||
1079 | ) |
||
1080 | for bus_id in bus_ids: |
||
1081 | if bus_id in df_cts_substation_profiles.index: |
||
1082 | # get peta demand to scale load profile to |
||
1083 | peta_cts_demand = get_peta_demand(bus_id, scenario) |
||
1084 | scaling_factor = ( |
||
1085 | peta_cts_demand.demand.sum() |
||
1086 | / df_cts_substation_profiles.loc[bus_id, :].sum() |
||
1087 | ) |
||
1088 | # scale load profile |
||
1089 | df_cts_substation_profiles.loc[bus_id, :] *= scaling_factor |
||
1090 | |||
1091 | else: |
||
1092 | raise KeyError("Sector needs to be either 'electricity' or 'heat'") |
||
1093 | |||
1094 | # TODO remove after #722 |
||
1095 | df_demand_share.rename(columns={"id": "building_id"}, inplace=True) |
||
1096 | |||
1097 | # get demand profile for all buildings for selected demand share |
||
1098 | df_building_profiles = pd.DataFrame() |
||
1099 | for bus_id, df in df_demand_share.groupby("bus_id"): |
||
1100 | shares = df.set_index("building_id", drop=True)["profile_share"] |
||
1101 | try: |
||
1102 | profile_ts = df_cts_substation_profiles.loc[bus_id] |
||
1103 | except KeyError: |
||
1104 | # This should only happen within the SH cutout |
||
1105 | log.info( |
||
1106 | f"No CTS profile found for substation with bus_id:" |
||
1107 | f" {bus_id}" |
||
1108 | ) |
||
1109 | continue |
||
1110 | |||
1111 | building_profiles = np.outer(profile_ts, shares) |
||
1112 | building_profiles = pd.DataFrame( |
||
1113 | building_profiles, index=profile_ts.index, columns=shares.index |
||
1114 | ) |
||
1115 | df_building_profiles = pd.concat( |
||
1116 | [df_building_profiles, building_profiles], axis=1 |
||
1117 | ) |
||
1118 | |||
1119 | return df_building_profiles |
||
1120 | |||
1121 | |||
1122 | def delete_synthetic_cts_buildings(): |
||
1123 | """ |
||
1124 | All synthetic cts buildings are deleted from the DB. This is necessary if |
||
1125 | the task is run multiple times as the existing synthetic buildings |
||
1126 | influence the results. |
||
1127 | """ |
||
1128 | # import db tables |
||
1129 | from saio.openstreetmap import osm_buildings_synthetic |
||
1130 | |||
1131 | # cells mit amenities |
||
1132 | with db.session_scope() as session: |
||
1133 | session.query(osm_buildings_synthetic).filter( |
||
1134 | osm_buildings_synthetic.building == "cts" |
||
1135 | ).delete() |
||
1136 | |||
1137 | |||
1138 | def remove_double_bus_id(df_cts_buildings): |
||
1139 | """This is an backup adhoc fix if there should still be a building which |
||
1140 | is assigned to 2 substations. In this case one of the buildings is just |
||
1141 | dropped. As this currently accounts for only one building with one amenity |
||
1142 | the deviation is neglectable.""" |
||
1143 | # assign bus_id via census cell of amenity |
||
1144 | with db.session_scope() as session: |
||
1145 | cells_query = session.query( |
||
1146 | MapZensusGridDistricts.zensus_population_id, |
||
1147 | MapZensusGridDistricts.bus_id, |
||
1148 | ) |
||
1149 | |||
1150 | df_egon_map_zensus_buildings_buses = pd.read_sql( |
||
1151 | cells_query.statement, |
||
1152 | cells_query.session.bind, |
||
1153 | index_col=None, |
||
1154 | ) |
||
1155 | df_cts_buildings = pd.merge( |
||
1156 | left=df_cts_buildings, |
||
1157 | right=df_egon_map_zensus_buildings_buses, |
||
1158 | on="zensus_population_id", |
||
1159 | ) |
||
1160 | |||
1161 | substation_per_building = df_cts_buildings.groupby("id")[ |
||
1162 | "bus_id" |
||
1163 | ].nunique() |
||
1164 | building_id = substation_per_building.loc[ |
||
1165 | substation_per_building > 1 |
||
1166 | ].index |
||
1167 | df_duplicates = df_cts_buildings.loc[ |
||
1168 | df_cts_buildings["id"].isin(building_id) |
||
1169 | ] |
||
1170 | for unique_id in df_duplicates["id"].unique(): |
||
1171 | drop_index = df_duplicates[df_duplicates["id"] == unique_id].index[0] |
||
1172 | print( |
||
1173 | f"Buildings {df_cts_buildings.loc[drop_index, 'id']}" |
||
1174 | f" dropped because of double substation" |
||
1175 | ) |
||
1176 | df_cts_buildings.drop(index=drop_index, inplace=True) |
||
1177 | |||
1178 | df_cts_buildings.drop(columns="bus_id", inplace=True) |
||
1179 | |||
1180 | return df_cts_buildings |
||
1181 | |||
1182 | |||
1183 | def cts_buildings(): |
||
1184 | """ |
||
1185 | Assigns CTS demand to buildings and calculates the respective demand |
||
1186 | profiles. The demand profile per substation are disaggregated per |
||
1187 | annual demand share of each census cell and by the number of amenities |
||
1188 | per building within the cell. If no building data is available, |
||
1189 | synthetic buildings are generated around the amenities. If no amenities |
||
1190 | but cts demand is available, buildings are randomly selected. If no |
||
1191 | building nor amenity is available, random synthetic buildings are |
||
1192 | generated. The demand share is stored in the database. |
||
1193 | |||
1194 | Note: |
||
1195 | ----- |
||
1196 | Cells with CTS demand, amenities and buildings do not change within |
||
1197 | the scenarios, only the demand itself. Therefore scenario eGon2035 |
||
1198 | can be used universally to determine the cts buildings but not for |
||
1199 | the demand share. |
||
1200 | """ |
||
1201 | # ========== Register np datatypes with SQLA ========== |
||
1202 | def adapt_numpy_float64(numpy_float64): |
||
1203 | return AsIs(numpy_float64) |
||
1204 | |||
1205 | def adapt_numpy_int64(numpy_int64): |
||
1206 | return AsIs(numpy_int64) |
||
1207 | |||
1208 | register_adapter(np.float64, adapt_numpy_float64) |
||
1209 | register_adapter(np.int64, adapt_numpy_int64) |
||
1210 | # ===================================================== |
||
1211 | |||
1212 | log.info("Start logging!") |
||
1213 | # Buildings with amenities |
||
1214 | df_buildings_with_amenities, df_lost_cells = buildings_with_amenities() |
||
1215 | log.info("Buildings with amenities selected!") |
||
1216 | |||
1217 | # Median number of amenities per cell |
||
1218 | median_n_amenities = int( |
||
1219 | df_buildings_with_amenities.groupby("zensus_population_id")[ |
||
1220 | "n_amenities_inside" |
||
1221 | ] |
||
1222 | .sum() |
||
1223 | .median() |
||
1224 | ) |
||
1225 | log.info(f"Median amenity value: {median_n_amenities}") |
||
1226 | |||
1227 | # Remove synthetic CTS buildings if existing |
||
1228 | delete_synthetic_cts_buildings() |
||
1229 | log.info("Old synthetic cts buildings deleted!") |
||
1230 | |||
1231 | # Amenities not assigned to buildings |
||
1232 | df_amenities_without_buildings = amenities_without_buildings() |
||
1233 | log.info("Amenities without buildlings selected!") |
||
1234 | |||
1235 | # Append lost cells due to duplicated ids, to cover all demand cells |
||
1236 | if not df_lost_cells.empty: |
||
1237 | |||
1238 | # Number of synth amenities per cell |
||
1239 | df_lost_cells["amenities"] = median_n_amenities |
||
1240 | # create row for every amenity |
||
1241 | df_lost_cells["amenities"] = ( |
||
1242 | df_lost_cells["amenities"].astype(int).apply(range) |
||
1243 | ) |
||
1244 | df_lost_cells = df_lost_cells.explode("amenities") |
||
1245 | df_lost_cells.drop(columns="amenities", inplace=True) |
||
1246 | df_amenities_without_buildings = df_amenities_without_buildings.append( |
||
1247 | df_lost_cells, ignore_index=True |
||
1248 | ) |
||
1249 | log.info( |
||
1250 | f"{df_lost_cells.shape[0]} lost cells due to substation " |
||
1251 | f"intersection appended!" |
||
1252 | ) |
||
1253 | |||
1254 | # One building per amenity |
||
1255 | df_amenities_without_buildings["n_amenities_inside"] = 1 |
||
1256 | # Create synthetic buildings for amenites without buildings |
||
1257 | df_synthetic_buildings_with_amenities = create_synthetic_buildings( |
||
1258 | df_amenities_without_buildings, points="geom_amenity" |
||
1259 | ) |
||
1260 | log.info("Synthetic buildings created!") |
||
1261 | |||
1262 | # TODO remove renaming after #722 |
||
1263 | write_table_to_postgis( |
||
1264 | df_synthetic_buildings_with_amenities.rename( |
||
1265 | columns={ |
||
1266 | "zensus_population_id": "cell_id", |
||
1267 | "egon_building_id": "id", |
||
1268 | } |
||
1269 | ), |
||
1270 | OsmBuildingsSynthetic, |
||
1271 | engine=engine, |
||
1272 | drop=False, |
||
1273 | ) |
||
1274 | log.info("Synthetic buildings exported to DB!") |
||
1275 | |||
1276 | # Cells without amenities but CTS demand and buildings |
||
1277 | df_buildings_without_amenities = buildings_without_amenities() |
||
1278 | log.info("Buildings without amenities in demand cells identified!") |
||
1279 | |||
1280 | # Backup Bugfix for duplicated buildings which occure in SQL-Querry |
||
1281 | # drop building ids which have already been used |
||
1282 | mask = df_buildings_without_amenities.loc[ |
||
1283 | df_buildings_without_amenities["id"].isin( |
||
1284 | df_buildings_with_amenities["id"] |
||
1285 | ) |
||
1286 | ].index |
||
1287 | df_buildings_without_amenities = df_buildings_without_amenities.drop( |
||
1288 | index=mask |
||
1289 | ).reset_index(drop=True) |
||
1290 | log.info(f"{len(mask)} duplicated ids removed!") |
||
1291 | |||
1292 | # select median n buildings per cell |
||
1293 | df_buildings_without_amenities = select_cts_buildings( |
||
1294 | df_buildings_without_amenities, max_n=median_n_amenities |
||
1295 | ) |
||
1296 | df_buildings_without_amenities["n_amenities_inside"] = 1 |
||
1297 | log.info(f"{median_n_amenities} buildings per cell selected!") |
||
1298 | |||
1299 | # Create synthetic amenities and buildings in cells with only CTS demand |
||
1300 | df_cells_with_cts_demand_only = cells_with_cts_demand_only( |
||
1301 | df_buildings_without_amenities |
||
1302 | ) |
||
1303 | log.info("Cells with only demand identified!") |
||
1304 | |||
1305 | # TODO implement overlay prevention #953 here |
||
1306 | # Median n Amenities per cell |
||
1307 | df_cells_with_cts_demand_only["amenities"] = median_n_amenities |
||
1308 | # create row for every amenity |
||
1309 | df_cells_with_cts_demand_only["amenities"] = ( |
||
1310 | df_cells_with_cts_demand_only["amenities"].astype(int).apply(range) |
||
1311 | ) |
||
1312 | df_cells_with_cts_demand_only = df_cells_with_cts_demand_only.explode( |
||
1313 | "amenities" |
||
1314 | ) |
||
1315 | df_cells_with_cts_demand_only.drop(columns="amenities", inplace=True) |
||
1316 | |||
1317 | # Only 1 Amenity per Building |
||
1318 | df_cells_with_cts_demand_only["n_amenities_inside"] = 1 |
||
1319 | df_cells_with_cts_demand_only = place_buildings_with_amenities( |
||
1320 | df_cells_with_cts_demand_only, amenities=1 |
||
1321 | ) |
||
1322 | df_synthetic_buildings_without_amenities = create_synthetic_buildings( |
||
1323 | df_cells_with_cts_demand_only, points="geom_point" |
||
1324 | ) |
||
1325 | log.info(f"{median_n_amenities} synthetic buildings per cell created") |
||
1326 | |||
1327 | # TODO remove renaming after #722 |
||
1328 | write_table_to_postgis( |
||
1329 | df_synthetic_buildings_without_amenities.rename( |
||
1330 | columns={ |
||
1331 | "zensus_population_id": "cell_id", |
||
1332 | "egon_building_id": "id", |
||
1333 | } |
||
1334 | ), |
||
1335 | OsmBuildingsSynthetic, |
||
1336 | engine=engine, |
||
1337 | drop=False, |
||
1338 | ) |
||
1339 | log.info("Synthetic buildings exported to DB") |
||
1340 | |||
1341 | # Concat all buildings |
||
1342 | columns = [ |
||
1343 | "zensus_population_id", |
||
1344 | "id", |
||
1345 | "geom_building", |
||
1346 | "n_amenities_inside", |
||
1347 | "source", |
||
1348 | ] |
||
1349 | |||
1350 | df_buildings_with_amenities["source"] = "bwa" |
||
1351 | df_synthetic_buildings_with_amenities["source"] = "sbwa" |
||
1352 | df_buildings_without_amenities["source"] = "bwoa" |
||
1353 | df_synthetic_buildings_without_amenities["source"] = "sbwoa" |
||
1354 | |||
1355 | df_cts_buildings = pd.concat( |
||
1356 | [ |
||
1357 | df_buildings_with_amenities[columns], |
||
1358 | df_synthetic_buildings_with_amenities[columns], |
||
1359 | df_buildings_without_amenities[columns], |
||
1360 | df_synthetic_buildings_without_amenities[columns], |
||
1361 | ], |
||
1362 | axis=0, |
||
1363 | ignore_index=True, |
||
1364 | ) |
||
1365 | df_cts_buildings = remove_double_bus_id(df_cts_buildings) |
||
1366 | log.info("Double bus_id checked") |
||
1367 | |||
1368 | # TODO remove dypte correction after #722 |
||
1369 | df_cts_buildings["id"] = df_cts_buildings["id"].astype(int) |
||
1370 | |||
1371 | df_cts_buildings = gpd.GeoDataFrame( |
||
1372 | df_cts_buildings, geometry="geom_building", crs=3035 |
||
1373 | ) |
||
1374 | df_cts_buildings = df_cts_buildings.reset_index().rename( |
||
1375 | columns={"index": "serial"} |
||
1376 | ) |
||
1377 | |||
1378 | # Write table to db for debugging and postprocessing |
||
1379 | write_table_to_postgis( |
||
1380 | df_cts_buildings, |
||
1381 | CtsBuildings, |
||
1382 | engine=engine, |
||
1383 | drop=True, |
||
1384 | ) |
||
1385 | log.info("CTS buildings exported to DB!") |
||
1386 | |||
1387 | |||
1388 | View Code Duplication | def cts_electricity(): |
|
1389 | """ |
||
1390 | Calculate cts electricity demand share of hvmv substation profile |
||
1391 | for buildings. |
||
1392 | """ |
||
1393 | log.info("Start logging!") |
||
1394 | with db.session_scope() as session: |
||
1395 | cells_query = session.query(CtsBuildings) |
||
1396 | |||
1397 | df_cts_buildings = pd.read_sql( |
||
1398 | cells_query.statement, cells_query.session.bind, index_col=None |
||
1399 | ) |
||
1400 | log.info("CTS buildings from DB imported!") |
||
1401 | df_demand_share_2035 = calc_building_demand_profile_share( |
||
1402 | df_cts_buildings, scenario="eGon2035", sector="electricity" |
||
1403 | ) |
||
1404 | log.info("Profile share for egon2035 calculated!") |
||
1405 | |||
1406 | df_demand_share_100RE = calc_building_demand_profile_share( |
||
1407 | df_cts_buildings, scenario="eGon100RE", sector="electricity" |
||
1408 | ) |
||
1409 | log.info("Profile share for egon100RE calculated!") |
||
1410 | |||
1411 | df_demand_share = pd.concat( |
||
1412 | [df_demand_share_2035, df_demand_share_100RE], |
||
1413 | axis=0, |
||
1414 | ignore_index=True, |
||
1415 | ) |
||
1416 | df_demand_share.rename(columns={"id": "building_id"}, inplace=True) |
||
1417 | |||
1418 | write_table_to_postgres( |
||
1419 | df_demand_share, |
||
1420 | EgonCtsElectricityDemandBuildingShare, |
||
1421 | drop=True, |
||
1422 | ) |
||
1423 | log.info("Profile share exported to DB!") |
||
1424 | |||
1425 | |||
1426 | View Code Duplication | def cts_heat(): |
|
1427 | """ |
||
1428 | Calculate cts electricity demand share of hvmv substation profile |
||
1429 | for buildings. |
||
1430 | """ |
||
1431 | log.info("Start logging!") |
||
1432 | with db.session_scope() as session: |
||
1433 | cells_query = session.query(CtsBuildings) |
||
1434 | |||
1435 | df_cts_buildings = pd.read_sql( |
||
1436 | cells_query.statement, cells_query.session.bind, index_col=None |
||
1437 | ) |
||
1438 | log.info("CTS buildings from DB imported!") |
||
1439 | |||
1440 | df_demand_share_2035 = calc_building_demand_profile_share( |
||
1441 | df_cts_buildings, scenario="eGon2035", sector="heat" |
||
1442 | ) |
||
1443 | log.info("Profile share for egon2035 calculated!") |
||
1444 | df_demand_share_100RE = calc_building_demand_profile_share( |
||
1445 | df_cts_buildings, scenario="eGon100RE", sector="heat" |
||
1446 | ) |
||
1447 | log.info("Profile share for egon100RE calculated!") |
||
1448 | df_demand_share = pd.concat( |
||
1449 | [df_demand_share_2035, df_demand_share_100RE], |
||
1450 | axis=0, |
||
1451 | ignore_index=True, |
||
1452 | ) |
||
1453 | |||
1454 | df_demand_share.rename(columns={"id": "building_id"}, inplace=True) |
||
1455 | |||
1456 | write_table_to_postgres( |
||
1457 | df_demand_share, |
||
1458 | EgonCtsHeatDemandBuildingShare, |
||
1459 | drop=True, |
||
1460 | ) |
||
1461 | log.info("Profile share exported to DB!") |
||
1462 | |||
1463 | |||
1464 | View Code Duplication | def get_cts_electricity_peak_load(): |
|
1465 | """ |
||
1466 | Get electricity peak load of all CTS buildings for both scenarios and |
||
1467 | store in DB. |
||
1468 | """ |
||
1469 | log.info("Start logging!") |
||
1470 | |||
1471 | BuildingElectricityPeakLoads.__table__.create(bind=engine, checkfirst=True) |
||
1472 | |||
1473 | # Delete rows with cts demand |
||
1474 | with db.session_scope() as session: |
||
1475 | session.query(BuildingElectricityPeakLoads).filter( |
||
1476 | BuildingElectricityPeakLoads.sector == "cts" |
||
1477 | ).delete() |
||
1478 | log.info("Cts electricity peak load removed from DB!") |
||
1479 | |||
1480 | for scenario in ["eGon2035", "eGon100RE"]: |
||
1481 | |||
1482 | with db.session_scope() as session: |
||
1483 | cells_query = session.query( |
||
1484 | EgonCtsElectricityDemandBuildingShare |
||
1485 | ).filter( |
||
1486 | EgonCtsElectricityDemandBuildingShare.scenario == scenario |
||
1487 | ) |
||
1488 | |||
1489 | df_demand_share = pd.read_sql( |
||
1490 | cells_query.statement, cells_query.session.bind, index_col=None |
||
1491 | ) |
||
1492 | |||
1493 | with db.session_scope() as session: |
||
1494 | cells_query = session.query(EgonEtragoElectricityCts).filter( |
||
1495 | EgonEtragoElectricityCts.scn_name == scenario |
||
1496 | ) |
||
1497 | |||
1498 | df_cts_profiles = pd.read_sql( |
||
1499 | cells_query.statement, |
||
1500 | cells_query.session.bind, |
||
1501 | ) |
||
1502 | df_cts_profiles = pd.DataFrame.from_dict( |
||
1503 | df_cts_profiles.set_index("bus_id")["p_set"].to_dict(), |
||
1504 | orient="columns", |
||
1505 | ) |
||
1506 | |||
1507 | df_peak_load = pd.merge( |
||
1508 | left=df_cts_profiles.max().astype(float).rename("max"), |
||
1509 | right=df_demand_share, |
||
1510 | left_index=True, |
||
1511 | right_on="bus_id", |
||
1512 | ) |
||
1513 | |||
1514 | # Convert unit from MWh to W |
||
1515 | df_peak_load["max"] = df_peak_load["max"] * 1e6 |
||
1516 | df_peak_load["peak_load_in_w"] = ( |
||
1517 | df_peak_load["max"] * df_peak_load["profile_share"] |
||
1518 | ) |
||
1519 | log.info(f"Peak load for {scenario} determined!") |
||
1520 | |||
1521 | # TODO remove after #772 |
||
1522 | df_peak_load.rename(columns={"id": "building_id"}, inplace=True) |
||
1523 | df_peak_load["sector"] = "cts" |
||
1524 | |||
1525 | # # Write peak loads into db |
||
1526 | write_table_to_postgres( |
||
1527 | df_peak_load, |
||
1528 | BuildingElectricityPeakLoads, |
||
1529 | drop=False, |
||
1530 | index=False, |
||
1531 | if_exists="append", |
||
1532 | ) |
||
1533 | |||
1534 | log.info(f"Peak load for {scenario} exported to DB!") |
||
1535 | |||
1536 | |||
1537 | View Code Duplication | def get_cts_heat_peak_load(): |
|
1538 | """ |
||
1539 | Get heat peak load of all CTS buildings for both scenarios and store in DB. |
||
1540 | """ |
||
1541 | log.info("Start logging!") |
||
1542 | |||
1543 | BuildingHeatPeakLoads.__table__.create(bind=engine, checkfirst=True) |
||
1544 | |||
1545 | # Delete rows with cts demand |
||
1546 | with db.session_scope() as session: |
||
1547 | session.query(BuildingHeatPeakLoads).filter( |
||
1548 | BuildingHeatPeakLoads.sector == "cts" |
||
1549 | ).delete() |
||
1550 | log.info("Cts heat peak load removed from DB!") |
||
1551 | |||
1552 | for scenario in ["eGon2035", "eGon100RE"]: |
||
1553 | |||
1554 | with db.session_scope() as session: |
||
1555 | cells_query = session.query( |
||
1556 | EgonCtsElectricityDemandBuildingShare |
||
1557 | ).filter( |
||
1558 | EgonCtsElectricityDemandBuildingShare.scenario == scenario |
||
1559 | ) |
||
1560 | |||
1561 | df_demand_share = pd.read_sql( |
||
1562 | cells_query.statement, cells_query.session.bind, index_col=None |
||
1563 | ) |
||
1564 | log.info(f"Retrieved demand share for scenario: {scenario}") |
||
1565 | |||
1566 | with db.session_scope() as session: |
||
1567 | cells_query = session.query(EgonEtragoHeatCts).filter( |
||
1568 | EgonEtragoHeatCts.scn_name == scenario |
||
1569 | ) |
||
1570 | |||
1571 | df_cts_profiles = pd.read_sql( |
||
1572 | cells_query.statement, |
||
1573 | cells_query.session.bind, |
||
1574 | ) |
||
1575 | log.info(f"Retrieved substation profiles for scenario: {scenario}") |
||
1576 | |||
1577 | df_cts_profiles = pd.DataFrame.from_dict( |
||
1578 | df_cts_profiles.set_index("bus_id")["p_set"].to_dict(), |
||
1579 | orient="columns", |
||
1580 | ) |
||
1581 | |||
1582 | df_peak_load = pd.merge( |
||
1583 | left=df_cts_profiles.max().astype(float).rename("max"), |
||
1584 | right=df_demand_share, |
||
1585 | left_index=True, |
||
1586 | right_on="bus_id", |
||
1587 | ) |
||
1588 | |||
1589 | # Convert unit from MWh to W |
||
1590 | df_peak_load["max"] = df_peak_load["max"] * 1e6 |
||
1591 | df_peak_load["peak_load_in_w"] = ( |
||
1592 | df_peak_load["max"] * df_peak_load["profile_share"] |
||
1593 | ) |
||
1594 | log.info(f"Peak load for {scenario} determined!") |
||
1595 | |||
1596 | # TODO remove after #772 |
||
1597 | df_peak_load.rename(columns={"id": "building_id"}, inplace=True) |
||
1598 | df_peak_load["sector"] = "cts" |
||
1599 | |||
1600 | # # Write peak loads into db |
||
1601 | write_table_to_postgres( |
||
1602 | df_peak_load, |
||
1603 | BuildingHeatPeakLoads, |
||
1604 | drop=False, |
||
1605 | index=False, |
||
1606 | if_exists="append", |
||
1607 | ) |
||
1608 | |||
1609 | log.info(f"Peak load for {scenario} exported to DB!") |
||
1610 | |||
1611 | |||
1612 | def assign_voltage_level_to_buildings(): |
||
1613 | """ |
||
1614 | Add voltage level to all buildings by summed peak demand. |
||
1615 | |||
1616 | All entries with same building id get the voltage level corresponding |
||
1617 | to their summed residential and cts peak demand. |
||
1618 | """ |
||
1619 | |||
1620 | with db.session_scope() as session: |
||
1621 | cells_query = session.query(BuildingElectricityPeakLoads) |
||
1622 | |||
1623 | df_peak_loads = pd.read_sql( |
||
1624 | cells_query.statement, |
||
1625 | cells_query.session.bind, |
||
1626 | ) |
||
1627 | |||
1628 | df_peak_load_buildings = df_peak_loads.groupby( |
||
1629 | ["building_id", "scenario"] |
||
1630 | )["peak_load_in_w"].sum() |
||
1631 | df_peak_load_buildings = df_peak_load_buildings.to_frame() |
||
1632 | df_peak_load_buildings.loc[:, "voltage_level"] = 0 |
||
1633 | |||
1634 | # Identify voltage_level by thresholds defined in the eGon project |
||
1635 | df_peak_load_buildings.loc[ |
||
1636 | df_peak_load_buildings["peak_load_in_w"] <= 0.1 * 1e6, "voltage_level" |
||
1637 | ] = 7 |
||
1638 | df_peak_load_buildings.loc[ |
||
1639 | df_peak_load_buildings["peak_load_in_w"] > 0.1 * 1e6, "voltage_level" |
||
1640 | ] = 6 |
||
1641 | df_peak_load_buildings.loc[ |
||
1642 | df_peak_load_buildings["peak_load_in_w"] > 0.2 * 1e6, "voltage_level" |
||
1643 | ] = 5 |
||
1644 | df_peak_load_buildings.loc[ |
||
1645 | df_peak_load_buildings["peak_load_in_w"] > 5.5 * 1e6, "voltage_level" |
||
1646 | ] = 4 |
||
1647 | df_peak_load_buildings.loc[ |
||
1648 | df_peak_load_buildings["peak_load_in_w"] > 20 * 1e6, "voltage_level" |
||
1649 | ] = 3 |
||
1650 | df_peak_load_buildings.loc[ |
||
1651 | df_peak_load_buildings["peak_load_in_w"] > 120 * 1e6, "voltage_level" |
||
1652 | ] = 1 |
||
1653 | |||
1654 | df_peak_load = pd.merge( |
||
1655 | left=df_peak_loads.drop(columns="voltage_level"), |
||
1656 | right=df_peak_load_buildings["voltage_level"], |
||
1657 | how="left", |
||
1658 | left_on=["building_id", "scenario"], |
||
1659 | right_index=True, |
||
1660 | ) |
||
1661 | |||
1662 | # Write peak loads into db |
||
1663 | # remove table and replace by new |
||
1664 | write_table_to_postgres( |
||
1665 | df_peak_load, |
||
1666 | BuildingElectricityPeakLoads, |
||
1667 | drop=True, |
||
1668 | index=False, |
||
1669 | if_exists="append", |
||
1670 | ) |
||
1671 |