| @@ 939-980 (lines=42) @@ | ||
| 936 | return df_demand_share |
|
| 937 | ||
| 938 | ||
| 939 | def get_peta_demand(mvgd, scenario): |
|
| 940 | """ |
|
| 941 | Retrieve annual peta heat demand for CTS for either |
|
| 942 | eGon2035 or eGon100RE scenario. |
|
| 943 | ||
| 944 | Parameters |
|
| 945 | ---------- |
|
| 946 | mvgd : int |
|
| 947 | ID of substation for which to get CTS demand. |
|
| 948 | scenario : str |
|
| 949 | Possible options are eGon2035 or eGon100RE |
|
| 950 | ||
| 951 | Returns |
|
| 952 | ------- |
|
| 953 | df_peta_demand : pd.DataFrame |
|
| 954 | Annual residential heat demand per building and scenario. Columns of |
|
| 955 | the dataframe are zensus_population_id and demand. |
|
| 956 | ||
| 957 | """ |
|
| 958 | ||
| 959 | with db.session_scope() as session: |
|
| 960 | query = ( |
|
| 961 | session.query( |
|
| 962 | MapZensusGridDistricts.zensus_population_id, |
|
| 963 | EgonPetaHeat.demand, |
|
| 964 | ) |
|
| 965 | .filter(MapZensusGridDistricts.bus_id == int(mvgd)) |
|
| 966 | .filter( |
|
| 967 | MapZensusGridDistricts.zensus_population_id |
|
| 968 | == EgonPetaHeat.zensus_population_id |
|
| 969 | ) |
|
| 970 | .filter( |
|
| 971 | EgonPetaHeat.sector == "service", |
|
| 972 | EgonPetaHeat.scenario == scenario, |
|
| 973 | ) |
|
| 974 | ) |
|
| 975 | ||
| 976 | df_peta_demand = pd.read_sql( |
|
| 977 | query.statement, query.session.bind, index_col=None |
|
| 978 | ) |
|
| 979 | ||
| 980 | return df_peta_demand |
|
| 981 | ||
| 982 | ||
| 983 | def calc_cts_building_profiles( |
|
| @@ 589-630 (lines=42) @@ | ||
| 586 | ) |
|
| 587 | ||
| 588 | ||
| 589 | def get_peta_demand(mvgd, scenario): |
|
| 590 | """ |
|
| 591 | Retrieve annual peta heat demand for residential buildings for either |
|
| 592 | eGon2035 or eGon100RE scenario. |
|
| 593 | ||
| 594 | Parameters |
|
| 595 | ---------- |
|
| 596 | mvgd : int |
|
| 597 | MV grid ID. |
|
| 598 | scenario : str |
|
| 599 | Possible options are eGon2035 or eGon100RE |
|
| 600 | ||
| 601 | Returns |
|
| 602 | ------- |
|
| 603 | df_peta_demand : pd.DataFrame |
|
| 604 | Annual residential heat demand per building and scenario. Columns of |
|
| 605 | the dataframe are zensus_population_id and demand. |
|
| 606 | ||
| 607 | """ |
|
| 608 | ||
| 609 | with db.session_scope() as session: |
|
| 610 | query = ( |
|
| 611 | session.query( |
|
| 612 | MapZensusGridDistricts.zensus_population_id, |
|
| 613 | EgonPetaHeat.demand, |
|
| 614 | ) |
|
| 615 | .filter(MapZensusGridDistricts.bus_id == mvgd) |
|
| 616 | .filter( |
|
| 617 | MapZensusGridDistricts.zensus_population_id |
|
| 618 | == EgonPetaHeat.zensus_population_id |
|
| 619 | ) |
|
| 620 | .filter( |
|
| 621 | EgonPetaHeat.sector == "residential", |
|
| 622 | EgonPetaHeat.scenario == scenario, |
|
| 623 | ) |
|
| 624 | ) |
|
| 625 | ||
| 626 | df_peta_demand = pd.read_sql( |
|
| 627 | query.statement, query.session.bind, index_col=None |
|
| 628 | ) |
|
| 629 | ||
| 630 | return df_peta_demand |
|
| 631 | ||
| 632 | ||
| 633 | def get_residential_heat_profile_ids(mvgd): |
|