| Total Complexity | 127 |
| Total Lines | 2308 |
| Duplicated Lines | 2.9 % |
| Changes | 0 | ||
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like data.datasets.pypsaeur often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | """The central module containing all code dealing with importing data from |
||
| 2 | the pysa-eur-sec scenario parameter creation |
||
| 3 | """ |
||
| 4 | |||
| 5 | from pathlib import Path |
||
| 6 | from urllib.request import urlretrieve |
||
| 7 | import json |
||
| 8 | import shutil |
||
| 9 | |||
| 10 | from shapely.geometry import LineString |
||
| 11 | import geopandas as gpd |
||
| 12 | import importlib_resources as resources |
||
| 13 | import numpy as np |
||
| 14 | import pandas as pd |
||
| 15 | import pypsa |
||
| 16 | import requests |
||
| 17 | import yaml |
||
| 18 | |||
| 19 | from egon.data import __path__, config, db, logger |
||
| 20 | from egon.data.datasets import Dataset |
||
| 21 | from egon.data.datasets.scenario_parameters import get_sector_parameters |
||
| 22 | from egon.data.datasets.scenario_parameters.parameters import ( |
||
| 23 | annualize_capital_costs, |
||
| 24 | ) |
||
| 25 | import egon.data.config |
||
| 26 | import egon.data.subprocess as subproc |
||
| 27 | |||
| 28 | |||
| 29 | class PreparePypsaEur(Dataset): |
||
| 30 | def __init__(self, dependencies): |
||
| 31 | super().__init__( |
||
| 32 | name="PreparePypsaEur", |
||
| 33 | version="0.0.42", |
||
| 34 | dependencies=dependencies, |
||
| 35 | tasks=( |
||
| 36 | download, |
||
| 37 | prepare_network, |
||
| 38 | ), |
||
| 39 | ) |
||
| 40 | |||
| 41 | |||
| 42 | class RunPypsaEur(Dataset): |
||
| 43 | def __init__(self, dependencies): |
||
| 44 | super().__init__( |
||
| 45 | name="SolvePypsaEur", |
||
| 46 | version="0.0.41", |
||
| 47 | dependencies=dependencies, |
||
| 48 | tasks=( |
||
| 49 | prepare_network_2, |
||
| 50 | execute, |
||
| 51 | solve_network, |
||
| 52 | clean_database, |
||
| 53 | electrical_neighbours_egon100, |
||
| 54 | # Dropped until we decided how we deal with the H2 grid |
||
| 55 | # overwrite_H2_pipeline_share, |
||
| 56 | ), |
||
| 57 | ) |
||
| 58 | |||
| 59 | |||
| 60 | def download(): |
||
| 61 | cwd = Path(".") |
||
| 62 | filepath = cwd / "run-pypsa-eur" |
||
| 63 | filepath.mkdir(parents=True, exist_ok=True) |
||
| 64 | |||
| 65 | pypsa_eur_repos = filepath / "pypsa-eur" |
||
| 66 | if config.settings()["egon-data"]["--run-pypsa-eur"]: |
||
| 67 | if not pypsa_eur_repos.exists(): |
||
| 68 | subproc.run( |
||
| 69 | [ |
||
| 70 | "git", |
||
| 71 | "clone", |
||
| 72 | "--branch", |
||
| 73 | "master", |
||
| 74 | "https://github.com/PyPSA/pypsa-eur.git", |
||
| 75 | pypsa_eur_repos, |
||
| 76 | ] |
||
| 77 | ) |
||
| 78 | |||
| 79 | subproc.run( |
||
| 80 | [ |
||
| 81 | "git", |
||
| 82 | "checkout", |
||
| 83 | "2119f4cee05c256509f48d4e9fe0d8fd9e9e3632", |
||
| 84 | ], |
||
| 85 | cwd=pypsa_eur_repos, |
||
| 86 | ) |
||
| 87 | |||
| 88 | # Add gurobi solver to environment: |
||
| 89 | # Read YAML file |
||
| 90 | # path_to_env = pypsa_eur_repos / "envs" / "environment.yaml" |
||
| 91 | # with open(path_to_env, "r") as stream: |
||
| 92 | # env = yaml.safe_load(stream) |
||
| 93 | |||
| 94 | # The version of gurobipy has to fit to the version of gurobi. |
||
| 95 | # Since we mainly use gurobi 10.0 this is set here. |
||
| 96 | # env["dependencies"][-1]["pip"].append("gurobipy==10.0.0") |
||
| 97 | |||
| 98 | # Set python version to <3.12 |
||
| 99 | # Python<=3.12 needs gurobipy>=11.0, in case gurobipy is updated, |
||
| 100 | # this can be removed |
||
| 101 | # env["dependencies"] = [ |
||
| 102 | # "python>=3.8,<3.12" if x == "python>=3.8" else x |
||
| 103 | # for x in env["dependencies"] |
||
| 104 | # ] |
||
| 105 | |||
| 106 | # Limit geopandas version |
||
| 107 | # our pypsa-eur version is not compatible to geopandas>1 |
||
| 108 | # env["dependencies"] = [ |
||
| 109 | # "geopandas>=0.11.0,<1" if x == "geopandas>=0.11.0" else x |
||
| 110 | # for x in env["dependencies"] |
||
| 111 | # ] |
||
| 112 | |||
| 113 | # Write YAML file |
||
| 114 | # with open(path_to_env, "w", encoding="utf8") as outfile: |
||
| 115 | # yaml.dump( |
||
| 116 | # env, outfile, default_flow_style=False, allow_unicode=True |
||
| 117 | # ) |
||
| 118 | |||
| 119 | # Copy config file for egon-data to pypsa-eur directory |
||
| 120 | shutil.copy( |
||
| 121 | Path( |
||
| 122 | __path__[0], "datasets", "pypsaeur", "config_prepare.yaml" |
||
| 123 | ), |
||
| 124 | pypsa_eur_repos / "config" / "config.yaml", |
||
| 125 | ) |
||
| 126 | |||
| 127 | # Copy custom_extra_functionality.py file for egon-data to pypsa-eur directory |
||
| 128 | shutil.copy( |
||
| 129 | Path( |
||
| 130 | __path__[0], |
||
| 131 | "datasets", |
||
| 132 | "pypsaeur", |
||
| 133 | "custom_extra_functionality.py", |
||
| 134 | ), |
||
| 135 | pypsa_eur_repos / "data", |
||
| 136 | ) |
||
| 137 | |||
| 138 | with open(filepath / "Snakefile", "w") as snakefile: |
||
| 139 | snakefile.write( |
||
| 140 | resources.read_text( |
||
| 141 | "egon.data.datasets.pypsaeur", "Snakefile" |
||
| 142 | ) |
||
| 143 | ) |
||
| 144 | |||
| 145 | # Copy era5 weather data to folder for pypsaeur |
||
| 146 | era5_pypsaeur_path = filepath / "pypsa-eur" / "cutouts" |
||
| 147 | |||
| 148 | if not era5_pypsaeur_path.exists(): |
||
| 149 | era5_pypsaeur_path.mkdir(parents=True, exist_ok=True) |
||
| 150 | copy_from = config.datasets()["era5_weather_data"]["targets"][ |
||
| 151 | "weather_data" |
||
| 152 | ]["path"] |
||
| 153 | filename = "europe-2011-era5.nc" |
||
| 154 | shutil.copy( |
||
| 155 | copy_from + "/" + filename, era5_pypsaeur_path / filename |
||
| 156 | ) |
||
| 157 | |||
| 158 | # Workaround to download natura, shipdensity and globalenergymonitor |
||
| 159 | # data, which is not working in the regular snakemake workflow. |
||
| 160 | # The same files are downloaded from the same directory as in pypsa-eur |
||
| 161 | # version 0.10 here. Is is stored in the folders from pypsa-eur. |
||
| 162 | if not (filepath / "pypsa-eur" / "resources").exists(): |
||
| 163 | (filepath / "pypsa-eur" / "resources").mkdir( |
||
| 164 | parents=True, exist_ok=True |
||
| 165 | ) |
||
| 166 | urlretrieve( |
||
| 167 | "https://zenodo.org/record/4706686/files/natura.tiff", |
||
| 168 | filepath / "pypsa-eur" / "resources" / "natura.tiff", |
||
| 169 | ) |
||
| 170 | |||
| 171 | if not (filepath / "pypsa-eur" / "data").exists(): |
||
| 172 | (filepath / "pypsa-eur" / "data").mkdir( |
||
| 173 | parents=True, exist_ok=True |
||
| 174 | ) |
||
| 175 | urlretrieve( |
||
| 176 | "https://zenodo.org/record/13757228/files/shipdensity_global.zip", |
||
| 177 | filepath / "pypsa-eur" / "data" / "shipdensity_global.zip", |
||
| 178 | ) |
||
| 179 | |||
| 180 | if not ( |
||
| 181 | filepath |
||
| 182 | / "pypsa-eur" |
||
| 183 | / "zenodo.org" |
||
| 184 | / "records" |
||
| 185 | / "13757228" |
||
| 186 | / "files" |
||
| 187 | ).exists(): |
||
| 188 | ( |
||
| 189 | filepath |
||
| 190 | / "pypsa-eur" |
||
| 191 | / "zenodo.org" |
||
| 192 | / "records" |
||
| 193 | / "13757228" |
||
| 194 | / "files" |
||
| 195 | ).mkdir(parents=True, exist_ok=True) |
||
| 196 | |||
| 197 | urlretrieve( |
||
| 198 | "https://zenodo.org/records/10356004/files/ENSPRESO_BIOMASS.xlsx", |
||
| 199 | filepath |
||
| 200 | / "pypsa-eur" |
||
| 201 | / "zenodo.org" |
||
| 202 | / "records" |
||
| 203 | / "13757228" |
||
| 204 | / "files" |
||
| 205 | / "ENSPRESO_BIOMASS.xlsx", |
||
| 206 | ) |
||
| 207 | |||
| 208 | if not (filepath / "pypsa-eur" / "data" / "gem").exists(): |
||
| 209 | (filepath / "pypsa-eur" / "data" / "gem").mkdir( |
||
| 210 | parents=True, exist_ok=True |
||
| 211 | ) |
||
| 212 | |||
| 213 | r = requests.get( |
||
| 214 | "https://tubcloud.tu-berlin.de/s/LMBJQCsN6Ez5cN2/download/" |
||
| 215 | "Europe-Gas-Tracker-2024-05.xlsx" |
||
| 216 | ) |
||
| 217 | with open( |
||
| 218 | filepath |
||
| 219 | / "pypsa-eur" |
||
| 220 | / "data" |
||
| 221 | / "gem" |
||
| 222 | / "Europe-Gas-Tracker-2024-05.xlsx", |
||
| 223 | "wb", |
||
| 224 | ) as outfile: |
||
| 225 | outfile.write(r.content) |
||
| 226 | |||
| 227 | if not (filepath / "pypsa-eur" / "data" / "gem").exists(): |
||
| 228 | (filepath / "pypsa-eur" / "data" / "gem").mkdir( |
||
| 229 | parents=True, exist_ok=True |
||
| 230 | ) |
||
| 231 | |||
| 232 | r = requests.get( |
||
| 233 | "https://tubcloud.tu-berlin.de/s/Aqebo3rrQZWKGsG/download/" |
||
| 234 | "Global-Steel-Plant-Tracker-April-2024-Standard-Copy-V1.xlsx" |
||
| 235 | ) |
||
| 236 | with open( |
||
| 237 | filepath |
||
| 238 | / "pypsa-eur" |
||
| 239 | / "data" |
||
| 240 | / "gem" |
||
| 241 | / "Global-Steel-Plant-Tracker-April-2024-Standard-Copy-V1.xlsx", |
||
| 242 | "wb", |
||
| 243 | ) as outfile: |
||
| 244 | outfile.write(r.content) |
||
| 245 | |||
| 246 | else: |
||
| 247 | print("Pypsa-eur is not executed due to the settings of egon-data") |
||
| 248 | |||
| 249 | |||
| 250 | def prepare_network(): |
||
| 251 | cwd = Path(".") |
||
| 252 | filepath = cwd / "run-pypsa-eur" |
||
| 253 | |||
| 254 | if config.settings()["egon-data"]["--run-pypsa-eur"]: |
||
| 255 | subproc.run( |
||
| 256 | [ |
||
| 257 | "snakemake", |
||
| 258 | "-j1", |
||
| 259 | "--directory", |
||
| 260 | filepath, |
||
| 261 | "--snakefile", |
||
| 262 | filepath / "Snakefile", |
||
| 263 | "--use-conda", |
||
| 264 | "--conda-frontend=conda", |
||
| 265 | "--cores", |
||
| 266 | "8", |
||
| 267 | "prepare", |
||
| 268 | ] |
||
| 269 | ) |
||
| 270 | execute() |
||
| 271 | |||
| 272 | path = filepath / "pypsa-eur" / "results" / "prenetworks" |
||
| 273 | |||
| 274 | path_2 = path / "prenetwork_post-manipulate_pre-solve" |
||
| 275 | path_2.mkdir(parents=True, exist_ok=True) |
||
| 276 | |||
| 277 | with open( |
||
| 278 | __path__[0] + "/datasets/pypsaeur/config_prepare.yaml", "r" |
||
| 279 | ) as stream: |
||
| 280 | data_config = yaml.safe_load(stream) |
||
| 281 | |||
| 282 | for i in range(0, len(data_config["scenario"]["planning_horizons"])): |
||
| 283 | nc_file = ( |
||
| 284 | f"base_s_{data_config['scenario']['clusters'][0]}" |
||
| 285 | f"_l{data_config['scenario']['ll'][0]}" |
||
| 286 | f"_{data_config['scenario']['opts'][0]}" |
||
| 287 | f"_{data_config['scenario']['sector_opts'][0]}" |
||
| 288 | f"_{data_config['scenario']['planning_horizons'][i]}.nc" |
||
| 289 | ) |
||
| 290 | |||
| 291 | shutil.copy(Path(path, nc_file), path_2) |
||
| 292 | |||
| 293 | else: |
||
| 294 | print("Pypsa-eur is not executed due to the settings of egon-data") |
||
| 295 | |||
| 296 | |||
| 297 | def prepare_network_2(): |
||
| 298 | cwd = Path(".") |
||
| 299 | filepath = cwd / "run-pypsa-eur" |
||
| 300 | |||
| 301 | if config.settings()["egon-data"]["--run-pypsa-eur"]: |
||
| 302 | shutil.copy( |
||
| 303 | Path(__path__[0], "datasets", "pypsaeur", "config_solve.yaml"), |
||
| 304 | filepath / "pypsa-eur" / "config" / "config.yaml", |
||
| 305 | ) |
||
| 306 | |||
| 307 | subproc.run( |
||
| 308 | [ |
||
| 309 | "snakemake", |
||
| 310 | "-j1", |
||
| 311 | "--directory", |
||
| 312 | filepath, |
||
| 313 | "--snakefile", |
||
| 314 | filepath / "Snakefile", |
||
| 315 | "--use-conda", |
||
| 316 | "--conda-frontend=conda", |
||
| 317 | "--cores", |
||
| 318 | "8", |
||
| 319 | "prepare", |
||
| 320 | ] |
||
| 321 | ) |
||
| 322 | else: |
||
| 323 | print("Pypsa-eur is not executed due to the settings of egon-data") |
||
| 324 | |||
| 325 | |||
| 326 | def solve_network(): |
||
| 327 | cwd = Path(".") |
||
| 328 | filepath = cwd / "run-pypsa-eur" |
||
| 329 | |||
| 330 | if config.settings()["egon-data"]["--run-pypsa-eur"]: |
||
| 331 | subproc.run( |
||
| 332 | [ |
||
| 333 | "snakemake", |
||
| 334 | "-j1", |
||
| 335 | "--cores", |
||
| 336 | "8", |
||
| 337 | "--directory", |
||
| 338 | filepath, |
||
| 339 | "--snakefile", |
||
| 340 | filepath / "Snakefile", |
||
| 341 | "--use-conda", |
||
| 342 | "--conda-frontend=conda", |
||
| 343 | "solve", |
||
| 344 | ] |
||
| 345 | ) |
||
| 346 | |||
| 347 | postprocessing_biomass_2045() |
||
| 348 | |||
| 349 | subproc.run( |
||
| 350 | [ |
||
| 351 | "snakemake", |
||
| 352 | "-j1", |
||
| 353 | "--directory", |
||
| 354 | filepath, |
||
| 355 | "--snakefile", |
||
| 356 | filepath / "Snakefile", |
||
| 357 | "--use-conda", |
||
| 358 | "--conda-frontend=conda", |
||
| 359 | "summary", |
||
| 360 | ] |
||
| 361 | ) |
||
| 362 | else: |
||
| 363 | print("Pypsa-eur is not executed due to the settings of egon-data") |
||
| 364 | |||
| 365 | |||
| 366 | View Code Duplication | def read_network(planning_horizon=3): |
|
|
|
|||
| 367 | if config.settings()["egon-data"]["--run-pypsa-eur"]: |
||
| 368 | with open( |
||
| 369 | __path__[0] + "/datasets/pypsaeur/config_solve.yaml", "r" |
||
| 370 | ) as stream: |
||
| 371 | data_config = yaml.safe_load(stream) |
||
| 372 | |||
| 373 | target_file = ( |
||
| 374 | Path(".") |
||
| 375 | / "run-pypsa-eur" |
||
| 376 | / "pypsa-eur" |
||
| 377 | / "results" |
||
| 378 | / data_config["run"]["name"] |
||
| 379 | / "postnetworks" |
||
| 380 | / f"base_s_{data_config['scenario']['clusters'][0]}" |
||
| 381 | f"_l{data_config['scenario']['ll'][0]}" |
||
| 382 | f"_{data_config['scenario']['opts'][0]}" |
||
| 383 | f"_{data_config['scenario']['sector_opts'][0]}" |
||
| 384 | f"_{data_config['scenario']['planning_horizons'][planning_horizon]}.nc" |
||
| 385 | ) |
||
| 386 | |||
| 387 | else: |
||
| 388 | target_file = ( |
||
| 389 | Path(".") |
||
| 390 | / "data_bundle_powerd_data" |
||
| 391 | / "pypsa_eur" |
||
| 392 | / "21122024_3h_clean_run" |
||
| 393 | / "results" |
||
| 394 | / "postnetworks" |
||
| 395 | / "base_s_39_lc1.25__cb40ex0-T-H-I-B-solar+p3-dist1_2045.nc" |
||
| 396 | ) |
||
| 397 | |||
| 398 | return pypsa.Network(target_file) |
||
| 399 | |||
| 400 | |||
| 401 | def clean_database(): |
||
| 402 | """Remove all components abroad for eGon100RE of the database |
||
| 403 | |||
| 404 | Remove all components abroad and their associated time series of |
||
| 405 | the datase for the scenario 'eGon100RE'. |
||
| 406 | |||
| 407 | Parameters |
||
| 408 | ---------- |
||
| 409 | None |
||
| 410 | |||
| 411 | Returns |
||
| 412 | ------- |
||
| 413 | None |
||
| 414 | |||
| 415 | """ |
||
| 416 | scn_name = "eGon100RE" |
||
| 417 | |||
| 418 | comp_one_port = ["load", "generator", "store", "storage"] |
||
| 419 | |||
| 420 | # delete existing components and associated timeseries |
||
| 421 | for comp in comp_one_port: |
||
| 422 | db.execute_sql( |
||
| 423 | f""" |
||
| 424 | DELETE FROM {"grid.egon_etrago_" + comp + "_timeseries"} |
||
| 425 | WHERE {comp + "_id"} IN ( |
||
| 426 | SELECT {comp + "_id"} FROM {"grid.egon_etrago_" + comp} |
||
| 427 | WHERE bus IN ( |
||
| 428 | SELECT bus_id FROM grid.egon_etrago_bus |
||
| 429 | WHERE country != 'DE' |
||
| 430 | AND scn_name = '{scn_name}') |
||
| 431 | AND scn_name = '{scn_name}' |
||
| 432 | ); |
||
| 433 | |||
| 434 | DELETE FROM {"grid.egon_etrago_" + comp} |
||
| 435 | WHERE bus IN ( |
||
| 436 | SELECT bus_id FROM grid.egon_etrago_bus |
||
| 437 | WHERE country != 'DE' |
||
| 438 | AND scn_name = '{scn_name}') |
||
| 439 | AND scn_name = '{scn_name}';""" |
||
| 440 | ) |
||
| 441 | |||
| 442 | comp_2_ports = [ |
||
| 443 | "line", |
||
| 444 | "link", |
||
| 445 | ] |
||
| 446 | |||
| 447 | for comp, id in zip(comp_2_ports, ["line_id", "link_id"]): |
||
| 448 | db.execute_sql( |
||
| 449 | f""" |
||
| 450 | DELETE FROM {"grid.egon_etrago_" + comp + "_timeseries"} |
||
| 451 | WHERE scn_name = '{scn_name}' |
||
| 452 | AND {id} IN ( |
||
| 453 | SELECT {id} FROM {"grid.egon_etrago_" + comp} |
||
| 454 | WHERE "bus0" IN ( |
||
| 455 | SELECT bus_id FROM grid.egon_etrago_bus |
||
| 456 | WHERE country != 'DE' |
||
| 457 | AND scn_name = '{scn_name}' |
||
| 458 | AND bus_id NOT IN (SELECT bus_i FROM osmtgmod_results.bus_data)) |
||
| 459 | AND "bus1" IN ( |
||
| 460 | SELECT bus_id FROM grid.egon_etrago_bus |
||
| 461 | WHERE country != 'DE' |
||
| 462 | AND scn_name = '{scn_name}' |
||
| 463 | AND bus_id NOT IN (SELECT bus_i FROM osmtgmod_results.bus_data)) |
||
| 464 | ); |
||
| 465 | |||
| 466 | |||
| 467 | DELETE FROM {"grid.egon_etrago_" + comp} |
||
| 468 | WHERE scn_name = '{scn_name}' |
||
| 469 | AND "bus0" IN ( |
||
| 470 | SELECT bus_id FROM grid.egon_etrago_bus |
||
| 471 | WHERE country != 'DE' |
||
| 472 | AND scn_name = '{scn_name}' |
||
| 473 | AND bus_id NOT IN (SELECT bus_i FROM osmtgmod_results.bus_data)) |
||
| 474 | AND "bus1" IN ( |
||
| 475 | SELECT bus_id FROM grid.egon_etrago_bus |
||
| 476 | WHERE country != 'DE' |
||
| 477 | AND scn_name = '{scn_name}' |
||
| 478 | AND bus_id NOT IN (SELECT bus_i FROM osmtgmod_results.bus_data)) |
||
| 479 | ;""" |
||
| 480 | ) |
||
| 481 | |||
| 482 | db.execute_sql( |
||
| 483 | f""" |
||
| 484 | DELETE FROM grid.egon_etrago_bus |
||
| 485 | WHERE scn_name = '{scn_name}' |
||
| 486 | AND country <> 'DE' |
||
| 487 | AND carrier <> 'AC' |
||
| 488 | """ |
||
| 489 | ) |
||
| 490 | |||
| 491 | |||
| 492 | def electrical_neighbours_egon100(): |
||
| 493 | if "eGon100RE" in egon.data.config.settings()["egon-data"]["--scenarios"]: |
||
| 494 | neighbor_reduction() |
||
| 495 | |||
| 496 | else: |
||
| 497 | print( |
||
| 498 | "eGon100RE is not in the list of created scenarios, this task is skipped." |
||
| 499 | ) |
||
| 500 | |||
| 501 | |||
| 502 | def combine_decentral_and_rural_heat(network_solved, network_prepared): |
||
| 503 | |||
| 504 | for comp in network_solved.iterate_components(): |
||
| 505 | |||
| 506 | if comp.name in ["Bus", "Link", "Store"]: |
||
| 507 | urban_decentral = comp.df[ |
||
| 508 | comp.df.carrier.str.contains("urban decentral") |
||
| 509 | ] |
||
| 510 | rural = comp.df[comp.df.carrier.str.contains("rural")] |
||
| 511 | for i, row in urban_decentral.iterrows(): |
||
| 512 | if not "DE" in i: |
||
| 513 | if comp.name in ["Bus"]: |
||
| 514 | network_solved.remove("Bus", i) |
||
| 515 | if comp.name in ["Link", "Generator"]: |
||
| 516 | if ( |
||
| 517 | i.replace("urban decentral", "rural") |
||
| 518 | in rural.index |
||
| 519 | ): |
||
| 520 | rural.loc[ |
||
| 521 | i.replace("urban decentral", "rural"), |
||
| 522 | "p_nom_opt", |
||
| 523 | ] += urban_decentral.loc[i, "p_nom_opt"] |
||
| 524 | rural.loc[ |
||
| 525 | i.replace("urban decentral", "rural"), "p_nom" |
||
| 526 | ] += urban_decentral.loc[i, "p_nom"] |
||
| 527 | network_solved.remove(comp.name, i) |
||
| 528 | else: |
||
| 529 | print(i) |
||
| 530 | comp.df.loc[i, "bus0"] = comp.df.loc[ |
||
| 531 | i, "bus0" |
||
| 532 | ].replace("urban decentral", "rural") |
||
| 533 | comp.df.loc[i, "bus1"] = comp.df.loc[ |
||
| 534 | i, "bus1" |
||
| 535 | ].replace("urban decentral", "rural") |
||
| 536 | comp.df.loc[i, "carrier"] = comp.df.loc[ |
||
| 537 | i, "carrier" |
||
| 538 | ].replace("urban decentral", "rural") |
||
| 539 | if comp.name in ["Store"]: |
||
| 540 | if ( |
||
| 541 | i.replace("urban decentral", "rural") |
||
| 542 | in rural.index |
||
| 543 | ): |
||
| 544 | rural.loc[ |
||
| 545 | i.replace("urban decentral", "rural"), |
||
| 546 | "e_nom_opt", |
||
| 547 | ] += urban_decentral.loc[i, "e_nom_opt"] |
||
| 548 | rural.loc[ |
||
| 549 | i.replace("urban decentral", "rural"), "e_nom" |
||
| 550 | ] += urban_decentral.loc[i, "e_nom"] |
||
| 551 | network_solved.remove(comp.name, i) |
||
| 552 | |||
| 553 | else: |
||
| 554 | print(i) |
||
| 555 | network_solved.stores.loc[i, "bus"] = ( |
||
| 556 | network_solved.stores.loc[i, "bus"].replace( |
||
| 557 | "urban decentral", "rural" |
||
| 558 | ) |
||
| 559 | ) |
||
| 560 | network_solved.stores.loc[i, "carrier"] = ( |
||
| 561 | "rural water tanks" |
||
| 562 | ) |
||
| 563 | |||
| 564 | urban_decentral_loads = network_prepared.loads[ |
||
| 565 | network_prepared.loads.carrier.str.contains("urban decentral") |
||
| 566 | ] |
||
| 567 | |||
| 568 | for i, row in urban_decentral_loads.iterrows(): |
||
| 569 | if i in network_prepared.loads_t.p_set.columns: |
||
| 570 | network_prepared.loads_t.p_set[ |
||
| 571 | i.replace("urban decentral", "rural") |
||
| 572 | ] += network_prepared.loads_t.p_set[i] |
||
| 573 | network_prepared.mremove("Load", urban_decentral_loads.index) |
||
| 574 | |||
| 575 | return network_prepared, network_solved |
||
| 576 | |||
| 577 | |||
| 578 | def neighbor_reduction(): |
||
| 579 | network_solved = read_network() |
||
| 580 | network_prepared = prepared_network(planning_horizon="2045") |
||
| 581 | |||
| 582 | # network.links.drop("pipe_retrofit", axis="columns", inplace=True) |
||
| 583 | |||
| 584 | wanted_countries = [ |
||
| 585 | "DE", |
||
| 586 | "AT", |
||
| 587 | "CH", |
||
| 588 | "CZ", |
||
| 589 | "PL", |
||
| 590 | "SE", |
||
| 591 | "NO", |
||
| 592 | "DK", |
||
| 593 | "GB", |
||
| 594 | "NL", |
||
| 595 | "BE", |
||
| 596 | "FR", |
||
| 597 | "LU", |
||
| 598 | ] |
||
| 599 | |||
| 600 | foreign_buses = network_solved.buses[ |
||
| 601 | (~network_solved.buses.index.str.contains("|".join(wanted_countries))) |
||
| 602 | | (network_solved.buses.index.str.contains("FR6")) |
||
| 603 | ] |
||
| 604 | network_solved.buses = network_solved.buses.drop( |
||
| 605 | network_solved.buses.loc[foreign_buses.index].index |
||
| 606 | ) |
||
| 607 | |||
| 608 | # Add H2 demand of Fischer-Tropsch process and methanolisation |
||
| 609 | # to industrial H2 demands |
||
| 610 | industrial_hydrogen = network_prepared.loads.loc[ |
||
| 611 | network_prepared.loads.carrier == "H2 for industry" |
||
| 612 | ] |
||
| 613 | fischer_tropsch = ( |
||
| 614 | network_solved.links_t.p0[ |
||
| 615 | network_solved.links.loc[ |
||
| 616 | network_solved.links.carrier == "Fischer-Tropsch" |
||
| 617 | ].index |
||
| 618 | ] |
||
| 619 | .mul(network_solved.snapshot_weightings.generators, axis=0) |
||
| 620 | .sum() |
||
| 621 | ) |
||
| 622 | methanolisation = ( |
||
| 623 | network_solved.links_t.p0[ |
||
| 624 | network_solved.links.loc[ |
||
| 625 | network_solved.links.carrier == "methanolisation" |
||
| 626 | ].index |
||
| 627 | ] |
||
| 628 | .mul(network_solved.snapshot_weightings.generators, axis=0) |
||
| 629 | .sum() |
||
| 630 | ) |
||
| 631 | for i, row in industrial_hydrogen.iterrows(): |
||
| 632 | network_prepared.loads.loc[i, "p_set"] += ( |
||
| 633 | fischer_tropsch[ |
||
| 634 | fischer_tropsch.index.str.startswith(row.bus[:5]) |
||
| 635 | ].sum() |
||
| 636 | / 8760 |
||
| 637 | ) |
||
| 638 | network_prepared.loads.loc[i, "p_set"] += ( |
||
| 639 | methanolisation[ |
||
| 640 | methanolisation.index.str.startswith(row.bus[:5]) |
||
| 641 | ].sum() |
||
| 642 | / 8760 |
||
| 643 | ) |
||
| 644 | # drop foreign lines and links from the 2nd row |
||
| 645 | |||
| 646 | network_solved.lines = network_solved.lines.drop( |
||
| 647 | network_solved.lines[ |
||
| 648 | ( |
||
| 649 | network_solved.lines["bus0"].isin(network_solved.buses.index) |
||
| 650 | == False |
||
| 651 | ) |
||
| 652 | & ( |
||
| 653 | network_solved.lines["bus1"].isin(network_solved.buses.index) |
||
| 654 | == False |
||
| 655 | ) |
||
| 656 | ].index |
||
| 657 | ) |
||
| 658 | |||
| 659 | # select all lines which have at bus1 the bus which is kept |
||
| 660 | lines_cb_1 = network_solved.lines[ |
||
| 661 | ( |
||
| 662 | network_solved.lines["bus0"].isin(network_solved.buses.index) |
||
| 663 | == False |
||
| 664 | ) |
||
| 665 | ] |
||
| 666 | |||
| 667 | # create a load at bus1 with the line's hourly loading |
||
| 668 | for i, k in zip(lines_cb_1.bus1.values, lines_cb_1.index): |
||
| 669 | |||
| 670 | # Copy loading of lines into hourly resolution |
||
| 671 | pset = pd.Series( |
||
| 672 | index=network_prepared.snapshots, |
||
| 673 | data=network_solved.lines_t.p1[k].resample("H").ffill(), |
||
| 674 | ) |
||
| 675 | pset["2011-12-31 22:00:00"] = pset["2011-12-31 21:00:00"] |
||
| 676 | pset["2011-12-31 23:00:00"] = pset["2011-12-31 21:00:00"] |
||
| 677 | |||
| 678 | # Loads are all imported from the prepared network in the end |
||
| 679 | network_prepared.add( |
||
| 680 | "Load", |
||
| 681 | "slack_fix " + i + " " + k, |
||
| 682 | bus=i, |
||
| 683 | p_set=pset, |
||
| 684 | carrier=lines_cb_1.loc[k, "carrier"], |
||
| 685 | ) |
||
| 686 | |||
| 687 | # select all lines which have at bus0 the bus which is kept |
||
| 688 | lines_cb_0 = network_solved.lines[ |
||
| 689 | ( |
||
| 690 | network_solved.lines["bus1"].isin(network_solved.buses.index) |
||
| 691 | == False |
||
| 692 | ) |
||
| 693 | ] |
||
| 694 | |||
| 695 | # create a load at bus0 with the line's hourly loading |
||
| 696 | for i, k in zip(lines_cb_0.bus0.values, lines_cb_0.index): |
||
| 697 | # Copy loading of lines into hourly resolution |
||
| 698 | pset = pd.Series( |
||
| 699 | index=network_prepared.snapshots, |
||
| 700 | data=network_solved.lines_t.p0[k].resample("H").ffill(), |
||
| 701 | ) |
||
| 702 | pset["2011-12-31 22:00:00"] = pset["2011-12-31 21:00:00"] |
||
| 703 | pset["2011-12-31 23:00:00"] = pset["2011-12-31 21:00:00"] |
||
| 704 | |||
| 705 | network_prepared.add( |
||
| 706 | "Load", |
||
| 707 | "slack_fix " + i + " " + k, |
||
| 708 | bus=i, |
||
| 709 | p_set=pset, |
||
| 710 | carrier=lines_cb_0.loc[k, "carrier"], |
||
| 711 | ) |
||
| 712 | |||
| 713 | # do the same for links |
||
| 714 | network_solved.mremove( |
||
| 715 | "Link", |
||
| 716 | network_solved.links[ |
||
| 717 | (~network_solved.links.bus0.isin(network_solved.buses.index)) |
||
| 718 | | (~network_solved.links.bus1.isin(network_solved.buses.index)) |
||
| 719 | ].index, |
||
| 720 | ) |
||
| 721 | |||
| 722 | # select all links which have at bus1 the bus which is kept |
||
| 723 | links_cb_1 = network_solved.links[ |
||
| 724 | ( |
||
| 725 | network_solved.links["bus0"].isin(network_solved.buses.index) |
||
| 726 | == False |
||
| 727 | ) |
||
| 728 | ] |
||
| 729 | |||
| 730 | # create a load at bus1 with the link's hourly loading |
||
| 731 | for i, k in zip(links_cb_1.bus1.values, links_cb_1.index): |
||
| 732 | pset = pd.Series( |
||
| 733 | index=network_prepared.snapshots, |
||
| 734 | data=network_solved.links_t.p1[k].resample("H").ffill(), |
||
| 735 | ) |
||
| 736 | pset["2011-12-31 22:00:00"] = pset["2011-12-31 21:00:00"] |
||
| 737 | pset["2011-12-31 23:00:00"] = pset["2011-12-31 21:00:00"] |
||
| 738 | |||
| 739 | network_prepared.add( |
||
| 740 | "Load", |
||
| 741 | "slack_fix_links " + i + " " + k, |
||
| 742 | bus=i, |
||
| 743 | p_set=pset, |
||
| 744 | carrier=links_cb_1.loc[k, "carrier"], |
||
| 745 | ) |
||
| 746 | |||
| 747 | # select all links which have at bus0 the bus which is kept |
||
| 748 | links_cb_0 = network_solved.links[ |
||
| 749 | ( |
||
| 750 | network_solved.links["bus1"].isin(network_solved.buses.index) |
||
| 751 | == False |
||
| 752 | ) |
||
| 753 | ] |
||
| 754 | |||
| 755 | # create a load at bus0 with the link's hourly loading |
||
| 756 | for i, k in zip(links_cb_0.bus0.values, links_cb_0.index): |
||
| 757 | pset = pd.Series( |
||
| 758 | index=network_prepared.snapshots, |
||
| 759 | data=network_solved.links_t.p0[k].resample("H").ffill(), |
||
| 760 | ) |
||
| 761 | pset["2011-12-31 22:00:00"] = pset["2011-12-31 21:00:00"] |
||
| 762 | pset["2011-12-31 23:00:00"] = pset["2011-12-31 21:00:00"] |
||
| 763 | |||
| 764 | network_prepared.add( |
||
| 765 | "Load", |
||
| 766 | "slack_fix_links " + i + " " + k, |
||
| 767 | bus=i, |
||
| 768 | p_set=pset, |
||
| 769 | carrier=links_cb_0.carrier[k], |
||
| 770 | ) |
||
| 771 | |||
| 772 | # drop remaining foreign components |
||
| 773 | for comp in network_solved.iterate_components(): |
||
| 774 | if "bus0" in comp.df.columns: |
||
| 775 | network_solved.mremove( |
||
| 776 | comp.name, |
||
| 777 | comp.df[~comp.df.bus0.isin(network_solved.buses.index)].index, |
||
| 778 | ) |
||
| 779 | network_solved.mremove( |
||
| 780 | comp.name, |
||
| 781 | comp.df[~comp.df.bus1.isin(network_solved.buses.index)].index, |
||
| 782 | ) |
||
| 783 | elif "bus" in comp.df.columns: |
||
| 784 | network_solved.mremove( |
||
| 785 | comp.name, |
||
| 786 | comp.df[~comp.df.bus.isin(network_solved.buses.index)].index, |
||
| 787 | ) |
||
| 788 | |||
| 789 | # Combine urban decentral and rural heat |
||
| 790 | network_prepared, network_solved = combine_decentral_and_rural_heat( |
||
| 791 | network_solved, network_prepared |
||
| 792 | ) |
||
| 793 | |||
| 794 | # writing components of neighboring countries to etrago tables |
||
| 795 | |||
| 796 | # Set country tag for all buses |
||
| 797 | network_solved.buses.country = network_solved.buses.index.str[:2] |
||
| 798 | neighbors = network_solved.buses[network_solved.buses.country != "DE"] |
||
| 799 | |||
| 800 | neighbors["new_index"] = ( |
||
| 801 | db.next_etrago_id("bus") + neighbors.reset_index().index |
||
| 802 | ) |
||
| 803 | |||
| 804 | # Use index of AC buses created by electrical_neigbors |
||
| 805 | foreign_ac_buses = db.select_dataframe( |
||
| 806 | """ |
||
| 807 | SELECT * FROM grid.egon_etrago_bus |
||
| 808 | WHERE carrier = 'AC' AND v_nom = 380 |
||
| 809 | AND country!= 'DE' AND scn_name ='eGon100RE' |
||
| 810 | AND bus_id NOT IN (SELECT bus_i FROM osmtgmod_results.bus_data) |
||
| 811 | """ |
||
| 812 | ) |
||
| 813 | buses_with_defined_id = neighbors[ |
||
| 814 | (neighbors.carrier == "AC") |
||
| 815 | & (neighbors.country.isin(foreign_ac_buses.country.values)) |
||
| 816 | ].index |
||
| 817 | neighbors.loc[buses_with_defined_id, "new_index"] = ( |
||
| 818 | foreign_ac_buses.set_index("x") |
||
| 819 | .loc[neighbors.loc[buses_with_defined_id, "x"]] |
||
| 820 | .bus_id.values |
||
| 821 | ) |
||
| 822 | |||
| 823 | # lines, the foreign crossborder lines |
||
| 824 | # (without crossborder lines to Germany!) |
||
| 825 | |||
| 826 | neighbor_lines = network_solved.lines[ |
||
| 827 | network_solved.lines.bus0.isin(neighbors.index) |
||
| 828 | & network_solved.lines.bus1.isin(neighbors.index) |
||
| 829 | ] |
||
| 830 | if not network_solved.lines_t["s_max_pu"].empty: |
||
| 831 | neighbor_lines_t = network_prepared.lines_t["s_max_pu"][ |
||
| 832 | neighbor_lines.index |
||
| 833 | ] |
||
| 834 | |||
| 835 | neighbor_lines.reset_index(inplace=True) |
||
| 836 | neighbor_lines.bus0 = ( |
||
| 837 | neighbors.loc[neighbor_lines.bus0, "new_index"].reset_index().new_index |
||
| 838 | ) |
||
| 839 | neighbor_lines.bus1 = ( |
||
| 840 | neighbors.loc[neighbor_lines.bus1, "new_index"].reset_index().new_index |
||
| 841 | ) |
||
| 842 | neighbor_lines.index += db.next_etrago_id("line") |
||
| 843 | |||
| 844 | if not network_solved.lines_t["s_max_pu"].empty: |
||
| 845 | for i in neighbor_lines_t.columns: |
||
| 846 | new_index = neighbor_lines[neighbor_lines["name"] == i].index |
||
| 847 | neighbor_lines_t.rename(columns={i: new_index[0]}, inplace=True) |
||
| 848 | |||
| 849 | # links |
||
| 850 | neighbor_links = network_solved.links[ |
||
| 851 | network_solved.links.bus0.isin(neighbors.index) |
||
| 852 | & network_solved.links.bus1.isin(neighbors.index) |
||
| 853 | ] |
||
| 854 | |||
| 855 | neighbor_links.reset_index(inplace=True) |
||
| 856 | neighbor_links.bus0 = ( |
||
| 857 | neighbors.loc[neighbor_links.bus0, "new_index"].reset_index().new_index |
||
| 858 | ) |
||
| 859 | neighbor_links.bus1 = ( |
||
| 860 | neighbors.loc[neighbor_links.bus1, "new_index"].reset_index().new_index |
||
| 861 | ) |
||
| 862 | neighbor_links.index += db.next_etrago_id("link") |
||
| 863 | |||
| 864 | # generators |
||
| 865 | neighbor_gens = network_solved.generators[ |
||
| 866 | network_solved.generators.bus.isin(neighbors.index) |
||
| 867 | ] |
||
| 868 | neighbor_gens_t = network_prepared.generators_t["p_max_pu"][ |
||
| 869 | neighbor_gens[ |
||
| 870 | neighbor_gens.index.isin( |
||
| 871 | network_prepared.generators_t["p_max_pu"].columns |
||
| 872 | ) |
||
| 873 | ].index |
||
| 874 | ] |
||
| 875 | |||
| 876 | gen_time = [ |
||
| 877 | "solar", |
||
| 878 | "onwind", |
||
| 879 | "solar rooftop", |
||
| 880 | "offwind-ac", |
||
| 881 | "offwind-dc", |
||
| 882 | "solar-hsat", |
||
| 883 | "urban central solar thermal", |
||
| 884 | "rural solar thermal", |
||
| 885 | "offwind-float", |
||
| 886 | ] |
||
| 887 | |||
| 888 | missing_gent = neighbor_gens[ |
||
| 889 | neighbor_gens["carrier"].isin(gen_time) |
||
| 890 | & ~neighbor_gens.index.isin(neighbor_gens_t.columns) |
||
| 891 | ].index |
||
| 892 | |||
| 893 | gen_timeseries = network_prepared.generators_t["p_max_pu"].copy() |
||
| 894 | for mgt in missing_gent: # mgt: missing generator timeseries |
||
| 895 | try: |
||
| 896 | neighbor_gens_t[mgt] = gen_timeseries.loc[:, mgt[0:-5]] |
||
| 897 | except: |
||
| 898 | print(f"There are not timeseries for {mgt}") |
||
| 899 | |||
| 900 | neighbor_gens.reset_index(inplace=True) |
||
| 901 | neighbor_gens.bus = ( |
||
| 902 | neighbors.loc[neighbor_gens.bus, "new_index"].reset_index().new_index |
||
| 903 | ) |
||
| 904 | neighbor_gens.index += db.next_etrago_id("generator") |
||
| 905 | |||
| 906 | for i in neighbor_gens_t.columns: |
||
| 907 | new_index = neighbor_gens[neighbor_gens["Generator"] == i].index |
||
| 908 | neighbor_gens_t.rename(columns={i: new_index[0]}, inplace=True) |
||
| 909 | |||
| 910 | # loads |
||
| 911 | # imported from prenetwork in 1h-resolution |
||
| 912 | neighbor_loads = network_prepared.loads[ |
||
| 913 | network_prepared.loads.bus.isin(neighbors.index) |
||
| 914 | ] |
||
| 915 | neighbor_loads_t_index = neighbor_loads.index[ |
||
| 916 | neighbor_loads.index.isin(network_prepared.loads_t.p_set.columns) |
||
| 917 | ] |
||
| 918 | neighbor_loads_t = network_prepared.loads_t["p_set"][ |
||
| 919 | neighbor_loads_t_index |
||
| 920 | ] |
||
| 921 | |||
| 922 | neighbor_loads.reset_index(inplace=True) |
||
| 923 | neighbor_loads.bus = ( |
||
| 924 | neighbors.loc[neighbor_loads.bus, "new_index"].reset_index().new_index |
||
| 925 | ) |
||
| 926 | neighbor_loads.index += db.next_etrago_id("load") |
||
| 927 | |||
| 928 | for i in neighbor_loads_t.columns: |
||
| 929 | new_index = neighbor_loads[neighbor_loads["Load"] == i].index |
||
| 930 | neighbor_loads_t.rename(columns={i: new_index[0]}, inplace=True) |
||
| 931 | |||
| 932 | # stores |
||
| 933 | neighbor_stores = network_solved.stores[ |
||
| 934 | network_solved.stores.bus.isin(neighbors.index) |
||
| 935 | ] |
||
| 936 | neighbor_stores_t_index = neighbor_stores.index[ |
||
| 937 | neighbor_stores.index.isin(network_solved.stores_t.e_min_pu.columns) |
||
| 938 | ] |
||
| 939 | neighbor_stores_t = network_prepared.stores_t["e_min_pu"][ |
||
| 940 | neighbor_stores_t_index |
||
| 941 | ] |
||
| 942 | |||
| 943 | neighbor_stores.reset_index(inplace=True) |
||
| 944 | neighbor_stores.bus = ( |
||
| 945 | neighbors.loc[neighbor_stores.bus, "new_index"].reset_index().new_index |
||
| 946 | ) |
||
| 947 | neighbor_stores.index += db.next_etrago_id("store") |
||
| 948 | |||
| 949 | for i in neighbor_stores_t.columns: |
||
| 950 | new_index = neighbor_stores[neighbor_stores["Store"] == i].index |
||
| 951 | neighbor_stores_t.rename(columns={i: new_index[0]}, inplace=True) |
||
| 952 | |||
| 953 | # storage_units |
||
| 954 | neighbor_storage = network_solved.storage_units[ |
||
| 955 | network_solved.storage_units.bus.isin(neighbors.index) |
||
| 956 | ] |
||
| 957 | neighbor_storage_t_index = neighbor_storage.index[ |
||
| 958 | neighbor_storage.index.isin( |
||
| 959 | network_solved.storage_units_t.inflow.columns |
||
| 960 | ) |
||
| 961 | ] |
||
| 962 | neighbor_storage_t = network_prepared.storage_units_t["inflow"][ |
||
| 963 | neighbor_storage_t_index |
||
| 964 | ] |
||
| 965 | |||
| 966 | neighbor_storage.reset_index(inplace=True) |
||
| 967 | neighbor_storage.bus = ( |
||
| 968 | neighbors.loc[neighbor_storage.bus, "new_index"] |
||
| 969 | .reset_index() |
||
| 970 | .new_index |
||
| 971 | ) |
||
| 972 | neighbor_storage.index += db.next_etrago_id("storage") |
||
| 973 | |||
| 974 | for i in neighbor_storage_t.columns: |
||
| 975 | new_index = neighbor_storage[ |
||
| 976 | neighbor_storage["StorageUnit"] == i |
||
| 977 | ].index |
||
| 978 | neighbor_storage_t.rename(columns={i: new_index[0]}, inplace=True) |
||
| 979 | |||
| 980 | # Connect to local database |
||
| 981 | engine = db.engine() |
||
| 982 | |||
| 983 | neighbors["scn_name"] = "eGon100RE" |
||
| 984 | neighbors.index = neighbors["new_index"] |
||
| 985 | |||
| 986 | # Correct geometry for non AC buses |
||
| 987 | carriers = set(neighbors.carrier.to_list()) |
||
| 988 | carriers = [e for e in carriers if e not in ("AC")] |
||
| 989 | non_AC_neighbors = pd.DataFrame() |
||
| 990 | for c in carriers: |
||
| 991 | c_neighbors = neighbors[neighbors.carrier == c].set_index( |
||
| 992 | "location", drop=False |
||
| 993 | ) |
||
| 994 | for i in ["x", "y"]: |
||
| 995 | c_neighbors = c_neighbors.drop(i, axis=1) |
||
| 996 | coordinates = neighbors[neighbors.carrier == "AC"][ |
||
| 997 | ["location", "x", "y"] |
||
| 998 | ].set_index("location") |
||
| 999 | c_neighbors = pd.concat([coordinates, c_neighbors], axis=1).set_index( |
||
| 1000 | "new_index", drop=False |
||
| 1001 | ) |
||
| 1002 | non_AC_neighbors = pd.concat([non_AC_neighbors, c_neighbors]) |
||
| 1003 | |||
| 1004 | neighbors = pd.concat( |
||
| 1005 | [neighbors[neighbors.carrier == "AC"], non_AC_neighbors] |
||
| 1006 | ) |
||
| 1007 | |||
| 1008 | for i in [ |
||
| 1009 | "new_index", |
||
| 1010 | "control", |
||
| 1011 | "generator", |
||
| 1012 | "location", |
||
| 1013 | "sub_network", |
||
| 1014 | "unit", |
||
| 1015 | "substation_lv", |
||
| 1016 | "substation_off", |
||
| 1017 | ]: |
||
| 1018 | neighbors = neighbors.drop(i, axis=1) |
||
| 1019 | |||
| 1020 | # Add geometry column |
||
| 1021 | neighbors = ( |
||
| 1022 | gpd.GeoDataFrame( |
||
| 1023 | neighbors, geometry=gpd.points_from_xy(neighbors.x, neighbors.y) |
||
| 1024 | ) |
||
| 1025 | .rename_geometry("geom") |
||
| 1026 | .set_crs(4326) |
||
| 1027 | ) |
||
| 1028 | |||
| 1029 | # Unify carrier names |
||
| 1030 | neighbors.carrier = neighbors.carrier.str.replace(" ", "_") |
||
| 1031 | neighbors.carrier.replace( |
||
| 1032 | { |
||
| 1033 | "gas": "CH4", |
||
| 1034 | "gas_for_industry": "CH4_for_industry", |
||
| 1035 | "urban_central_heat": "central_heat", |
||
| 1036 | "EV_battery": "Li_ion", |
||
| 1037 | "urban_central_water_tanks": "central_heat_store", |
||
| 1038 | "rural_water_tanks": "rural_heat_store", |
||
| 1039 | }, |
||
| 1040 | inplace=True, |
||
| 1041 | ) |
||
| 1042 | |||
| 1043 | neighbors[~neighbors.carrier.isin(["AC"])].to_postgis( |
||
| 1044 | "egon_etrago_bus", |
||
| 1045 | engine, |
||
| 1046 | schema="grid", |
||
| 1047 | if_exists="append", |
||
| 1048 | index=True, |
||
| 1049 | index_label="bus_id", |
||
| 1050 | ) |
||
| 1051 | |||
| 1052 | # prepare and write neighboring crossborder lines to etrago tables |
||
| 1053 | def lines_to_etrago(neighbor_lines=neighbor_lines, scn="eGon100RE"): |
||
| 1054 | neighbor_lines["scn_name"] = scn |
||
| 1055 | neighbor_lines["cables"] = 3 * neighbor_lines["num_parallel"].astype( |
||
| 1056 | int |
||
| 1057 | ) |
||
| 1058 | neighbor_lines["s_nom"] = neighbor_lines["s_nom_min"] |
||
| 1059 | |||
| 1060 | for i in [ |
||
| 1061 | "Line", |
||
| 1062 | "x_pu_eff", |
||
| 1063 | "r_pu_eff", |
||
| 1064 | "sub_network", |
||
| 1065 | "x_pu", |
||
| 1066 | "r_pu", |
||
| 1067 | "g_pu", |
||
| 1068 | "b_pu", |
||
| 1069 | "s_nom_opt", |
||
| 1070 | "i_nom", |
||
| 1071 | "dc", |
||
| 1072 | ]: |
||
| 1073 | neighbor_lines = neighbor_lines.drop(i, axis=1) |
||
| 1074 | |||
| 1075 | # Define geometry and add to lines dataframe as 'topo' |
||
| 1076 | gdf = gpd.GeoDataFrame(index=neighbor_lines.index) |
||
| 1077 | gdf["geom_bus0"] = neighbors.geom[neighbor_lines.bus0].values |
||
| 1078 | gdf["geom_bus1"] = neighbors.geom[neighbor_lines.bus1].values |
||
| 1079 | gdf["geometry"] = gdf.apply( |
||
| 1080 | lambda x: LineString([x["geom_bus0"], x["geom_bus1"]]), axis=1 |
||
| 1081 | ) |
||
| 1082 | |||
| 1083 | neighbor_lines = ( |
||
| 1084 | gpd.GeoDataFrame(neighbor_lines, geometry=gdf["geometry"]) |
||
| 1085 | .rename_geometry("topo") |
||
| 1086 | .set_crs(4326) |
||
| 1087 | ) |
||
| 1088 | |||
| 1089 | neighbor_lines["lifetime"] = get_sector_parameters("electricity", scn)[ |
||
| 1090 | "lifetime" |
||
| 1091 | ]["ac_ehv_overhead_line"] |
||
| 1092 | |||
| 1093 | neighbor_lines.to_postgis( |
||
| 1094 | "egon_etrago_line", |
||
| 1095 | engine, |
||
| 1096 | schema="grid", |
||
| 1097 | if_exists="append", |
||
| 1098 | index=True, |
||
| 1099 | index_label="line_id", |
||
| 1100 | ) |
||
| 1101 | |||
| 1102 | lines_to_etrago(neighbor_lines=neighbor_lines, scn="eGon100RE") |
||
| 1103 | |||
| 1104 | def links_to_etrago(neighbor_links, scn="eGon100RE", extendable=True): |
||
| 1105 | """Prepare and write neighboring crossborder links to eTraGo table |
||
| 1106 | |||
| 1107 | This function prepare the neighboring crossborder links |
||
| 1108 | generated the PyPSA-eur-sec (p-e-s) run by: |
||
| 1109 | * Delete the useless columns |
||
| 1110 | * If extendable is false only (non default case): |
||
| 1111 | * Replace p_nom = 0 with the p_nom_op values (arrising |
||
| 1112 | from the p-e-s optimisation) |
||
| 1113 | * Setting p_nom_extendable to false |
||
| 1114 | * Add geomtry to the links: 'geom' and 'topo' columns |
||
| 1115 | * Change the name of the carriers to have the consistent in |
||
| 1116 | eGon-data |
||
| 1117 | |||
| 1118 | The function insert then the link to the eTraGo table and has |
||
| 1119 | no return. |
||
| 1120 | |||
| 1121 | Parameters |
||
| 1122 | ---------- |
||
| 1123 | neighbor_links : pandas.DataFrame |
||
| 1124 | Dataframe containing the neighboring crossborder links |
||
| 1125 | scn_name : str |
||
| 1126 | Name of the scenario |
||
| 1127 | extendable : bool |
||
| 1128 | Boolean expressing if the links should be extendable or not |
||
| 1129 | |||
| 1130 | Returns |
||
| 1131 | ------- |
||
| 1132 | None |
||
| 1133 | |||
| 1134 | """ |
||
| 1135 | neighbor_links["scn_name"] = scn |
||
| 1136 | |||
| 1137 | dropped_carriers = [ |
||
| 1138 | "Link", |
||
| 1139 | "geometry", |
||
| 1140 | "tags", |
||
| 1141 | "under_construction", |
||
| 1142 | "underground", |
||
| 1143 | "underwater_fraction", |
||
| 1144 | "bus2", |
||
| 1145 | "bus3", |
||
| 1146 | "bus4", |
||
| 1147 | "efficiency2", |
||
| 1148 | "efficiency3", |
||
| 1149 | "efficiency4", |
||
| 1150 | "lifetime", |
||
| 1151 | "pipe_retrofit", |
||
| 1152 | "committable", |
||
| 1153 | "start_up_cost", |
||
| 1154 | "shut_down_cost", |
||
| 1155 | "min_up_time", |
||
| 1156 | "min_down_time", |
||
| 1157 | "up_time_before", |
||
| 1158 | "down_time_before", |
||
| 1159 | "ramp_limit_up", |
||
| 1160 | "ramp_limit_down", |
||
| 1161 | "ramp_limit_start_up", |
||
| 1162 | "ramp_limit_shut_down", |
||
| 1163 | "length_original", |
||
| 1164 | "reversed", |
||
| 1165 | "location", |
||
| 1166 | "project_status", |
||
| 1167 | "dc", |
||
| 1168 | "voltage", |
||
| 1169 | ] |
||
| 1170 | |||
| 1171 | if extendable: |
||
| 1172 | dropped_carriers.append("p_nom_opt") |
||
| 1173 | neighbor_links = neighbor_links.drop( |
||
| 1174 | columns=dropped_carriers, |
||
| 1175 | errors="ignore", |
||
| 1176 | ) |
||
| 1177 | |||
| 1178 | else: |
||
| 1179 | dropped_carriers.append("p_nom") |
||
| 1180 | dropped_carriers.append("p_nom_extendable") |
||
| 1181 | neighbor_links = neighbor_links.drop( |
||
| 1182 | columns=dropped_carriers, |
||
| 1183 | errors="ignore", |
||
| 1184 | ) |
||
| 1185 | neighbor_links = neighbor_links.rename( |
||
| 1186 | columns={"p_nom_opt": "p_nom"} |
||
| 1187 | ) |
||
| 1188 | neighbor_links["p_nom_extendable"] = False |
||
| 1189 | |||
| 1190 | if neighbor_links.empty: |
||
| 1191 | print("No links selected") |
||
| 1192 | return |
||
| 1193 | |||
| 1194 | # Define geometry and add to lines dataframe as 'topo' |
||
| 1195 | gdf = gpd.GeoDataFrame( |
||
| 1196 | index=neighbor_links.index, |
||
| 1197 | data={ |
||
| 1198 | "geom_bus0": neighbors.loc[neighbor_links.bus0, "geom"].values, |
||
| 1199 | "geom_bus1": neighbors.loc[neighbor_links.bus1, "geom"].values, |
||
| 1200 | }, |
||
| 1201 | ) |
||
| 1202 | |||
| 1203 | gdf["geometry"] = gdf.apply( |
||
| 1204 | lambda x: LineString([x["geom_bus0"], x["geom_bus1"]]), axis=1 |
||
| 1205 | ) |
||
| 1206 | |||
| 1207 | neighbor_links = ( |
||
| 1208 | gpd.GeoDataFrame(neighbor_links, geometry=gdf["geometry"]) |
||
| 1209 | .rename_geometry("topo") |
||
| 1210 | .set_crs(4326) |
||
| 1211 | ) |
||
| 1212 | |||
| 1213 | # Unify carrier names |
||
| 1214 | neighbor_links.carrier = neighbor_links.carrier.str.replace(" ", "_") |
||
| 1215 | |||
| 1216 | neighbor_links.carrier.replace( |
||
| 1217 | { |
||
| 1218 | "H2_Electrolysis": "power_to_H2", |
||
| 1219 | "H2_Fuel_Cell": "H2_to_power", |
||
| 1220 | "H2_pipeline_retrofitted": "H2_retrofit", |
||
| 1221 | "SMR": "CH4_to_H2", |
||
| 1222 | "Sabatier": "H2_to_CH4", |
||
| 1223 | "gas_for_industry": "CH4_for_industry", |
||
| 1224 | "gas_pipeline": "CH4", |
||
| 1225 | "urban_central_gas_boiler": "central_gas_boiler", |
||
| 1226 | "urban_central_resistive_heater": "central_resistive_heater", |
||
| 1227 | "urban_central_water_tanks_charger": "central_heat_store_charger", |
||
| 1228 | "urban_central_water_tanks_discharger": "central_heat_store_discharger", |
||
| 1229 | "rural_water_tanks_charger": "rural_heat_store_charger", |
||
| 1230 | "rural_water_tanks_discharger": "rural_heat_store_discharger", |
||
| 1231 | "urban_central_gas_CHP": "central_gas_CHP", |
||
| 1232 | "urban_central_air_heat_pump": "central_heat_pump", |
||
| 1233 | "rural_ground_heat_pump": "rural_heat_pump", |
||
| 1234 | }, |
||
| 1235 | inplace=True, |
||
| 1236 | ) |
||
| 1237 | |||
| 1238 | H2_links = { |
||
| 1239 | "H2_to_CH4": "H2_to_CH4", |
||
| 1240 | "H2_to_power": "H2_to_power", |
||
| 1241 | "power_to_H2": "power_to_H2_system", |
||
| 1242 | "CH4_to_H2": "CH4_to_H2", |
||
| 1243 | } |
||
| 1244 | |||
| 1245 | for c in H2_links.keys(): |
||
| 1246 | |||
| 1247 | neighbor_links.loc[ |
||
| 1248 | (neighbor_links.carrier == c), |
||
| 1249 | "lifetime", |
||
| 1250 | ] = get_sector_parameters("gas", "eGon100RE")["lifetime"][ |
||
| 1251 | H2_links[c] |
||
| 1252 | ] |
||
| 1253 | |||
| 1254 | neighbor_links.to_postgis( |
||
| 1255 | "egon_etrago_link", |
||
| 1256 | engine, |
||
| 1257 | schema="grid", |
||
| 1258 | if_exists="append", |
||
| 1259 | index=True, |
||
| 1260 | index_label="link_id", |
||
| 1261 | ) |
||
| 1262 | |||
| 1263 | extendable_links_carriers = [ |
||
| 1264 | "battery charger", |
||
| 1265 | "battery discharger", |
||
| 1266 | "home battery charger", |
||
| 1267 | "home battery discharger", |
||
| 1268 | "rural water tanks charger", |
||
| 1269 | "rural water tanks discharger", |
||
| 1270 | "urban central water tanks charger", |
||
| 1271 | "urban central water tanks discharger", |
||
| 1272 | "urban decentral water tanks charger", |
||
| 1273 | "urban decentral water tanks discharger", |
||
| 1274 | "H2 Electrolysis", |
||
| 1275 | "H2 Fuel Cell", |
||
| 1276 | "SMR", |
||
| 1277 | "Sabatier", |
||
| 1278 | ] |
||
| 1279 | |||
| 1280 | # delete unwanted carriers for eTraGo |
||
| 1281 | excluded_carriers = [ |
||
| 1282 | "gas for industry CC", |
||
| 1283 | "SMR CC", |
||
| 1284 | "DAC", |
||
| 1285 | ] |
||
| 1286 | neighbor_links = neighbor_links[ |
||
| 1287 | ~neighbor_links.carrier.isin(excluded_carriers) |
||
| 1288 | ] |
||
| 1289 | |||
| 1290 | # Combine CHP_CC and CHP |
||
| 1291 | chp_cc = neighbor_links[ |
||
| 1292 | neighbor_links.carrier == "urban central gas CHP CC" |
||
| 1293 | ] |
||
| 1294 | for index, row in chp_cc.iterrows(): |
||
| 1295 | neighbor_links.loc[ |
||
| 1296 | neighbor_links.Link == row.Link.replace("CHP CC", "CHP"), |
||
| 1297 | "p_nom_opt", |
||
| 1298 | ] += row.p_nom_opt |
||
| 1299 | neighbor_links.loc[ |
||
| 1300 | neighbor_links.Link == row.Link.replace("CHP CC", "CHP"), "p_nom" |
||
| 1301 | ] += row.p_nom |
||
| 1302 | neighbor_links.drop(index, inplace=True) |
||
| 1303 | |||
| 1304 | # Combine heat pumps |
||
| 1305 | # Like in Germany, there are air heat pumps in central heat grids |
||
| 1306 | # and ground heat pumps in rural areas |
||
| 1307 | rural_air = neighbor_links[neighbor_links.carrier == "rural air heat pump"] |
||
| 1308 | for index, row in rural_air.iterrows(): |
||
| 1309 | neighbor_links.loc[ |
||
| 1310 | neighbor_links.Link == row.Link.replace("air", "ground"), |
||
| 1311 | "p_nom_opt", |
||
| 1312 | ] += row.p_nom_opt |
||
| 1313 | neighbor_links.loc[ |
||
| 1314 | neighbor_links.Link == row.Link.replace("air", "ground"), "p_nom" |
||
| 1315 | ] += row.p_nom |
||
| 1316 | neighbor_links.drop(index, inplace=True) |
||
| 1317 | links_to_etrago( |
||
| 1318 | neighbor_links[neighbor_links.carrier.isin(extendable_links_carriers)], |
||
| 1319 | "eGon100RE", |
||
| 1320 | ) |
||
| 1321 | links_to_etrago( |
||
| 1322 | neighbor_links[ |
||
| 1323 | ~neighbor_links.carrier.isin(extendable_links_carriers) |
||
| 1324 | ], |
||
| 1325 | "eGon100RE", |
||
| 1326 | extendable=False, |
||
| 1327 | ) |
||
| 1328 | # Include links time-series |
||
| 1329 | # For heat_pumps |
||
| 1330 | hp = neighbor_links[neighbor_links["carrier"].str.contains("heat pump")] |
||
| 1331 | |||
| 1332 | neighbor_eff_t = network_prepared.links_t["efficiency"][ |
||
| 1333 | hp[hp.Link.isin(network_prepared.links_t["efficiency"].columns)].index |
||
| 1334 | ] |
||
| 1335 | |||
| 1336 | missing_hp = hp[~hp["Link"].isin(neighbor_eff_t.columns)].Link |
||
| 1337 | |||
| 1338 | eff_timeseries = network_prepared.links_t["efficiency"].copy() |
||
| 1339 | for met in missing_hp: # met: missing efficiency timeseries |
||
| 1340 | try: |
||
| 1341 | neighbor_eff_t[met] = eff_timeseries.loc[:, met[0:-5]] |
||
| 1342 | except: |
||
| 1343 | print(f"There are not timeseries for heat_pump {met}") |
||
| 1344 | |||
| 1345 | for i in neighbor_eff_t.columns: |
||
| 1346 | new_index = neighbor_links[neighbor_links["Link"] == i].index |
||
| 1347 | neighbor_eff_t.rename(columns={i: new_index[0]}, inplace=True) |
||
| 1348 | |||
| 1349 | # Include links time-series |
||
| 1350 | # For ev_chargers |
||
| 1351 | ev = neighbor_links[neighbor_links["carrier"].str.contains("BEV charger")] |
||
| 1352 | |||
| 1353 | ev_p_max_pu = network_prepared.links_t["p_max_pu"][ |
||
| 1354 | ev[ev.Link.isin(network_prepared.links_t["p_max_pu"].columns)].index |
||
| 1355 | ] |
||
| 1356 | |||
| 1357 | missing_ev = ev[~ev["Link"].isin(ev_p_max_pu.columns)].Link |
||
| 1358 | |||
| 1359 | ev_p_max_pu_timeseries = network_prepared.links_t["p_max_pu"].copy() |
||
| 1360 | for mct in missing_ev: # evt: missing charger timeseries |
||
| 1361 | try: |
||
| 1362 | ev_p_max_pu[mct] = ev_p_max_pu_timeseries.loc[:, mct[0:-5]] |
||
| 1363 | except: |
||
| 1364 | print(f"There are not timeseries for EV charger {mct}") |
||
| 1365 | |||
| 1366 | for i in ev_p_max_pu.columns: |
||
| 1367 | new_index = neighbor_links[neighbor_links["Link"] == i].index |
||
| 1368 | ev_p_max_pu.rename(columns={i: new_index[0]}, inplace=True) |
||
| 1369 | |||
| 1370 | # prepare neighboring generators for etrago tables |
||
| 1371 | neighbor_gens["scn_name"] = "eGon100RE" |
||
| 1372 | neighbor_gens["p_nom"] = neighbor_gens["p_nom_opt"] |
||
| 1373 | neighbor_gens["p_nom_extendable"] = False |
||
| 1374 | |||
| 1375 | # Unify carrier names |
||
| 1376 | neighbor_gens.carrier = neighbor_gens.carrier.str.replace(" ", "_") |
||
| 1377 | |||
| 1378 | neighbor_gens.carrier.replace( |
||
| 1379 | { |
||
| 1380 | "onwind": "wind_onshore", |
||
| 1381 | "ror": "run_of_river", |
||
| 1382 | "offwind-ac": "wind_offshore", |
||
| 1383 | "offwind-dc": "wind_offshore", |
||
| 1384 | "offwind-float": "wind_offshore", |
||
| 1385 | "urban_central_solar_thermal": "urban_central_solar_thermal_collector", |
||
| 1386 | "residential_rural_solar_thermal": "residential_rural_solar_thermal_collector", |
||
| 1387 | "services_rural_solar_thermal": "services_rural_solar_thermal_collector", |
||
| 1388 | "solar-hsat": "solar", |
||
| 1389 | }, |
||
| 1390 | inplace=True, |
||
| 1391 | ) |
||
| 1392 | |||
| 1393 | for i in [ |
||
| 1394 | "Generator", |
||
| 1395 | "weight", |
||
| 1396 | "lifetime", |
||
| 1397 | "p_set", |
||
| 1398 | "q_set", |
||
| 1399 | "p_nom_opt", |
||
| 1400 | "e_sum_min", |
||
| 1401 | "e_sum_max", |
||
| 1402 | ]: |
||
| 1403 | neighbor_gens = neighbor_gens.drop(i, axis=1) |
||
| 1404 | |||
| 1405 | neighbor_gens.to_sql( |
||
| 1406 | "egon_etrago_generator", |
||
| 1407 | engine, |
||
| 1408 | schema="grid", |
||
| 1409 | if_exists="append", |
||
| 1410 | index=True, |
||
| 1411 | index_label="generator_id", |
||
| 1412 | ) |
||
| 1413 | |||
| 1414 | # prepare neighboring loads for etrago tables |
||
| 1415 | neighbor_loads["scn_name"] = "eGon100RE" |
||
| 1416 | |||
| 1417 | # Unify carrier names |
||
| 1418 | neighbor_loads.carrier = neighbor_loads.carrier.str.replace(" ", "_") |
||
| 1419 | |||
| 1420 | neighbor_loads.carrier.replace( |
||
| 1421 | { |
||
| 1422 | "electricity": "AC", |
||
| 1423 | "DC": "AC", |
||
| 1424 | "industry_electricity": "AC", |
||
| 1425 | "H2_pipeline_retrofitted": "H2_system_boundary", |
||
| 1426 | "gas_pipeline": "CH4_system_boundary", |
||
| 1427 | "gas_for_industry": "CH4_for_industry", |
||
| 1428 | "urban_central_heat": "central_heat", |
||
| 1429 | }, |
||
| 1430 | inplace=True, |
||
| 1431 | ) |
||
| 1432 | |||
| 1433 | neighbor_loads = neighbor_loads.drop( |
||
| 1434 | columns=["Load"], |
||
| 1435 | errors="ignore", |
||
| 1436 | ) |
||
| 1437 | |||
| 1438 | neighbor_loads.to_sql( |
||
| 1439 | "egon_etrago_load", |
||
| 1440 | engine, |
||
| 1441 | schema="grid", |
||
| 1442 | if_exists="append", |
||
| 1443 | index=True, |
||
| 1444 | index_label="load_id", |
||
| 1445 | ) |
||
| 1446 | |||
| 1447 | # prepare neighboring stores for etrago tables |
||
| 1448 | neighbor_stores["scn_name"] = "eGon100RE" |
||
| 1449 | |||
| 1450 | # Unify carrier names |
||
| 1451 | neighbor_stores.carrier = neighbor_stores.carrier.str.replace(" ", "_") |
||
| 1452 | |||
| 1453 | neighbor_stores.carrier.replace( |
||
| 1454 | { |
||
| 1455 | "Li_ion": "battery", |
||
| 1456 | "gas": "CH4", |
||
| 1457 | "urban_central_water_tanks": "central_heat_store", |
||
| 1458 | "rural_water_tanks": "rural_heat_store", |
||
| 1459 | "EV_battery": "battery_storage", |
||
| 1460 | }, |
||
| 1461 | inplace=True, |
||
| 1462 | ) |
||
| 1463 | neighbor_stores.loc[ |
||
| 1464 | ( |
||
| 1465 | (neighbor_stores.e_nom_max <= 1e9) |
||
| 1466 | & (neighbor_stores.carrier == "H2_Store") |
||
| 1467 | ), |
||
| 1468 | "carrier", |
||
| 1469 | ] = "H2_underground" |
||
| 1470 | neighbor_stores.loc[ |
||
| 1471 | ( |
||
| 1472 | (neighbor_stores.e_nom_max > 1e9) |
||
| 1473 | & (neighbor_stores.carrier == "H2_Store") |
||
| 1474 | ), |
||
| 1475 | "carrier", |
||
| 1476 | ] = "H2_overground" |
||
| 1477 | |||
| 1478 | for i in [ |
||
| 1479 | "Store", |
||
| 1480 | "p_set", |
||
| 1481 | "q_set", |
||
| 1482 | "e_nom_opt", |
||
| 1483 | "lifetime", |
||
| 1484 | "e_initial_per_period", |
||
| 1485 | "e_cyclic_per_period", |
||
| 1486 | "location", |
||
| 1487 | ]: |
||
| 1488 | neighbor_stores = neighbor_stores.drop(i, axis=1, errors="ignore") |
||
| 1489 | |||
| 1490 | for c in ["H2_underground", "H2_overground"]: |
||
| 1491 | neighbor_stores.loc[ |
||
| 1492 | (neighbor_stores.carrier == c), |
||
| 1493 | "lifetime", |
||
| 1494 | ] = get_sector_parameters("gas", "eGon100RE")["lifetime"][c] |
||
| 1495 | |||
| 1496 | neighbor_stores.to_sql( |
||
| 1497 | "egon_etrago_store", |
||
| 1498 | engine, |
||
| 1499 | schema="grid", |
||
| 1500 | if_exists="append", |
||
| 1501 | index=True, |
||
| 1502 | index_label="store_id", |
||
| 1503 | ) |
||
| 1504 | |||
| 1505 | # prepare neighboring storage_units for etrago tables |
||
| 1506 | neighbor_storage["scn_name"] = "eGon100RE" |
||
| 1507 | |||
| 1508 | # Unify carrier names |
||
| 1509 | neighbor_storage.carrier = neighbor_storage.carrier.str.replace(" ", "_") |
||
| 1510 | |||
| 1511 | neighbor_storage.carrier.replace( |
||
| 1512 | {"PHS": "pumped_hydro", "hydro": "reservoir"}, inplace=True |
||
| 1513 | ) |
||
| 1514 | |||
| 1515 | for i in [ |
||
| 1516 | "StorageUnit", |
||
| 1517 | "p_nom_opt", |
||
| 1518 | "state_of_charge_initial_per_period", |
||
| 1519 | "cyclic_state_of_charge_per_period", |
||
| 1520 | ]: |
||
| 1521 | neighbor_storage = neighbor_storage.drop(i, axis=1, errors="ignore") |
||
| 1522 | |||
| 1523 | neighbor_storage.to_sql( |
||
| 1524 | "egon_etrago_storage", |
||
| 1525 | engine, |
||
| 1526 | schema="grid", |
||
| 1527 | if_exists="append", |
||
| 1528 | index=True, |
||
| 1529 | index_label="storage_id", |
||
| 1530 | ) |
||
| 1531 | |||
| 1532 | # writing neighboring loads_t p_sets to etrago tables |
||
| 1533 | |||
| 1534 | neighbor_loads_t_etrago = pd.DataFrame( |
||
| 1535 | columns=["scn_name", "temp_id", "p_set"], |
||
| 1536 | index=neighbor_loads_t.columns, |
||
| 1537 | ) |
||
| 1538 | neighbor_loads_t_etrago["scn_name"] = "eGon100RE" |
||
| 1539 | neighbor_loads_t_etrago["temp_id"] = 1 |
||
| 1540 | for i in neighbor_loads_t.columns: |
||
| 1541 | neighbor_loads_t_etrago["p_set"][i] = neighbor_loads_t[ |
||
| 1542 | i |
||
| 1543 | ].values.tolist() |
||
| 1544 | |||
| 1545 | neighbor_loads_t_etrago.to_sql( |
||
| 1546 | "egon_etrago_load_timeseries", |
||
| 1547 | engine, |
||
| 1548 | schema="grid", |
||
| 1549 | if_exists="append", |
||
| 1550 | index=True, |
||
| 1551 | index_label="load_id", |
||
| 1552 | ) |
||
| 1553 | |||
| 1554 | # writing neighboring link_t efficiency and p_max_pu to etrago tables |
||
| 1555 | neighbor_link_t_etrago = pd.DataFrame( |
||
| 1556 | columns=["scn_name", "temp_id", "p_max_pu", "efficiency"], |
||
| 1557 | index=neighbor_eff_t.columns.to_list() + ev_p_max_pu.columns.to_list(), |
||
| 1558 | ) |
||
| 1559 | neighbor_link_t_etrago["scn_name"] = "eGon100RE" |
||
| 1560 | neighbor_link_t_etrago["temp_id"] = 1 |
||
| 1561 | for i in neighbor_eff_t.columns: |
||
| 1562 | neighbor_link_t_etrago["efficiency"][i] = neighbor_eff_t[ |
||
| 1563 | i |
||
| 1564 | ].values.tolist() |
||
| 1565 | for i in ev_p_max_pu.columns: |
||
| 1566 | neighbor_link_t_etrago["p_max_pu"][i] = ev_p_max_pu[i].values.tolist() |
||
| 1567 | |||
| 1568 | neighbor_link_t_etrago.to_sql( |
||
| 1569 | "egon_etrago_link_timeseries", |
||
| 1570 | engine, |
||
| 1571 | schema="grid", |
||
| 1572 | if_exists="append", |
||
| 1573 | index=True, |
||
| 1574 | index_label="link_id", |
||
| 1575 | ) |
||
| 1576 | |||
| 1577 | # writing neighboring generator_t p_max_pu to etrago tables |
||
| 1578 | neighbor_gens_t_etrago = pd.DataFrame( |
||
| 1579 | columns=["scn_name", "temp_id", "p_max_pu"], |
||
| 1580 | index=neighbor_gens_t.columns, |
||
| 1581 | ) |
||
| 1582 | neighbor_gens_t_etrago["scn_name"] = "eGon100RE" |
||
| 1583 | neighbor_gens_t_etrago["temp_id"] = 1 |
||
| 1584 | for i in neighbor_gens_t.columns: |
||
| 1585 | neighbor_gens_t_etrago["p_max_pu"][i] = neighbor_gens_t[ |
||
| 1586 | i |
||
| 1587 | ].values.tolist() |
||
| 1588 | |||
| 1589 | neighbor_gens_t_etrago.to_sql( |
||
| 1590 | "egon_etrago_generator_timeseries", |
||
| 1591 | engine, |
||
| 1592 | schema="grid", |
||
| 1593 | if_exists="append", |
||
| 1594 | index=True, |
||
| 1595 | index_label="generator_id", |
||
| 1596 | ) |
||
| 1597 | |||
| 1598 | # writing neighboring stores_t e_min_pu to etrago tables |
||
| 1599 | neighbor_stores_t_etrago = pd.DataFrame( |
||
| 1600 | columns=["scn_name", "temp_id", "e_min_pu"], |
||
| 1601 | index=neighbor_stores_t.columns, |
||
| 1602 | ) |
||
| 1603 | neighbor_stores_t_etrago["scn_name"] = "eGon100RE" |
||
| 1604 | neighbor_stores_t_etrago["temp_id"] = 1 |
||
| 1605 | for i in neighbor_stores_t.columns: |
||
| 1606 | neighbor_stores_t_etrago["e_min_pu"][i] = neighbor_stores_t[ |
||
| 1607 | i |
||
| 1608 | ].values.tolist() |
||
| 1609 | |||
| 1610 | neighbor_stores_t_etrago.to_sql( |
||
| 1611 | "egon_etrago_store_timeseries", |
||
| 1612 | engine, |
||
| 1613 | schema="grid", |
||
| 1614 | if_exists="append", |
||
| 1615 | index=True, |
||
| 1616 | index_label="store_id", |
||
| 1617 | ) |
||
| 1618 | |||
| 1619 | # writing neighboring storage_units inflow to etrago tables |
||
| 1620 | neighbor_storage_t_etrago = pd.DataFrame( |
||
| 1621 | columns=["scn_name", "temp_id", "inflow"], |
||
| 1622 | index=neighbor_storage_t.columns, |
||
| 1623 | ) |
||
| 1624 | neighbor_storage_t_etrago["scn_name"] = "eGon100RE" |
||
| 1625 | neighbor_storage_t_etrago["temp_id"] = 1 |
||
| 1626 | for i in neighbor_storage_t.columns: |
||
| 1627 | neighbor_storage_t_etrago["inflow"][i] = neighbor_storage_t[ |
||
| 1628 | i |
||
| 1629 | ].values.tolist() |
||
| 1630 | |||
| 1631 | neighbor_storage_t_etrago.to_sql( |
||
| 1632 | "egon_etrago_storage_timeseries", |
||
| 1633 | engine, |
||
| 1634 | schema="grid", |
||
| 1635 | if_exists="append", |
||
| 1636 | index=True, |
||
| 1637 | index_label="storage_id", |
||
| 1638 | ) |
||
| 1639 | |||
| 1640 | # writing neighboring lines_t s_max_pu to etrago tables |
||
| 1641 | if not network_solved.lines_t["s_max_pu"].empty: |
||
| 1642 | neighbor_lines_t_etrago = pd.DataFrame( |
||
| 1643 | columns=["scn_name", "s_max_pu"], index=neighbor_lines_t.columns |
||
| 1644 | ) |
||
| 1645 | neighbor_lines_t_etrago["scn_name"] = "eGon100RE" |
||
| 1646 | |||
| 1647 | for i in neighbor_lines_t.columns: |
||
| 1648 | neighbor_lines_t_etrago["s_max_pu"][i] = neighbor_lines_t[ |
||
| 1649 | i |
||
| 1650 | ].values.tolist() |
||
| 1651 | |||
| 1652 | neighbor_lines_t_etrago.to_sql( |
||
| 1653 | "egon_etrago_line_timeseries", |
||
| 1654 | engine, |
||
| 1655 | schema="grid", |
||
| 1656 | if_exists="append", |
||
| 1657 | index=True, |
||
| 1658 | index_label="line_id", |
||
| 1659 | ) |
||
| 1660 | |||
| 1661 | |||
| 1662 | View Code Duplication | def prepared_network(planning_horizon=3): |
|
| 1663 | if egon.data.config.settings()["egon-data"]["--run-pypsa-eur"]: |
||
| 1664 | with open( |
||
| 1665 | __path__[0] + "/datasets/pypsaeur/config_prepare.yaml", "r" |
||
| 1666 | ) as stream: |
||
| 1667 | data_config = yaml.safe_load(stream) |
||
| 1668 | |||
| 1669 | target_file = ( |
||
| 1670 | Path(".") |
||
| 1671 | / "run-pypsa-eur" |
||
| 1672 | / "pypsa-eur" |
||
| 1673 | / "results" |
||
| 1674 | / data_config["run"]["name"] |
||
| 1675 | / "prenetworks" |
||
| 1676 | / f"base_s_{data_config['scenario']['clusters'][0]}" |
||
| 1677 | f"_l{data_config['scenario']['ll'][0]}" |
||
| 1678 | f"_{data_config['scenario']['opts'][0]}" |
||
| 1679 | f"_{data_config['scenario']['sector_opts'][0]}" |
||
| 1680 | f"_{data_config['scenario']['planning_horizons'][planning_horizon]}.nc" |
||
| 1681 | ) |
||
| 1682 | |||
| 1683 | else: |
||
| 1684 | target_file = ( |
||
| 1685 | Path(".") |
||
| 1686 | / "data_bundle_powerd_data" |
||
| 1687 | / "pypsa_eur" |
||
| 1688 | / "21122024_3h_clean_run" |
||
| 1689 | / "results" |
||
| 1690 | / "prenetworks" |
||
| 1691 | / "prenetwork_post-manipulate_pre-solve" |
||
| 1692 | / "base_s_39_lc1.25__cb40ex0-T-H-I-B-solar+p3-dist1_2045.nc" |
||
| 1693 | ) |
||
| 1694 | |||
| 1695 | return pypsa.Network(target_file.absolute().as_posix()) |
||
| 1696 | |||
| 1697 | |||
| 1698 | def overwrite_H2_pipeline_share(): |
||
| 1699 | """Overwrite retrofitted_CH4pipeline-to-H2pipeline_share value |
||
| 1700 | |||
| 1701 | Overwrite retrofitted_CH4pipeline-to-H2pipeline_share in the |
||
| 1702 | scenario parameter table if p-e-s is run. |
||
| 1703 | This function write in the database and has no return. |
||
| 1704 | |||
| 1705 | """ |
||
| 1706 | scn_name = "eGon100RE" |
||
| 1707 | # Select source and target from dataset configuration |
||
| 1708 | target = egon.data.config.datasets()["pypsa-eur-sec"]["target"] |
||
| 1709 | |||
| 1710 | n = read_network() |
||
| 1711 | |||
| 1712 | H2_pipelines = n.links[n.links["carrier"] == "H2 pipeline retrofitted"] |
||
| 1713 | CH4_pipelines = n.links[n.links["carrier"] == "gas pipeline"] |
||
| 1714 | H2_pipes_share = np.mean( |
||
| 1715 | [ |
||
| 1716 | (i / j) |
||
| 1717 | for i, j in zip( |
||
| 1718 | H2_pipelines.p_nom_opt.to_list(), CH4_pipelines.p_nom.to_list() |
||
| 1719 | ) |
||
| 1720 | ] |
||
| 1721 | ) |
||
| 1722 | logger.info( |
||
| 1723 | "retrofitted_CH4pipeline-to-H2pipeline_share = " + str(H2_pipes_share) |
||
| 1724 | ) |
||
| 1725 | |||
| 1726 | parameters = db.select_dataframe( |
||
| 1727 | f""" |
||
| 1728 | SELECT * |
||
| 1729 | FROM {target['scenario_parameters']['schema']}.{target['scenario_parameters']['table']} |
||
| 1730 | WHERE name = '{scn_name}' |
||
| 1731 | """ |
||
| 1732 | ) |
||
| 1733 | |||
| 1734 | gas_param = parameters.loc[0, "gas_parameters"] |
||
| 1735 | gas_param["retrofitted_CH4pipeline-to-H2pipeline_share"] = H2_pipes_share |
||
| 1736 | gas_param = json.dumps(gas_param) |
||
| 1737 | |||
| 1738 | # Update data in db |
||
| 1739 | db.execute_sql( |
||
| 1740 | f""" |
||
| 1741 | UPDATE {target['scenario_parameters']['schema']}.{target['scenario_parameters']['table']} |
||
| 1742 | SET gas_parameters = '{gas_param}' |
||
| 1743 | WHERE name = '{scn_name}'; |
||
| 1744 | """ |
||
| 1745 | ) |
||
| 1746 | |||
| 1747 | |||
| 1748 | def update_electrical_timeseries_germany(network): |
||
| 1749 | """Replace electrical demand time series in Germany with data from egon-data |
||
| 1750 | |||
| 1751 | Parameters |
||
| 1752 | ---------- |
||
| 1753 | network : pypsa.Network |
||
| 1754 | Network including demand time series from pypsa-eur |
||
| 1755 | |||
| 1756 | Returns |
||
| 1757 | ------- |
||
| 1758 | network : pypsa.Network |
||
| 1759 | Network including electrical demand time series in Germany from egon-data |
||
| 1760 | |||
| 1761 | """ |
||
| 1762 | year = network.year |
||
| 1763 | skip = network.snapshot_weightings.objective.iloc[0].astype("int") |
||
| 1764 | df = pd.read_csv( |
||
| 1765 | "input-pypsa-eur-sec/electrical_demand_timeseries_DE_eGon100RE.csv" |
||
| 1766 | ) |
||
| 1767 | |||
| 1768 | annual_demand = pd.Series(index=[2019, 2037]) |
||
| 1769 | annual_demand_industry = pd.Series(index=[2019, 2037]) |
||
| 1770 | # Define values from status2019 for interpolation |
||
| 1771 | # Residential and service (in TWh) |
||
| 1772 | annual_demand.loc[2019] = 124.71 + 143.26 |
||
| 1773 | # Industry (in TWh) |
||
| 1774 | annual_demand_industry.loc[2019] = 241.925 |
||
| 1775 | |||
| 1776 | # Define values from NEP 2023 scenario B 2037 for interpolation |
||
| 1777 | # Residential and service (in TWh) |
||
| 1778 | annual_demand.loc[2037] = 104 + 153.1 |
||
| 1779 | # Industry (in TWh) |
||
| 1780 | annual_demand_industry.loc[2037] = 334.0 |
||
| 1781 | |||
| 1782 | # Set interpolated demands for years between 2019 and 2045 |
||
| 1783 | if year < 2037: |
||
| 1784 | # Calculate annual demands for year by linear interpolating between |
||
| 1785 | # 2019 and 2037 |
||
| 1786 | # Done seperatly for industry and residential and service to fit |
||
| 1787 | # to pypsa-eurs structure |
||
| 1788 | annual_rate = (annual_demand.loc[2037] - annual_demand.loc[2019]) / ( |
||
| 1789 | 2037 - 2019 |
||
| 1790 | ) |
||
| 1791 | annual_demand_year = annual_demand.loc[2019] + annual_rate * ( |
||
| 1792 | year - 2019 |
||
| 1793 | ) |
||
| 1794 | |||
| 1795 | annual_rate_industry = ( |
||
| 1796 | annual_demand_industry.loc[2037] - annual_demand_industry.loc[2019] |
||
| 1797 | ) / (2037 - 2019) |
||
| 1798 | annual_demand_year_industry = annual_demand_industry.loc[ |
||
| 1799 | 2019 |
||
| 1800 | ] + annual_rate_industry * (year - 2019) |
||
| 1801 | |||
| 1802 | # Scale time series for 100% scenario with the annual demands |
||
| 1803 | # The shape of the curve is taken from the 100% scenario since the |
||
| 1804 | # same weather and calender year is used there |
||
| 1805 | network.loads_t.p_set.loc[:, "DE0 0"] = ( |
||
| 1806 | df["residential_and_service"].loc[::skip] |
||
| 1807 | / df["residential_and_service"].sum() |
||
| 1808 | * annual_demand_year |
||
| 1809 | * 1e6 |
||
| 1810 | ).values |
||
| 1811 | |||
| 1812 | network.loads_t.p_set.loc[:, "DE0 0 industry electricity"] = ( |
||
| 1813 | df["industry"].loc[::skip] |
||
| 1814 | / df["industry"].sum() |
||
| 1815 | * annual_demand_year_industry |
||
| 1816 | * 1e6 |
||
| 1817 | ).values |
||
| 1818 | |||
| 1819 | elif year == 2045: |
||
| 1820 | network.loads_t.p_set.loc[:, "DE0 0"] = df[ |
||
| 1821 | "residential_and_service" |
||
| 1822 | ].loc[::skip] |
||
| 1823 | |||
| 1824 | network.loads_t.p_set.loc[:, "DE0 0 industry electricity"] = ( |
||
| 1825 | df["industry"].loc[::skip].values |
||
| 1826 | ) |
||
| 1827 | |||
| 1828 | else: |
||
| 1829 | print( |
||
| 1830 | "Scaling not implemented for years between 2037 and 2045 and beyond." |
||
| 1831 | ) |
||
| 1832 | return |
||
| 1833 | |||
| 1834 | network.loads.loc["DE0 0 industry electricity", "p_set"] = 0.0 |
||
| 1835 | |||
| 1836 | return network |
||
| 1837 | |||
| 1838 | |||
| 1839 | def geothermal_district_heating(network): |
||
| 1840 | """Add the option to build geothermal power plants in district heating in Germany |
||
| 1841 | |||
| 1842 | Parameters |
||
| 1843 | ---------- |
||
| 1844 | network : pypsa.Network |
||
| 1845 | Network from pypsa-eur without geothermal generators |
||
| 1846 | |||
| 1847 | Returns |
||
| 1848 | ------- |
||
| 1849 | network : pypsa.Network |
||
| 1850 | Updated network with geothermal generators |
||
| 1851 | |||
| 1852 | """ |
||
| 1853 | |||
| 1854 | costs_and_potentials = pd.read_csv( |
||
| 1855 | "input-pypsa-eur-sec/geothermal_potential_germany.csv" |
||
| 1856 | ) |
||
| 1857 | |||
| 1858 | network.add("Carrier", "urban central geo thermal") |
||
| 1859 | |||
| 1860 | for i, row in costs_and_potentials.iterrows(): |
||
| 1861 | # Set lifetime of geothermal plant to 30 years based on: |
||
| 1862 | # Ableitung eines Korridors für den Ausbau der erneuerbaren Wärme im Gebäudebereich, |
||
| 1863 | # Beuth Hochschule für Technik, Berlin ifeu – Institut für Energie- und Umweltforschung Heidelberg GmbH |
||
| 1864 | # Februar 2017 |
||
| 1865 | lifetime_geothermal = 30 |
||
| 1866 | |||
| 1867 | network.add( |
||
| 1868 | "Generator", |
||
| 1869 | f"DE0 0 urban central geo thermal {i}", |
||
| 1870 | bus="DE0 0 urban central heat", |
||
| 1871 | carrier="urban central geo thermal", |
||
| 1872 | p_nom_extendable=True, |
||
| 1873 | p_nom_max=row["potential [MW]"], |
||
| 1874 | capital_cost=annualize_capital_costs( |
||
| 1875 | row["cost [EUR/kW]"] * 1e6, lifetime_geothermal, 0.07 |
||
| 1876 | ), |
||
| 1877 | ) |
||
| 1878 | return network |
||
| 1879 | |||
| 1880 | |||
| 1881 | def h2_overground_stores(network): |
||
| 1882 | """Add hydrogen overground stores to each hydrogen node |
||
| 1883 | |||
| 1884 | In pypsa-eur, only countries without the potential of underground hydrogen |
||
| 1885 | stores have to option to build overground hydrogen tanks. |
||
| 1886 | Overground stores are more expensive, but are not resitcted by the geological |
||
| 1887 | potential. To allow higher hydrogen store capacities in each country, optional |
||
| 1888 | hydogen overground tanks are also added to node with a potential for |
||
| 1889 | underground stores. |
||
| 1890 | |||
| 1891 | Parameters |
||
| 1892 | ---------- |
||
| 1893 | network : pypsa.Network |
||
| 1894 | Network without hydrogen overground stores at each hydrogen node |
||
| 1895 | |||
| 1896 | Returns |
||
| 1897 | ------- |
||
| 1898 | network : pypsa.Network |
||
| 1899 | Network with hydrogen overground stores at each hydrogen node |
||
| 1900 | |||
| 1901 | """ |
||
| 1902 | |||
| 1903 | underground_h2_stores = network.stores[ |
||
| 1904 | (network.stores.carrier == "H2 Store") |
||
| 1905 | & (network.stores.e_nom_max != np.inf) |
||
| 1906 | ] |
||
| 1907 | |||
| 1908 | overground_h2_stores = network.stores[ |
||
| 1909 | (network.stores.carrier == "H2 Store") |
||
| 1910 | & (network.stores.e_nom_max == np.inf) |
||
| 1911 | ] |
||
| 1912 | |||
| 1913 | network.madd( |
||
| 1914 | "Store", |
||
| 1915 | underground_h2_stores.bus + " overground Store", |
||
| 1916 | bus=underground_h2_stores.bus.values, |
||
| 1917 | e_nom_extendable=True, |
||
| 1918 | e_cyclic=True, |
||
| 1919 | carrier="H2 Store", |
||
| 1920 | capital_cost=overground_h2_stores.capital_cost.mean(), |
||
| 1921 | ) |
||
| 1922 | |||
| 1923 | return network |
||
| 1924 | |||
| 1925 | |||
| 1926 | def update_heat_timeseries_germany(network): |
||
| 1927 | network.loads |
||
| 1928 | # Import heat demand curves for Germany from eGon-data |
||
| 1929 | df_egon_heat_demand = pd.read_csv( |
||
| 1930 | "input-pypsa-eur-sec/heat_demand_timeseries_DE_eGon100RE.csv" |
||
| 1931 | ) |
||
| 1932 | |||
| 1933 | # Replace heat demand curves in Germany with values from eGon-data |
||
| 1934 | network.loads_t.p_set.loc[:, "DE1 0 rural heat"] = ( |
||
| 1935 | df_egon_heat_demand.loc[:, "residential rural"].values |
||
| 1936 | + df_egon_heat_demand.loc[:, "service rural"].values |
||
| 1937 | ) |
||
| 1938 | |||
| 1939 | network.loads_t.p_set.loc[:, "DE1 0 urban central heat"] = ( |
||
| 1940 | df_egon_heat_demand.loc[:, "urban central"].values |
||
| 1941 | ) |
||
| 1942 | |||
| 1943 | return network |
||
| 1944 | |||
| 1945 | |||
| 1946 | def drop_biomass(network): |
||
| 1947 | carrier = "biomass" |
||
| 1948 | |||
| 1949 | for c in network.iterate_components(): |
||
| 1950 | network.mremove(c.name, c.df[c.df.index.str.contains(carrier)].index) |
||
| 1951 | return network |
||
| 1952 | |||
| 1953 | |||
| 1954 | def postprocessing_biomass_2045(): |
||
| 1955 | |||
| 1956 | network = read_network() |
||
| 1957 | network = drop_biomass(network) |
||
| 1958 | |||
| 1959 | with open( |
||
| 1960 | __path__[0] + "/datasets/pypsaeur/config_solve.yaml", "r" |
||
| 1961 | ) as stream: |
||
| 1962 | data_config = yaml.safe_load(stream) |
||
| 1963 | |||
| 1964 | target_file = ( |
||
| 1965 | Path(".") |
||
| 1966 | / "run-pypsa-eur" |
||
| 1967 | / "pypsa-eur" |
||
| 1968 | / "results" |
||
| 1969 | / data_config["run"]["name"] |
||
| 1970 | / "postnetworks" |
||
| 1971 | / f"base_s_{data_config['scenario']['clusters'][0]}" |
||
| 1972 | f"_l{data_config['scenario']['ll'][0]}" |
||
| 1973 | f"_{data_config['scenario']['opts'][0]}" |
||
| 1974 | f"_{data_config['scenario']['sector_opts'][0]}" |
||
| 1975 | f"_{data_config['scenario']['planning_horizons'][3]}.nc" |
||
| 1976 | ) |
||
| 1977 | |||
| 1978 | network.export_to_netcdf(target_file) |
||
| 1979 | |||
| 1980 | |||
| 1981 | def drop_urban_decentral_heat(network): |
||
| 1982 | carrier = "urban decentral heat" |
||
| 1983 | |||
| 1984 | # Add urban decentral heat demand to urban central heat demand |
||
| 1985 | for country in network.loads.loc[ |
||
| 1986 | network.loads.carrier == carrier, "bus" |
||
| 1987 | ].str[:5]: |
||
| 1988 | |||
| 1989 | if f"{country} {carrier}" in network.loads_t.p_set.columns: |
||
| 1990 | network.loads_t.p_set[ |
||
| 1991 | f"{country} rural heat" |
||
| 1992 | ] += network.loads_t.p_set[f"{country} {carrier}"] |
||
| 1993 | else: |
||
| 1994 | print( |
||
| 1995 | f"""No time series available for {country} {carrier}. |
||
| 1996 | Using static p_set.""" |
||
| 1997 | ) |
||
| 1998 | |||
| 1999 | network.loads_t.p_set[ |
||
| 2000 | f"{country} rural heat" |
||
| 2001 | ] += network.loads.loc[f"{country} {carrier}", "p_set"] |
||
| 2002 | |||
| 2003 | # In some cases low-temperature heat for industry is connected to the urban |
||
| 2004 | # decentral heat bus since there is no urban central heat bus. |
||
| 2005 | # These loads are connected to the representatiive rural heat bus: |
||
| 2006 | network.loads.loc[ |
||
| 2007 | (network.loads.bus.str.contains(carrier)) |
||
| 2008 | & (~network.loads.carrier.str.contains(carrier.replace(" heat", ""))), |
||
| 2009 | "bus", |
||
| 2010 | ] = network.loads.loc[ |
||
| 2011 | (network.loads.bus.str.contains(carrier)) |
||
| 2012 | & (~network.loads.carrier.str.contains(carrier.replace(" heat", ""))), |
||
| 2013 | "bus", |
||
| 2014 | ].str.replace( |
||
| 2015 | "urban decentral", "rural" |
||
| 2016 | ) |
||
| 2017 | |||
| 2018 | # Drop componentents attached to urban decentral heat |
||
| 2019 | for c in network.iterate_components(): |
||
| 2020 | network.mremove( |
||
| 2021 | c.name, c.df[c.df.index.str.contains("urban decentral")].index |
||
| 2022 | ) |
||
| 2023 | |||
| 2024 | return network |
||
| 2025 | |||
| 2026 | |||
| 2027 | def district_heating_shares(network): |
||
| 2028 | df = pd.read_csv( |
||
| 2029 | "data_bundle_powerd_data/district_heating_shares_egon.csv" |
||
| 2030 | ).set_index("country_code") |
||
| 2031 | |||
| 2032 | heat_demand_per_country = ( |
||
| 2033 | network.loads_t.p_set[ |
||
| 2034 | network.loads[ |
||
| 2035 | (network.loads.carrier.str.contains("heat")) |
||
| 2036 | & network.loads.index.isin(network.loads_t.p_set.columns) |
||
| 2037 | ].index |
||
| 2038 | ] |
||
| 2039 | .groupby(network.loads.bus.str[:5], axis=1) |
||
| 2040 | .sum() |
||
| 2041 | ) |
||
| 2042 | |||
| 2043 | for country in heat_demand_per_country.columns: |
||
| 2044 | network.loads_t.p_set[f"{country} urban central heat"] = ( |
||
| 2045 | heat_demand_per_country.loc[:, country].mul( |
||
| 2046 | df.loc[country[:2]].values[0] |
||
| 2047 | ) |
||
| 2048 | ) |
||
| 2049 | network.loads_t.p_set[f"{country} rural heat"] = ( |
||
| 2050 | heat_demand_per_country.loc[:, country].mul( |
||
| 2051 | (1 - df.loc[country[:2]].values[0]) |
||
| 2052 | ) |
||
| 2053 | ) |
||
| 2054 | |||
| 2055 | # Drop links with undefined buses or carrier |
||
| 2056 | network.mremove( |
||
| 2057 | "Link", |
||
| 2058 | network.links[ |
||
| 2059 | ~network.links.bus0.isin(network.buses.index.values) |
||
| 2060 | ].index, |
||
| 2061 | ) |
||
| 2062 | network.mremove( |
||
| 2063 | "Link", |
||
| 2064 | network.links[network.links.carrier == ""].index, |
||
| 2065 | ) |
||
| 2066 | |||
| 2067 | return network |
||
| 2068 | |||
| 2069 | |||
| 2070 | def drop_new_gas_pipelines(network): |
||
| 2071 | network.mremove( |
||
| 2072 | "Link", |
||
| 2073 | network.links[ |
||
| 2074 | network.links.index.str.contains("gas pipeline new") |
||
| 2075 | ].index, |
||
| 2076 | ) |
||
| 2077 | |||
| 2078 | return network |
||
| 2079 | |||
| 2080 | |||
| 2081 | def drop_fossil_gas(network): |
||
| 2082 | network.mremove( |
||
| 2083 | "Generator", |
||
| 2084 | network.generators[network.generators.carrier == "gas"].index, |
||
| 2085 | ) |
||
| 2086 | |||
| 2087 | return network |
||
| 2088 | |||
| 2089 | |||
| 2090 | def drop_conventional_power_plants(network): |
||
| 2091 | |||
| 2092 | # Drop lignite and coal power plants in Germany |
||
| 2093 | network.mremove( |
||
| 2094 | "Link", |
||
| 2095 | network.links[ |
||
| 2096 | (network.links.carrier.isin(["coal", "lignite"])) |
||
| 2097 | & (network.links.bus1.str.startswith("DE")) |
||
| 2098 | ].index, |
||
| 2099 | ) |
||
| 2100 | |||
| 2101 | return network |
||
| 2102 | |||
| 2103 | |||
| 2104 | def rual_heat_technologies(network): |
||
| 2105 | network.mremove( |
||
| 2106 | "Link", |
||
| 2107 | network.links[ |
||
| 2108 | network.links.index.str.contains("rural gas boiler") |
||
| 2109 | ].index, |
||
| 2110 | ) |
||
| 2111 | |||
| 2112 | network.mremove( |
||
| 2113 | "Generator", |
||
| 2114 | network.generators[ |
||
| 2115 | network.generators.carrier.str.contains("rural solar thermal") |
||
| 2116 | ].index, |
||
| 2117 | ) |
||
| 2118 | |||
| 2119 | return network |
||
| 2120 | |||
| 2121 | |||
| 2122 | def coal_exit_D(): |
||
| 2123 | |||
| 2124 | df = pd.read_csv( |
||
| 2125 | "run-pypsa-eur/pypsa-eur/resources/powerplants_s_39.csv", index_col=0 |
||
| 2126 | ) |
||
| 2127 | df_de_coal = df[ |
||
| 2128 | (df.Country == "DE") |
||
| 2129 | & ((df.Fueltype == "Lignite") | (df.Fueltype == "Hard Coal")) |
||
| 2130 | ] |
||
| 2131 | df_de_coal.loc[df_de_coal.DateOut.values >= 2035, "DateOut"] = 2034 |
||
| 2132 | df.loc[df_de_coal.index] = df_de_coal |
||
| 2133 | |||
| 2134 | df.to_csv("run-pypsa-eur/pypsa-eur/resources/powerplants_s_39.csv") |
||
| 2135 | |||
| 2136 | |||
| 2137 | def offwind_potential_D(network, capacity_per_sqkm=4): |
||
| 2138 | |||
| 2139 | offwind_ac_factor = 1942 |
||
| 2140 | offwind_dc_factor = 10768 |
||
| 2141 | offwind_float_factor = 134 |
||
| 2142 | |||
| 2143 | # set p_nom_max for German offshore with respect to capacity_per_sqkm = 4 instead of default 2 (which is applied for the rest of Europe) |
||
| 2144 | network.generators.loc[ |
||
| 2145 | (network.generators.bus == "DE0 0") |
||
| 2146 | & (network.generators.carrier == "offwind-ac"), |
||
| 2147 | "p_nom_max", |
||
| 2148 | ] = ( |
||
| 2149 | offwind_ac_factor * capacity_per_sqkm |
||
| 2150 | ) |
||
| 2151 | network.generators.loc[ |
||
| 2152 | (network.generators.bus == "DE0 0") |
||
| 2153 | & (network.generators.carrier == "offwind-dc"), |
||
| 2154 | "p_nom_max", |
||
| 2155 | ] = ( |
||
| 2156 | offwind_dc_factor * capacity_per_sqkm |
||
| 2157 | ) |
||
| 2158 | network.generators.loc[ |
||
| 2159 | (network.generators.bus == "DE0 0") |
||
| 2160 | & (network.generators.carrier == "offwind-float"), |
||
| 2161 | "p_nom_max", |
||
| 2162 | ] = ( |
||
| 2163 | offwind_float_factor * capacity_per_sqkm |
||
| 2164 | ) |
||
| 2165 | |||
| 2166 | return network |
||
| 2167 | |||
| 2168 | |||
| 2169 | def additional_grid_expansion_2045(network): |
||
| 2170 | |||
| 2171 | network.global_constraints.loc["lc_limit", "constant"] *= 1.05 |
||
| 2172 | |||
| 2173 | return network |
||
| 2174 | |||
| 2175 | |||
| 2176 | def execute(): |
||
| 2177 | if egon.data.config.settings()["egon-data"]["--run-pypsa-eur"]: |
||
| 2178 | with open( |
||
| 2179 | __path__[0] + "/datasets/pypsaeur/config.yaml", "r" |
||
| 2180 | ) as stream: |
||
| 2181 | data_config = yaml.safe_load(stream) |
||
| 2182 | |||
| 2183 | if data_config["foresight"] == "myopic": |
||
| 2184 | |||
| 2185 | print("Adjusting scenarios on the myopic pathway...") |
||
| 2186 | |||
| 2187 | coal_exit_D() |
||
| 2188 | |||
| 2189 | networks = pd.Series() |
||
| 2190 | |||
| 2191 | for i in range( |
||
| 2192 | 0, len(data_config["scenario"]["planning_horizons"]) |
||
| 2193 | ): |
||
| 2194 | nc_file = pd.Series( |
||
| 2195 | f"base_s_{data_config['scenario']['clusters'][0]}" |
||
| 2196 | f"_l{data_config['scenario']['ll'][0]}" |
||
| 2197 | f"_{data_config['scenario']['opts'][0]}" |
||
| 2198 | f"_{data_config['scenario']['sector_opts'][0]}" |
||
| 2199 | f"_{data_config['scenario']['planning_horizons'][i]}.nc" |
||
| 2200 | ) |
||
| 2201 | networks = networks._append(nc_file) |
||
| 2202 | |||
| 2203 | scn_path = pd.DataFrame( |
||
| 2204 | index=["2025", "2030", "2035", "2045"], |
||
| 2205 | columns=["prenetwork", "functions"], |
||
| 2206 | ) |
||
| 2207 | |||
| 2208 | for year in scn_path.index: |
||
| 2209 | scn_path.at[year, "prenetwork"] = networks[ |
||
| 2210 | networks.str.contains(year) |
||
| 2211 | ].values |
||
| 2212 | |||
| 2213 | for year in ["2025", "2030", "2035"]: |
||
| 2214 | scn_path.loc[year, "functions"] = [ |
||
| 2215 | # drop_urban_decentral_heat, |
||
| 2216 | update_electrical_timeseries_germany, |
||
| 2217 | geothermal_district_heating, |
||
| 2218 | h2_overground_stores, |
||
| 2219 | drop_new_gas_pipelines, |
||
| 2220 | offwind_potential_D, |
||
| 2221 | ] |
||
| 2222 | |||
| 2223 | scn_path.loc["2045", "functions"] = [ |
||
| 2224 | drop_biomass, |
||
| 2225 | # drop_urban_decentral_heat, |
||
| 2226 | update_electrical_timeseries_germany, |
||
| 2227 | geothermal_district_heating, |
||
| 2228 | h2_overground_stores, |
||
| 2229 | drop_new_gas_pipelines, |
||
| 2230 | drop_fossil_gas, |
||
| 2231 | offwind_potential_D, |
||
| 2232 | additional_grid_expansion_2045, |
||
| 2233 | # drop_conventional_power_plants, |
||
| 2234 | # rual_heat_technologies, #To be defined |
||
| 2235 | ] |
||
| 2236 | |||
| 2237 | network_path = ( |
||
| 2238 | Path(".") |
||
| 2239 | / "run-pypsa-eur" |
||
| 2240 | / "pypsa-eur" |
||
| 2241 | / "results" |
||
| 2242 | / data_config["run"]["name"] |
||
| 2243 | / "prenetworks" |
||
| 2244 | ) |
||
| 2245 | |||
| 2246 | for scn in scn_path.index: |
||
| 2247 | path = network_path / scn_path.at[scn, "prenetwork"] |
||
| 2248 | network = pypsa.Network(path) |
||
| 2249 | network.year = int(scn) |
||
| 2250 | for manipulator in scn_path.at[scn, "functions"]: |
||
| 2251 | network = manipulator(network) |
||
| 2252 | network.export_to_netcdf(path) |
||
| 2253 | |||
| 2254 | elif (data_config["foresight"] == "overnight") & ( |
||
| 2255 | int(data_config["scenario"]["planning_horizons"][0]) > 2040 |
||
| 2256 | ): |
||
| 2257 | |||
| 2258 | print("Adjusting overnight long-term scenario...") |
||
| 2259 | |||
| 2260 | network_path = ( |
||
| 2261 | Path(".") |
||
| 2262 | / "run-pypsa-eur" |
||
| 2263 | / "pypsa-eur" |
||
| 2264 | / "results" |
||
| 2265 | / data_config["run"]["name"] |
||
| 2266 | / "prenetworks" |
||
| 2267 | / f"elec_s_{data_config['scenario']['clusters'][0]}" |
||
| 2268 | f"_l{data_config['scenario']['ll'][0]}" |
||
| 2269 | f"_{data_config['scenario']['opts'][0]}" |
||
| 2270 | f"_{data_config['scenario']['sector_opts'][0]}" |
||
| 2271 | f"_{data_config['scenario']['planning_horizons'][0]}.nc" |
||
| 2272 | ) |
||
| 2273 | |||
| 2274 | network = pypsa.Network(network_path) |
||
| 2275 | |||
| 2276 | network = drop_biomass(network) |
||
| 2277 | |||
| 2278 | network = drop_urban_decentral_heat(network) |
||
| 2279 | |||
| 2280 | network = district_heating_shares(network) |
||
| 2281 | |||
| 2282 | network = update_heat_timeseries_germany(network) |
||
| 2283 | |||
| 2284 | network = update_electrical_timeseries_germany(network) |
||
| 2285 | |||
| 2286 | network = geothermal_district_heating(network) |
||
| 2287 | |||
| 2288 | network = h2_overground_stores(network) |
||
| 2289 | |||
| 2290 | network = drop_new_gas_pipelines(network) |
||
| 2291 | |||
| 2292 | network = drop_fossil_gas(network) |
||
| 2293 | |||
| 2294 | network = rual_heat_technologies(network) |
||
| 2295 | |||
| 2296 | network.export_to_netcdf(network_path) |
||
| 2297 | |||
| 2298 | else: |
||
| 2299 | print( |
||
| 2300 | f"""Adjustments on prenetworks are not implemented for |
||
| 2301 | foresight option {data_config['foresight']} and |
||
| 2302 | year int(data_config['scenario']['planning_horizons'][0]. |
||
| 2303 | Please check the pypsaeur.execute function. |
||
| 2304 | """ |
||
| 2305 | ) |
||
| 2306 | else: |
||
| 2307 | print("Pypsa-eur is not executed due to the settings of egon-data") |
||
| 2308 |