Conditions | 47 |
Total Lines | 1081 |
Code Lines | 735 |
Lines | 0 |
Ratio | 0 % |
Changes | 0 |
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
Complex classes like data.datasets.pypsaeur.neighbor_reduction() often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | """The central module containing all code dealing with importing data from |
||
578 | def neighbor_reduction(): |
||
579 | network_solved = read_network() |
||
580 | network_prepared = prepared_network(planning_horizon="2045") |
||
581 | |||
582 | # network.links.drop("pipe_retrofit", axis="columns", inplace=True) |
||
583 | |||
584 | wanted_countries = [ |
||
585 | "DE", |
||
586 | "AT", |
||
587 | "CH", |
||
588 | "CZ", |
||
589 | "PL", |
||
590 | "SE", |
||
591 | "NO", |
||
592 | "DK", |
||
593 | "GB", |
||
594 | "NL", |
||
595 | "BE", |
||
596 | "FR", |
||
597 | "LU", |
||
598 | ] |
||
599 | |||
600 | foreign_buses = network_solved.buses[ |
||
601 | (~network_solved.buses.index.str.contains("|".join(wanted_countries))) |
||
602 | | (network_solved.buses.index.str.contains("FR6")) |
||
603 | ] |
||
604 | network_solved.buses = network_solved.buses.drop( |
||
605 | network_solved.buses.loc[foreign_buses.index].index |
||
606 | ) |
||
607 | |||
608 | # Add H2 demand of Fischer-Tropsch process and methanolisation |
||
609 | # to industrial H2 demands |
||
610 | industrial_hydrogen = network_prepared.loads.loc[ |
||
611 | network_prepared.loads.carrier == "H2 for industry" |
||
612 | ] |
||
613 | fischer_tropsch = ( |
||
614 | network_solved.links_t.p0[ |
||
615 | network_solved.links.loc[ |
||
616 | network_solved.links.carrier == "Fischer-Tropsch" |
||
617 | ].index |
||
618 | ] |
||
619 | .mul(network_solved.snapshot_weightings.generators, axis=0) |
||
620 | .sum() |
||
621 | ) |
||
622 | methanolisation = ( |
||
623 | network_solved.links_t.p0[ |
||
624 | network_solved.links.loc[ |
||
625 | network_solved.links.carrier == "methanolisation" |
||
626 | ].index |
||
627 | ] |
||
628 | .mul(network_solved.snapshot_weightings.generators, axis=0) |
||
629 | .sum() |
||
630 | ) |
||
631 | for i, row in industrial_hydrogen.iterrows(): |
||
632 | network_prepared.loads.loc[i, "p_set"] += ( |
||
633 | fischer_tropsch[ |
||
634 | fischer_tropsch.index.str.startswith(row.bus[:5]) |
||
635 | ].sum() |
||
636 | / 8760 |
||
637 | ) |
||
638 | network_prepared.loads.loc[i, "p_set"] += ( |
||
639 | methanolisation[ |
||
640 | methanolisation.index.str.startswith(row.bus[:5]) |
||
641 | ].sum() |
||
642 | / 8760 |
||
643 | ) |
||
644 | # drop foreign lines and links from the 2nd row |
||
645 | |||
646 | network_solved.lines = network_solved.lines.drop( |
||
647 | network_solved.lines[ |
||
648 | ( |
||
649 | network_solved.lines["bus0"].isin(network_solved.buses.index) |
||
650 | == False |
||
651 | ) |
||
652 | & ( |
||
653 | network_solved.lines["bus1"].isin(network_solved.buses.index) |
||
654 | == False |
||
655 | ) |
||
656 | ].index |
||
657 | ) |
||
658 | |||
659 | # select all lines which have at bus1 the bus which is kept |
||
660 | lines_cb_1 = network_solved.lines[ |
||
661 | ( |
||
662 | network_solved.lines["bus0"].isin(network_solved.buses.index) |
||
663 | == False |
||
664 | ) |
||
665 | ] |
||
666 | |||
667 | # create a load at bus1 with the line's hourly loading |
||
668 | for i, k in zip(lines_cb_1.bus1.values, lines_cb_1.index): |
||
669 | |||
670 | # Copy loading of lines into hourly resolution |
||
671 | pset = pd.Series( |
||
672 | index=network_prepared.snapshots, |
||
673 | data=network_solved.lines_t.p1[k].resample("H").ffill(), |
||
674 | ) |
||
675 | pset["2011-12-31 22:00:00"] = pset["2011-12-31 21:00:00"] |
||
676 | pset["2011-12-31 23:00:00"] = pset["2011-12-31 21:00:00"] |
||
677 | |||
678 | # Loads are all imported from the prepared network in the end |
||
679 | network_prepared.add( |
||
680 | "Load", |
||
681 | "slack_fix " + i + " " + k, |
||
682 | bus=i, |
||
683 | p_set=pset, |
||
684 | carrier=lines_cb_1.loc[k, "carrier"], |
||
685 | ) |
||
686 | |||
687 | # select all lines which have at bus0 the bus which is kept |
||
688 | lines_cb_0 = network_solved.lines[ |
||
689 | ( |
||
690 | network_solved.lines["bus1"].isin(network_solved.buses.index) |
||
691 | == False |
||
692 | ) |
||
693 | ] |
||
694 | |||
695 | # create a load at bus0 with the line's hourly loading |
||
696 | for i, k in zip(lines_cb_0.bus0.values, lines_cb_0.index): |
||
697 | # Copy loading of lines into hourly resolution |
||
698 | pset = pd.Series( |
||
699 | index=network_prepared.snapshots, |
||
700 | data=network_solved.lines_t.p0[k].resample("H").ffill(), |
||
701 | ) |
||
702 | pset["2011-12-31 22:00:00"] = pset["2011-12-31 21:00:00"] |
||
703 | pset["2011-12-31 23:00:00"] = pset["2011-12-31 21:00:00"] |
||
704 | |||
705 | network_prepared.add( |
||
706 | "Load", |
||
707 | "slack_fix " + i + " " + k, |
||
708 | bus=i, |
||
709 | p_set=pset, |
||
710 | carrier=lines_cb_0.loc[k, "carrier"], |
||
711 | ) |
||
712 | |||
713 | # do the same for links |
||
714 | network_solved.mremove( |
||
715 | "Link", |
||
716 | network_solved.links[ |
||
717 | (~network_solved.links.bus0.isin(network_solved.buses.index)) |
||
718 | | (~network_solved.links.bus1.isin(network_solved.buses.index)) |
||
719 | ].index, |
||
720 | ) |
||
721 | |||
722 | # select all links which have at bus1 the bus which is kept |
||
723 | links_cb_1 = network_solved.links[ |
||
724 | ( |
||
725 | network_solved.links["bus0"].isin(network_solved.buses.index) |
||
726 | == False |
||
727 | ) |
||
728 | ] |
||
729 | |||
730 | # create a load at bus1 with the link's hourly loading |
||
731 | for i, k in zip(links_cb_1.bus1.values, links_cb_1.index): |
||
732 | pset = pd.Series( |
||
733 | index=network_prepared.snapshots, |
||
734 | data=network_solved.links_t.p1[k].resample("H").ffill(), |
||
735 | ) |
||
736 | pset["2011-12-31 22:00:00"] = pset["2011-12-31 21:00:00"] |
||
737 | pset["2011-12-31 23:00:00"] = pset["2011-12-31 21:00:00"] |
||
738 | |||
739 | network_prepared.add( |
||
740 | "Load", |
||
741 | "slack_fix_links " + i + " " + k, |
||
742 | bus=i, |
||
743 | p_set=pset, |
||
744 | carrier=links_cb_1.loc[k, "carrier"], |
||
745 | ) |
||
746 | |||
747 | # select all links which have at bus0 the bus which is kept |
||
748 | links_cb_0 = network_solved.links[ |
||
749 | ( |
||
750 | network_solved.links["bus1"].isin(network_solved.buses.index) |
||
751 | == False |
||
752 | ) |
||
753 | ] |
||
754 | |||
755 | # create a load at bus0 with the link's hourly loading |
||
756 | for i, k in zip(links_cb_0.bus0.values, links_cb_0.index): |
||
757 | pset = pd.Series( |
||
758 | index=network_prepared.snapshots, |
||
759 | data=network_solved.links_t.p0[k].resample("H").ffill(), |
||
760 | ) |
||
761 | pset["2011-12-31 22:00:00"] = pset["2011-12-31 21:00:00"] |
||
762 | pset["2011-12-31 23:00:00"] = pset["2011-12-31 21:00:00"] |
||
763 | |||
764 | network_prepared.add( |
||
765 | "Load", |
||
766 | "slack_fix_links " + i + " " + k, |
||
767 | bus=i, |
||
768 | p_set=pset, |
||
769 | carrier=links_cb_0.carrier[k], |
||
770 | ) |
||
771 | |||
772 | # drop remaining foreign components |
||
773 | for comp in network_solved.iterate_components(): |
||
774 | if "bus0" in comp.df.columns: |
||
775 | network_solved.mremove( |
||
776 | comp.name, |
||
777 | comp.df[~comp.df.bus0.isin(network_solved.buses.index)].index, |
||
778 | ) |
||
779 | network_solved.mremove( |
||
780 | comp.name, |
||
781 | comp.df[~comp.df.bus1.isin(network_solved.buses.index)].index, |
||
782 | ) |
||
783 | elif "bus" in comp.df.columns: |
||
784 | network_solved.mremove( |
||
785 | comp.name, |
||
786 | comp.df[~comp.df.bus.isin(network_solved.buses.index)].index, |
||
787 | ) |
||
788 | |||
789 | # Combine urban decentral and rural heat |
||
790 | network_prepared, network_solved = combine_decentral_and_rural_heat( |
||
791 | network_solved, network_prepared |
||
792 | ) |
||
793 | |||
794 | # writing components of neighboring countries to etrago tables |
||
795 | |||
796 | # Set country tag for all buses |
||
797 | network_solved.buses.country = network_solved.buses.index.str[:2] |
||
798 | neighbors = network_solved.buses[network_solved.buses.country != "DE"] |
||
799 | |||
800 | neighbors["new_index"] = ( |
||
801 | db.next_etrago_id("bus") + neighbors.reset_index().index |
||
802 | ) |
||
803 | |||
804 | # Use index of AC buses created by electrical_neigbors |
||
805 | foreign_ac_buses = db.select_dataframe( |
||
806 | """ |
||
807 | SELECT * FROM grid.egon_etrago_bus |
||
808 | WHERE carrier = 'AC' AND v_nom = 380 |
||
809 | AND country!= 'DE' AND scn_name ='eGon100RE' |
||
810 | AND bus_id NOT IN (SELECT bus_i FROM osmtgmod_results.bus_data) |
||
811 | """ |
||
812 | ) |
||
813 | buses_with_defined_id = neighbors[ |
||
814 | (neighbors.carrier == "AC") |
||
815 | & (neighbors.country.isin(foreign_ac_buses.country.values)) |
||
816 | ].index |
||
817 | neighbors.loc[buses_with_defined_id, "new_index"] = ( |
||
818 | foreign_ac_buses.set_index("x") |
||
819 | .loc[neighbors.loc[buses_with_defined_id, "x"]] |
||
820 | .bus_id.values |
||
821 | ) |
||
822 | |||
823 | # lines, the foreign crossborder lines |
||
824 | # (without crossborder lines to Germany!) |
||
825 | |||
826 | neighbor_lines = network_solved.lines[ |
||
827 | network_solved.lines.bus0.isin(neighbors.index) |
||
828 | & network_solved.lines.bus1.isin(neighbors.index) |
||
829 | ] |
||
830 | if not network_solved.lines_t["s_max_pu"].empty: |
||
831 | neighbor_lines_t = network_prepared.lines_t["s_max_pu"][ |
||
832 | neighbor_lines.index |
||
833 | ] |
||
834 | |||
835 | neighbor_lines.reset_index(inplace=True) |
||
836 | neighbor_lines.bus0 = ( |
||
837 | neighbors.loc[neighbor_lines.bus0, "new_index"].reset_index().new_index |
||
838 | ) |
||
839 | neighbor_lines.bus1 = ( |
||
840 | neighbors.loc[neighbor_lines.bus1, "new_index"].reset_index().new_index |
||
841 | ) |
||
842 | neighbor_lines.index += db.next_etrago_id("line") |
||
843 | |||
844 | if not network_solved.lines_t["s_max_pu"].empty: |
||
845 | for i in neighbor_lines_t.columns: |
||
846 | new_index = neighbor_lines[neighbor_lines["name"] == i].index |
||
847 | neighbor_lines_t.rename(columns={i: new_index[0]}, inplace=True) |
||
848 | |||
849 | # links |
||
850 | neighbor_links = network_solved.links[ |
||
851 | network_solved.links.bus0.isin(neighbors.index) |
||
852 | & network_solved.links.bus1.isin(neighbors.index) |
||
853 | ] |
||
854 | |||
855 | neighbor_links.reset_index(inplace=True) |
||
856 | neighbor_links.bus0 = ( |
||
857 | neighbors.loc[neighbor_links.bus0, "new_index"].reset_index().new_index |
||
858 | ) |
||
859 | neighbor_links.bus1 = ( |
||
860 | neighbors.loc[neighbor_links.bus1, "new_index"].reset_index().new_index |
||
861 | ) |
||
862 | neighbor_links.index += db.next_etrago_id("link") |
||
863 | |||
864 | # generators |
||
865 | neighbor_gens = network_solved.generators[ |
||
866 | network_solved.generators.bus.isin(neighbors.index) |
||
867 | ] |
||
868 | neighbor_gens_t = network_prepared.generators_t["p_max_pu"][ |
||
869 | neighbor_gens[ |
||
870 | neighbor_gens.index.isin( |
||
871 | network_prepared.generators_t["p_max_pu"].columns |
||
872 | ) |
||
873 | ].index |
||
874 | ] |
||
875 | |||
876 | gen_time = [ |
||
877 | "solar", |
||
878 | "onwind", |
||
879 | "solar rooftop", |
||
880 | "offwind-ac", |
||
881 | "offwind-dc", |
||
882 | "solar-hsat", |
||
883 | "urban central solar thermal", |
||
884 | "rural solar thermal", |
||
885 | "offwind-float", |
||
886 | ] |
||
887 | |||
888 | missing_gent = neighbor_gens[ |
||
889 | neighbor_gens["carrier"].isin(gen_time) |
||
890 | & ~neighbor_gens.index.isin(neighbor_gens_t.columns) |
||
891 | ].index |
||
892 | |||
893 | gen_timeseries = network_prepared.generators_t["p_max_pu"].copy() |
||
894 | for mgt in missing_gent: # mgt: missing generator timeseries |
||
895 | try: |
||
896 | neighbor_gens_t[mgt] = gen_timeseries.loc[:, mgt[0:-5]] |
||
897 | except: |
||
898 | print(f"There are not timeseries for {mgt}") |
||
899 | |||
900 | neighbor_gens.reset_index(inplace=True) |
||
901 | neighbor_gens.bus = ( |
||
902 | neighbors.loc[neighbor_gens.bus, "new_index"].reset_index().new_index |
||
903 | ) |
||
904 | neighbor_gens.index += db.next_etrago_id("generator") |
||
905 | |||
906 | for i in neighbor_gens_t.columns: |
||
907 | new_index = neighbor_gens[neighbor_gens["Generator"] == i].index |
||
908 | neighbor_gens_t.rename(columns={i: new_index[0]}, inplace=True) |
||
909 | |||
910 | # loads |
||
911 | # imported from prenetwork in 1h-resolution |
||
912 | neighbor_loads = network_prepared.loads[ |
||
913 | network_prepared.loads.bus.isin(neighbors.index) |
||
914 | ] |
||
915 | neighbor_loads_t_index = neighbor_loads.index[ |
||
916 | neighbor_loads.index.isin(network_prepared.loads_t.p_set.columns) |
||
917 | ] |
||
918 | neighbor_loads_t = network_prepared.loads_t["p_set"][ |
||
919 | neighbor_loads_t_index |
||
920 | ] |
||
921 | |||
922 | neighbor_loads.reset_index(inplace=True) |
||
923 | neighbor_loads.bus = ( |
||
924 | neighbors.loc[neighbor_loads.bus, "new_index"].reset_index().new_index |
||
925 | ) |
||
926 | neighbor_loads.index += db.next_etrago_id("load") |
||
927 | |||
928 | for i in neighbor_loads_t.columns: |
||
929 | new_index = neighbor_loads[neighbor_loads["Load"] == i].index |
||
930 | neighbor_loads_t.rename(columns={i: new_index[0]}, inplace=True) |
||
931 | |||
932 | # stores |
||
933 | neighbor_stores = network_solved.stores[ |
||
934 | network_solved.stores.bus.isin(neighbors.index) |
||
935 | ] |
||
936 | neighbor_stores_t_index = neighbor_stores.index[ |
||
937 | neighbor_stores.index.isin(network_solved.stores_t.e_min_pu.columns) |
||
938 | ] |
||
939 | neighbor_stores_t = network_prepared.stores_t["e_min_pu"][ |
||
940 | neighbor_stores_t_index |
||
941 | ] |
||
942 | |||
943 | neighbor_stores.reset_index(inplace=True) |
||
944 | neighbor_stores.bus = ( |
||
945 | neighbors.loc[neighbor_stores.bus, "new_index"].reset_index().new_index |
||
946 | ) |
||
947 | neighbor_stores.index += db.next_etrago_id("store") |
||
948 | |||
949 | for i in neighbor_stores_t.columns: |
||
950 | new_index = neighbor_stores[neighbor_stores["Store"] == i].index |
||
951 | neighbor_stores_t.rename(columns={i: new_index[0]}, inplace=True) |
||
952 | |||
953 | # storage_units |
||
954 | neighbor_storage = network_solved.storage_units[ |
||
955 | network_solved.storage_units.bus.isin(neighbors.index) |
||
956 | ] |
||
957 | neighbor_storage_t_index = neighbor_storage.index[ |
||
958 | neighbor_storage.index.isin( |
||
959 | network_solved.storage_units_t.inflow.columns |
||
960 | ) |
||
961 | ] |
||
962 | neighbor_storage_t = network_prepared.storage_units_t["inflow"][ |
||
963 | neighbor_storage_t_index |
||
964 | ] |
||
965 | |||
966 | neighbor_storage.reset_index(inplace=True) |
||
967 | neighbor_storage.bus = ( |
||
968 | neighbors.loc[neighbor_storage.bus, "new_index"] |
||
969 | .reset_index() |
||
970 | .new_index |
||
971 | ) |
||
972 | neighbor_storage.index += db.next_etrago_id("storage") |
||
973 | |||
974 | for i in neighbor_storage_t.columns: |
||
975 | new_index = neighbor_storage[ |
||
976 | neighbor_storage["StorageUnit"] == i |
||
977 | ].index |
||
978 | neighbor_storage_t.rename(columns={i: new_index[0]}, inplace=True) |
||
979 | |||
980 | # Connect to local database |
||
981 | engine = db.engine() |
||
982 | |||
983 | neighbors["scn_name"] = "eGon100RE" |
||
984 | neighbors.index = neighbors["new_index"] |
||
985 | |||
986 | # Correct geometry for non AC buses |
||
987 | carriers = set(neighbors.carrier.to_list()) |
||
988 | carriers = [e for e in carriers if e not in ("AC")] |
||
989 | non_AC_neighbors = pd.DataFrame() |
||
990 | for c in carriers: |
||
991 | c_neighbors = neighbors[neighbors.carrier == c].set_index( |
||
992 | "location", drop=False |
||
993 | ) |
||
994 | for i in ["x", "y"]: |
||
995 | c_neighbors = c_neighbors.drop(i, axis=1) |
||
996 | coordinates = neighbors[neighbors.carrier == "AC"][ |
||
997 | ["location", "x", "y"] |
||
998 | ].set_index("location") |
||
999 | c_neighbors = pd.concat([coordinates, c_neighbors], axis=1).set_index( |
||
1000 | "new_index", drop=False |
||
1001 | ) |
||
1002 | non_AC_neighbors = pd.concat([non_AC_neighbors, c_neighbors]) |
||
1003 | |||
1004 | neighbors = pd.concat( |
||
1005 | [neighbors[neighbors.carrier == "AC"], non_AC_neighbors] |
||
1006 | ) |
||
1007 | |||
1008 | for i in [ |
||
1009 | "new_index", |
||
1010 | "control", |
||
1011 | "generator", |
||
1012 | "location", |
||
1013 | "sub_network", |
||
1014 | "unit", |
||
1015 | "substation_lv", |
||
1016 | "substation_off", |
||
1017 | ]: |
||
1018 | neighbors = neighbors.drop(i, axis=1) |
||
1019 | |||
1020 | # Add geometry column |
||
1021 | neighbors = ( |
||
1022 | gpd.GeoDataFrame( |
||
1023 | neighbors, geometry=gpd.points_from_xy(neighbors.x, neighbors.y) |
||
1024 | ) |
||
1025 | .rename_geometry("geom") |
||
1026 | .set_crs(4326) |
||
1027 | ) |
||
1028 | |||
1029 | # Unify carrier names |
||
1030 | neighbors.carrier = neighbors.carrier.str.replace(" ", "_") |
||
1031 | neighbors.carrier.replace( |
||
1032 | { |
||
1033 | "gas": "CH4", |
||
1034 | "gas_for_industry": "CH4_for_industry", |
||
1035 | "urban_central_heat": "central_heat", |
||
1036 | "EV_battery": "Li_ion", |
||
1037 | "urban_central_water_tanks": "central_heat_store", |
||
1038 | "rural_water_tanks": "rural_heat_store", |
||
1039 | }, |
||
1040 | inplace=True, |
||
1041 | ) |
||
1042 | |||
1043 | neighbors[~neighbors.carrier.isin(["AC"])].to_postgis( |
||
1044 | "egon_etrago_bus", |
||
1045 | engine, |
||
1046 | schema="grid", |
||
1047 | if_exists="append", |
||
1048 | index=True, |
||
1049 | index_label="bus_id", |
||
1050 | ) |
||
1051 | |||
1052 | # prepare and write neighboring crossborder lines to etrago tables |
||
1053 | def lines_to_etrago(neighbor_lines=neighbor_lines, scn="eGon100RE"): |
||
1054 | neighbor_lines["scn_name"] = scn |
||
1055 | neighbor_lines["cables"] = 3 * neighbor_lines["num_parallel"].astype( |
||
1056 | int |
||
1057 | ) |
||
1058 | neighbor_lines["s_nom"] = neighbor_lines["s_nom_min"] |
||
1059 | |||
1060 | for i in [ |
||
1061 | "Line", |
||
1062 | "x_pu_eff", |
||
1063 | "r_pu_eff", |
||
1064 | "sub_network", |
||
1065 | "x_pu", |
||
1066 | "r_pu", |
||
1067 | "g_pu", |
||
1068 | "b_pu", |
||
1069 | "s_nom_opt", |
||
1070 | "i_nom", |
||
1071 | "dc", |
||
1072 | ]: |
||
1073 | neighbor_lines = neighbor_lines.drop(i, axis=1) |
||
1074 | |||
1075 | # Define geometry and add to lines dataframe as 'topo' |
||
1076 | gdf = gpd.GeoDataFrame(index=neighbor_lines.index) |
||
1077 | gdf["geom_bus0"] = neighbors.geom[neighbor_lines.bus0].values |
||
1078 | gdf["geom_bus1"] = neighbors.geom[neighbor_lines.bus1].values |
||
1079 | gdf["geometry"] = gdf.apply( |
||
1080 | lambda x: LineString([x["geom_bus0"], x["geom_bus1"]]), axis=1 |
||
1081 | ) |
||
1082 | |||
1083 | neighbor_lines = ( |
||
1084 | gpd.GeoDataFrame(neighbor_lines, geometry=gdf["geometry"]) |
||
1085 | .rename_geometry("topo") |
||
1086 | .set_crs(4326) |
||
1087 | ) |
||
1088 | |||
1089 | neighbor_lines["lifetime"] = get_sector_parameters("electricity", scn)[ |
||
1090 | "lifetime" |
||
1091 | ]["ac_ehv_overhead_line"] |
||
1092 | |||
1093 | neighbor_lines.to_postgis( |
||
1094 | "egon_etrago_line", |
||
1095 | engine, |
||
1096 | schema="grid", |
||
1097 | if_exists="append", |
||
1098 | index=True, |
||
1099 | index_label="line_id", |
||
1100 | ) |
||
1101 | |||
1102 | lines_to_etrago(neighbor_lines=neighbor_lines, scn="eGon100RE") |
||
1103 | |||
1104 | def links_to_etrago(neighbor_links, scn="eGon100RE", extendable=True): |
||
1105 | """Prepare and write neighboring crossborder links to eTraGo table |
||
1106 | |||
1107 | This function prepare the neighboring crossborder links |
||
1108 | generated the PyPSA-eur-sec (p-e-s) run by: |
||
1109 | * Delete the useless columns |
||
1110 | * If extendable is false only (non default case): |
||
1111 | * Replace p_nom = 0 with the p_nom_op values (arrising |
||
1112 | from the p-e-s optimisation) |
||
1113 | * Setting p_nom_extendable to false |
||
1114 | * Add geomtry to the links: 'geom' and 'topo' columns |
||
1115 | * Change the name of the carriers to have the consistent in |
||
1116 | eGon-data |
||
1117 | |||
1118 | The function insert then the link to the eTraGo table and has |
||
1119 | no return. |
||
1120 | |||
1121 | Parameters |
||
1122 | ---------- |
||
1123 | neighbor_links : pandas.DataFrame |
||
1124 | Dataframe containing the neighboring crossborder links |
||
1125 | scn_name : str |
||
1126 | Name of the scenario |
||
1127 | extendable : bool |
||
1128 | Boolean expressing if the links should be extendable or not |
||
1129 | |||
1130 | Returns |
||
1131 | ------- |
||
1132 | None |
||
1133 | |||
1134 | """ |
||
1135 | neighbor_links["scn_name"] = scn |
||
1136 | |||
1137 | dropped_carriers = [ |
||
1138 | "Link", |
||
1139 | "geometry", |
||
1140 | "tags", |
||
1141 | "under_construction", |
||
1142 | "underground", |
||
1143 | "underwater_fraction", |
||
1144 | "bus2", |
||
1145 | "bus3", |
||
1146 | "bus4", |
||
1147 | "efficiency2", |
||
1148 | "efficiency3", |
||
1149 | "efficiency4", |
||
1150 | "lifetime", |
||
1151 | "pipe_retrofit", |
||
1152 | "committable", |
||
1153 | "start_up_cost", |
||
1154 | "shut_down_cost", |
||
1155 | "min_up_time", |
||
1156 | "min_down_time", |
||
1157 | "up_time_before", |
||
1158 | "down_time_before", |
||
1159 | "ramp_limit_up", |
||
1160 | "ramp_limit_down", |
||
1161 | "ramp_limit_start_up", |
||
1162 | "ramp_limit_shut_down", |
||
1163 | "length_original", |
||
1164 | "reversed", |
||
1165 | "location", |
||
1166 | "project_status", |
||
1167 | "dc", |
||
1168 | "voltage", |
||
1169 | ] |
||
1170 | |||
1171 | if extendable: |
||
1172 | dropped_carriers.append("p_nom_opt") |
||
1173 | neighbor_links = neighbor_links.drop( |
||
1174 | columns=dropped_carriers, |
||
1175 | errors="ignore", |
||
1176 | ) |
||
1177 | |||
1178 | else: |
||
1179 | dropped_carriers.append("p_nom") |
||
1180 | dropped_carriers.append("p_nom_extendable") |
||
1181 | neighbor_links = neighbor_links.drop( |
||
1182 | columns=dropped_carriers, |
||
1183 | errors="ignore", |
||
1184 | ) |
||
1185 | neighbor_links = neighbor_links.rename( |
||
1186 | columns={"p_nom_opt": "p_nom"} |
||
1187 | ) |
||
1188 | neighbor_links["p_nom_extendable"] = False |
||
1189 | |||
1190 | if neighbor_links.empty: |
||
1191 | print("No links selected") |
||
1192 | return |
||
1193 | |||
1194 | # Define geometry and add to lines dataframe as 'topo' |
||
1195 | gdf = gpd.GeoDataFrame( |
||
1196 | index=neighbor_links.index, |
||
1197 | data={ |
||
1198 | "geom_bus0": neighbors.loc[neighbor_links.bus0, "geom"].values, |
||
1199 | "geom_bus1": neighbors.loc[neighbor_links.bus1, "geom"].values, |
||
1200 | }, |
||
1201 | ) |
||
1202 | |||
1203 | gdf["geometry"] = gdf.apply( |
||
1204 | lambda x: LineString([x["geom_bus0"], x["geom_bus1"]]), axis=1 |
||
1205 | ) |
||
1206 | |||
1207 | neighbor_links = ( |
||
1208 | gpd.GeoDataFrame(neighbor_links, geometry=gdf["geometry"]) |
||
1209 | .rename_geometry("topo") |
||
1210 | .set_crs(4326) |
||
1211 | ) |
||
1212 | |||
1213 | # Unify carrier names |
||
1214 | neighbor_links.carrier = neighbor_links.carrier.str.replace(" ", "_") |
||
1215 | |||
1216 | neighbor_links.carrier.replace( |
||
1217 | { |
||
1218 | "H2_Electrolysis": "power_to_H2", |
||
1219 | "H2_Fuel_Cell": "H2_to_power", |
||
1220 | "H2_pipeline_retrofitted": "H2_retrofit", |
||
1221 | "SMR": "CH4_to_H2", |
||
1222 | "Sabatier": "H2_to_CH4", |
||
1223 | "gas_for_industry": "CH4_for_industry", |
||
1224 | "gas_pipeline": "CH4", |
||
1225 | "urban_central_gas_boiler": "central_gas_boiler", |
||
1226 | "urban_central_resistive_heater": "central_resistive_heater", |
||
1227 | "urban_central_water_tanks_charger": "central_heat_store_charger", |
||
1228 | "urban_central_water_tanks_discharger": "central_heat_store_discharger", |
||
1229 | "rural_water_tanks_charger": "rural_heat_store_charger", |
||
1230 | "rural_water_tanks_discharger": "rural_heat_store_discharger", |
||
1231 | "urban_central_gas_CHP": "central_gas_CHP", |
||
1232 | "urban_central_air_heat_pump": "central_heat_pump", |
||
1233 | "rural_ground_heat_pump": "rural_heat_pump", |
||
1234 | }, |
||
1235 | inplace=True, |
||
1236 | ) |
||
1237 | |||
1238 | H2_links = { |
||
1239 | "H2_to_CH4": "H2_to_CH4", |
||
1240 | "H2_to_power": "H2_to_power", |
||
1241 | "power_to_H2": "power_to_H2_system", |
||
1242 | "CH4_to_H2": "CH4_to_H2", |
||
1243 | } |
||
1244 | |||
1245 | for c in H2_links.keys(): |
||
1246 | |||
1247 | neighbor_links.loc[ |
||
1248 | (neighbor_links.carrier == c), |
||
1249 | "lifetime", |
||
1250 | ] = get_sector_parameters("gas", "eGon100RE")["lifetime"][ |
||
1251 | H2_links[c] |
||
1252 | ] |
||
1253 | |||
1254 | neighbor_links.to_postgis( |
||
1255 | "egon_etrago_link", |
||
1256 | engine, |
||
1257 | schema="grid", |
||
1258 | if_exists="append", |
||
1259 | index=True, |
||
1260 | index_label="link_id", |
||
1261 | ) |
||
1262 | |||
1263 | extendable_links_carriers = [ |
||
1264 | "battery charger", |
||
1265 | "battery discharger", |
||
1266 | "home battery charger", |
||
1267 | "home battery discharger", |
||
1268 | "rural water tanks charger", |
||
1269 | "rural water tanks discharger", |
||
1270 | "urban central water tanks charger", |
||
1271 | "urban central water tanks discharger", |
||
1272 | "urban decentral water tanks charger", |
||
1273 | "urban decentral water tanks discharger", |
||
1274 | "H2 Electrolysis", |
||
1275 | "H2 Fuel Cell", |
||
1276 | "SMR", |
||
1277 | "Sabatier", |
||
1278 | ] |
||
1279 | |||
1280 | # delete unwanted carriers for eTraGo |
||
1281 | excluded_carriers = [ |
||
1282 | "gas for industry CC", |
||
1283 | "SMR CC", |
||
1284 | "DAC", |
||
1285 | ] |
||
1286 | neighbor_links = neighbor_links[ |
||
1287 | ~neighbor_links.carrier.isin(excluded_carriers) |
||
1288 | ] |
||
1289 | |||
1290 | # Combine CHP_CC and CHP |
||
1291 | chp_cc = neighbor_links[ |
||
1292 | neighbor_links.carrier == "urban central gas CHP CC" |
||
1293 | ] |
||
1294 | for index, row in chp_cc.iterrows(): |
||
1295 | neighbor_links.loc[ |
||
1296 | neighbor_links.Link == row.Link.replace("CHP CC", "CHP"), |
||
1297 | "p_nom_opt", |
||
1298 | ] += row.p_nom_opt |
||
1299 | neighbor_links.loc[ |
||
1300 | neighbor_links.Link == row.Link.replace("CHP CC", "CHP"), "p_nom" |
||
1301 | ] += row.p_nom |
||
1302 | neighbor_links.drop(index, inplace=True) |
||
1303 | |||
1304 | # Combine heat pumps |
||
1305 | # Like in Germany, there are air heat pumps in central heat grids |
||
1306 | # and ground heat pumps in rural areas |
||
1307 | rural_air = neighbor_links[neighbor_links.carrier == "rural air heat pump"] |
||
1308 | for index, row in rural_air.iterrows(): |
||
1309 | neighbor_links.loc[ |
||
1310 | neighbor_links.Link == row.Link.replace("air", "ground"), |
||
1311 | "p_nom_opt", |
||
1312 | ] += row.p_nom_opt |
||
1313 | neighbor_links.loc[ |
||
1314 | neighbor_links.Link == row.Link.replace("air", "ground"), "p_nom" |
||
1315 | ] += row.p_nom |
||
1316 | neighbor_links.drop(index, inplace=True) |
||
1317 | links_to_etrago( |
||
1318 | neighbor_links[neighbor_links.carrier.isin(extendable_links_carriers)], |
||
1319 | "eGon100RE", |
||
1320 | ) |
||
1321 | links_to_etrago( |
||
1322 | neighbor_links[ |
||
1323 | ~neighbor_links.carrier.isin(extendable_links_carriers) |
||
1324 | ], |
||
1325 | "eGon100RE", |
||
1326 | extendable=False, |
||
1327 | ) |
||
1328 | # Include links time-series |
||
1329 | # For heat_pumps |
||
1330 | hp = neighbor_links[neighbor_links["carrier"].str.contains("heat pump")] |
||
1331 | |||
1332 | neighbor_eff_t = network_prepared.links_t["efficiency"][ |
||
1333 | hp[hp.Link.isin(network_prepared.links_t["efficiency"].columns)].index |
||
1334 | ] |
||
1335 | |||
1336 | missing_hp = hp[~hp["Link"].isin(neighbor_eff_t.columns)].Link |
||
1337 | |||
1338 | eff_timeseries = network_prepared.links_t["efficiency"].copy() |
||
1339 | for met in missing_hp: # met: missing efficiency timeseries |
||
1340 | try: |
||
1341 | neighbor_eff_t[met] = eff_timeseries.loc[:, met[0:-5]] |
||
1342 | except: |
||
1343 | print(f"There are not timeseries for heat_pump {met}") |
||
1344 | |||
1345 | for i in neighbor_eff_t.columns: |
||
1346 | new_index = neighbor_links[neighbor_links["Link"] == i].index |
||
1347 | neighbor_eff_t.rename(columns={i: new_index[0]}, inplace=True) |
||
1348 | |||
1349 | # Include links time-series |
||
1350 | # For ev_chargers |
||
1351 | ev = neighbor_links[neighbor_links["carrier"].str.contains("BEV charger")] |
||
1352 | |||
1353 | ev_p_max_pu = network_prepared.links_t["p_max_pu"][ |
||
1354 | ev[ev.Link.isin(network_prepared.links_t["p_max_pu"].columns)].index |
||
1355 | ] |
||
1356 | |||
1357 | missing_ev = ev[~ev["Link"].isin(ev_p_max_pu.columns)].Link |
||
1358 | |||
1359 | ev_p_max_pu_timeseries = network_prepared.links_t["p_max_pu"].copy() |
||
1360 | for mct in missing_ev: # evt: missing charger timeseries |
||
1361 | try: |
||
1362 | ev_p_max_pu[mct] = ev_p_max_pu_timeseries.loc[:, mct[0:-5]] |
||
1363 | except: |
||
1364 | print(f"There are not timeseries for EV charger {mct}") |
||
1365 | |||
1366 | for i in ev_p_max_pu.columns: |
||
1367 | new_index = neighbor_links[neighbor_links["Link"] == i].index |
||
1368 | ev_p_max_pu.rename(columns={i: new_index[0]}, inplace=True) |
||
1369 | |||
1370 | # prepare neighboring generators for etrago tables |
||
1371 | neighbor_gens["scn_name"] = "eGon100RE" |
||
1372 | neighbor_gens["p_nom"] = neighbor_gens["p_nom_opt"] |
||
1373 | neighbor_gens["p_nom_extendable"] = False |
||
1374 | |||
1375 | # Unify carrier names |
||
1376 | neighbor_gens.carrier = neighbor_gens.carrier.str.replace(" ", "_") |
||
1377 | |||
1378 | neighbor_gens.carrier.replace( |
||
1379 | { |
||
1380 | "onwind": "wind_onshore", |
||
1381 | "ror": "run_of_river", |
||
1382 | "offwind-ac": "wind_offshore", |
||
1383 | "offwind-dc": "wind_offshore", |
||
1384 | "offwind-float": "wind_offshore", |
||
1385 | "urban_central_solar_thermal": "urban_central_solar_thermal_collector", |
||
1386 | "residential_rural_solar_thermal": "residential_rural_solar_thermal_collector", |
||
1387 | "services_rural_solar_thermal": "services_rural_solar_thermal_collector", |
||
1388 | "solar-hsat": "solar", |
||
1389 | }, |
||
1390 | inplace=True, |
||
1391 | ) |
||
1392 | |||
1393 | for i in [ |
||
1394 | "Generator", |
||
1395 | "weight", |
||
1396 | "lifetime", |
||
1397 | "p_set", |
||
1398 | "q_set", |
||
1399 | "p_nom_opt", |
||
1400 | "e_sum_min", |
||
1401 | "e_sum_max", |
||
1402 | ]: |
||
1403 | neighbor_gens = neighbor_gens.drop(i, axis=1) |
||
1404 | |||
1405 | neighbor_gens.to_sql( |
||
1406 | "egon_etrago_generator", |
||
1407 | engine, |
||
1408 | schema="grid", |
||
1409 | if_exists="append", |
||
1410 | index=True, |
||
1411 | index_label="generator_id", |
||
1412 | ) |
||
1413 | |||
1414 | # prepare neighboring loads for etrago tables |
||
1415 | neighbor_loads["scn_name"] = "eGon100RE" |
||
1416 | |||
1417 | # Unify carrier names |
||
1418 | neighbor_loads.carrier = neighbor_loads.carrier.str.replace(" ", "_") |
||
1419 | |||
1420 | neighbor_loads.carrier.replace( |
||
1421 | { |
||
1422 | "electricity": "AC", |
||
1423 | "DC": "AC", |
||
1424 | "industry_electricity": "AC", |
||
1425 | "H2_pipeline_retrofitted": "H2_system_boundary", |
||
1426 | "gas_pipeline": "CH4_system_boundary", |
||
1427 | "gas_for_industry": "CH4_for_industry", |
||
1428 | "urban_central_heat": "central_heat", |
||
1429 | }, |
||
1430 | inplace=True, |
||
1431 | ) |
||
1432 | |||
1433 | neighbor_loads = neighbor_loads.drop( |
||
1434 | columns=["Load"], |
||
1435 | errors="ignore", |
||
1436 | ) |
||
1437 | |||
1438 | neighbor_loads.to_sql( |
||
1439 | "egon_etrago_load", |
||
1440 | engine, |
||
1441 | schema="grid", |
||
1442 | if_exists="append", |
||
1443 | index=True, |
||
1444 | index_label="load_id", |
||
1445 | ) |
||
1446 | |||
1447 | # prepare neighboring stores for etrago tables |
||
1448 | neighbor_stores["scn_name"] = "eGon100RE" |
||
1449 | |||
1450 | # Unify carrier names |
||
1451 | neighbor_stores.carrier = neighbor_stores.carrier.str.replace(" ", "_") |
||
1452 | |||
1453 | neighbor_stores.carrier.replace( |
||
1454 | { |
||
1455 | "Li_ion": "battery", |
||
1456 | "gas": "CH4", |
||
1457 | "urban_central_water_tanks": "central_heat_store", |
||
1458 | "rural_water_tanks": "rural_heat_store", |
||
1459 | "EV_battery": "battery_storage", |
||
1460 | }, |
||
1461 | inplace=True, |
||
1462 | ) |
||
1463 | neighbor_stores.loc[ |
||
1464 | ( |
||
1465 | (neighbor_stores.e_nom_max <= 1e9) |
||
1466 | & (neighbor_stores.carrier == "H2_Store") |
||
1467 | ), |
||
1468 | "carrier", |
||
1469 | ] = "H2_underground" |
||
1470 | neighbor_stores.loc[ |
||
1471 | ( |
||
1472 | (neighbor_stores.e_nom_max > 1e9) |
||
1473 | & (neighbor_stores.carrier == "H2_Store") |
||
1474 | ), |
||
1475 | "carrier", |
||
1476 | ] = "H2_overground" |
||
1477 | |||
1478 | for i in [ |
||
1479 | "Store", |
||
1480 | "p_set", |
||
1481 | "q_set", |
||
1482 | "e_nom_opt", |
||
1483 | "lifetime", |
||
1484 | "e_initial_per_period", |
||
1485 | "e_cyclic_per_period", |
||
1486 | "location", |
||
1487 | ]: |
||
1488 | neighbor_stores = neighbor_stores.drop(i, axis=1, errors="ignore") |
||
1489 | |||
1490 | for c in ["H2_underground", "H2_overground"]: |
||
1491 | neighbor_stores.loc[ |
||
1492 | (neighbor_stores.carrier == c), |
||
1493 | "lifetime", |
||
1494 | ] = get_sector_parameters("gas", "eGon100RE")["lifetime"][c] |
||
1495 | |||
1496 | neighbor_stores.to_sql( |
||
1497 | "egon_etrago_store", |
||
1498 | engine, |
||
1499 | schema="grid", |
||
1500 | if_exists="append", |
||
1501 | index=True, |
||
1502 | index_label="store_id", |
||
1503 | ) |
||
1504 | |||
1505 | # prepare neighboring storage_units for etrago tables |
||
1506 | neighbor_storage["scn_name"] = "eGon100RE" |
||
1507 | |||
1508 | # Unify carrier names |
||
1509 | neighbor_storage.carrier = neighbor_storage.carrier.str.replace(" ", "_") |
||
1510 | |||
1511 | neighbor_storage.carrier.replace( |
||
1512 | {"PHS": "pumped_hydro", "hydro": "reservoir"}, inplace=True |
||
1513 | ) |
||
1514 | |||
1515 | for i in [ |
||
1516 | "StorageUnit", |
||
1517 | "p_nom_opt", |
||
1518 | "state_of_charge_initial_per_period", |
||
1519 | "cyclic_state_of_charge_per_period", |
||
1520 | ]: |
||
1521 | neighbor_storage = neighbor_storage.drop(i, axis=1, errors="ignore") |
||
1522 | |||
1523 | neighbor_storage.to_sql( |
||
1524 | "egon_etrago_storage", |
||
1525 | engine, |
||
1526 | schema="grid", |
||
1527 | if_exists="append", |
||
1528 | index=True, |
||
1529 | index_label="storage_id", |
||
1530 | ) |
||
1531 | |||
1532 | # writing neighboring loads_t p_sets to etrago tables |
||
1533 | |||
1534 | neighbor_loads_t_etrago = pd.DataFrame( |
||
1535 | columns=["scn_name", "temp_id", "p_set"], |
||
1536 | index=neighbor_loads_t.columns, |
||
1537 | ) |
||
1538 | neighbor_loads_t_etrago["scn_name"] = "eGon100RE" |
||
1539 | neighbor_loads_t_etrago["temp_id"] = 1 |
||
1540 | for i in neighbor_loads_t.columns: |
||
1541 | neighbor_loads_t_etrago["p_set"][i] = neighbor_loads_t[ |
||
1542 | i |
||
1543 | ].values.tolist() |
||
1544 | |||
1545 | neighbor_loads_t_etrago.to_sql( |
||
1546 | "egon_etrago_load_timeseries", |
||
1547 | engine, |
||
1548 | schema="grid", |
||
1549 | if_exists="append", |
||
1550 | index=True, |
||
1551 | index_label="load_id", |
||
1552 | ) |
||
1553 | |||
1554 | # writing neighboring link_t efficiency and p_max_pu to etrago tables |
||
1555 | neighbor_link_t_etrago = pd.DataFrame( |
||
1556 | columns=["scn_name", "temp_id", "p_max_pu", "efficiency"], |
||
1557 | index=neighbor_eff_t.columns.to_list() + ev_p_max_pu.columns.to_list(), |
||
1558 | ) |
||
1559 | neighbor_link_t_etrago["scn_name"] = "eGon100RE" |
||
1560 | neighbor_link_t_etrago["temp_id"] = 1 |
||
1561 | for i in neighbor_eff_t.columns: |
||
1562 | neighbor_link_t_etrago["efficiency"][i] = neighbor_eff_t[ |
||
1563 | i |
||
1564 | ].values.tolist() |
||
1565 | for i in ev_p_max_pu.columns: |
||
1566 | neighbor_link_t_etrago["p_max_pu"][i] = ev_p_max_pu[i].values.tolist() |
||
1567 | |||
1568 | neighbor_link_t_etrago.to_sql( |
||
1569 | "egon_etrago_link_timeseries", |
||
1570 | engine, |
||
1571 | schema="grid", |
||
1572 | if_exists="append", |
||
1573 | index=True, |
||
1574 | index_label="link_id", |
||
1575 | ) |
||
1576 | |||
1577 | # writing neighboring generator_t p_max_pu to etrago tables |
||
1578 | neighbor_gens_t_etrago = pd.DataFrame( |
||
1579 | columns=["scn_name", "temp_id", "p_max_pu"], |
||
1580 | index=neighbor_gens_t.columns, |
||
1581 | ) |
||
1582 | neighbor_gens_t_etrago["scn_name"] = "eGon100RE" |
||
1583 | neighbor_gens_t_etrago["temp_id"] = 1 |
||
1584 | for i in neighbor_gens_t.columns: |
||
1585 | neighbor_gens_t_etrago["p_max_pu"][i] = neighbor_gens_t[ |
||
1586 | i |
||
1587 | ].values.tolist() |
||
1588 | |||
1589 | neighbor_gens_t_etrago.to_sql( |
||
1590 | "egon_etrago_generator_timeseries", |
||
1591 | engine, |
||
1592 | schema="grid", |
||
1593 | if_exists="append", |
||
1594 | index=True, |
||
1595 | index_label="generator_id", |
||
1596 | ) |
||
1597 | |||
1598 | # writing neighboring stores_t e_min_pu to etrago tables |
||
1599 | neighbor_stores_t_etrago = pd.DataFrame( |
||
1600 | columns=["scn_name", "temp_id", "e_min_pu"], |
||
1601 | index=neighbor_stores_t.columns, |
||
1602 | ) |
||
1603 | neighbor_stores_t_etrago["scn_name"] = "eGon100RE" |
||
1604 | neighbor_stores_t_etrago["temp_id"] = 1 |
||
1605 | for i in neighbor_stores_t.columns: |
||
1606 | neighbor_stores_t_etrago["e_min_pu"][i] = neighbor_stores_t[ |
||
1607 | i |
||
1608 | ].values.tolist() |
||
1609 | |||
1610 | neighbor_stores_t_etrago.to_sql( |
||
1611 | "egon_etrago_store_timeseries", |
||
1612 | engine, |
||
1613 | schema="grid", |
||
1614 | if_exists="append", |
||
1615 | index=True, |
||
1616 | index_label="store_id", |
||
1617 | ) |
||
1618 | |||
1619 | # writing neighboring storage_units inflow to etrago tables |
||
1620 | neighbor_storage_t_etrago = pd.DataFrame( |
||
1621 | columns=["scn_name", "temp_id", "inflow"], |
||
1622 | index=neighbor_storage_t.columns, |
||
1623 | ) |
||
1624 | neighbor_storage_t_etrago["scn_name"] = "eGon100RE" |
||
1625 | neighbor_storage_t_etrago["temp_id"] = 1 |
||
1626 | for i in neighbor_storage_t.columns: |
||
1627 | neighbor_storage_t_etrago["inflow"][i] = neighbor_storage_t[ |
||
1628 | i |
||
1629 | ].values.tolist() |
||
1630 | |||
1631 | neighbor_storage_t_etrago.to_sql( |
||
1632 | "egon_etrago_storage_timeseries", |
||
1633 | engine, |
||
1634 | schema="grid", |
||
1635 | if_exists="append", |
||
1636 | index=True, |
||
1637 | index_label="storage_id", |
||
1638 | ) |
||
1639 | |||
1640 | # writing neighboring lines_t s_max_pu to etrago tables |
||
1641 | if not network_solved.lines_t["s_max_pu"].empty: |
||
1642 | neighbor_lines_t_etrago = pd.DataFrame( |
||
1643 | columns=["scn_name", "s_max_pu"], index=neighbor_lines_t.columns |
||
1644 | ) |
||
1645 | neighbor_lines_t_etrago["scn_name"] = "eGon100RE" |
||
1646 | |||
1647 | for i in neighbor_lines_t.columns: |
||
1648 | neighbor_lines_t_etrago["s_max_pu"][i] = neighbor_lines_t[ |
||
1649 | i |
||
1650 | ].values.tolist() |
||
1651 | |||
1652 | neighbor_lines_t_etrago.to_sql( |
||
1653 | "egon_etrago_line_timeseries", |
||
1654 | engine, |
||
1655 | schema="grid", |
||
1656 | if_exists="append", |
||
1657 | index=True, |
||
1658 | index_label="line_id", |
||
1659 | ) |
||
2308 |