| Total Complexity | 59 |
| Total Lines | 1267 |
| Duplicated Lines | 1.89 % |
| Changes | 0 | ||
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like data.datasets.heat_supply.individual_heating often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | """The central module containing all code dealing with |
||
| 2 | individual heat supply. |
||
| 3 | |||
| 4 | """ |
||
| 5 | from loguru import logger |
||
| 6 | import numpy as np |
||
| 7 | import pandas as pd |
||
| 8 | import random |
||
| 9 | import saio |
||
| 10 | |||
| 11 | from pathlib import Path |
||
| 12 | import time |
||
| 13 | |||
| 14 | from psycopg2.extensions import AsIs, register_adapter |
||
| 15 | from sqlalchemy import ARRAY, REAL, Column, Integer, String |
||
| 16 | from sqlalchemy.ext.declarative import declarative_base |
||
| 17 | import geopandas as gpd |
||
| 18 | |||
| 19 | |||
| 20 | from egon.data import config, db |
||
| 21 | from egon.data.datasets import Dataset |
||
| 22 | from egon.data.datasets.electricity_demand_timeseries.cts_buildings import ( |
||
| 23 | calc_cts_building_profiles, |
||
| 24 | ) |
||
| 25 | from egon.data.datasets.electricity_demand_timeseries.tools import ( |
||
| 26 | write_table_to_postgres, |
||
| 27 | ) |
||
| 28 | from egon.data.datasets.heat_demand import EgonPetaHeat |
||
| 29 | from egon.data.datasets.heat_demand_timeseries.daily import ( |
||
| 30 | EgonDailyHeatDemandPerClimateZone, |
||
| 31 | EgonMapZensusClimateZones, |
||
| 32 | ) |
||
| 33 | from egon.data.datasets.heat_demand_timeseries.idp_pool import ( |
||
| 34 | EgonHeatTimeseries, |
||
| 35 | ) |
||
| 36 | # get zensus cells with district heating |
||
| 37 | from egon.data.datasets.zensus_mv_grid_districts import MapZensusGridDistricts |
||
| 38 | |||
| 39 | engine = db.engine() |
||
| 40 | Base = declarative_base() |
||
| 41 | |||
| 42 | |||
| 43 | class EgonEtragoTimeseriesIndividualHeating(Base): |
||
| 44 | __tablename__ = "egon_etrago_timeseries_individual_heating" |
||
| 45 | __table_args__ = {"schema": "demand"} |
||
| 46 | bus_id = Column(Integer, primary_key=True) |
||
| 47 | scenario = Column(String, primary_key=True) |
||
| 48 | carrier = Column(String, primary_key=True) |
||
| 49 | dist_aggregated_mw = Column(ARRAY(REAL)) |
||
| 50 | |||
| 51 | |||
| 52 | # ToDo @Julian muss angepasst werden? |
||
| 53 | class HeatPumpsEtrago(Dataset): |
||
| 54 | def __init__(self, dependencies): |
||
| 55 | super().__init__( |
||
| 56 | name="HeatPumpsEtrago", |
||
| 57 | version="0.0.0", |
||
| 58 | dependencies=dependencies, |
||
| 59 | tasks=(determine_hp_cap_pypsa_eur_sec,), |
||
| 60 | ) |
||
| 61 | |||
| 62 | |||
| 63 | # ToDo @Julian muss angepasst werden? |
||
| 64 | class HeatPumps2035(Dataset): |
||
| 65 | def __init__(self, dependencies): |
||
| 66 | super().__init__( |
||
| 67 | name="HeatPumps2035", |
||
| 68 | version="0.0.0", |
||
| 69 | dependencies=dependencies, |
||
| 70 | tasks=(determine_hp_cap_eGon2035,), |
||
| 71 | ) |
||
| 72 | |||
| 73 | |||
| 74 | # ToDo @Julian muss angepasst werden? |
||
| 75 | class HeatPumps2050(Dataset): |
||
| 76 | def __init__(self, dependencies): |
||
| 77 | super().__init__( |
||
| 78 | name="HeatPumps2050", |
||
| 79 | version="0.0.0", |
||
| 80 | dependencies=dependencies, |
||
| 81 | tasks=(determine_hp_cap_eGon100RE), |
||
| 82 | ) |
||
| 83 | |||
| 84 | |||
| 85 | class BuildingHeatPeakLoads(Base): |
||
| 86 | __tablename__ = "egon_building_heat_peak_loads" |
||
| 87 | __table_args__ = {"schema": "demand"} |
||
| 88 | |||
| 89 | building_id = Column(Integer, primary_key=True) |
||
| 90 | scenario = Column(String, primary_key=True) |
||
| 91 | sector = Column(String, primary_key=True) |
||
| 92 | peak_load_in_w = Column(REAL) |
||
| 93 | |||
| 94 | |||
| 95 | def adapt_numpy_float64(numpy_float64): |
||
| 96 | return AsIs(numpy_float64) |
||
| 97 | |||
| 98 | |||
| 99 | def adapt_numpy_int64(numpy_int64): |
||
| 100 | return AsIs(numpy_int64) |
||
| 101 | |||
| 102 | |||
| 103 | def log_to_file(name): |
||
| 104 | """Simple only file logger""" |
||
| 105 | logger.remove() |
||
| 106 | logger.add( |
||
| 107 | Path(f"{name}.log"), |
||
| 108 | format="{time} {level} {message}", |
||
| 109 | # filter="my_module", |
||
| 110 | level="TRACE", |
||
| 111 | ) |
||
| 112 | logger.trace("Start trace logging") |
||
| 113 | return logger |
||
| 114 | |||
| 115 | |||
| 116 | def timeit(func): |
||
| 117 | """ |
||
| 118 | Decorator for measuring function's running time. |
||
| 119 | """ |
||
| 120 | |||
| 121 | def measure_time(*args, **kw): |
||
| 122 | start_time = time.time() |
||
| 123 | result = func(*args, **kw) |
||
| 124 | print( |
||
| 125 | "Processing time of %s(): %.2f seconds." |
||
| 126 | % (func.__qualname__, time.time() - start_time) |
||
| 127 | ) |
||
| 128 | return result |
||
| 129 | |||
| 130 | return measure_time |
||
| 131 | |||
| 132 | |||
| 133 | def timeitlog(func): |
||
| 134 | """ |
||
| 135 | Decorator for measuring running time of residential heat peak load and |
||
| 136 | logging it. |
||
| 137 | """ |
||
| 138 | |||
| 139 | def measure_time(*args, **kw): |
||
| 140 | start_time = time.time() |
||
| 141 | result = func(*args, **kw) |
||
| 142 | process_time = time.time() - start_time |
||
| 143 | try: |
||
| 144 | mvgd = kw["mvgd"] |
||
| 145 | except KeyError: |
||
| 146 | mvgd = "bulk" |
||
| 147 | statement = ( |
||
| 148 | f"MVGD={mvgd} | Processing time of {func.__qualname__} | " |
||
| 149 | f"{time.strftime('%H h, %M min, %S s', time.gmtime(process_time))}" |
||
| 150 | ) |
||
| 151 | logger.trace(statement) |
||
| 152 | print(statement) |
||
| 153 | return result |
||
| 154 | |||
| 155 | return measure_time |
||
| 156 | |||
| 157 | |||
| 158 | def cascade_per_technology( |
||
| 159 | heat_per_mv, |
||
| 160 | technologies, |
||
| 161 | scenario, |
||
| 162 | distribution_level, |
||
| 163 | max_size_individual_chp=0.05, |
||
| 164 | ): |
||
| 165 | |||
| 166 | """Add plants for individual heat. |
||
| 167 | Currently only on mv grid district level. |
||
| 168 | |||
| 169 | Parameters |
||
| 170 | ---------- |
||
| 171 | mv_grid_districts : geopandas.geodataframe.GeoDataFrame |
||
| 172 | MV grid districts including the heat demand |
||
| 173 | technologies : pandas.DataFrame |
||
| 174 | List of supply technologies and their parameters |
||
| 175 | scenario : str |
||
| 176 | Name of the scenario |
||
| 177 | max_size_individual_chp : float |
||
| 178 | Maximum capacity of an individual chp in MW |
||
| 179 | Returns |
||
| 180 | ------- |
||
| 181 | mv_grid_districts : geopandas.geodataframe.GeoDataFrame |
||
| 182 | MV grid district which need additional individual heat supply |
||
| 183 | technologies : pandas.DataFrame |
||
| 184 | List of supply technologies and their parameters |
||
| 185 | append_df : pandas.DataFrame |
||
| 186 | List of plants per mv grid for the selected technology |
||
| 187 | |||
| 188 | """ |
||
| 189 | sources = config.datasets()["heat_supply"]["sources"] |
||
| 190 | |||
| 191 | tech = technologies[technologies.priority == technologies.priority.max()] |
||
| 192 | |||
| 193 | # Distribute heat pumps linear to remaining demand. |
||
| 194 | if tech.index == "heat_pump": |
||
| 195 | |||
| 196 | if distribution_level == "federal_state": |
||
| 197 | # Select target values per federal state |
||
| 198 | target = db.select_dataframe( |
||
| 199 | f""" |
||
| 200 | SELECT DISTINCT ON (gen) gen as state, capacity |
||
| 201 | FROM {sources['scenario_capacities']['schema']}. |
||
| 202 | {sources['scenario_capacities']['table']} a |
||
| 203 | JOIN {sources['federal_states']['schema']}. |
||
| 204 | {sources['federal_states']['table']} b |
||
| 205 | ON a.nuts = b.nuts |
||
| 206 | WHERE scenario_name = '{scenario}' |
||
| 207 | AND carrier = 'residential_rural_heat_pump' |
||
| 208 | """, |
||
| 209 | index_col="state", |
||
| 210 | ) |
||
| 211 | |||
| 212 | heat_per_mv["share"] = heat_per_mv.groupby( |
||
| 213 | "state" |
||
| 214 | ).remaining_demand.apply(lambda grp: grp / grp.sum()) |
||
| 215 | |||
| 216 | append_df = ( |
||
| 217 | heat_per_mv["share"] |
||
| 218 | .mul(target.capacity[heat_per_mv["state"]].values) |
||
| 219 | .reset_index() |
||
| 220 | ) |
||
| 221 | else: |
||
| 222 | # Select target value for Germany |
||
| 223 | target = db.select_dataframe( |
||
| 224 | f""" |
||
| 225 | SELECT SUM(capacity) AS capacity |
||
| 226 | FROM {sources['scenario_capacities']['schema']}. |
||
| 227 | {sources['scenario_capacities']['table']} a |
||
| 228 | WHERE scenario_name = '{scenario}' |
||
| 229 | AND carrier = 'residential_rural_heat_pump' |
||
| 230 | """ |
||
| 231 | ) |
||
| 232 | |||
| 233 | heat_per_mv["share"] = ( |
||
| 234 | heat_per_mv.remaining_demand |
||
| 235 | / heat_per_mv.remaining_demand.sum() |
||
| 236 | ) |
||
| 237 | |||
| 238 | append_df = ( |
||
| 239 | heat_per_mv["share"].mul(target.capacity[0]).reset_index() |
||
| 240 | ) |
||
| 241 | |||
| 242 | append_df.rename( |
||
| 243 | {"bus_id": "mv_grid_id", "share": "capacity"}, axis=1, inplace=True |
||
| 244 | ) |
||
| 245 | |||
| 246 | elif tech.index == "gas_boiler": |
||
| 247 | |||
| 248 | append_df = pd.DataFrame( |
||
| 249 | data={ |
||
| 250 | "capacity": heat_per_mv.remaining_demand.div( |
||
| 251 | tech.estimated_flh.values[0] |
||
| 252 | ), |
||
| 253 | "carrier": "residential_rural_gas_boiler", |
||
| 254 | "mv_grid_id": heat_per_mv.index, |
||
| 255 | "scenario": scenario, |
||
| 256 | } |
||
| 257 | ) |
||
| 258 | |||
| 259 | if append_df.size > 0: |
||
|
|
|||
| 260 | append_df["carrier"] = tech.index[0] |
||
| 261 | heat_per_mv.loc[ |
||
| 262 | append_df.mv_grid_id, "remaining_demand" |
||
| 263 | ] -= append_df.set_index("mv_grid_id").capacity.mul( |
||
| 264 | tech.estimated_flh.values[0] |
||
| 265 | ) |
||
| 266 | |||
| 267 | heat_per_mv = heat_per_mv[heat_per_mv.remaining_demand >= 0] |
||
| 268 | |||
| 269 | technologies = technologies.drop(tech.index) |
||
| 270 | |||
| 271 | return heat_per_mv, technologies, append_df |
||
| 272 | |||
| 273 | |||
| 274 | def cascade_heat_supply_indiv(scenario, distribution_level, plotting=True): |
||
| 275 | """Assigns supply strategy for individual heating in four steps. |
||
| 276 | |||
| 277 | 1.) all small scale CHP are connected. |
||
| 278 | 2.) If the supply can not meet the heat demand, solar thermal collectors |
||
| 279 | are attached. This is not implemented yet, since individual |
||
| 280 | solar thermal plants are not considered in eGon2035 scenario. |
||
| 281 | 3.) If this is not suitable, the mv grid is also supplied by heat pumps. |
||
| 282 | 4.) The last option are individual gas boilers. |
||
| 283 | |||
| 284 | Parameters |
||
| 285 | ---------- |
||
| 286 | scenario : str |
||
| 287 | Name of scenario |
||
| 288 | plotting : bool, optional |
||
| 289 | Choose if individual heating supply is plotted. The default is True. |
||
| 290 | |||
| 291 | Returns |
||
| 292 | ------- |
||
| 293 | resulting_capacities : pandas.DataFrame |
||
| 294 | List of plants per mv grid |
||
| 295 | |||
| 296 | """ |
||
| 297 | |||
| 298 | sources = config.datasets()["heat_supply"]["sources"] |
||
| 299 | |||
| 300 | # Select residential heat demand per mv grid district and federal state |
||
| 301 | heat_per_mv = db.select_geodataframe( |
||
| 302 | f""" |
||
| 303 | SELECT d.bus_id as bus_id, SUM(demand) as demand, |
||
| 304 | c.vg250_lan as state, d.geom |
||
| 305 | FROM {sources['heat_demand']['schema']}. |
||
| 306 | {sources['heat_demand']['table']} a |
||
| 307 | JOIN {sources['map_zensus_grid']['schema']}. |
||
| 308 | {sources['map_zensus_grid']['table']} b |
||
| 309 | ON a.zensus_population_id = b.zensus_population_id |
||
| 310 | JOIN {sources['map_vg250_grid']['schema']}. |
||
| 311 | {sources['map_vg250_grid']['table']} c |
||
| 312 | ON b.bus_id = c.bus_id |
||
| 313 | JOIN {sources['mv_grids']['schema']}. |
||
| 314 | {sources['mv_grids']['table']} d |
||
| 315 | ON d.bus_id = c.bus_id |
||
| 316 | WHERE scenario = '{scenario}' |
||
| 317 | AND a.zensus_population_id NOT IN ( |
||
| 318 | SELECT zensus_population_id |
||
| 319 | FROM {sources['map_dh']['schema']}.{sources['map_dh']['table']} |
||
| 320 | WHERE scenario = '{scenario}') |
||
| 321 | GROUP BY d.bus_id, vg250_lan, geom |
||
| 322 | """, |
||
| 323 | index_col="bus_id", |
||
| 324 | ) |
||
| 325 | |||
| 326 | # Store geometry of mv grid |
||
| 327 | geom_mv = heat_per_mv.geom.centroid.copy() |
||
| 328 | |||
| 329 | # Initalize Dataframe for results |
||
| 330 | resulting_capacities = pd.DataFrame( |
||
| 331 | columns=["mv_grid_id", "carrier", "capacity"] |
||
| 332 | ) |
||
| 333 | |||
| 334 | # Set technology data according to |
||
| 335 | # http://www.wbzu.de/seminare/infopool/infopool-bhkw |
||
| 336 | # TODO: Add gas boilers and solar themal (eGon100RE) |
||
| 337 | technologies = pd.DataFrame( |
||
| 338 | index=["heat_pump", "gas_boiler"], |
||
| 339 | columns=["estimated_flh", "priority"], |
||
| 340 | data={"estimated_flh": [4000, 8000], "priority": [2, 1]}, |
||
| 341 | ) |
||
| 342 | |||
| 343 | # In the beginning, the remaining demand equals demand |
||
| 344 | heat_per_mv["remaining_demand"] = heat_per_mv["demand"] |
||
| 345 | |||
| 346 | # Connect new technologies, if there is still heat demand left |
||
| 347 | while (len(technologies) > 0) and (len(heat_per_mv) > 0): |
||
| 348 | # Attach new supply technology |
||
| 349 | heat_per_mv, technologies, append_df = cascade_per_technology( |
||
| 350 | heat_per_mv, technologies, scenario, distribution_level |
||
| 351 | ) |
||
| 352 | # Collect resulting capacities |
||
| 353 | resulting_capacities = resulting_capacities.append( |
||
| 354 | append_df, ignore_index=True |
||
| 355 | ) |
||
| 356 | |||
| 357 | if plotting: |
||
| 358 | plot_heat_supply(resulting_capacities) |
||
| 359 | |||
| 360 | return gpd.GeoDataFrame( |
||
| 361 | resulting_capacities, |
||
| 362 | geometry=geom_mv[resulting_capacities.mv_grid_id].values, |
||
| 363 | ) |
||
| 364 | |||
| 365 | |||
| 366 | # @timeit |
||
| 367 | def get_peta_demand(mvgd): |
||
| 368 | """only residential""" |
||
| 369 | |||
| 370 | with db.session_scope() as session: |
||
| 371 | query = ( |
||
| 372 | session.query( |
||
| 373 | MapZensusGridDistricts.zensus_population_id, |
||
| 374 | EgonPetaHeat.demand.label("peta_2035"), |
||
| 375 | ) |
||
| 376 | .filter(MapZensusGridDistricts.bus_id == mvgd) |
||
| 377 | .filter( |
||
| 378 | MapZensusGridDistricts.zensus_population_id |
||
| 379 | == EgonPetaHeat.zensus_population_id |
||
| 380 | ) |
||
| 381 | .filter(EgonPetaHeat.scenario == "eGon2035") |
||
| 382 | .filter(EgonPetaHeat.sector == "residential") |
||
| 383 | ) |
||
| 384 | |||
| 385 | df_peta_2035 = pd.read_sql( |
||
| 386 | query.statement, query.session.bind, index_col="zensus_population_id" |
||
| 387 | ) |
||
| 388 | |||
| 389 | with db.session_scope() as session: |
||
| 390 | query = ( |
||
| 391 | session.query( |
||
| 392 | MapZensusGridDistricts.zensus_population_id, |
||
| 393 | EgonPetaHeat.demand.label("peta_2050"), |
||
| 394 | ) |
||
| 395 | .filter(MapZensusGridDistricts.bus_id == mvgd) |
||
| 396 | .filter( |
||
| 397 | MapZensusGridDistricts.zensus_population_id |
||
| 398 | == EgonPetaHeat.zensus_population_id |
||
| 399 | ) |
||
| 400 | .filter(EgonPetaHeat.scenario == "eGon100RE") |
||
| 401 | .filter(EgonPetaHeat.sector == "residential") |
||
| 402 | ) |
||
| 403 | |||
| 404 | df_peta_100RE = pd.read_sql( |
||
| 405 | query.statement, query.session.bind, index_col="zensus_population_id" |
||
| 406 | ) |
||
| 407 | |||
| 408 | df_peta_demand = pd.concat( |
||
| 409 | [df_peta_2035, df_peta_100RE], axis=1 |
||
| 410 | ).reset_index() |
||
| 411 | |||
| 412 | return df_peta_demand |
||
| 413 | |||
| 414 | |||
| 415 | # @timeit |
||
| 416 | def get_profile_ids(mvgd): |
||
| 417 | with db.session_scope() as session: |
||
| 418 | query = ( |
||
| 419 | session.query( |
||
| 420 | MapZensusGridDistricts.zensus_population_id, |
||
| 421 | EgonHeatTimeseries.building_id, |
||
| 422 | EgonHeatTimeseries.selected_idp_profiles, |
||
| 423 | ) |
||
| 424 | .filter(MapZensusGridDistricts.bus_id == mvgd) |
||
| 425 | .filter( |
||
| 426 | MapZensusGridDistricts.zensus_population_id |
||
| 427 | == EgonHeatTimeseries.zensus_population_id |
||
| 428 | ) |
||
| 429 | ) |
||
| 430 | |||
| 431 | df_profiles_ids = pd.read_sql( |
||
| 432 | query.statement, query.session.bind, index_col=None |
||
| 433 | ) |
||
| 434 | # Add building count per cell |
||
| 435 | df_profiles_ids = pd.merge( |
||
| 436 | left=df_profiles_ids, |
||
| 437 | right=df_profiles_ids.groupby("zensus_population_id")["building_id"] |
||
| 438 | .count() |
||
| 439 | .rename("buildings"), |
||
| 440 | left_on="zensus_population_id", |
||
| 441 | right_index=True, |
||
| 442 | ) |
||
| 443 | |||
| 444 | df_profiles_ids = df_profiles_ids.explode("selected_idp_profiles") |
||
| 445 | df_profiles_ids["day_of_year"] = ( |
||
| 446 | df_profiles_ids.groupby("building_id").cumcount() + 1 |
||
| 447 | ) |
||
| 448 | return df_profiles_ids |
||
| 449 | |||
| 450 | |||
| 451 | # @timeit |
||
| 452 | def get_daily_profiles(profile_ids): |
||
| 453 | saio.register_schema("demand", db.engine()) |
||
| 454 | from saio.demand import egon_heat_idp_pool |
||
| 455 | |||
| 456 | with db.session_scope() as session: |
||
| 457 | query = session.query(egon_heat_idp_pool).filter( |
||
| 458 | egon_heat_idp_pool.index.in_(profile_ids) |
||
| 459 | ) |
||
| 460 | |||
| 461 | df_profiles = pd.read_sql( |
||
| 462 | query.statement, query.session.bind, index_col="index" |
||
| 463 | ) |
||
| 464 | |||
| 465 | df_profiles = df_profiles.explode("idp") |
||
| 466 | df_profiles["hour"] = df_profiles.groupby(axis=0, level=0).cumcount() + 1 |
||
| 467 | |||
| 468 | return df_profiles |
||
| 469 | |||
| 470 | |||
| 471 | # @timeit |
||
| 472 | def get_daily_demand_share(mvgd): |
||
| 473 | |||
| 474 | with db.session_scope() as session: |
||
| 475 | query = ( |
||
| 476 | session.query( |
||
| 477 | MapZensusGridDistricts.zensus_population_id, |
||
| 478 | EgonDailyHeatDemandPerClimateZone.day_of_year, |
||
| 479 | EgonDailyHeatDemandPerClimateZone.daily_demand_share, |
||
| 480 | ) |
||
| 481 | .filter( |
||
| 482 | EgonMapZensusClimateZones.climate_zone |
||
| 483 | == EgonDailyHeatDemandPerClimateZone.climate_zone |
||
| 484 | ) |
||
| 485 | .filter( |
||
| 486 | MapZensusGridDistricts.zensus_population_id |
||
| 487 | == EgonMapZensusClimateZones.zensus_population_id |
||
| 488 | ) |
||
| 489 | .filter(MapZensusGridDistricts.bus_id == mvgd) |
||
| 490 | ) |
||
| 491 | |||
| 492 | df_daily_demand_share = pd.read_sql( |
||
| 493 | query.statement, query.session.bind, index_col=None |
||
| 494 | ) |
||
| 495 | return df_daily_demand_share |
||
| 496 | |||
| 497 | |||
| 498 | @timeitlog |
||
| 499 | def calc_residential_heat_profiles_per_mvgd(mvgd): |
||
| 500 | """ |
||
| 501 | Gets residential heat profiles per building in MV grid for both eGon2035 and |
||
| 502 | eGon100RE scenario. |
||
| 503 | |||
| 504 | Parameters |
||
| 505 | ---------- |
||
| 506 | mvgd : int |
||
| 507 | MV grid ID. |
||
| 508 | |||
| 509 | Returns |
||
| 510 | -------- |
||
| 511 | pd.DataFrame |
||
| 512 | Heat demand profiles of buildings. Columns are: |
||
| 513 | * zensus_population_id : int |
||
| 514 | Zensus cell ID building is in. |
||
| 515 | * building_id : int |
||
| 516 | ID of building. |
||
| 517 | * day_of_year : int |
||
| 518 | Day of the year (1 - 365). |
||
| 519 | * hour : int |
||
| 520 | Hour of the day (1 - 24). |
||
| 521 | * eGon2035 : float |
||
| 522 | Building's residential heat demand in MW, for specified hour of the |
||
| 523 | year (specified through columns `day_of_year` and `hour`). |
||
| 524 | * eGon100RE : float |
||
| 525 | Building's residential heat demand in MW, for specified hour of the |
||
| 526 | year (specified through columns `day_of_year` and `hour`). |
||
| 527 | |||
| 528 | """ |
||
| 529 | df_peta_demand = get_peta_demand(mvgd) |
||
| 530 | |||
| 531 | if df_peta_demand.empty: |
||
| 532 | return None |
||
| 533 | |||
| 534 | df_profiles_ids = get_profile_ids(mvgd) |
||
| 535 | |||
| 536 | if df_profiles_ids.empty: |
||
| 537 | return None |
||
| 538 | |||
| 539 | df_profiles = get_daily_profiles( |
||
| 540 | df_profiles_ids["selected_idp_profiles"].unique() |
||
| 541 | ) |
||
| 542 | |||
| 543 | df_daily_demand_share = get_daily_demand_share(mvgd) |
||
| 544 | |||
| 545 | # Merge profile ids to peta demand by zensus_population_id |
||
| 546 | df_profile_merge = pd.merge( |
||
| 547 | left=df_peta_demand, right=df_profiles_ids, on="zensus_population_id" |
||
| 548 | ) |
||
| 549 | |||
| 550 | # Merge daily demand to daily profile ids by zensus_population_id and day |
||
| 551 | df_profile_merge = pd.merge( |
||
| 552 | left=df_profile_merge, |
||
| 553 | right=df_daily_demand_share, |
||
| 554 | on=["zensus_population_id", "day_of_year"], |
||
| 555 | ) |
||
| 556 | |||
| 557 | # Merge daily profiles by profile id |
||
| 558 | df_profile_merge = pd.merge( |
||
| 559 | left=df_profile_merge, |
||
| 560 | right=df_profiles[["idp", "hour"]], |
||
| 561 | left_on="selected_idp_profiles", |
||
| 562 | right_index=True, |
||
| 563 | ) |
||
| 564 | |||
| 565 | # Scale profiles |
||
| 566 | df_profile_merge["eGon2035"] = ( |
||
| 567 | df_profile_merge["idp"] |
||
| 568 | .mul(df_profile_merge["daily_demand_share"]) |
||
| 569 | .mul(df_profile_merge["peta_2035"]) |
||
| 570 | .div(df_profile_merge["buildings"]) |
||
| 571 | ) |
||
| 572 | |||
| 573 | df_profile_merge["eGon100RE"] = ( |
||
| 574 | df_profile_merge["idp"] |
||
| 575 | .mul(df_profile_merge["daily_demand_share"]) |
||
| 576 | .mul(df_profile_merge["peta_2050"]) |
||
| 577 | .div(df_profile_merge["buildings"]) |
||
| 578 | ) |
||
| 579 | |||
| 580 | columns = ["zensus_population_id", "building_id", "day_of_year", "hour", |
||
| 581 | "eGon2035", "eGon100RE"] |
||
| 582 | |||
| 583 | return df_profile_merge.loc[:, columns] |
||
| 584 | |||
| 585 | |||
| 586 | View Code Duplication | def plot_heat_supply(resulting_capacities): |
|
| 587 | |||
| 588 | from matplotlib import pyplot as plt |
||
| 589 | |||
| 590 | mv_grids = db.select_geodataframe( |
||
| 591 | """ |
||
| 592 | SELECT * FROM grid.egon_mv_grid_district |
||
| 593 | """, |
||
| 594 | index_col="bus_id", |
||
| 595 | ) |
||
| 596 | |||
| 597 | for c in ["CHP", "heat_pump"]: |
||
| 598 | mv_grids[c] = ( |
||
| 599 | resulting_capacities[resulting_capacities.carrier == c] |
||
| 600 | .set_index("mv_grid_id") |
||
| 601 | .capacity |
||
| 602 | ) |
||
| 603 | |||
| 604 | fig, ax = plt.subplots(1, 1) |
||
| 605 | mv_grids.boundary.plot(linewidth=0.2, ax=ax, color="black") |
||
| 606 | mv_grids.plot( |
||
| 607 | ax=ax, |
||
| 608 | column=c, |
||
| 609 | cmap="magma_r", |
||
| 610 | legend=True, |
||
| 611 | legend_kwds={ |
||
| 612 | "label": f"Installed {c} in MW", |
||
| 613 | "orientation": "vertical", |
||
| 614 | }, |
||
| 615 | ) |
||
| 616 | plt.savefig(f"plots/individual_heat_supply_{c}.png", dpi=300) |
||
| 617 | |||
| 618 | |||
| 619 | @timeit |
||
| 620 | def get_buildings_with_decentral_heat_demand_in_mv_grid(scenario, mv_grid_id): |
||
| 621 | """ |
||
| 622 | Returns building IDs of buildings with decentral heat demand in given MV |
||
| 623 | grid. |
||
| 624 | |||
| 625 | As cells with district heating differ between scenarios, this is also |
||
| 626 | depending on the scenario. |
||
| 627 | |||
| 628 | Parameters |
||
| 629 | ----------- |
||
| 630 | scenario : str |
||
| 631 | Name of scenario. Can be either "eGon2035" or "eGon100RE". |
||
| 632 | mv_grid_id : int |
||
| 633 | ID of MV grid. |
||
| 634 | |||
| 635 | Returns |
||
| 636 | -------- |
||
| 637 | pd.Index(int) |
||
| 638 | Building IDs (as int) of buildings with decentral heating system in given |
||
| 639 | MV grid. Type is pandas Index to avoid errors later on when it is |
||
| 640 | used in a query. |
||
| 641 | |||
| 642 | """ |
||
| 643 | |||
| 644 | # get zensus cells in grid |
||
| 645 | zensus_population_ids = db.select_dataframe( |
||
| 646 | f""" |
||
| 647 | SELECT zensus_population_id |
||
| 648 | FROM boundaries.egon_map_zensus_grid_districts |
||
| 649 | WHERE bus_id = {mv_grid_id} |
||
| 650 | """, |
||
| 651 | index_col=None, |
||
| 652 | ).zensus_population_id.values |
||
| 653 | |||
| 654 | # TODO replace with sql adapter? |
||
| 655 | # ========== Register np datatypes with SQLA ========== |
||
| 656 | register_adapter(np.float64, adapt_numpy_float64) |
||
| 657 | register_adapter(np.int64, adapt_numpy_int64) |
||
| 658 | # ===================================================== |
||
| 659 | # convert to pd.Index (otherwise type is np.int64, which will for some |
||
| 660 | # reason throw an error when used in a query) |
||
| 661 | zensus_population_ids = pd.Index(zensus_population_ids) |
||
| 662 | |||
| 663 | # get zensus cells with district heating |
||
| 664 | from egon.data.datasets.district_heating_areas import ( |
||
| 665 | MapZensusDistrictHeatingAreas, |
||
| 666 | ) |
||
| 667 | |||
| 668 | with db.session_scope() as session: |
||
| 669 | query = session.query( |
||
| 670 | MapZensusDistrictHeatingAreas.zensus_population_id, |
||
| 671 | ).filter( |
||
| 672 | MapZensusDistrictHeatingAreas.scenario == scenario, |
||
| 673 | MapZensusDistrictHeatingAreas.zensus_population_id.in_( |
||
| 674 | zensus_population_ids |
||
| 675 | ), |
||
| 676 | ) |
||
| 677 | |||
| 678 | cells_with_dh = pd.read_sql( |
||
| 679 | query.statement, query.session.bind, index_col=None |
||
| 680 | ).zensus_population_id.values |
||
| 681 | |||
| 682 | # remove zensus cells with district heating |
||
| 683 | zensus_population_ids = zensus_population_ids.drop( |
||
| 684 | cells_with_dh, errors="ignore" |
||
| 685 | ) |
||
| 686 | |||
| 687 | # get buildings with decentral heat demand |
||
| 688 | engine = db.engine() |
||
| 689 | saio.register_schema("demand", engine) |
||
| 690 | from saio.demand import egon_heat_timeseries_selected_profiles |
||
| 691 | |||
| 692 | with db.session_scope() as session: |
||
| 693 | query = session.query( |
||
| 694 | egon_heat_timeseries_selected_profiles.building_id, |
||
| 695 | ).filter( |
||
| 696 | egon_heat_timeseries_selected_profiles.zensus_population_id.in_( |
||
| 697 | zensus_population_ids |
||
| 698 | ) |
||
| 699 | ) |
||
| 700 | |||
| 701 | buildings_with_heat_demand = pd.read_sql( |
||
| 702 | query.statement, query.session.bind, index_col=None |
||
| 703 | ).building_id.values |
||
| 704 | |||
| 705 | return buildings_with_heat_demand |
||
| 706 | |||
| 707 | |||
| 708 | def get_total_heat_pump_capacity_of_mv_grid(scenario, mv_grid_id): |
||
| 709 | """ |
||
| 710 | Returns total heat pump capacity per grid that was previously defined |
||
| 711 | (by NEP or pypsa-eur-sec). |
||
| 712 | |||
| 713 | Parameters |
||
| 714 | ----------- |
||
| 715 | scenario : str |
||
| 716 | Name of scenario. Can be either "eGon2035" or "eGon100RE". |
||
| 717 | mv_grid_id : int |
||
| 718 | ID of MV grid. |
||
| 719 | |||
| 720 | Returns |
||
| 721 | -------- |
||
| 722 | float |
||
| 723 | Total heat pump capacity in MW in given MV grid. |
||
| 724 | |||
| 725 | """ |
||
| 726 | from egon.data.datasets.heat_supply import EgonIndividualHeatingSupply |
||
| 727 | |||
| 728 | with db.session_scope() as session: |
||
| 729 | query = ( |
||
| 730 | session.query( |
||
| 731 | EgonIndividualHeatingSupply.mv_grid_id, |
||
| 732 | EgonIndividualHeatingSupply.capacity, |
||
| 733 | ) |
||
| 734 | .filter(EgonIndividualHeatingSupply.scenario == scenario) |
||
| 735 | .filter(EgonIndividualHeatingSupply.carrier == "heat_pump") |
||
| 736 | .filter(EgonIndividualHeatingSupply.mv_grid_id == mv_grid_id) |
||
| 737 | ) |
||
| 738 | |||
| 739 | hp_cap_mv_grid = pd.read_sql( |
||
| 740 | query.statement, query.session.bind, index_col="mv_grid_id" |
||
| 741 | ).capacity.values[0] |
||
| 742 | |||
| 743 | return hp_cap_mv_grid |
||
| 744 | |||
| 745 | |||
| 746 | def determine_minimum_hp_capacity_per_building( |
||
| 747 | peak_heat_demand, flexibility_factor=24 / 18, cop=1.7 |
||
| 748 | ): |
||
| 749 | """ |
||
| 750 | Determines minimum required heat pump capacity. |
||
| 751 | |||
| 752 | Parameters |
||
| 753 | ---------- |
||
| 754 | peak_heat_demand : pd.Series |
||
| 755 | Series with peak heat demand per building in MW. Index contains the |
||
| 756 | building ID. |
||
| 757 | flexibility_factor : float |
||
| 758 | Factor to overdimension the heat pump to allow for some flexible |
||
| 759 | dispatch in times of high heat demand. Per default, a factor of 24/18 |
||
| 760 | is used, to take into account |
||
| 761 | |||
| 762 | Returns |
||
| 763 | ------- |
||
| 764 | pd.Series |
||
| 765 | Pandas series with minimum required heat pump capacity per building in |
||
| 766 | MW. |
||
| 767 | |||
| 768 | """ |
||
| 769 | return peak_heat_demand * flexibility_factor / cop |
||
| 770 | |||
| 771 | |||
| 772 | def determine_buildings_with_hp_in_mv_grid( |
||
| 773 | hp_cap_mv_grid, min_hp_cap_per_building |
||
| 774 | ): |
||
| 775 | """ |
||
| 776 | Distributes given total heat pump capacity to buildings based on their peak |
||
| 777 | heat demand. |
||
| 778 | |||
| 779 | Parameters |
||
| 780 | ----------- |
||
| 781 | hp_cap_mv_grid : float |
||
| 782 | Total heat pump capacity in MW in given MV grid. |
||
| 783 | min_hp_cap_per_building : pd.Series |
||
| 784 | Pandas series with minimum required heat pump capacity per building |
||
| 785 | in MW. |
||
| 786 | |||
| 787 | Returns |
||
| 788 | ------- |
||
| 789 | pd.Index(int) |
||
| 790 | Building IDs (as int) of buildings to get heat demand time series for. |
||
| 791 | |||
| 792 | """ |
||
| 793 | building_ids = min_hp_cap_per_building.index |
||
| 794 | |||
| 795 | # get buildings with PV to give them a higher priority when selecting |
||
| 796 | # buildings a heat pump will be allocated to |
||
| 797 | engine = db.engine() |
||
| 798 | saio.register_schema("supply", engine) |
||
| 799 | # TODO Adhoc Pv rooftop fix |
||
| 800 | # from saio.supply import egon_power_plants_pv_roof_building |
||
| 801 | # |
||
| 802 | # with db.session_scope() as session: |
||
| 803 | # query = session.query( |
||
| 804 | # egon_power_plants_pv_roof_building.building_id |
||
| 805 | # ).filter( |
||
| 806 | # egon_power_plants_pv_roof_building.building_id.in_(building_ids) |
||
| 807 | # ) |
||
| 808 | # |
||
| 809 | # buildings_with_pv = pd.read_sql( |
||
| 810 | # query.statement, query.session.bind, index_col=None |
||
| 811 | # ).building_id.values |
||
| 812 | buildings_with_pv = [] |
||
| 813 | # set different weights for buildings with PV and without PV |
||
| 814 | weight_with_pv = 1.5 |
||
| 815 | weight_without_pv = 1.0 |
||
| 816 | weights = pd.concat( |
||
| 817 | [ |
||
| 818 | pd.DataFrame( |
||
| 819 | {"weight": weight_without_pv}, |
||
| 820 | index=building_ids.drop(buildings_with_pv, errors="ignore"), |
||
| 821 | ), |
||
| 822 | pd.DataFrame({"weight": weight_with_pv}, index=buildings_with_pv), |
||
| 823 | ] |
||
| 824 | ) |
||
| 825 | # normalise weights (probability needs to add up to 1) |
||
| 826 | weights.weight = weights.weight / weights.weight.sum() |
||
| 827 | |||
| 828 | # get random order at which buildings are chosen |
||
| 829 | np.random.seed(db.credentials()["--random-seed"]) |
||
| 830 | buildings_with_hp_order = np.random.choice( |
||
| 831 | weights.index, |
||
| 832 | size=len(weights), |
||
| 833 | replace=False, |
||
| 834 | p=weights.weight.values, |
||
| 835 | ) |
||
| 836 | |||
| 837 | # select buildings until HP capacity in MV grid is reached (some rest |
||
| 838 | # capacity will remain) |
||
| 839 | hp_cumsum = min_hp_cap_per_building.loc[buildings_with_hp_order].cumsum() |
||
| 840 | buildings_with_hp = hp_cumsum[hp_cumsum <= hp_cap_mv_grid].index |
||
| 841 | |||
| 842 | # choose random heat pumps until remaining heat pumps are larger than remaining |
||
| 843 | # heat pump capacity |
||
| 844 | remaining_hp_cap = ( |
||
| 845 | hp_cap_mv_grid - min_hp_cap_per_building.loc[buildings_with_hp].sum()) |
||
| 846 | min_cap_buildings_wo_hp = min_hp_cap_per_building.loc[ |
||
| 847 | building_ids.drop(buildings_with_hp)] |
||
| 848 | possible_buildings = min_cap_buildings_wo_hp[ |
||
| 849 | min_cap_buildings_wo_hp <= remaining_hp_cap].index |
||
| 850 | while len(possible_buildings) > 0: |
||
| 851 | random.seed(db.credentials()["--random-seed"]) |
||
| 852 | new_hp_building = random.choice(possible_buildings) |
||
| 853 | # add new building to building with HP |
||
| 854 | buildings_with_hp = buildings_with_hp.append(pd.Index([new_hp_building])) |
||
| 855 | # determine if there are still possible buildings |
||
| 856 | remaining_hp_cap = ( |
||
| 857 | hp_cap_mv_grid - min_hp_cap_per_building.loc[buildings_with_hp].sum()) |
||
| 858 | min_cap_buildings_wo_hp = min_hp_cap_per_building.loc[ |
||
| 859 | building_ids.drop(buildings_with_hp)] |
||
| 860 | possible_buildings = min_cap_buildings_wo_hp[ |
||
| 861 | min_cap_buildings_wo_hp <= remaining_hp_cap].index |
||
| 862 | |||
| 863 | return buildings_with_hp |
||
| 864 | |||
| 865 | |||
| 866 | def desaggregate_hp_capacity(min_hp_cap_per_building, hp_cap_mv_grid): |
||
| 867 | """ |
||
| 868 | Desaggregates the required total heat pump capacity to buildings. |
||
| 869 | |||
| 870 | All buildings are previously assigned a minimum required heat pump |
||
| 871 | capacity. If the total heat pump capacity exceeds this, larger heat pumps |
||
| 872 | are assigned. |
||
| 873 | |||
| 874 | Parameters |
||
| 875 | ------------ |
||
| 876 | min_hp_cap_per_building : pd.Series |
||
| 877 | Pandas series with minimum required heat pump capacity per building |
||
| 878 | in MW. |
||
| 879 | hp_cap_mv_grid : float |
||
| 880 | Total heat pump capacity in MW in given MV grid. |
||
| 881 | |||
| 882 | Returns |
||
| 883 | -------- |
||
| 884 | pd.Series |
||
| 885 | Pandas series with heat pump capacity per building in MW. |
||
| 886 | |||
| 887 | """ |
||
| 888 | # distribute remaining capacity to all buildings with HP depending on |
||
| 889 | # installed HP capacity |
||
| 890 | |||
| 891 | allocated_cap = min_hp_cap_per_building.sum() |
||
| 892 | remaining_cap = hp_cap_mv_grid - allocated_cap |
||
| 893 | |||
| 894 | fac = remaining_cap / allocated_cap |
||
| 895 | hp_cap_per_building = ( |
||
| 896 | min_hp_cap_per_building * fac + min_hp_cap_per_building |
||
| 897 | ) |
||
| 898 | return hp_cap_per_building |
||
| 899 | |||
| 900 | |||
| 901 | def determine_hp_cap_pypsa_eur_sec(peak_heat_demand, building_ids): |
||
| 902 | """ |
||
| 903 | Determines minimum required HP capacity in MV grid in MW as input for |
||
| 904 | pypsa-eur-sec. |
||
| 905 | |||
| 906 | Parameters |
||
| 907 | ---------- |
||
| 908 | peak_heat_demand : pd.Series |
||
| 909 | Series with peak heat demand per building in MW. Index contains the |
||
| 910 | building ID. |
||
| 911 | building_ids : pd.Index(int) |
||
| 912 | Building IDs (as int) of buildings with decentral heating system in given |
||
| 913 | MV grid. |
||
| 914 | |||
| 915 | Returns |
||
| 916 | -------- |
||
| 917 | float |
||
| 918 | Minimum required HP capacity in MV grid in MW. |
||
| 919 | |||
| 920 | """ |
||
| 921 | if len(building_ids) > 0: |
||
| 922 | peak_heat_demand = peak_heat_demand.loc[building_ids] |
||
| 923 | # determine minimum required heat pump capacity per building |
||
| 924 | min_hp_cap_buildings = determine_minimum_hp_capacity_per_building( |
||
| 925 | peak_heat_demand |
||
| 926 | ) |
||
| 927 | return min_hp_cap_buildings.sum() |
||
| 928 | else: |
||
| 929 | return 0.0 |
||
| 930 | |||
| 931 | |||
| 932 | def determine_hp_cap_eGon2035(mv_grid_id, peak_heat_demand, building_ids): |
||
| 933 | """ |
||
| 934 | Determines which buildings in the MV grid will have a HP (buildings with PV |
||
| 935 | rooftop are more likely to be assigned) in the eGon2035 scenario, as well as |
||
| 936 | their respective HP capacity in MW. |
||
| 937 | |||
| 938 | Parameters |
||
| 939 | ----------- |
||
| 940 | mv_grid_id : int |
||
| 941 | ID of MV grid. |
||
| 942 | peak_heat_demand : pd.Series |
||
| 943 | Series with peak heat demand per building in MW. Index contains the |
||
| 944 | building ID. |
||
| 945 | building_ids : pd.Index(int) |
||
| 946 | Building IDs (as int) of buildings with decentral heating system in |
||
| 947 | given MV grid. |
||
| 948 | |||
| 949 | """ |
||
| 950 | |||
| 951 | if len(building_ids) > 0: |
||
| 952 | peak_heat_demand = peak_heat_demand.loc[building_ids] |
||
| 953 | |||
| 954 | # determine minimum required heat pump capacity per building |
||
| 955 | min_hp_cap_buildings = determine_minimum_hp_capacity_per_building( |
||
| 956 | peak_heat_demand |
||
| 957 | ) |
||
| 958 | |||
| 959 | # select buildings that will have a heat pump |
||
| 960 | hp_cap_grid = get_total_heat_pump_capacity_of_mv_grid( |
||
| 961 | "eGon2035", mv_grid_id |
||
| 962 | ) |
||
| 963 | buildings_with_hp = determine_buildings_with_hp_in_mv_grid( |
||
| 964 | hp_cap_grid, min_hp_cap_buildings |
||
| 965 | ) |
||
| 966 | |||
| 967 | # distribute total heat pump capacity to all buildings with HP |
||
| 968 | hp_cap_per_building = desaggregate_hp_capacity( |
||
| 969 | min_hp_cap_buildings.loc[buildings_with_hp], hp_cap_grid |
||
| 970 | ) |
||
| 971 | |||
| 972 | return hp_cap_per_building |
||
| 973 | |||
| 974 | else: |
||
| 975 | return pd.Series() |
||
| 976 | |||
| 977 | |||
| 978 | def determine_hp_cap_eGon100RE(mv_grid_id): |
||
| 979 | """Wrapper function to determine Heat Pump capacities |
||
| 980 | for scenario eGon100RE. All buildings without district heating get a heat |
||
| 981 | pump capacity assigned. |
||
| 982 | """ |
||
| 983 | |||
| 984 | # determine minimum required heat pump capacity per building |
||
| 985 | building_ids = get_buildings_with_decentral_heat_demand_in_mv_grid( |
||
| 986 | "eGon100RE", mv_grid_id |
||
| 987 | ) |
||
| 988 | |||
| 989 | # TODO get peak demand from db |
||
| 990 | peak_heat_demand = get_peak_demand_per_building( |
||
| 991 | "eGon100RE", building_ids |
||
| 992 | ) |
||
| 993 | |||
| 994 | # determine minimum required heat pump capacity per building |
||
| 995 | min_hp_cap_buildings = determine_minimum_hp_capacity_per_building( |
||
| 996 | peak_heat_demand, flexibility_factor=24 / 18, cop=1.7 |
||
| 997 | ) |
||
| 998 | |||
| 999 | # distribute total heat pump capacity to all buildings with HP |
||
| 1000 | hp_cap_grid = get_total_heat_pump_capacity_of_mv_grid( |
||
| 1001 | "eGon100RE", mv_grid_id |
||
| 1002 | ) |
||
| 1003 | hp_cap_per_building = desaggregate_hp_capacity( |
||
| 1004 | min_hp_cap_buildings, hp_cap_grid |
||
| 1005 | ) |
||
| 1006 | |||
| 1007 | # ToDo Write desaggregated HP capacity to table |
||
| 1008 | |||
| 1009 | |||
| 1010 | @timeitlog |
||
| 1011 | def residential_heat_peak_load_export_bulk(n, max_n=5): |
||
| 1012 | """n= [1;max_n]""" |
||
| 1013 | |||
| 1014 | # ========== Register np datatypes with SQLA ========== |
||
| 1015 | register_adapter(np.float64, adapt_numpy_float64) |
||
| 1016 | register_adapter(np.int64, adapt_numpy_int64) |
||
| 1017 | # ===================================================== |
||
| 1018 | |||
| 1019 | log_to_file(residential_heat_peak_load_export_bulk.__qualname__ + f"_{n}") |
||
| 1020 | if n == 0: |
||
| 1021 | raise KeyError("n >= 1") |
||
| 1022 | |||
| 1023 | # ToDo @Julian warum ist Abfrage so umständlich? |
||
| 1024 | with db.session_scope() as session: |
||
| 1025 | query = ( |
||
| 1026 | session.query( |
||
| 1027 | MapZensusGridDistricts.bus_id, |
||
| 1028 | ) |
||
| 1029 | .filter( |
||
| 1030 | MapZensusGridDistricts.zensus_population_id |
||
| 1031 | == EgonPetaHeat.zensus_population_id |
||
| 1032 | ) |
||
| 1033 | .filter(EgonPetaHeat.sector == "residential") |
||
| 1034 | .distinct(MapZensusGridDistricts.bus_id) |
||
| 1035 | ) |
||
| 1036 | mvgd_ids = pd.read_sql(query.statement, query.session.bind, index_col=None) |
||
| 1037 | |||
| 1038 | mvgd_ids = mvgd_ids.sort_values("bus_id").reset_index(drop=True) |
||
| 1039 | |||
| 1040 | mvgd_ids = np.array_split(mvgd_ids["bus_id"].values, max_n) |
||
| 1041 | |||
| 1042 | # TODO mvgd_ids = [kleines mvgd] |
||
| 1043 | for mvgd in [1556]: #mvgd_ids[n - 1]: |
||
| 1044 | |||
| 1045 | logger.trace(f"MVGD={mvgd} | Start") |
||
| 1046 | |||
| 1047 | # ############### get residential heat demand profiles ############### |
||
| 1048 | df_heat_ts = calc_residential_heat_profiles_per_mvgd( |
||
| 1049 | mvgd=mvgd |
||
| 1050 | ) |
||
| 1051 | |||
| 1052 | # pivot to allow aggregation with CTS profiles |
||
| 1053 | df_heat_ts_2035 = df_heat_ts.loc[ |
||
| 1054 | :, ["building_id", "day_of_year", "hour", "eGon2035"]] |
||
| 1055 | df_heat_ts_2035 = df_heat_ts_2035.pivot( |
||
| 1056 | index=["day_of_year", "hour"], |
||
| 1057 | columns="building_id", |
||
| 1058 | values="eGon2035", |
||
| 1059 | ) |
||
| 1060 | df_heat_ts_2035 = df_heat_ts_2035.sort_index().reset_index(drop=True) |
||
| 1061 | |||
| 1062 | df_heat_ts_100RE = df_heat_ts.loc[ |
||
| 1063 | :, ["building_id", "day_of_year", "hour", "eGon100RE"]] |
||
| 1064 | df_heat_ts_100RE = df_heat_ts_100RE.pivot( |
||
| 1065 | index=["day_of_year", "hour"], |
||
| 1066 | columns="building_id", |
||
| 1067 | values="eGon100RE", |
||
| 1068 | ) |
||
| 1069 | df_heat_ts_100RE = df_heat_ts_100RE.sort_index().reset_index(drop=True) |
||
| 1070 | |||
| 1071 | del df_heat_ts |
||
| 1072 | |||
| 1073 | # ############### get CTS heat demand profiles ############### |
||
| 1074 | heat_demand_cts_ts_2035 = calc_cts_building_profiles( |
||
| 1075 | egon_building_ids=[644, 645], |
||
| 1076 | bus_ids=[1366], |
||
| 1077 | scenario="eGon2035", |
||
| 1078 | sector="heat", |
||
| 1079 | ) |
||
| 1080 | heat_demand_cts_ts_2035.rename( |
||
| 1081 | columns={644: 1225533, 645: 1225527}, inplace=True) |
||
| 1082 | heat_demand_cts_ts_100RE = calc_cts_building_profiles( |
||
| 1083 | egon_building_ids=[644, 645], |
||
| 1084 | bus_ids=[1366], |
||
| 1085 | scenario="eGon100RE", |
||
| 1086 | sector="heat", |
||
| 1087 | ) |
||
| 1088 | heat_demand_cts_ts_100RE.rename( |
||
| 1089 | columns={644: 1225533, 645: 1225527}, inplace=True) |
||
| 1090 | # ToDo change back |
||
| 1091 | # heat_demand_cts_ts_2035 = calc_cts_building_profiles( |
||
| 1092 | # egon_building_ids=df_heat_ts.building_id.unique(), |
||
| 1093 | # bus_ids=[mvgd], |
||
| 1094 | # scenario="eGon2035", |
||
| 1095 | # sector="heat", |
||
| 1096 | # ) |
||
| 1097 | # heat_demand_cts_ts_100RE = calc_cts_building_profiles( |
||
| 1098 | # egon_building_ids=df_heat_ts.building_id.unique(), |
||
| 1099 | # bus_ids=[mvgd], |
||
| 1100 | # scenario="eGon100RE", |
||
| 1101 | # sector="heat", |
||
| 1102 | # ) |
||
| 1103 | |||
| 1104 | # ############# aggregate residential and CTS demand profiles ############# |
||
| 1105 | df_heat_ts_2035 = pd.concat( |
||
| 1106 | [df_heat_ts_2035, heat_demand_cts_ts_2035], axis=1 |
||
| 1107 | ) |
||
| 1108 | df_heat_ts_2035 = df_heat_ts_2035.groupby(axis=1, level=0).sum() |
||
| 1109 | |||
| 1110 | df_heat_ts_100RE = pd.concat( |
||
| 1111 | [df_heat_ts_100RE, heat_demand_cts_ts_100RE], axis=1 |
||
| 1112 | ) |
||
| 1113 | df_heat_ts_100RE = df_heat_ts_100RE.groupby(axis=1, level=0).sum() |
||
| 1114 | |||
| 1115 | del heat_demand_cts_ts_2035, heat_demand_cts_ts_100RE |
||
| 1116 | |||
| 1117 | # ##################### export peak loads to DB ################### |
||
| 1118 | |||
| 1119 | # ToDo @Julian kombinierte peak load oder getrennt nach residential und CTS? |
||
| 1120 | df_peak_loads_2035 = df_heat_ts_2035.max() |
||
| 1121 | df_peak_loads_100RE = df_heat_ts_100RE.max() |
||
| 1122 | |||
| 1123 | df_peak_loads_db_2035 = df_peak_loads_2035.reset_index().melt( |
||
| 1124 | id_vars="building_id", |
||
| 1125 | var_name="scenario", |
||
| 1126 | value_name="peak_load_in_w", |
||
| 1127 | ) |
||
| 1128 | df_peak_loads_db_2035["scenario"] = "eGon2035" |
||
| 1129 | df_peak_loads_db_100RE = df_peak_loads_100RE.reset_index().melt( |
||
| 1130 | id_vars="building_id", |
||
| 1131 | var_name="scenario", |
||
| 1132 | value_name="peak_load_in_w", |
||
| 1133 | ) |
||
| 1134 | df_peak_loads_db_100RE["scenario"] = "eGon100RE" |
||
| 1135 | df_peak_loads_db = pd.concat( |
||
| 1136 | [df_peak_loads_db_2035, df_peak_loads_db_100RE]) |
||
| 1137 | |||
| 1138 | del df_peak_loads_db_2035, df_peak_loads_db_100RE |
||
| 1139 | |||
| 1140 | df_peak_loads_db["sector"] = "residential+CTS" |
||
| 1141 | # From MW to W |
||
| 1142 | # ToDo @Julian warum in W? |
||
| 1143 | df_peak_loads_db["peak_load_in_w"] = df_peak_loads_db["peak_load_in_w"] * 1e6 |
||
| 1144 | |||
| 1145 | logger.trace(f"MVGD={mvgd} | Export to DB") |
||
| 1146 | |||
| 1147 | # TODO export peak loads all buildings both scenarios to db |
||
| 1148 | # write_table_to_postgres( |
||
| 1149 | # df_peak_loads_db, BuildingHeatPeakLoads, engine=engine |
||
| 1150 | # ) |
||
| 1151 | # logger.trace(f"MVGD={mvgd} | Done") |
||
| 1152 | |||
| 1153 | # ######## determine HP capacity for NEP scenario and pypsa-eur-sec ########## |
||
| 1154 | |||
| 1155 | # get buildings with decentral heating systems in both scenarios |
||
| 1156 | buildings_decentral_heating_2035 = ( |
||
| 1157 | get_buildings_with_decentral_heat_demand_in_mv_grid( |
||
| 1158 | "eGon2035", mvgd |
||
| 1159 | ) |
||
| 1160 | ) |
||
| 1161 | buildings_decentral_heating_100RE = ( |
||
| 1162 | get_buildings_with_decentral_heat_demand_in_mv_grid( |
||
| 1163 | "eGon100RE", mvgd |
||
| 1164 | ) |
||
| 1165 | ) |
||
| 1166 | |||
| 1167 | # determine HP capacity per building for NEP2035 scenario |
||
| 1168 | hp_cap_per_building_2035 = determine_hp_cap_eGon2035( |
||
| 1169 | mvgd, df_peak_loads_2035, buildings_decentral_heating_2035) |
||
| 1170 | buildings_hp_2035 = hp_cap_per_building_2035.index |
||
| 1171 | buildings_gas_2035 = pd.Index(buildings_decentral_heating_2035).drop( |
||
| 1172 | buildings_hp_2035) |
||
| 1173 | |||
| 1174 | # determine minimum HP capacity per building for pypsa-eur-sec |
||
| 1175 | hp_min_cap_mv_grid_pypsa_eur_sec = determine_hp_cap_pypsa_eur_sec( |
||
| 1176 | df_peak_loads_100RE, buildings_decentral_heating_100RE) |
||
| 1177 | |||
| 1178 | # ######################## write HP capacities to DB ###################### |
||
| 1179 | |||
| 1180 | # ToDo Write HP capacity per building in 2035 (hp_cap_per_building_2035) to |
||
| 1181 | # db table |
||
| 1182 | |||
| 1183 | # ToDo Write minimum required capacity in pypsa-eur-sec |
||
| 1184 | # (hp_min_cap_mv_grid_pypsa_eur_sec) to |
||
| 1185 | # db table for pypsa-eur-sec input |
||
| 1186 | |||
| 1187 | # ################ write aggregated heat profiles to DB ################### |
||
| 1188 | |||
| 1189 | # heat demand time series for buildings with heat pumps |
||
| 1190 | |||
| 1191 | # ToDo Write aggregated heat demand time series of buildings with HP to |
||
| 1192 | # table to be used in eTraGo - egon_etrago_timeseries_individual_heating |
||
| 1193 | # TODO Clara uses this table already |
||
| 1194 | # but will not need it anymore for pypsa eur sec - @Julian? |
||
| 1195 | # EgonEtragoTimeseriesIndividualHeating |
||
| 1196 | df_heat_ts_2035.loc[:, buildings_hp_2035].sum(axis=1) |
||
| 1197 | df_heat_ts_100RE.loc[:, buildings_decentral_heating_100RE].sum(axis=1) |
||
| 1198 | |||
| 1199 | # Change format |
||
| 1200 | # ToDo @Julian noch notwendig? |
||
| 1201 | # data = CTS_grid.drop(columns="scenario") |
||
| 1202 | # df_etrago_cts_heat_profiles = pd.DataFrame( |
||
| 1203 | # index=data.index, columns=["scn_name", "p_set"] |
||
| 1204 | # ) |
||
| 1205 | # df_etrago_cts_heat_profiles.p_set = data.values.tolist() |
||
| 1206 | # df_etrago_cts_heat_profiles.scn_name = CTS_grid["scenario"] |
||
| 1207 | # df_etrago_cts_heat_profiles.reset_index(inplace=True) |
||
| 1208 | |||
| 1209 | # # Drop and recreate Table if exists |
||
| 1210 | # EgonEtragoTimeseriesIndividualHeating.__table__.drop(bind=db.engine(), |
||
| 1211 | # checkfirst=True) |
||
| 1212 | # EgonEtragoTimeseriesIndividualHeating.__table__.create(bind=db.engine(), |
||
| 1213 | # checkfirst=True) |
||
| 1214 | # |
||
| 1215 | # # Write heat ts into db |
||
| 1216 | # with db.session_scope() as session: |
||
| 1217 | # session.bulk_insert_mappings( |
||
| 1218 | # EgonEtragoTimeseriesIndividualHeating, |
||
| 1219 | # df_etrago_cts_heat_profiles.to_dict(orient="records"), |
||
| 1220 | # ) |
||
| 1221 | |||
| 1222 | # heat demand time series for buildings with gas boilers (only 2035 scenario) |
||
| 1223 | df_heat_ts_2035.loc[:, buildings_gas_2035].sum(axis=1) |
||
| 1224 | # ToDo Write other heat demand time series to database - gas voronoi |
||
| 1225 | # (grid - egon_gas_voronoi mit carrier CH4) |
||
| 1226 | # erstmal intermediate table |
||
| 1227 | |||
| 1228 | |||
| 1229 | def residential_heat_peak_load_export_bulk_1(): |
||
| 1230 | residential_heat_peak_load_export_bulk(1, max_n=5) |
||
| 1231 | |||
| 1232 | |||
| 1233 | def residential_heat_peak_load_export_bulk_2(): |
||
| 1234 | residential_heat_peak_load_export_bulk(2, max_n=5) |
||
| 1235 | |||
| 1236 | |||
| 1237 | def residential_heat_peak_load_export_bulk_3(): |
||
| 1238 | residential_heat_peak_load_export_bulk(3, max_n=5) |
||
| 1239 | |||
| 1240 | |||
| 1241 | def residential_heat_peak_load_export_bulk_4(): |
||
| 1242 | residential_heat_peak_load_export_bulk(4, max_n=5) |
||
| 1243 | |||
| 1244 | |||
| 1245 | def residential_heat_peak_load_export_bulk_5(): |
||
| 1246 | residential_heat_peak_load_export_bulk(5, max_n=5) |
||
| 1247 | |||
| 1248 | |||
| 1249 | def create_peak_load_table(): |
||
| 1250 | |||
| 1251 | BuildingHeatPeakLoads.__table__.create(bind=engine, checkfirst=True) |
||
| 1252 | |||
| 1253 | |||
| 1254 | def delete_peak_loads_if_existing(): |
||
| 1255 | """Remove all entries""" |
||
| 1256 | |||
| 1257 | with db.session_scope() as session: |
||
| 1258 | # Buses |
||
| 1259 | session.query(BuildingHeatPeakLoads).filter( |
||
| 1260 | BuildingHeatPeakLoads.sector == "residential" |
||
| 1261 | ).delete(synchronize_session=False) |
||
| 1262 | |||
| 1263 | |||
| 1264 | if __name__ == "__main__": |
||
| 1265 | #calc_residential_heat_profiles_per_mvgd(mvgd) |
||
| 1266 | residential_heat_peak_load_export_bulk_1() |
||
| 1267 |