Total Complexity | 59 |
Total Lines | 1267 |
Duplicated Lines | 1.89 % |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like data.datasets.heat_supply.individual_heating often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | """The central module containing all code dealing with |
||
2 | individual heat supply. |
||
3 | |||
4 | """ |
||
5 | from loguru import logger |
||
6 | import numpy as np |
||
7 | import pandas as pd |
||
8 | import random |
||
9 | import saio |
||
10 | |||
11 | from pathlib import Path |
||
12 | import time |
||
13 | |||
14 | from psycopg2.extensions import AsIs, register_adapter |
||
15 | from sqlalchemy import ARRAY, REAL, Column, Integer, String |
||
16 | from sqlalchemy.ext.declarative import declarative_base |
||
17 | import geopandas as gpd |
||
18 | |||
19 | |||
20 | from egon.data import config, db |
||
21 | from egon.data.datasets import Dataset |
||
22 | from egon.data.datasets.electricity_demand_timeseries.cts_buildings import ( |
||
23 | calc_cts_building_profiles, |
||
24 | ) |
||
25 | from egon.data.datasets.electricity_demand_timeseries.tools import ( |
||
26 | write_table_to_postgres, |
||
27 | ) |
||
28 | from egon.data.datasets.heat_demand import EgonPetaHeat |
||
29 | from egon.data.datasets.heat_demand_timeseries.daily import ( |
||
30 | EgonDailyHeatDemandPerClimateZone, |
||
31 | EgonMapZensusClimateZones, |
||
32 | ) |
||
33 | from egon.data.datasets.heat_demand_timeseries.idp_pool import ( |
||
34 | EgonHeatTimeseries, |
||
35 | ) |
||
36 | # get zensus cells with district heating |
||
37 | from egon.data.datasets.zensus_mv_grid_districts import MapZensusGridDistricts |
||
38 | |||
39 | engine = db.engine() |
||
40 | Base = declarative_base() |
||
41 | |||
42 | |||
43 | class EgonEtragoTimeseriesIndividualHeating(Base): |
||
44 | __tablename__ = "egon_etrago_timeseries_individual_heating" |
||
45 | __table_args__ = {"schema": "demand"} |
||
46 | bus_id = Column(Integer, primary_key=True) |
||
47 | scenario = Column(String, primary_key=True) |
||
48 | carrier = Column(String, primary_key=True) |
||
49 | dist_aggregated_mw = Column(ARRAY(REAL)) |
||
50 | |||
51 | |||
52 | # ToDo @Julian muss angepasst werden? |
||
53 | class HeatPumpsEtrago(Dataset): |
||
54 | def __init__(self, dependencies): |
||
55 | super().__init__( |
||
56 | name="HeatPumpsEtrago", |
||
57 | version="0.0.0", |
||
58 | dependencies=dependencies, |
||
59 | tasks=(determine_hp_cap_pypsa_eur_sec,), |
||
60 | ) |
||
61 | |||
62 | |||
63 | # ToDo @Julian muss angepasst werden? |
||
64 | class HeatPumps2035(Dataset): |
||
65 | def __init__(self, dependencies): |
||
66 | super().__init__( |
||
67 | name="HeatPumps2035", |
||
68 | version="0.0.0", |
||
69 | dependencies=dependencies, |
||
70 | tasks=(determine_hp_cap_eGon2035,), |
||
71 | ) |
||
72 | |||
73 | |||
74 | # ToDo @Julian muss angepasst werden? |
||
75 | class HeatPumps2050(Dataset): |
||
76 | def __init__(self, dependencies): |
||
77 | super().__init__( |
||
78 | name="HeatPumps2050", |
||
79 | version="0.0.0", |
||
80 | dependencies=dependencies, |
||
81 | tasks=(determine_hp_cap_eGon100RE), |
||
82 | ) |
||
83 | |||
84 | |||
85 | class BuildingHeatPeakLoads(Base): |
||
86 | __tablename__ = "egon_building_heat_peak_loads" |
||
87 | __table_args__ = {"schema": "demand"} |
||
88 | |||
89 | building_id = Column(Integer, primary_key=True) |
||
90 | scenario = Column(String, primary_key=True) |
||
91 | sector = Column(String, primary_key=True) |
||
92 | peak_load_in_w = Column(REAL) |
||
93 | |||
94 | |||
95 | def adapt_numpy_float64(numpy_float64): |
||
96 | return AsIs(numpy_float64) |
||
97 | |||
98 | |||
99 | def adapt_numpy_int64(numpy_int64): |
||
100 | return AsIs(numpy_int64) |
||
101 | |||
102 | |||
103 | def log_to_file(name): |
||
104 | """Simple only file logger""" |
||
105 | logger.remove() |
||
106 | logger.add( |
||
107 | Path(f"{name}.log"), |
||
108 | format="{time} {level} {message}", |
||
109 | # filter="my_module", |
||
110 | level="TRACE", |
||
111 | ) |
||
112 | logger.trace("Start trace logging") |
||
113 | return logger |
||
114 | |||
115 | |||
116 | def timeit(func): |
||
117 | """ |
||
118 | Decorator for measuring function's running time. |
||
119 | """ |
||
120 | |||
121 | def measure_time(*args, **kw): |
||
122 | start_time = time.time() |
||
123 | result = func(*args, **kw) |
||
124 | print( |
||
125 | "Processing time of %s(): %.2f seconds." |
||
126 | % (func.__qualname__, time.time() - start_time) |
||
127 | ) |
||
128 | return result |
||
129 | |||
130 | return measure_time |
||
131 | |||
132 | |||
133 | def timeitlog(func): |
||
134 | """ |
||
135 | Decorator for measuring running time of residential heat peak load and |
||
136 | logging it. |
||
137 | """ |
||
138 | |||
139 | def measure_time(*args, **kw): |
||
140 | start_time = time.time() |
||
141 | result = func(*args, **kw) |
||
142 | process_time = time.time() - start_time |
||
143 | try: |
||
144 | mvgd = kw["mvgd"] |
||
145 | except KeyError: |
||
146 | mvgd = "bulk" |
||
147 | statement = ( |
||
148 | f"MVGD={mvgd} | Processing time of {func.__qualname__} | " |
||
149 | f"{time.strftime('%H h, %M min, %S s', time.gmtime(process_time))}" |
||
150 | ) |
||
151 | logger.trace(statement) |
||
152 | print(statement) |
||
153 | return result |
||
154 | |||
155 | return measure_time |
||
156 | |||
157 | |||
158 | def cascade_per_technology( |
||
159 | heat_per_mv, |
||
160 | technologies, |
||
161 | scenario, |
||
162 | distribution_level, |
||
163 | max_size_individual_chp=0.05, |
||
164 | ): |
||
165 | |||
166 | """Add plants for individual heat. |
||
167 | Currently only on mv grid district level. |
||
168 | |||
169 | Parameters |
||
170 | ---------- |
||
171 | mv_grid_districts : geopandas.geodataframe.GeoDataFrame |
||
172 | MV grid districts including the heat demand |
||
173 | technologies : pandas.DataFrame |
||
174 | List of supply technologies and their parameters |
||
175 | scenario : str |
||
176 | Name of the scenario |
||
177 | max_size_individual_chp : float |
||
178 | Maximum capacity of an individual chp in MW |
||
179 | Returns |
||
180 | ------- |
||
181 | mv_grid_districts : geopandas.geodataframe.GeoDataFrame |
||
182 | MV grid district which need additional individual heat supply |
||
183 | technologies : pandas.DataFrame |
||
184 | List of supply technologies and their parameters |
||
185 | append_df : pandas.DataFrame |
||
186 | List of plants per mv grid for the selected technology |
||
187 | |||
188 | """ |
||
189 | sources = config.datasets()["heat_supply"]["sources"] |
||
190 | |||
191 | tech = technologies[technologies.priority == technologies.priority.max()] |
||
192 | |||
193 | # Distribute heat pumps linear to remaining demand. |
||
194 | if tech.index == "heat_pump": |
||
195 | |||
196 | if distribution_level == "federal_state": |
||
197 | # Select target values per federal state |
||
198 | target = db.select_dataframe( |
||
199 | f""" |
||
200 | SELECT DISTINCT ON (gen) gen as state, capacity |
||
201 | FROM {sources['scenario_capacities']['schema']}. |
||
202 | {sources['scenario_capacities']['table']} a |
||
203 | JOIN {sources['federal_states']['schema']}. |
||
204 | {sources['federal_states']['table']} b |
||
205 | ON a.nuts = b.nuts |
||
206 | WHERE scenario_name = '{scenario}' |
||
207 | AND carrier = 'residential_rural_heat_pump' |
||
208 | """, |
||
209 | index_col="state", |
||
210 | ) |
||
211 | |||
212 | heat_per_mv["share"] = heat_per_mv.groupby( |
||
213 | "state" |
||
214 | ).remaining_demand.apply(lambda grp: grp / grp.sum()) |
||
215 | |||
216 | append_df = ( |
||
217 | heat_per_mv["share"] |
||
218 | .mul(target.capacity[heat_per_mv["state"]].values) |
||
219 | .reset_index() |
||
220 | ) |
||
221 | else: |
||
222 | # Select target value for Germany |
||
223 | target = db.select_dataframe( |
||
224 | f""" |
||
225 | SELECT SUM(capacity) AS capacity |
||
226 | FROM {sources['scenario_capacities']['schema']}. |
||
227 | {sources['scenario_capacities']['table']} a |
||
228 | WHERE scenario_name = '{scenario}' |
||
229 | AND carrier = 'residential_rural_heat_pump' |
||
230 | """ |
||
231 | ) |
||
232 | |||
233 | heat_per_mv["share"] = ( |
||
234 | heat_per_mv.remaining_demand |
||
235 | / heat_per_mv.remaining_demand.sum() |
||
236 | ) |
||
237 | |||
238 | append_df = ( |
||
239 | heat_per_mv["share"].mul(target.capacity[0]).reset_index() |
||
240 | ) |
||
241 | |||
242 | append_df.rename( |
||
243 | {"bus_id": "mv_grid_id", "share": "capacity"}, axis=1, inplace=True |
||
244 | ) |
||
245 | |||
246 | elif tech.index == "gas_boiler": |
||
247 | |||
248 | append_df = pd.DataFrame( |
||
249 | data={ |
||
250 | "capacity": heat_per_mv.remaining_demand.div( |
||
251 | tech.estimated_flh.values[0] |
||
252 | ), |
||
253 | "carrier": "residential_rural_gas_boiler", |
||
254 | "mv_grid_id": heat_per_mv.index, |
||
255 | "scenario": scenario, |
||
256 | } |
||
257 | ) |
||
258 | |||
259 | if append_df.size > 0: |
||
|
|||
260 | append_df["carrier"] = tech.index[0] |
||
261 | heat_per_mv.loc[ |
||
262 | append_df.mv_grid_id, "remaining_demand" |
||
263 | ] -= append_df.set_index("mv_grid_id").capacity.mul( |
||
264 | tech.estimated_flh.values[0] |
||
265 | ) |
||
266 | |||
267 | heat_per_mv = heat_per_mv[heat_per_mv.remaining_demand >= 0] |
||
268 | |||
269 | technologies = technologies.drop(tech.index) |
||
270 | |||
271 | return heat_per_mv, technologies, append_df |
||
272 | |||
273 | |||
274 | def cascade_heat_supply_indiv(scenario, distribution_level, plotting=True): |
||
275 | """Assigns supply strategy for individual heating in four steps. |
||
276 | |||
277 | 1.) all small scale CHP are connected. |
||
278 | 2.) If the supply can not meet the heat demand, solar thermal collectors |
||
279 | are attached. This is not implemented yet, since individual |
||
280 | solar thermal plants are not considered in eGon2035 scenario. |
||
281 | 3.) If this is not suitable, the mv grid is also supplied by heat pumps. |
||
282 | 4.) The last option are individual gas boilers. |
||
283 | |||
284 | Parameters |
||
285 | ---------- |
||
286 | scenario : str |
||
287 | Name of scenario |
||
288 | plotting : bool, optional |
||
289 | Choose if individual heating supply is plotted. The default is True. |
||
290 | |||
291 | Returns |
||
292 | ------- |
||
293 | resulting_capacities : pandas.DataFrame |
||
294 | List of plants per mv grid |
||
295 | |||
296 | """ |
||
297 | |||
298 | sources = config.datasets()["heat_supply"]["sources"] |
||
299 | |||
300 | # Select residential heat demand per mv grid district and federal state |
||
301 | heat_per_mv = db.select_geodataframe( |
||
302 | f""" |
||
303 | SELECT d.bus_id as bus_id, SUM(demand) as demand, |
||
304 | c.vg250_lan as state, d.geom |
||
305 | FROM {sources['heat_demand']['schema']}. |
||
306 | {sources['heat_demand']['table']} a |
||
307 | JOIN {sources['map_zensus_grid']['schema']}. |
||
308 | {sources['map_zensus_grid']['table']} b |
||
309 | ON a.zensus_population_id = b.zensus_population_id |
||
310 | JOIN {sources['map_vg250_grid']['schema']}. |
||
311 | {sources['map_vg250_grid']['table']} c |
||
312 | ON b.bus_id = c.bus_id |
||
313 | JOIN {sources['mv_grids']['schema']}. |
||
314 | {sources['mv_grids']['table']} d |
||
315 | ON d.bus_id = c.bus_id |
||
316 | WHERE scenario = '{scenario}' |
||
317 | AND a.zensus_population_id NOT IN ( |
||
318 | SELECT zensus_population_id |
||
319 | FROM {sources['map_dh']['schema']}.{sources['map_dh']['table']} |
||
320 | WHERE scenario = '{scenario}') |
||
321 | GROUP BY d.bus_id, vg250_lan, geom |
||
322 | """, |
||
323 | index_col="bus_id", |
||
324 | ) |
||
325 | |||
326 | # Store geometry of mv grid |
||
327 | geom_mv = heat_per_mv.geom.centroid.copy() |
||
328 | |||
329 | # Initalize Dataframe for results |
||
330 | resulting_capacities = pd.DataFrame( |
||
331 | columns=["mv_grid_id", "carrier", "capacity"] |
||
332 | ) |
||
333 | |||
334 | # Set technology data according to |
||
335 | # http://www.wbzu.de/seminare/infopool/infopool-bhkw |
||
336 | # TODO: Add gas boilers and solar themal (eGon100RE) |
||
337 | technologies = pd.DataFrame( |
||
338 | index=["heat_pump", "gas_boiler"], |
||
339 | columns=["estimated_flh", "priority"], |
||
340 | data={"estimated_flh": [4000, 8000], "priority": [2, 1]}, |
||
341 | ) |
||
342 | |||
343 | # In the beginning, the remaining demand equals demand |
||
344 | heat_per_mv["remaining_demand"] = heat_per_mv["demand"] |
||
345 | |||
346 | # Connect new technologies, if there is still heat demand left |
||
347 | while (len(technologies) > 0) and (len(heat_per_mv) > 0): |
||
348 | # Attach new supply technology |
||
349 | heat_per_mv, technologies, append_df = cascade_per_technology( |
||
350 | heat_per_mv, technologies, scenario, distribution_level |
||
351 | ) |
||
352 | # Collect resulting capacities |
||
353 | resulting_capacities = resulting_capacities.append( |
||
354 | append_df, ignore_index=True |
||
355 | ) |
||
356 | |||
357 | if plotting: |
||
358 | plot_heat_supply(resulting_capacities) |
||
359 | |||
360 | return gpd.GeoDataFrame( |
||
361 | resulting_capacities, |
||
362 | geometry=geom_mv[resulting_capacities.mv_grid_id].values, |
||
363 | ) |
||
364 | |||
365 | |||
366 | # @timeit |
||
367 | def get_peta_demand(mvgd): |
||
368 | """only residential""" |
||
369 | |||
370 | with db.session_scope() as session: |
||
371 | query = ( |
||
372 | session.query( |
||
373 | MapZensusGridDistricts.zensus_population_id, |
||
374 | EgonPetaHeat.demand.label("peta_2035"), |
||
375 | ) |
||
376 | .filter(MapZensusGridDistricts.bus_id == mvgd) |
||
377 | .filter( |
||
378 | MapZensusGridDistricts.zensus_population_id |
||
379 | == EgonPetaHeat.zensus_population_id |
||
380 | ) |
||
381 | .filter(EgonPetaHeat.scenario == "eGon2035") |
||
382 | .filter(EgonPetaHeat.sector == "residential") |
||
383 | ) |
||
384 | |||
385 | df_peta_2035 = pd.read_sql( |
||
386 | query.statement, query.session.bind, index_col="zensus_population_id" |
||
387 | ) |
||
388 | |||
389 | with db.session_scope() as session: |
||
390 | query = ( |
||
391 | session.query( |
||
392 | MapZensusGridDistricts.zensus_population_id, |
||
393 | EgonPetaHeat.demand.label("peta_2050"), |
||
394 | ) |
||
395 | .filter(MapZensusGridDistricts.bus_id == mvgd) |
||
396 | .filter( |
||
397 | MapZensusGridDistricts.zensus_population_id |
||
398 | == EgonPetaHeat.zensus_population_id |
||
399 | ) |
||
400 | .filter(EgonPetaHeat.scenario == "eGon100RE") |
||
401 | .filter(EgonPetaHeat.sector == "residential") |
||
402 | ) |
||
403 | |||
404 | df_peta_100RE = pd.read_sql( |
||
405 | query.statement, query.session.bind, index_col="zensus_population_id" |
||
406 | ) |
||
407 | |||
408 | df_peta_demand = pd.concat( |
||
409 | [df_peta_2035, df_peta_100RE], axis=1 |
||
410 | ).reset_index() |
||
411 | |||
412 | return df_peta_demand |
||
413 | |||
414 | |||
415 | # @timeit |
||
416 | def get_profile_ids(mvgd): |
||
417 | with db.session_scope() as session: |
||
418 | query = ( |
||
419 | session.query( |
||
420 | MapZensusGridDistricts.zensus_population_id, |
||
421 | EgonHeatTimeseries.building_id, |
||
422 | EgonHeatTimeseries.selected_idp_profiles, |
||
423 | ) |
||
424 | .filter(MapZensusGridDistricts.bus_id == mvgd) |
||
425 | .filter( |
||
426 | MapZensusGridDistricts.zensus_population_id |
||
427 | == EgonHeatTimeseries.zensus_population_id |
||
428 | ) |
||
429 | ) |
||
430 | |||
431 | df_profiles_ids = pd.read_sql( |
||
432 | query.statement, query.session.bind, index_col=None |
||
433 | ) |
||
434 | # Add building count per cell |
||
435 | df_profiles_ids = pd.merge( |
||
436 | left=df_profiles_ids, |
||
437 | right=df_profiles_ids.groupby("zensus_population_id")["building_id"] |
||
438 | .count() |
||
439 | .rename("buildings"), |
||
440 | left_on="zensus_population_id", |
||
441 | right_index=True, |
||
442 | ) |
||
443 | |||
444 | df_profiles_ids = df_profiles_ids.explode("selected_idp_profiles") |
||
445 | df_profiles_ids["day_of_year"] = ( |
||
446 | df_profiles_ids.groupby("building_id").cumcount() + 1 |
||
447 | ) |
||
448 | return df_profiles_ids |
||
449 | |||
450 | |||
451 | # @timeit |
||
452 | def get_daily_profiles(profile_ids): |
||
453 | saio.register_schema("demand", db.engine()) |
||
454 | from saio.demand import egon_heat_idp_pool |
||
455 | |||
456 | with db.session_scope() as session: |
||
457 | query = session.query(egon_heat_idp_pool).filter( |
||
458 | egon_heat_idp_pool.index.in_(profile_ids) |
||
459 | ) |
||
460 | |||
461 | df_profiles = pd.read_sql( |
||
462 | query.statement, query.session.bind, index_col="index" |
||
463 | ) |
||
464 | |||
465 | df_profiles = df_profiles.explode("idp") |
||
466 | df_profiles["hour"] = df_profiles.groupby(axis=0, level=0).cumcount() + 1 |
||
467 | |||
468 | return df_profiles |
||
469 | |||
470 | |||
471 | # @timeit |
||
472 | def get_daily_demand_share(mvgd): |
||
473 | |||
474 | with db.session_scope() as session: |
||
475 | query = ( |
||
476 | session.query( |
||
477 | MapZensusGridDistricts.zensus_population_id, |
||
478 | EgonDailyHeatDemandPerClimateZone.day_of_year, |
||
479 | EgonDailyHeatDemandPerClimateZone.daily_demand_share, |
||
480 | ) |
||
481 | .filter( |
||
482 | EgonMapZensusClimateZones.climate_zone |
||
483 | == EgonDailyHeatDemandPerClimateZone.climate_zone |
||
484 | ) |
||
485 | .filter( |
||
486 | MapZensusGridDistricts.zensus_population_id |
||
487 | == EgonMapZensusClimateZones.zensus_population_id |
||
488 | ) |
||
489 | .filter(MapZensusGridDistricts.bus_id == mvgd) |
||
490 | ) |
||
491 | |||
492 | df_daily_demand_share = pd.read_sql( |
||
493 | query.statement, query.session.bind, index_col=None |
||
494 | ) |
||
495 | return df_daily_demand_share |
||
496 | |||
497 | |||
498 | @timeitlog |
||
499 | def calc_residential_heat_profiles_per_mvgd(mvgd): |
||
500 | """ |
||
501 | Gets residential heat profiles per building in MV grid for both eGon2035 and |
||
502 | eGon100RE scenario. |
||
503 | |||
504 | Parameters |
||
505 | ---------- |
||
506 | mvgd : int |
||
507 | MV grid ID. |
||
508 | |||
509 | Returns |
||
510 | -------- |
||
511 | pd.DataFrame |
||
512 | Heat demand profiles of buildings. Columns are: |
||
513 | * zensus_population_id : int |
||
514 | Zensus cell ID building is in. |
||
515 | * building_id : int |
||
516 | ID of building. |
||
517 | * day_of_year : int |
||
518 | Day of the year (1 - 365). |
||
519 | * hour : int |
||
520 | Hour of the day (1 - 24). |
||
521 | * eGon2035 : float |
||
522 | Building's residential heat demand in MW, for specified hour of the |
||
523 | year (specified through columns `day_of_year` and `hour`). |
||
524 | * eGon100RE : float |
||
525 | Building's residential heat demand in MW, for specified hour of the |
||
526 | year (specified through columns `day_of_year` and `hour`). |
||
527 | |||
528 | """ |
||
529 | df_peta_demand = get_peta_demand(mvgd) |
||
530 | |||
531 | if df_peta_demand.empty: |
||
532 | return None |
||
533 | |||
534 | df_profiles_ids = get_profile_ids(mvgd) |
||
535 | |||
536 | if df_profiles_ids.empty: |
||
537 | return None |
||
538 | |||
539 | df_profiles = get_daily_profiles( |
||
540 | df_profiles_ids["selected_idp_profiles"].unique() |
||
541 | ) |
||
542 | |||
543 | df_daily_demand_share = get_daily_demand_share(mvgd) |
||
544 | |||
545 | # Merge profile ids to peta demand by zensus_population_id |
||
546 | df_profile_merge = pd.merge( |
||
547 | left=df_peta_demand, right=df_profiles_ids, on="zensus_population_id" |
||
548 | ) |
||
549 | |||
550 | # Merge daily demand to daily profile ids by zensus_population_id and day |
||
551 | df_profile_merge = pd.merge( |
||
552 | left=df_profile_merge, |
||
553 | right=df_daily_demand_share, |
||
554 | on=["zensus_population_id", "day_of_year"], |
||
555 | ) |
||
556 | |||
557 | # Merge daily profiles by profile id |
||
558 | df_profile_merge = pd.merge( |
||
559 | left=df_profile_merge, |
||
560 | right=df_profiles[["idp", "hour"]], |
||
561 | left_on="selected_idp_profiles", |
||
562 | right_index=True, |
||
563 | ) |
||
564 | |||
565 | # Scale profiles |
||
566 | df_profile_merge["eGon2035"] = ( |
||
567 | df_profile_merge["idp"] |
||
568 | .mul(df_profile_merge["daily_demand_share"]) |
||
569 | .mul(df_profile_merge["peta_2035"]) |
||
570 | .div(df_profile_merge["buildings"]) |
||
571 | ) |
||
572 | |||
573 | df_profile_merge["eGon100RE"] = ( |
||
574 | df_profile_merge["idp"] |
||
575 | .mul(df_profile_merge["daily_demand_share"]) |
||
576 | .mul(df_profile_merge["peta_2050"]) |
||
577 | .div(df_profile_merge["buildings"]) |
||
578 | ) |
||
579 | |||
580 | columns = ["zensus_population_id", "building_id", "day_of_year", "hour", |
||
581 | "eGon2035", "eGon100RE"] |
||
582 | |||
583 | return df_profile_merge.loc[:, columns] |
||
584 | |||
585 | |||
586 | View Code Duplication | def plot_heat_supply(resulting_capacities): |
|
587 | |||
588 | from matplotlib import pyplot as plt |
||
589 | |||
590 | mv_grids = db.select_geodataframe( |
||
591 | """ |
||
592 | SELECT * FROM grid.egon_mv_grid_district |
||
593 | """, |
||
594 | index_col="bus_id", |
||
595 | ) |
||
596 | |||
597 | for c in ["CHP", "heat_pump"]: |
||
598 | mv_grids[c] = ( |
||
599 | resulting_capacities[resulting_capacities.carrier == c] |
||
600 | .set_index("mv_grid_id") |
||
601 | .capacity |
||
602 | ) |
||
603 | |||
604 | fig, ax = plt.subplots(1, 1) |
||
605 | mv_grids.boundary.plot(linewidth=0.2, ax=ax, color="black") |
||
606 | mv_grids.plot( |
||
607 | ax=ax, |
||
608 | column=c, |
||
609 | cmap="magma_r", |
||
610 | legend=True, |
||
611 | legend_kwds={ |
||
612 | "label": f"Installed {c} in MW", |
||
613 | "orientation": "vertical", |
||
614 | }, |
||
615 | ) |
||
616 | plt.savefig(f"plots/individual_heat_supply_{c}.png", dpi=300) |
||
617 | |||
618 | |||
619 | @timeit |
||
620 | def get_buildings_with_decentral_heat_demand_in_mv_grid(scenario, mv_grid_id): |
||
621 | """ |
||
622 | Returns building IDs of buildings with decentral heat demand in given MV |
||
623 | grid. |
||
624 | |||
625 | As cells with district heating differ between scenarios, this is also |
||
626 | depending on the scenario. |
||
627 | |||
628 | Parameters |
||
629 | ----------- |
||
630 | scenario : str |
||
631 | Name of scenario. Can be either "eGon2035" or "eGon100RE". |
||
632 | mv_grid_id : int |
||
633 | ID of MV grid. |
||
634 | |||
635 | Returns |
||
636 | -------- |
||
637 | pd.Index(int) |
||
638 | Building IDs (as int) of buildings with decentral heating system in given |
||
639 | MV grid. Type is pandas Index to avoid errors later on when it is |
||
640 | used in a query. |
||
641 | |||
642 | """ |
||
643 | |||
644 | # get zensus cells in grid |
||
645 | zensus_population_ids = db.select_dataframe( |
||
646 | f""" |
||
647 | SELECT zensus_population_id |
||
648 | FROM boundaries.egon_map_zensus_grid_districts |
||
649 | WHERE bus_id = {mv_grid_id} |
||
650 | """, |
||
651 | index_col=None, |
||
652 | ).zensus_population_id.values |
||
653 | |||
654 | # TODO replace with sql adapter? |
||
655 | # ========== Register np datatypes with SQLA ========== |
||
656 | register_adapter(np.float64, adapt_numpy_float64) |
||
657 | register_adapter(np.int64, adapt_numpy_int64) |
||
658 | # ===================================================== |
||
659 | # convert to pd.Index (otherwise type is np.int64, which will for some |
||
660 | # reason throw an error when used in a query) |
||
661 | zensus_population_ids = pd.Index(zensus_population_ids) |
||
662 | |||
663 | # get zensus cells with district heating |
||
664 | from egon.data.datasets.district_heating_areas import ( |
||
665 | MapZensusDistrictHeatingAreas, |
||
666 | ) |
||
667 | |||
668 | with db.session_scope() as session: |
||
669 | query = session.query( |
||
670 | MapZensusDistrictHeatingAreas.zensus_population_id, |
||
671 | ).filter( |
||
672 | MapZensusDistrictHeatingAreas.scenario == scenario, |
||
673 | MapZensusDistrictHeatingAreas.zensus_population_id.in_( |
||
674 | zensus_population_ids |
||
675 | ), |
||
676 | ) |
||
677 | |||
678 | cells_with_dh = pd.read_sql( |
||
679 | query.statement, query.session.bind, index_col=None |
||
680 | ).zensus_population_id.values |
||
681 | |||
682 | # remove zensus cells with district heating |
||
683 | zensus_population_ids = zensus_population_ids.drop( |
||
684 | cells_with_dh, errors="ignore" |
||
685 | ) |
||
686 | |||
687 | # get buildings with decentral heat demand |
||
688 | engine = db.engine() |
||
689 | saio.register_schema("demand", engine) |
||
690 | from saio.demand import egon_heat_timeseries_selected_profiles |
||
691 | |||
692 | with db.session_scope() as session: |
||
693 | query = session.query( |
||
694 | egon_heat_timeseries_selected_profiles.building_id, |
||
695 | ).filter( |
||
696 | egon_heat_timeseries_selected_profiles.zensus_population_id.in_( |
||
697 | zensus_population_ids |
||
698 | ) |
||
699 | ) |
||
700 | |||
701 | buildings_with_heat_demand = pd.read_sql( |
||
702 | query.statement, query.session.bind, index_col=None |
||
703 | ).building_id.values |
||
704 | |||
705 | return buildings_with_heat_demand |
||
706 | |||
707 | |||
708 | def get_total_heat_pump_capacity_of_mv_grid(scenario, mv_grid_id): |
||
709 | """ |
||
710 | Returns total heat pump capacity per grid that was previously defined |
||
711 | (by NEP or pypsa-eur-sec). |
||
712 | |||
713 | Parameters |
||
714 | ----------- |
||
715 | scenario : str |
||
716 | Name of scenario. Can be either "eGon2035" or "eGon100RE". |
||
717 | mv_grid_id : int |
||
718 | ID of MV grid. |
||
719 | |||
720 | Returns |
||
721 | -------- |
||
722 | float |
||
723 | Total heat pump capacity in MW in given MV grid. |
||
724 | |||
725 | """ |
||
726 | from egon.data.datasets.heat_supply import EgonIndividualHeatingSupply |
||
727 | |||
728 | with db.session_scope() as session: |
||
729 | query = ( |
||
730 | session.query( |
||
731 | EgonIndividualHeatingSupply.mv_grid_id, |
||
732 | EgonIndividualHeatingSupply.capacity, |
||
733 | ) |
||
734 | .filter(EgonIndividualHeatingSupply.scenario == scenario) |
||
735 | .filter(EgonIndividualHeatingSupply.carrier == "heat_pump") |
||
736 | .filter(EgonIndividualHeatingSupply.mv_grid_id == mv_grid_id) |
||
737 | ) |
||
738 | |||
739 | hp_cap_mv_grid = pd.read_sql( |
||
740 | query.statement, query.session.bind, index_col="mv_grid_id" |
||
741 | ).capacity.values[0] |
||
742 | |||
743 | return hp_cap_mv_grid |
||
744 | |||
745 | |||
746 | def determine_minimum_hp_capacity_per_building( |
||
747 | peak_heat_demand, flexibility_factor=24 / 18, cop=1.7 |
||
748 | ): |
||
749 | """ |
||
750 | Determines minimum required heat pump capacity. |
||
751 | |||
752 | Parameters |
||
753 | ---------- |
||
754 | peak_heat_demand : pd.Series |
||
755 | Series with peak heat demand per building in MW. Index contains the |
||
756 | building ID. |
||
757 | flexibility_factor : float |
||
758 | Factor to overdimension the heat pump to allow for some flexible |
||
759 | dispatch in times of high heat demand. Per default, a factor of 24/18 |
||
760 | is used, to take into account |
||
761 | |||
762 | Returns |
||
763 | ------- |
||
764 | pd.Series |
||
765 | Pandas series with minimum required heat pump capacity per building in |
||
766 | MW. |
||
767 | |||
768 | """ |
||
769 | return peak_heat_demand * flexibility_factor / cop |
||
770 | |||
771 | |||
772 | def determine_buildings_with_hp_in_mv_grid( |
||
773 | hp_cap_mv_grid, min_hp_cap_per_building |
||
774 | ): |
||
775 | """ |
||
776 | Distributes given total heat pump capacity to buildings based on their peak |
||
777 | heat demand. |
||
778 | |||
779 | Parameters |
||
780 | ----------- |
||
781 | hp_cap_mv_grid : float |
||
782 | Total heat pump capacity in MW in given MV grid. |
||
783 | min_hp_cap_per_building : pd.Series |
||
784 | Pandas series with minimum required heat pump capacity per building |
||
785 | in MW. |
||
786 | |||
787 | Returns |
||
788 | ------- |
||
789 | pd.Index(int) |
||
790 | Building IDs (as int) of buildings to get heat demand time series for. |
||
791 | |||
792 | """ |
||
793 | building_ids = min_hp_cap_per_building.index |
||
794 | |||
795 | # get buildings with PV to give them a higher priority when selecting |
||
796 | # buildings a heat pump will be allocated to |
||
797 | engine = db.engine() |
||
798 | saio.register_schema("supply", engine) |
||
799 | # TODO Adhoc Pv rooftop fix |
||
800 | # from saio.supply import egon_power_plants_pv_roof_building |
||
801 | # |
||
802 | # with db.session_scope() as session: |
||
803 | # query = session.query( |
||
804 | # egon_power_plants_pv_roof_building.building_id |
||
805 | # ).filter( |
||
806 | # egon_power_plants_pv_roof_building.building_id.in_(building_ids) |
||
807 | # ) |
||
808 | # |
||
809 | # buildings_with_pv = pd.read_sql( |
||
810 | # query.statement, query.session.bind, index_col=None |
||
811 | # ).building_id.values |
||
812 | buildings_with_pv = [] |
||
813 | # set different weights for buildings with PV and without PV |
||
814 | weight_with_pv = 1.5 |
||
815 | weight_without_pv = 1.0 |
||
816 | weights = pd.concat( |
||
817 | [ |
||
818 | pd.DataFrame( |
||
819 | {"weight": weight_without_pv}, |
||
820 | index=building_ids.drop(buildings_with_pv, errors="ignore"), |
||
821 | ), |
||
822 | pd.DataFrame({"weight": weight_with_pv}, index=buildings_with_pv), |
||
823 | ] |
||
824 | ) |
||
825 | # normalise weights (probability needs to add up to 1) |
||
826 | weights.weight = weights.weight / weights.weight.sum() |
||
827 | |||
828 | # get random order at which buildings are chosen |
||
829 | np.random.seed(db.credentials()["--random-seed"]) |
||
830 | buildings_with_hp_order = np.random.choice( |
||
831 | weights.index, |
||
832 | size=len(weights), |
||
833 | replace=False, |
||
834 | p=weights.weight.values, |
||
835 | ) |
||
836 | |||
837 | # select buildings until HP capacity in MV grid is reached (some rest |
||
838 | # capacity will remain) |
||
839 | hp_cumsum = min_hp_cap_per_building.loc[buildings_with_hp_order].cumsum() |
||
840 | buildings_with_hp = hp_cumsum[hp_cumsum <= hp_cap_mv_grid].index |
||
841 | |||
842 | # choose random heat pumps until remaining heat pumps are larger than remaining |
||
843 | # heat pump capacity |
||
844 | remaining_hp_cap = ( |
||
845 | hp_cap_mv_grid - min_hp_cap_per_building.loc[buildings_with_hp].sum()) |
||
846 | min_cap_buildings_wo_hp = min_hp_cap_per_building.loc[ |
||
847 | building_ids.drop(buildings_with_hp)] |
||
848 | possible_buildings = min_cap_buildings_wo_hp[ |
||
849 | min_cap_buildings_wo_hp <= remaining_hp_cap].index |
||
850 | while len(possible_buildings) > 0: |
||
851 | random.seed(db.credentials()["--random-seed"]) |
||
852 | new_hp_building = random.choice(possible_buildings) |
||
853 | # add new building to building with HP |
||
854 | buildings_with_hp = buildings_with_hp.append(pd.Index([new_hp_building])) |
||
855 | # determine if there are still possible buildings |
||
856 | remaining_hp_cap = ( |
||
857 | hp_cap_mv_grid - min_hp_cap_per_building.loc[buildings_with_hp].sum()) |
||
858 | min_cap_buildings_wo_hp = min_hp_cap_per_building.loc[ |
||
859 | building_ids.drop(buildings_with_hp)] |
||
860 | possible_buildings = min_cap_buildings_wo_hp[ |
||
861 | min_cap_buildings_wo_hp <= remaining_hp_cap].index |
||
862 | |||
863 | return buildings_with_hp |
||
864 | |||
865 | |||
866 | def desaggregate_hp_capacity(min_hp_cap_per_building, hp_cap_mv_grid): |
||
867 | """ |
||
868 | Desaggregates the required total heat pump capacity to buildings. |
||
869 | |||
870 | All buildings are previously assigned a minimum required heat pump |
||
871 | capacity. If the total heat pump capacity exceeds this, larger heat pumps |
||
872 | are assigned. |
||
873 | |||
874 | Parameters |
||
875 | ------------ |
||
876 | min_hp_cap_per_building : pd.Series |
||
877 | Pandas series with minimum required heat pump capacity per building |
||
878 | in MW. |
||
879 | hp_cap_mv_grid : float |
||
880 | Total heat pump capacity in MW in given MV grid. |
||
881 | |||
882 | Returns |
||
883 | -------- |
||
884 | pd.Series |
||
885 | Pandas series with heat pump capacity per building in MW. |
||
886 | |||
887 | """ |
||
888 | # distribute remaining capacity to all buildings with HP depending on |
||
889 | # installed HP capacity |
||
890 | |||
891 | allocated_cap = min_hp_cap_per_building.sum() |
||
892 | remaining_cap = hp_cap_mv_grid - allocated_cap |
||
893 | |||
894 | fac = remaining_cap / allocated_cap |
||
895 | hp_cap_per_building = ( |
||
896 | min_hp_cap_per_building * fac + min_hp_cap_per_building |
||
897 | ) |
||
898 | return hp_cap_per_building |
||
899 | |||
900 | |||
901 | def determine_hp_cap_pypsa_eur_sec(peak_heat_demand, building_ids): |
||
902 | """ |
||
903 | Determines minimum required HP capacity in MV grid in MW as input for |
||
904 | pypsa-eur-sec. |
||
905 | |||
906 | Parameters |
||
907 | ---------- |
||
908 | peak_heat_demand : pd.Series |
||
909 | Series with peak heat demand per building in MW. Index contains the |
||
910 | building ID. |
||
911 | building_ids : pd.Index(int) |
||
912 | Building IDs (as int) of buildings with decentral heating system in given |
||
913 | MV grid. |
||
914 | |||
915 | Returns |
||
916 | -------- |
||
917 | float |
||
918 | Minimum required HP capacity in MV grid in MW. |
||
919 | |||
920 | """ |
||
921 | if len(building_ids) > 0: |
||
922 | peak_heat_demand = peak_heat_demand.loc[building_ids] |
||
923 | # determine minimum required heat pump capacity per building |
||
924 | min_hp_cap_buildings = determine_minimum_hp_capacity_per_building( |
||
925 | peak_heat_demand |
||
926 | ) |
||
927 | return min_hp_cap_buildings.sum() |
||
928 | else: |
||
929 | return 0.0 |
||
930 | |||
931 | |||
932 | def determine_hp_cap_eGon2035(mv_grid_id, peak_heat_demand, building_ids): |
||
933 | """ |
||
934 | Determines which buildings in the MV grid will have a HP (buildings with PV |
||
935 | rooftop are more likely to be assigned) in the eGon2035 scenario, as well as |
||
936 | their respective HP capacity in MW. |
||
937 | |||
938 | Parameters |
||
939 | ----------- |
||
940 | mv_grid_id : int |
||
941 | ID of MV grid. |
||
942 | peak_heat_demand : pd.Series |
||
943 | Series with peak heat demand per building in MW. Index contains the |
||
944 | building ID. |
||
945 | building_ids : pd.Index(int) |
||
946 | Building IDs (as int) of buildings with decentral heating system in |
||
947 | given MV grid. |
||
948 | |||
949 | """ |
||
950 | |||
951 | if len(building_ids) > 0: |
||
952 | peak_heat_demand = peak_heat_demand.loc[building_ids] |
||
953 | |||
954 | # determine minimum required heat pump capacity per building |
||
955 | min_hp_cap_buildings = determine_minimum_hp_capacity_per_building( |
||
956 | peak_heat_demand |
||
957 | ) |
||
958 | |||
959 | # select buildings that will have a heat pump |
||
960 | hp_cap_grid = get_total_heat_pump_capacity_of_mv_grid( |
||
961 | "eGon2035", mv_grid_id |
||
962 | ) |
||
963 | buildings_with_hp = determine_buildings_with_hp_in_mv_grid( |
||
964 | hp_cap_grid, min_hp_cap_buildings |
||
965 | ) |
||
966 | |||
967 | # distribute total heat pump capacity to all buildings with HP |
||
968 | hp_cap_per_building = desaggregate_hp_capacity( |
||
969 | min_hp_cap_buildings.loc[buildings_with_hp], hp_cap_grid |
||
970 | ) |
||
971 | |||
972 | return hp_cap_per_building |
||
973 | |||
974 | else: |
||
975 | return pd.Series() |
||
976 | |||
977 | |||
978 | def determine_hp_cap_eGon100RE(mv_grid_id): |
||
979 | """Wrapper function to determine Heat Pump capacities |
||
980 | for scenario eGon100RE. All buildings without district heating get a heat |
||
981 | pump capacity assigned. |
||
982 | """ |
||
983 | |||
984 | # determine minimum required heat pump capacity per building |
||
985 | building_ids = get_buildings_with_decentral_heat_demand_in_mv_grid( |
||
986 | "eGon100RE", mv_grid_id |
||
987 | ) |
||
988 | |||
989 | # TODO get peak demand from db |
||
990 | peak_heat_demand = get_peak_demand_per_building( |
||
991 | "eGon100RE", building_ids |
||
992 | ) |
||
993 | |||
994 | # determine minimum required heat pump capacity per building |
||
995 | min_hp_cap_buildings = determine_minimum_hp_capacity_per_building( |
||
996 | peak_heat_demand, flexibility_factor=24 / 18, cop=1.7 |
||
997 | ) |
||
998 | |||
999 | # distribute total heat pump capacity to all buildings with HP |
||
1000 | hp_cap_grid = get_total_heat_pump_capacity_of_mv_grid( |
||
1001 | "eGon100RE", mv_grid_id |
||
1002 | ) |
||
1003 | hp_cap_per_building = desaggregate_hp_capacity( |
||
1004 | min_hp_cap_buildings, hp_cap_grid |
||
1005 | ) |
||
1006 | |||
1007 | # ToDo Write desaggregated HP capacity to table |
||
1008 | |||
1009 | |||
1010 | @timeitlog |
||
1011 | def residential_heat_peak_load_export_bulk(n, max_n=5): |
||
1012 | """n= [1;max_n]""" |
||
1013 | |||
1014 | # ========== Register np datatypes with SQLA ========== |
||
1015 | register_adapter(np.float64, adapt_numpy_float64) |
||
1016 | register_adapter(np.int64, adapt_numpy_int64) |
||
1017 | # ===================================================== |
||
1018 | |||
1019 | log_to_file(residential_heat_peak_load_export_bulk.__qualname__ + f"_{n}") |
||
1020 | if n == 0: |
||
1021 | raise KeyError("n >= 1") |
||
1022 | |||
1023 | # ToDo @Julian warum ist Abfrage so umständlich? |
||
1024 | with db.session_scope() as session: |
||
1025 | query = ( |
||
1026 | session.query( |
||
1027 | MapZensusGridDistricts.bus_id, |
||
1028 | ) |
||
1029 | .filter( |
||
1030 | MapZensusGridDistricts.zensus_population_id |
||
1031 | == EgonPetaHeat.zensus_population_id |
||
1032 | ) |
||
1033 | .filter(EgonPetaHeat.sector == "residential") |
||
1034 | .distinct(MapZensusGridDistricts.bus_id) |
||
1035 | ) |
||
1036 | mvgd_ids = pd.read_sql(query.statement, query.session.bind, index_col=None) |
||
1037 | |||
1038 | mvgd_ids = mvgd_ids.sort_values("bus_id").reset_index(drop=True) |
||
1039 | |||
1040 | mvgd_ids = np.array_split(mvgd_ids["bus_id"].values, max_n) |
||
1041 | |||
1042 | # TODO mvgd_ids = [kleines mvgd] |
||
1043 | for mvgd in [1556]: #mvgd_ids[n - 1]: |
||
1044 | |||
1045 | logger.trace(f"MVGD={mvgd} | Start") |
||
1046 | |||
1047 | # ############### get residential heat demand profiles ############### |
||
1048 | df_heat_ts = calc_residential_heat_profiles_per_mvgd( |
||
1049 | mvgd=mvgd |
||
1050 | ) |
||
1051 | |||
1052 | # pivot to allow aggregation with CTS profiles |
||
1053 | df_heat_ts_2035 = df_heat_ts.loc[ |
||
1054 | :, ["building_id", "day_of_year", "hour", "eGon2035"]] |
||
1055 | df_heat_ts_2035 = df_heat_ts_2035.pivot( |
||
1056 | index=["day_of_year", "hour"], |
||
1057 | columns="building_id", |
||
1058 | values="eGon2035", |
||
1059 | ) |
||
1060 | df_heat_ts_2035 = df_heat_ts_2035.sort_index().reset_index(drop=True) |
||
1061 | |||
1062 | df_heat_ts_100RE = df_heat_ts.loc[ |
||
1063 | :, ["building_id", "day_of_year", "hour", "eGon100RE"]] |
||
1064 | df_heat_ts_100RE = df_heat_ts_100RE.pivot( |
||
1065 | index=["day_of_year", "hour"], |
||
1066 | columns="building_id", |
||
1067 | values="eGon100RE", |
||
1068 | ) |
||
1069 | df_heat_ts_100RE = df_heat_ts_100RE.sort_index().reset_index(drop=True) |
||
1070 | |||
1071 | del df_heat_ts |
||
1072 | |||
1073 | # ############### get CTS heat demand profiles ############### |
||
1074 | heat_demand_cts_ts_2035 = calc_cts_building_profiles( |
||
1075 | egon_building_ids=[644, 645], |
||
1076 | bus_ids=[1366], |
||
1077 | scenario="eGon2035", |
||
1078 | sector="heat", |
||
1079 | ) |
||
1080 | heat_demand_cts_ts_2035.rename( |
||
1081 | columns={644: 1225533, 645: 1225527}, inplace=True) |
||
1082 | heat_demand_cts_ts_100RE = calc_cts_building_profiles( |
||
1083 | egon_building_ids=[644, 645], |
||
1084 | bus_ids=[1366], |
||
1085 | scenario="eGon100RE", |
||
1086 | sector="heat", |
||
1087 | ) |
||
1088 | heat_demand_cts_ts_100RE.rename( |
||
1089 | columns={644: 1225533, 645: 1225527}, inplace=True) |
||
1090 | # ToDo change back |
||
1091 | # heat_demand_cts_ts_2035 = calc_cts_building_profiles( |
||
1092 | # egon_building_ids=df_heat_ts.building_id.unique(), |
||
1093 | # bus_ids=[mvgd], |
||
1094 | # scenario="eGon2035", |
||
1095 | # sector="heat", |
||
1096 | # ) |
||
1097 | # heat_demand_cts_ts_100RE = calc_cts_building_profiles( |
||
1098 | # egon_building_ids=df_heat_ts.building_id.unique(), |
||
1099 | # bus_ids=[mvgd], |
||
1100 | # scenario="eGon100RE", |
||
1101 | # sector="heat", |
||
1102 | # ) |
||
1103 | |||
1104 | # ############# aggregate residential and CTS demand profiles ############# |
||
1105 | df_heat_ts_2035 = pd.concat( |
||
1106 | [df_heat_ts_2035, heat_demand_cts_ts_2035], axis=1 |
||
1107 | ) |
||
1108 | df_heat_ts_2035 = df_heat_ts_2035.groupby(axis=1, level=0).sum() |
||
1109 | |||
1110 | df_heat_ts_100RE = pd.concat( |
||
1111 | [df_heat_ts_100RE, heat_demand_cts_ts_100RE], axis=1 |
||
1112 | ) |
||
1113 | df_heat_ts_100RE = df_heat_ts_100RE.groupby(axis=1, level=0).sum() |
||
1114 | |||
1115 | del heat_demand_cts_ts_2035, heat_demand_cts_ts_100RE |
||
1116 | |||
1117 | # ##################### export peak loads to DB ################### |
||
1118 | |||
1119 | # ToDo @Julian kombinierte peak load oder getrennt nach residential und CTS? |
||
1120 | df_peak_loads_2035 = df_heat_ts_2035.max() |
||
1121 | df_peak_loads_100RE = df_heat_ts_100RE.max() |
||
1122 | |||
1123 | df_peak_loads_db_2035 = df_peak_loads_2035.reset_index().melt( |
||
1124 | id_vars="building_id", |
||
1125 | var_name="scenario", |
||
1126 | value_name="peak_load_in_w", |
||
1127 | ) |
||
1128 | df_peak_loads_db_2035["scenario"] = "eGon2035" |
||
1129 | df_peak_loads_db_100RE = df_peak_loads_100RE.reset_index().melt( |
||
1130 | id_vars="building_id", |
||
1131 | var_name="scenario", |
||
1132 | value_name="peak_load_in_w", |
||
1133 | ) |
||
1134 | df_peak_loads_db_100RE["scenario"] = "eGon100RE" |
||
1135 | df_peak_loads_db = pd.concat( |
||
1136 | [df_peak_loads_db_2035, df_peak_loads_db_100RE]) |
||
1137 | |||
1138 | del df_peak_loads_db_2035, df_peak_loads_db_100RE |
||
1139 | |||
1140 | df_peak_loads_db["sector"] = "residential+CTS" |
||
1141 | # From MW to W |
||
1142 | # ToDo @Julian warum in W? |
||
1143 | df_peak_loads_db["peak_load_in_w"] = df_peak_loads_db["peak_load_in_w"] * 1e6 |
||
1144 | |||
1145 | logger.trace(f"MVGD={mvgd} | Export to DB") |
||
1146 | |||
1147 | # TODO export peak loads all buildings both scenarios to db |
||
1148 | # write_table_to_postgres( |
||
1149 | # df_peak_loads_db, BuildingHeatPeakLoads, engine=engine |
||
1150 | # ) |
||
1151 | # logger.trace(f"MVGD={mvgd} | Done") |
||
1152 | |||
1153 | # ######## determine HP capacity for NEP scenario and pypsa-eur-sec ########## |
||
1154 | |||
1155 | # get buildings with decentral heating systems in both scenarios |
||
1156 | buildings_decentral_heating_2035 = ( |
||
1157 | get_buildings_with_decentral_heat_demand_in_mv_grid( |
||
1158 | "eGon2035", mvgd |
||
1159 | ) |
||
1160 | ) |
||
1161 | buildings_decentral_heating_100RE = ( |
||
1162 | get_buildings_with_decentral_heat_demand_in_mv_grid( |
||
1163 | "eGon100RE", mvgd |
||
1164 | ) |
||
1165 | ) |
||
1166 | |||
1167 | # determine HP capacity per building for NEP2035 scenario |
||
1168 | hp_cap_per_building_2035 = determine_hp_cap_eGon2035( |
||
1169 | mvgd, df_peak_loads_2035, buildings_decentral_heating_2035) |
||
1170 | buildings_hp_2035 = hp_cap_per_building_2035.index |
||
1171 | buildings_gas_2035 = pd.Index(buildings_decentral_heating_2035).drop( |
||
1172 | buildings_hp_2035) |
||
1173 | |||
1174 | # determine minimum HP capacity per building for pypsa-eur-sec |
||
1175 | hp_min_cap_mv_grid_pypsa_eur_sec = determine_hp_cap_pypsa_eur_sec( |
||
1176 | df_peak_loads_100RE, buildings_decentral_heating_100RE) |
||
1177 | |||
1178 | # ######################## write HP capacities to DB ###################### |
||
1179 | |||
1180 | # ToDo Write HP capacity per building in 2035 (hp_cap_per_building_2035) to |
||
1181 | # db table |
||
1182 | |||
1183 | # ToDo Write minimum required capacity in pypsa-eur-sec |
||
1184 | # (hp_min_cap_mv_grid_pypsa_eur_sec) to |
||
1185 | # db table for pypsa-eur-sec input |
||
1186 | |||
1187 | # ################ write aggregated heat profiles to DB ################### |
||
1188 | |||
1189 | # heat demand time series for buildings with heat pumps |
||
1190 | |||
1191 | # ToDo Write aggregated heat demand time series of buildings with HP to |
||
1192 | # table to be used in eTraGo - egon_etrago_timeseries_individual_heating |
||
1193 | # TODO Clara uses this table already |
||
1194 | # but will not need it anymore for pypsa eur sec - @Julian? |
||
1195 | # EgonEtragoTimeseriesIndividualHeating |
||
1196 | df_heat_ts_2035.loc[:, buildings_hp_2035].sum(axis=1) |
||
1197 | df_heat_ts_100RE.loc[:, buildings_decentral_heating_100RE].sum(axis=1) |
||
1198 | |||
1199 | # Change format |
||
1200 | # ToDo @Julian noch notwendig? |
||
1201 | # data = CTS_grid.drop(columns="scenario") |
||
1202 | # df_etrago_cts_heat_profiles = pd.DataFrame( |
||
1203 | # index=data.index, columns=["scn_name", "p_set"] |
||
1204 | # ) |
||
1205 | # df_etrago_cts_heat_profiles.p_set = data.values.tolist() |
||
1206 | # df_etrago_cts_heat_profiles.scn_name = CTS_grid["scenario"] |
||
1207 | # df_etrago_cts_heat_profiles.reset_index(inplace=True) |
||
1208 | |||
1209 | # # Drop and recreate Table if exists |
||
1210 | # EgonEtragoTimeseriesIndividualHeating.__table__.drop(bind=db.engine(), |
||
1211 | # checkfirst=True) |
||
1212 | # EgonEtragoTimeseriesIndividualHeating.__table__.create(bind=db.engine(), |
||
1213 | # checkfirst=True) |
||
1214 | # |
||
1215 | # # Write heat ts into db |
||
1216 | # with db.session_scope() as session: |
||
1217 | # session.bulk_insert_mappings( |
||
1218 | # EgonEtragoTimeseriesIndividualHeating, |
||
1219 | # df_etrago_cts_heat_profiles.to_dict(orient="records"), |
||
1220 | # ) |
||
1221 | |||
1222 | # heat demand time series for buildings with gas boilers (only 2035 scenario) |
||
1223 | df_heat_ts_2035.loc[:, buildings_gas_2035].sum(axis=1) |
||
1224 | # ToDo Write other heat demand time series to database - gas voronoi |
||
1225 | # (grid - egon_gas_voronoi mit carrier CH4) |
||
1226 | # erstmal intermediate table |
||
1227 | |||
1228 | |||
1229 | def residential_heat_peak_load_export_bulk_1(): |
||
1230 | residential_heat_peak_load_export_bulk(1, max_n=5) |
||
1231 | |||
1232 | |||
1233 | def residential_heat_peak_load_export_bulk_2(): |
||
1234 | residential_heat_peak_load_export_bulk(2, max_n=5) |
||
1235 | |||
1236 | |||
1237 | def residential_heat_peak_load_export_bulk_3(): |
||
1238 | residential_heat_peak_load_export_bulk(3, max_n=5) |
||
1239 | |||
1240 | |||
1241 | def residential_heat_peak_load_export_bulk_4(): |
||
1242 | residential_heat_peak_load_export_bulk(4, max_n=5) |
||
1243 | |||
1244 | |||
1245 | def residential_heat_peak_load_export_bulk_5(): |
||
1246 | residential_heat_peak_load_export_bulk(5, max_n=5) |
||
1247 | |||
1248 | |||
1249 | def create_peak_load_table(): |
||
1250 | |||
1251 | BuildingHeatPeakLoads.__table__.create(bind=engine, checkfirst=True) |
||
1252 | |||
1253 | |||
1254 | def delete_peak_loads_if_existing(): |
||
1255 | """Remove all entries""" |
||
1256 | |||
1257 | with db.session_scope() as session: |
||
1258 | # Buses |
||
1259 | session.query(BuildingHeatPeakLoads).filter( |
||
1260 | BuildingHeatPeakLoads.sector == "residential" |
||
1261 | ).delete(synchronize_session=False) |
||
1262 | |||
1263 | |||
1264 | if __name__ == "__main__": |
||
1265 | #calc_residential_heat_profiles_per_mvgd(mvgd) |
||
1266 | residential_heat_peak_load_export_bulk_1() |
||
1267 |