1
|
|
|
"""The central module containing all code dealing with |
2
|
|
|
individual heat supply. |
3
|
|
|
|
4
|
|
|
""" |
5
|
|
|
from loguru import logger |
6
|
|
|
import numpy as np |
7
|
|
|
import pandas as pd |
8
|
|
|
import random |
9
|
|
|
import saio |
10
|
|
|
|
11
|
|
|
from pathlib import Path |
12
|
|
|
import time |
13
|
|
|
|
14
|
|
|
from psycopg2.extensions import AsIs, register_adapter |
15
|
|
|
from sqlalchemy import ARRAY, REAL, Column, Integer, String |
16
|
|
|
from sqlalchemy.ext.declarative import declarative_base |
17
|
|
|
import geopandas as gpd |
18
|
|
|
|
19
|
|
|
|
20
|
|
|
from egon.data import config, db |
21
|
|
|
from egon.data.datasets import Dataset |
22
|
|
|
from egon.data.datasets.electricity_demand_timeseries.cts_buildings import ( |
23
|
|
|
calc_cts_building_profiles, |
24
|
|
|
) |
25
|
|
|
from egon.data.datasets.electricity_demand_timeseries.tools import ( |
26
|
|
|
write_table_to_postgres, |
27
|
|
|
) |
28
|
|
|
from egon.data.datasets.heat_demand import EgonPetaHeat |
29
|
|
|
from egon.data.datasets.heat_demand_timeseries.daily import ( |
30
|
|
|
EgonDailyHeatDemandPerClimateZone, |
31
|
|
|
EgonMapZensusClimateZones, |
32
|
|
|
) |
33
|
|
|
from egon.data.datasets.heat_demand_timeseries.idp_pool import ( |
34
|
|
|
EgonHeatTimeseries, |
35
|
|
|
) |
36
|
|
|
# get zensus cells with district heating |
37
|
|
|
from egon.data.datasets.zensus_mv_grid_districts import MapZensusGridDistricts |
38
|
|
|
|
39
|
|
|
engine = db.engine() |
40
|
|
|
Base = declarative_base() |
41
|
|
|
|
42
|
|
|
|
43
|
|
|
class EgonEtragoTimeseriesIndividualHeating(Base): |
44
|
|
|
__tablename__ = "egon_etrago_timeseries_individual_heating" |
45
|
|
|
__table_args__ = {"schema": "demand"} |
46
|
|
|
bus_id = Column(Integer, primary_key=True) |
47
|
|
|
scenario = Column(String, primary_key=True) |
48
|
|
|
carrier = Column(String, primary_key=True) |
49
|
|
|
dist_aggregated_mw = Column(ARRAY(REAL)) |
50
|
|
|
|
51
|
|
|
|
52
|
|
|
# ToDo @Julian muss angepasst werden? |
53
|
|
|
class HeatPumpsEtrago(Dataset): |
54
|
|
|
def __init__(self, dependencies): |
55
|
|
|
super().__init__( |
56
|
|
|
name="HeatPumpsEtrago", |
57
|
|
|
version="0.0.0", |
58
|
|
|
dependencies=dependencies, |
59
|
|
|
tasks=(determine_hp_cap_pypsa_eur_sec,), |
60
|
|
|
) |
61
|
|
|
|
62
|
|
|
|
63
|
|
|
# ToDo @Julian muss angepasst werden? |
64
|
|
|
class HeatPumps2035(Dataset): |
65
|
|
|
def __init__(self, dependencies): |
66
|
|
|
super().__init__( |
67
|
|
|
name="HeatPumps2035", |
68
|
|
|
version="0.0.0", |
69
|
|
|
dependencies=dependencies, |
70
|
|
|
tasks=(determine_hp_cap_eGon2035,), |
71
|
|
|
) |
72
|
|
|
|
73
|
|
|
|
74
|
|
|
# ToDo @Julian muss angepasst werden? |
75
|
|
|
class HeatPumps2050(Dataset): |
76
|
|
|
def __init__(self, dependencies): |
77
|
|
|
super().__init__( |
78
|
|
|
name="HeatPumps2050", |
79
|
|
|
version="0.0.0", |
80
|
|
|
dependencies=dependencies, |
81
|
|
|
tasks=(determine_hp_cap_eGon100RE), |
82
|
|
|
) |
83
|
|
|
|
84
|
|
|
|
85
|
|
|
class BuildingHeatPeakLoads(Base): |
86
|
|
|
__tablename__ = "egon_building_heat_peak_loads" |
87
|
|
|
__table_args__ = {"schema": "demand"} |
88
|
|
|
|
89
|
|
|
building_id = Column(Integer, primary_key=True) |
90
|
|
|
scenario = Column(String, primary_key=True) |
91
|
|
|
sector = Column(String, primary_key=True) |
92
|
|
|
peak_load_in_w = Column(REAL) |
93
|
|
|
|
94
|
|
|
|
95
|
|
|
def adapt_numpy_float64(numpy_float64): |
96
|
|
|
return AsIs(numpy_float64) |
97
|
|
|
|
98
|
|
|
|
99
|
|
|
def adapt_numpy_int64(numpy_int64): |
100
|
|
|
return AsIs(numpy_int64) |
101
|
|
|
|
102
|
|
|
|
103
|
|
|
def log_to_file(name): |
104
|
|
|
"""Simple only file logger""" |
105
|
|
|
logger.remove() |
106
|
|
|
logger.add( |
107
|
|
|
Path(f"{name}.log"), |
108
|
|
|
format="{time} {level} {message}", |
109
|
|
|
# filter="my_module", |
110
|
|
|
level="TRACE", |
111
|
|
|
) |
112
|
|
|
logger.trace("Start trace logging") |
113
|
|
|
return logger |
114
|
|
|
|
115
|
|
|
|
116
|
|
|
def timeit(func): |
117
|
|
|
""" |
118
|
|
|
Decorator for measuring function's running time. |
119
|
|
|
""" |
120
|
|
|
|
121
|
|
|
def measure_time(*args, **kw): |
122
|
|
|
start_time = time.time() |
123
|
|
|
result = func(*args, **kw) |
124
|
|
|
print( |
125
|
|
|
"Processing time of %s(): %.2f seconds." |
126
|
|
|
% (func.__qualname__, time.time() - start_time) |
127
|
|
|
) |
128
|
|
|
return result |
129
|
|
|
|
130
|
|
|
return measure_time |
131
|
|
|
|
132
|
|
|
|
133
|
|
|
def timeitlog(func): |
134
|
|
|
""" |
135
|
|
|
Decorator for measuring running time of residential heat peak load and |
136
|
|
|
logging it. |
137
|
|
|
""" |
138
|
|
|
|
139
|
|
|
def measure_time(*args, **kw): |
140
|
|
|
start_time = time.time() |
141
|
|
|
result = func(*args, **kw) |
142
|
|
|
process_time = time.time() - start_time |
143
|
|
|
try: |
144
|
|
|
mvgd = kw["mvgd"] |
145
|
|
|
except KeyError: |
146
|
|
|
mvgd = "bulk" |
147
|
|
|
statement = ( |
148
|
|
|
f"MVGD={mvgd} | Processing time of {func.__qualname__} | " |
149
|
|
|
f"{time.strftime('%H h, %M min, %S s', time.gmtime(process_time))}" |
150
|
|
|
) |
151
|
|
|
logger.trace(statement) |
152
|
|
|
print(statement) |
153
|
|
|
return result |
154
|
|
|
|
155
|
|
|
return measure_time |
156
|
|
|
|
157
|
|
|
|
158
|
|
|
def cascade_per_technology( |
159
|
|
|
heat_per_mv, |
160
|
|
|
technologies, |
161
|
|
|
scenario, |
162
|
|
|
distribution_level, |
163
|
|
|
max_size_individual_chp=0.05, |
164
|
|
|
): |
165
|
|
|
|
166
|
|
|
"""Add plants for individual heat. |
167
|
|
|
Currently only on mv grid district level. |
168
|
|
|
|
169
|
|
|
Parameters |
170
|
|
|
---------- |
171
|
|
|
mv_grid_districts : geopandas.geodataframe.GeoDataFrame |
172
|
|
|
MV grid districts including the heat demand |
173
|
|
|
technologies : pandas.DataFrame |
174
|
|
|
List of supply technologies and their parameters |
175
|
|
|
scenario : str |
176
|
|
|
Name of the scenario |
177
|
|
|
max_size_individual_chp : float |
178
|
|
|
Maximum capacity of an individual chp in MW |
179
|
|
|
Returns |
180
|
|
|
------- |
181
|
|
|
mv_grid_districts : geopandas.geodataframe.GeoDataFrame |
182
|
|
|
MV grid district which need additional individual heat supply |
183
|
|
|
technologies : pandas.DataFrame |
184
|
|
|
List of supply technologies and their parameters |
185
|
|
|
append_df : pandas.DataFrame |
186
|
|
|
List of plants per mv grid for the selected technology |
187
|
|
|
|
188
|
|
|
""" |
189
|
|
|
sources = config.datasets()["heat_supply"]["sources"] |
190
|
|
|
|
191
|
|
|
tech = technologies[technologies.priority == technologies.priority.max()] |
192
|
|
|
|
193
|
|
|
# Distribute heat pumps linear to remaining demand. |
194
|
|
|
if tech.index == "heat_pump": |
195
|
|
|
|
196
|
|
|
if distribution_level == "federal_state": |
197
|
|
|
# Select target values per federal state |
198
|
|
|
target = db.select_dataframe( |
199
|
|
|
f""" |
200
|
|
|
SELECT DISTINCT ON (gen) gen as state, capacity |
201
|
|
|
FROM {sources['scenario_capacities']['schema']}. |
202
|
|
|
{sources['scenario_capacities']['table']} a |
203
|
|
|
JOIN {sources['federal_states']['schema']}. |
204
|
|
|
{sources['federal_states']['table']} b |
205
|
|
|
ON a.nuts = b.nuts |
206
|
|
|
WHERE scenario_name = '{scenario}' |
207
|
|
|
AND carrier = 'residential_rural_heat_pump' |
208
|
|
|
""", |
209
|
|
|
index_col="state", |
210
|
|
|
) |
211
|
|
|
|
212
|
|
|
heat_per_mv["share"] = heat_per_mv.groupby( |
213
|
|
|
"state" |
214
|
|
|
).remaining_demand.apply(lambda grp: grp / grp.sum()) |
215
|
|
|
|
216
|
|
|
append_df = ( |
217
|
|
|
heat_per_mv["share"] |
218
|
|
|
.mul(target.capacity[heat_per_mv["state"]].values) |
219
|
|
|
.reset_index() |
220
|
|
|
) |
221
|
|
|
else: |
222
|
|
|
# Select target value for Germany |
223
|
|
|
target = db.select_dataframe( |
224
|
|
|
f""" |
225
|
|
|
SELECT SUM(capacity) AS capacity |
226
|
|
|
FROM {sources['scenario_capacities']['schema']}. |
227
|
|
|
{sources['scenario_capacities']['table']} a |
228
|
|
|
WHERE scenario_name = '{scenario}' |
229
|
|
|
AND carrier = 'residential_rural_heat_pump' |
230
|
|
|
""" |
231
|
|
|
) |
232
|
|
|
|
233
|
|
|
heat_per_mv["share"] = ( |
234
|
|
|
heat_per_mv.remaining_demand |
235
|
|
|
/ heat_per_mv.remaining_demand.sum() |
236
|
|
|
) |
237
|
|
|
|
238
|
|
|
append_df = ( |
239
|
|
|
heat_per_mv["share"].mul(target.capacity[0]).reset_index() |
240
|
|
|
) |
241
|
|
|
|
242
|
|
|
append_df.rename( |
243
|
|
|
{"bus_id": "mv_grid_id", "share": "capacity"}, axis=1, inplace=True |
244
|
|
|
) |
245
|
|
|
|
246
|
|
|
elif tech.index == "gas_boiler": |
247
|
|
|
|
248
|
|
|
append_df = pd.DataFrame( |
249
|
|
|
data={ |
250
|
|
|
"capacity": heat_per_mv.remaining_demand.div( |
251
|
|
|
tech.estimated_flh.values[0] |
252
|
|
|
), |
253
|
|
|
"carrier": "residential_rural_gas_boiler", |
254
|
|
|
"mv_grid_id": heat_per_mv.index, |
255
|
|
|
"scenario": scenario, |
256
|
|
|
} |
257
|
|
|
) |
258
|
|
|
|
259
|
|
|
if append_df.size > 0: |
|
|
|
|
260
|
|
|
append_df["carrier"] = tech.index[0] |
261
|
|
|
heat_per_mv.loc[ |
262
|
|
|
append_df.mv_grid_id, "remaining_demand" |
263
|
|
|
] -= append_df.set_index("mv_grid_id").capacity.mul( |
264
|
|
|
tech.estimated_flh.values[0] |
265
|
|
|
) |
266
|
|
|
|
267
|
|
|
heat_per_mv = heat_per_mv[heat_per_mv.remaining_demand >= 0] |
268
|
|
|
|
269
|
|
|
technologies = technologies.drop(tech.index) |
270
|
|
|
|
271
|
|
|
return heat_per_mv, technologies, append_df |
272
|
|
|
|
273
|
|
|
|
274
|
|
|
def cascade_heat_supply_indiv(scenario, distribution_level, plotting=True): |
275
|
|
|
"""Assigns supply strategy for individual heating in four steps. |
276
|
|
|
|
277
|
|
|
1.) all small scale CHP are connected. |
278
|
|
|
2.) If the supply can not meet the heat demand, solar thermal collectors |
279
|
|
|
are attached. This is not implemented yet, since individual |
280
|
|
|
solar thermal plants are not considered in eGon2035 scenario. |
281
|
|
|
3.) If this is not suitable, the mv grid is also supplied by heat pumps. |
282
|
|
|
4.) The last option are individual gas boilers. |
283
|
|
|
|
284
|
|
|
Parameters |
285
|
|
|
---------- |
286
|
|
|
scenario : str |
287
|
|
|
Name of scenario |
288
|
|
|
plotting : bool, optional |
289
|
|
|
Choose if individual heating supply is plotted. The default is True. |
290
|
|
|
|
291
|
|
|
Returns |
292
|
|
|
------- |
293
|
|
|
resulting_capacities : pandas.DataFrame |
294
|
|
|
List of plants per mv grid |
295
|
|
|
|
296
|
|
|
""" |
297
|
|
|
|
298
|
|
|
sources = config.datasets()["heat_supply"]["sources"] |
299
|
|
|
|
300
|
|
|
# Select residential heat demand per mv grid district and federal state |
301
|
|
|
heat_per_mv = db.select_geodataframe( |
302
|
|
|
f""" |
303
|
|
|
SELECT d.bus_id as bus_id, SUM(demand) as demand, |
304
|
|
|
c.vg250_lan as state, d.geom |
305
|
|
|
FROM {sources['heat_demand']['schema']}. |
306
|
|
|
{sources['heat_demand']['table']} a |
307
|
|
|
JOIN {sources['map_zensus_grid']['schema']}. |
308
|
|
|
{sources['map_zensus_grid']['table']} b |
309
|
|
|
ON a.zensus_population_id = b.zensus_population_id |
310
|
|
|
JOIN {sources['map_vg250_grid']['schema']}. |
311
|
|
|
{sources['map_vg250_grid']['table']} c |
312
|
|
|
ON b.bus_id = c.bus_id |
313
|
|
|
JOIN {sources['mv_grids']['schema']}. |
314
|
|
|
{sources['mv_grids']['table']} d |
315
|
|
|
ON d.bus_id = c.bus_id |
316
|
|
|
WHERE scenario = '{scenario}' |
317
|
|
|
AND a.zensus_population_id NOT IN ( |
318
|
|
|
SELECT zensus_population_id |
319
|
|
|
FROM {sources['map_dh']['schema']}.{sources['map_dh']['table']} |
320
|
|
|
WHERE scenario = '{scenario}') |
321
|
|
|
GROUP BY d.bus_id, vg250_lan, geom |
322
|
|
|
""", |
323
|
|
|
index_col="bus_id", |
324
|
|
|
) |
325
|
|
|
|
326
|
|
|
# Store geometry of mv grid |
327
|
|
|
geom_mv = heat_per_mv.geom.centroid.copy() |
328
|
|
|
|
329
|
|
|
# Initalize Dataframe for results |
330
|
|
|
resulting_capacities = pd.DataFrame( |
331
|
|
|
columns=["mv_grid_id", "carrier", "capacity"] |
332
|
|
|
) |
333
|
|
|
|
334
|
|
|
# Set technology data according to |
335
|
|
|
# http://www.wbzu.de/seminare/infopool/infopool-bhkw |
336
|
|
|
# TODO: Add gas boilers and solar themal (eGon100RE) |
337
|
|
|
technologies = pd.DataFrame( |
338
|
|
|
index=["heat_pump", "gas_boiler"], |
339
|
|
|
columns=["estimated_flh", "priority"], |
340
|
|
|
data={"estimated_flh": [4000, 8000], "priority": [2, 1]}, |
341
|
|
|
) |
342
|
|
|
|
343
|
|
|
# In the beginning, the remaining demand equals demand |
344
|
|
|
heat_per_mv["remaining_demand"] = heat_per_mv["demand"] |
345
|
|
|
|
346
|
|
|
# Connect new technologies, if there is still heat demand left |
347
|
|
|
while (len(technologies) > 0) and (len(heat_per_mv) > 0): |
348
|
|
|
# Attach new supply technology |
349
|
|
|
heat_per_mv, technologies, append_df = cascade_per_technology( |
350
|
|
|
heat_per_mv, technologies, scenario, distribution_level |
351
|
|
|
) |
352
|
|
|
# Collect resulting capacities |
353
|
|
|
resulting_capacities = resulting_capacities.append( |
354
|
|
|
append_df, ignore_index=True |
355
|
|
|
) |
356
|
|
|
|
357
|
|
|
if plotting: |
358
|
|
|
plot_heat_supply(resulting_capacities) |
359
|
|
|
|
360
|
|
|
return gpd.GeoDataFrame( |
361
|
|
|
resulting_capacities, |
362
|
|
|
geometry=geom_mv[resulting_capacities.mv_grid_id].values, |
363
|
|
|
) |
364
|
|
|
|
365
|
|
|
|
366
|
|
|
# @timeit |
367
|
|
|
def get_peta_demand(mvgd): |
368
|
|
|
"""only residential""" |
369
|
|
|
|
370
|
|
|
with db.session_scope() as session: |
371
|
|
|
query = ( |
372
|
|
|
session.query( |
373
|
|
|
MapZensusGridDistricts.zensus_population_id, |
374
|
|
|
EgonPetaHeat.demand.label("peta_2035"), |
375
|
|
|
) |
376
|
|
|
.filter(MapZensusGridDistricts.bus_id == mvgd) |
377
|
|
|
.filter( |
378
|
|
|
MapZensusGridDistricts.zensus_population_id |
379
|
|
|
== EgonPetaHeat.zensus_population_id |
380
|
|
|
) |
381
|
|
|
.filter(EgonPetaHeat.scenario == "eGon2035") |
382
|
|
|
.filter(EgonPetaHeat.sector == "residential") |
383
|
|
|
) |
384
|
|
|
|
385
|
|
|
df_peta_2035 = pd.read_sql( |
386
|
|
|
query.statement, query.session.bind, index_col="zensus_population_id" |
387
|
|
|
) |
388
|
|
|
|
389
|
|
|
with db.session_scope() as session: |
390
|
|
|
query = ( |
391
|
|
|
session.query( |
392
|
|
|
MapZensusGridDistricts.zensus_population_id, |
393
|
|
|
EgonPetaHeat.demand.label("peta_2050"), |
394
|
|
|
) |
395
|
|
|
.filter(MapZensusGridDistricts.bus_id == mvgd) |
396
|
|
|
.filter( |
397
|
|
|
MapZensusGridDistricts.zensus_population_id |
398
|
|
|
== EgonPetaHeat.zensus_population_id |
399
|
|
|
) |
400
|
|
|
.filter(EgonPetaHeat.scenario == "eGon100RE") |
401
|
|
|
.filter(EgonPetaHeat.sector == "residential") |
402
|
|
|
) |
403
|
|
|
|
404
|
|
|
df_peta_100RE = pd.read_sql( |
405
|
|
|
query.statement, query.session.bind, index_col="zensus_population_id" |
406
|
|
|
) |
407
|
|
|
|
408
|
|
|
df_peta_demand = pd.concat( |
409
|
|
|
[df_peta_2035, df_peta_100RE], axis=1 |
410
|
|
|
).reset_index() |
411
|
|
|
|
412
|
|
|
return df_peta_demand |
413
|
|
|
|
414
|
|
|
|
415
|
|
|
# @timeit |
416
|
|
|
def get_profile_ids(mvgd): |
417
|
|
|
with db.session_scope() as session: |
418
|
|
|
query = ( |
419
|
|
|
session.query( |
420
|
|
|
MapZensusGridDistricts.zensus_population_id, |
421
|
|
|
EgonHeatTimeseries.building_id, |
422
|
|
|
EgonHeatTimeseries.selected_idp_profiles, |
423
|
|
|
) |
424
|
|
|
.filter(MapZensusGridDistricts.bus_id == mvgd) |
425
|
|
|
.filter( |
426
|
|
|
MapZensusGridDistricts.zensus_population_id |
427
|
|
|
== EgonHeatTimeseries.zensus_population_id |
428
|
|
|
) |
429
|
|
|
) |
430
|
|
|
|
431
|
|
|
df_profiles_ids = pd.read_sql( |
432
|
|
|
query.statement, query.session.bind, index_col=None |
433
|
|
|
) |
434
|
|
|
# Add building count per cell |
435
|
|
|
df_profiles_ids = pd.merge( |
436
|
|
|
left=df_profiles_ids, |
437
|
|
|
right=df_profiles_ids.groupby("zensus_population_id")["building_id"] |
438
|
|
|
.count() |
439
|
|
|
.rename("buildings"), |
440
|
|
|
left_on="zensus_population_id", |
441
|
|
|
right_index=True, |
442
|
|
|
) |
443
|
|
|
|
444
|
|
|
df_profiles_ids = df_profiles_ids.explode("selected_idp_profiles") |
445
|
|
|
df_profiles_ids["day_of_year"] = ( |
446
|
|
|
df_profiles_ids.groupby("building_id").cumcount() + 1 |
447
|
|
|
) |
448
|
|
|
return df_profiles_ids |
449
|
|
|
|
450
|
|
|
|
451
|
|
|
# @timeit |
452
|
|
|
def get_daily_profiles(profile_ids): |
453
|
|
|
saio.register_schema("demand", db.engine()) |
454
|
|
|
from saio.demand import egon_heat_idp_pool |
455
|
|
|
|
456
|
|
|
with db.session_scope() as session: |
457
|
|
|
query = session.query(egon_heat_idp_pool).filter( |
458
|
|
|
egon_heat_idp_pool.index.in_(profile_ids) |
459
|
|
|
) |
460
|
|
|
|
461
|
|
|
df_profiles = pd.read_sql( |
462
|
|
|
query.statement, query.session.bind, index_col="index" |
463
|
|
|
) |
464
|
|
|
|
465
|
|
|
df_profiles = df_profiles.explode("idp") |
466
|
|
|
df_profiles["hour"] = df_profiles.groupby(axis=0, level=0).cumcount() + 1 |
467
|
|
|
|
468
|
|
|
return df_profiles |
469
|
|
|
|
470
|
|
|
|
471
|
|
|
# @timeit |
472
|
|
|
def get_daily_demand_share(mvgd): |
473
|
|
|
|
474
|
|
|
with db.session_scope() as session: |
475
|
|
|
query = ( |
476
|
|
|
session.query( |
477
|
|
|
MapZensusGridDistricts.zensus_population_id, |
478
|
|
|
EgonDailyHeatDemandPerClimateZone.day_of_year, |
479
|
|
|
EgonDailyHeatDemandPerClimateZone.daily_demand_share, |
480
|
|
|
) |
481
|
|
|
.filter( |
482
|
|
|
EgonMapZensusClimateZones.climate_zone |
483
|
|
|
== EgonDailyHeatDemandPerClimateZone.climate_zone |
484
|
|
|
) |
485
|
|
|
.filter( |
486
|
|
|
MapZensusGridDistricts.zensus_population_id |
487
|
|
|
== EgonMapZensusClimateZones.zensus_population_id |
488
|
|
|
) |
489
|
|
|
.filter(MapZensusGridDistricts.bus_id == mvgd) |
490
|
|
|
) |
491
|
|
|
|
492
|
|
|
df_daily_demand_share = pd.read_sql( |
493
|
|
|
query.statement, query.session.bind, index_col=None |
494
|
|
|
) |
495
|
|
|
return df_daily_demand_share |
496
|
|
|
|
497
|
|
|
|
498
|
|
|
@timeitlog |
499
|
|
|
def calc_residential_heat_profiles_per_mvgd(mvgd): |
500
|
|
|
""" |
501
|
|
|
Gets residential heat profiles per building in MV grid for both eGon2035 and |
502
|
|
|
eGon100RE scenario. |
503
|
|
|
|
504
|
|
|
Parameters |
505
|
|
|
---------- |
506
|
|
|
mvgd : int |
507
|
|
|
MV grid ID. |
508
|
|
|
|
509
|
|
|
Returns |
510
|
|
|
-------- |
511
|
|
|
pd.DataFrame |
512
|
|
|
Heat demand profiles of buildings. Columns are: |
513
|
|
|
* zensus_population_id : int |
514
|
|
|
Zensus cell ID building is in. |
515
|
|
|
* building_id : int |
516
|
|
|
ID of building. |
517
|
|
|
* day_of_year : int |
518
|
|
|
Day of the year (1 - 365). |
519
|
|
|
* hour : int |
520
|
|
|
Hour of the day (1 - 24). |
521
|
|
|
* eGon2035 : float |
522
|
|
|
Building's residential heat demand in MW, for specified hour of the |
523
|
|
|
year (specified through columns `day_of_year` and `hour`). |
524
|
|
|
* eGon100RE : float |
525
|
|
|
Building's residential heat demand in MW, for specified hour of the |
526
|
|
|
year (specified through columns `day_of_year` and `hour`). |
527
|
|
|
|
528
|
|
|
""" |
529
|
|
|
df_peta_demand = get_peta_demand(mvgd) |
530
|
|
|
|
531
|
|
|
if df_peta_demand.empty: |
532
|
|
|
return None |
533
|
|
|
|
534
|
|
|
df_profiles_ids = get_profile_ids(mvgd) |
535
|
|
|
|
536
|
|
|
if df_profiles_ids.empty: |
537
|
|
|
return None |
538
|
|
|
|
539
|
|
|
df_profiles = get_daily_profiles( |
540
|
|
|
df_profiles_ids["selected_idp_profiles"].unique() |
541
|
|
|
) |
542
|
|
|
|
543
|
|
|
df_daily_demand_share = get_daily_demand_share(mvgd) |
544
|
|
|
|
545
|
|
|
# Merge profile ids to peta demand by zensus_population_id |
546
|
|
|
df_profile_merge = pd.merge( |
547
|
|
|
left=df_peta_demand, right=df_profiles_ids, on="zensus_population_id" |
548
|
|
|
) |
549
|
|
|
|
550
|
|
|
# Merge daily demand to daily profile ids by zensus_population_id and day |
551
|
|
|
df_profile_merge = pd.merge( |
552
|
|
|
left=df_profile_merge, |
553
|
|
|
right=df_daily_demand_share, |
554
|
|
|
on=["zensus_population_id", "day_of_year"], |
555
|
|
|
) |
556
|
|
|
|
557
|
|
|
# Merge daily profiles by profile id |
558
|
|
|
df_profile_merge = pd.merge( |
559
|
|
|
left=df_profile_merge, |
560
|
|
|
right=df_profiles[["idp", "hour"]], |
561
|
|
|
left_on="selected_idp_profiles", |
562
|
|
|
right_index=True, |
563
|
|
|
) |
564
|
|
|
|
565
|
|
|
# Scale profiles |
566
|
|
|
df_profile_merge["eGon2035"] = ( |
567
|
|
|
df_profile_merge["idp"] |
568
|
|
|
.mul(df_profile_merge["daily_demand_share"]) |
569
|
|
|
.mul(df_profile_merge["peta_2035"]) |
570
|
|
|
.div(df_profile_merge["buildings"]) |
571
|
|
|
) |
572
|
|
|
|
573
|
|
|
df_profile_merge["eGon100RE"] = ( |
574
|
|
|
df_profile_merge["idp"] |
575
|
|
|
.mul(df_profile_merge["daily_demand_share"]) |
576
|
|
|
.mul(df_profile_merge["peta_2050"]) |
577
|
|
|
.div(df_profile_merge["buildings"]) |
578
|
|
|
) |
579
|
|
|
|
580
|
|
|
columns = ["zensus_population_id", "building_id", "day_of_year", "hour", |
581
|
|
|
"eGon2035", "eGon100RE"] |
582
|
|
|
|
583
|
|
|
return df_profile_merge.loc[:, columns] |
584
|
|
|
|
585
|
|
|
|
586
|
|
View Code Duplication |
def plot_heat_supply(resulting_capacities): |
|
|
|
|
587
|
|
|
|
588
|
|
|
from matplotlib import pyplot as plt |
589
|
|
|
|
590
|
|
|
mv_grids = db.select_geodataframe( |
591
|
|
|
""" |
592
|
|
|
SELECT * FROM grid.egon_mv_grid_district |
593
|
|
|
""", |
594
|
|
|
index_col="bus_id", |
595
|
|
|
) |
596
|
|
|
|
597
|
|
|
for c in ["CHP", "heat_pump"]: |
598
|
|
|
mv_grids[c] = ( |
599
|
|
|
resulting_capacities[resulting_capacities.carrier == c] |
600
|
|
|
.set_index("mv_grid_id") |
601
|
|
|
.capacity |
602
|
|
|
) |
603
|
|
|
|
604
|
|
|
fig, ax = plt.subplots(1, 1) |
605
|
|
|
mv_grids.boundary.plot(linewidth=0.2, ax=ax, color="black") |
606
|
|
|
mv_grids.plot( |
607
|
|
|
ax=ax, |
608
|
|
|
column=c, |
609
|
|
|
cmap="magma_r", |
610
|
|
|
legend=True, |
611
|
|
|
legend_kwds={ |
612
|
|
|
"label": f"Installed {c} in MW", |
613
|
|
|
"orientation": "vertical", |
614
|
|
|
}, |
615
|
|
|
) |
616
|
|
|
plt.savefig(f"plots/individual_heat_supply_{c}.png", dpi=300) |
617
|
|
|
|
618
|
|
|
|
619
|
|
|
@timeit |
620
|
|
|
def get_buildings_with_decentral_heat_demand_in_mv_grid(scenario, mv_grid_id): |
621
|
|
|
""" |
622
|
|
|
Returns building IDs of buildings with decentral heat demand in given MV |
623
|
|
|
grid. |
624
|
|
|
|
625
|
|
|
As cells with district heating differ between scenarios, this is also |
626
|
|
|
depending on the scenario. |
627
|
|
|
|
628
|
|
|
Parameters |
629
|
|
|
----------- |
630
|
|
|
scenario : str |
631
|
|
|
Name of scenario. Can be either "eGon2035" or "eGon100RE". |
632
|
|
|
mv_grid_id : int |
633
|
|
|
ID of MV grid. |
634
|
|
|
|
635
|
|
|
Returns |
636
|
|
|
-------- |
637
|
|
|
pd.Index(int) |
638
|
|
|
Building IDs (as int) of buildings with decentral heating system in given |
639
|
|
|
MV grid. Type is pandas Index to avoid errors later on when it is |
640
|
|
|
used in a query. |
641
|
|
|
|
642
|
|
|
""" |
643
|
|
|
|
644
|
|
|
# get zensus cells in grid |
645
|
|
|
zensus_population_ids = db.select_dataframe( |
646
|
|
|
f""" |
647
|
|
|
SELECT zensus_population_id |
648
|
|
|
FROM boundaries.egon_map_zensus_grid_districts |
649
|
|
|
WHERE bus_id = {mv_grid_id} |
650
|
|
|
""", |
651
|
|
|
index_col=None, |
652
|
|
|
).zensus_population_id.values |
653
|
|
|
|
654
|
|
|
# TODO replace with sql adapter? |
655
|
|
|
# ========== Register np datatypes with SQLA ========== |
656
|
|
|
register_adapter(np.float64, adapt_numpy_float64) |
657
|
|
|
register_adapter(np.int64, adapt_numpy_int64) |
658
|
|
|
# ===================================================== |
659
|
|
|
# convert to pd.Index (otherwise type is np.int64, which will for some |
660
|
|
|
# reason throw an error when used in a query) |
661
|
|
|
zensus_population_ids = pd.Index(zensus_population_ids) |
662
|
|
|
|
663
|
|
|
# get zensus cells with district heating |
664
|
|
|
from egon.data.datasets.district_heating_areas import ( |
665
|
|
|
MapZensusDistrictHeatingAreas, |
666
|
|
|
) |
667
|
|
|
|
668
|
|
|
with db.session_scope() as session: |
669
|
|
|
query = session.query( |
670
|
|
|
MapZensusDistrictHeatingAreas.zensus_population_id, |
671
|
|
|
).filter( |
672
|
|
|
MapZensusDistrictHeatingAreas.scenario == scenario, |
673
|
|
|
MapZensusDistrictHeatingAreas.zensus_population_id.in_( |
674
|
|
|
zensus_population_ids |
675
|
|
|
), |
676
|
|
|
) |
677
|
|
|
|
678
|
|
|
cells_with_dh = pd.read_sql( |
679
|
|
|
query.statement, query.session.bind, index_col=None |
680
|
|
|
).zensus_population_id.values |
681
|
|
|
|
682
|
|
|
# remove zensus cells with district heating |
683
|
|
|
zensus_population_ids = zensus_population_ids.drop( |
684
|
|
|
cells_with_dh, errors="ignore" |
685
|
|
|
) |
686
|
|
|
|
687
|
|
|
# get buildings with decentral heat demand |
688
|
|
|
engine = db.engine() |
689
|
|
|
saio.register_schema("demand", engine) |
690
|
|
|
from saio.demand import egon_heat_timeseries_selected_profiles |
691
|
|
|
|
692
|
|
|
with db.session_scope() as session: |
693
|
|
|
query = session.query( |
694
|
|
|
egon_heat_timeseries_selected_profiles.building_id, |
695
|
|
|
).filter( |
696
|
|
|
egon_heat_timeseries_selected_profiles.zensus_population_id.in_( |
697
|
|
|
zensus_population_ids |
698
|
|
|
) |
699
|
|
|
) |
700
|
|
|
|
701
|
|
|
buildings_with_heat_demand = pd.read_sql( |
702
|
|
|
query.statement, query.session.bind, index_col=None |
703
|
|
|
).building_id.values |
704
|
|
|
|
705
|
|
|
return buildings_with_heat_demand |
706
|
|
|
|
707
|
|
|
|
708
|
|
|
def get_total_heat_pump_capacity_of_mv_grid(scenario, mv_grid_id): |
709
|
|
|
""" |
710
|
|
|
Returns total heat pump capacity per grid that was previously defined |
711
|
|
|
(by NEP or pypsa-eur-sec). |
712
|
|
|
|
713
|
|
|
Parameters |
714
|
|
|
----------- |
715
|
|
|
scenario : str |
716
|
|
|
Name of scenario. Can be either "eGon2035" or "eGon100RE". |
717
|
|
|
mv_grid_id : int |
718
|
|
|
ID of MV grid. |
719
|
|
|
|
720
|
|
|
Returns |
721
|
|
|
-------- |
722
|
|
|
float |
723
|
|
|
Total heat pump capacity in MW in given MV grid. |
724
|
|
|
|
725
|
|
|
""" |
726
|
|
|
from egon.data.datasets.heat_supply import EgonIndividualHeatingSupply |
727
|
|
|
|
728
|
|
|
with db.session_scope() as session: |
729
|
|
|
query = ( |
730
|
|
|
session.query( |
731
|
|
|
EgonIndividualHeatingSupply.mv_grid_id, |
732
|
|
|
EgonIndividualHeatingSupply.capacity, |
733
|
|
|
) |
734
|
|
|
.filter(EgonIndividualHeatingSupply.scenario == scenario) |
735
|
|
|
.filter(EgonIndividualHeatingSupply.carrier == "heat_pump") |
736
|
|
|
.filter(EgonIndividualHeatingSupply.mv_grid_id == mv_grid_id) |
737
|
|
|
) |
738
|
|
|
|
739
|
|
|
hp_cap_mv_grid = pd.read_sql( |
740
|
|
|
query.statement, query.session.bind, index_col="mv_grid_id" |
741
|
|
|
).capacity.values[0] |
742
|
|
|
|
743
|
|
|
return hp_cap_mv_grid |
744
|
|
|
|
745
|
|
|
|
746
|
|
|
def determine_minimum_hp_capacity_per_building( |
747
|
|
|
peak_heat_demand, flexibility_factor=24 / 18, cop=1.7 |
748
|
|
|
): |
749
|
|
|
""" |
750
|
|
|
Determines minimum required heat pump capacity. |
751
|
|
|
|
752
|
|
|
Parameters |
753
|
|
|
---------- |
754
|
|
|
peak_heat_demand : pd.Series |
755
|
|
|
Series with peak heat demand per building in MW. Index contains the |
756
|
|
|
building ID. |
757
|
|
|
flexibility_factor : float |
758
|
|
|
Factor to overdimension the heat pump to allow for some flexible |
759
|
|
|
dispatch in times of high heat demand. Per default, a factor of 24/18 |
760
|
|
|
is used, to take into account |
761
|
|
|
|
762
|
|
|
Returns |
763
|
|
|
------- |
764
|
|
|
pd.Series |
765
|
|
|
Pandas series with minimum required heat pump capacity per building in |
766
|
|
|
MW. |
767
|
|
|
|
768
|
|
|
""" |
769
|
|
|
return peak_heat_demand * flexibility_factor / cop |
770
|
|
|
|
771
|
|
|
|
772
|
|
|
def determine_buildings_with_hp_in_mv_grid( |
773
|
|
|
hp_cap_mv_grid, min_hp_cap_per_building |
774
|
|
|
): |
775
|
|
|
""" |
776
|
|
|
Distributes given total heat pump capacity to buildings based on their peak |
777
|
|
|
heat demand. |
778
|
|
|
|
779
|
|
|
Parameters |
780
|
|
|
----------- |
781
|
|
|
hp_cap_mv_grid : float |
782
|
|
|
Total heat pump capacity in MW in given MV grid. |
783
|
|
|
min_hp_cap_per_building : pd.Series |
784
|
|
|
Pandas series with minimum required heat pump capacity per building |
785
|
|
|
in MW. |
786
|
|
|
|
787
|
|
|
Returns |
788
|
|
|
------- |
789
|
|
|
pd.Index(int) |
790
|
|
|
Building IDs (as int) of buildings to get heat demand time series for. |
791
|
|
|
|
792
|
|
|
""" |
793
|
|
|
building_ids = min_hp_cap_per_building.index |
794
|
|
|
|
795
|
|
|
# get buildings with PV to give them a higher priority when selecting |
796
|
|
|
# buildings a heat pump will be allocated to |
797
|
|
|
engine = db.engine() |
798
|
|
|
saio.register_schema("supply", engine) |
799
|
|
|
# TODO Adhoc Pv rooftop fix |
800
|
|
|
# from saio.supply import egon_power_plants_pv_roof_building |
801
|
|
|
# |
802
|
|
|
# with db.session_scope() as session: |
803
|
|
|
# query = session.query( |
804
|
|
|
# egon_power_plants_pv_roof_building.building_id |
805
|
|
|
# ).filter( |
806
|
|
|
# egon_power_plants_pv_roof_building.building_id.in_(building_ids) |
807
|
|
|
# ) |
808
|
|
|
# |
809
|
|
|
# buildings_with_pv = pd.read_sql( |
810
|
|
|
# query.statement, query.session.bind, index_col=None |
811
|
|
|
# ).building_id.values |
812
|
|
|
buildings_with_pv = [] |
813
|
|
|
# set different weights for buildings with PV and without PV |
814
|
|
|
weight_with_pv = 1.5 |
815
|
|
|
weight_without_pv = 1.0 |
816
|
|
|
weights = pd.concat( |
817
|
|
|
[ |
818
|
|
|
pd.DataFrame( |
819
|
|
|
{"weight": weight_without_pv}, |
820
|
|
|
index=building_ids.drop(buildings_with_pv, errors="ignore"), |
821
|
|
|
), |
822
|
|
|
pd.DataFrame({"weight": weight_with_pv}, index=buildings_with_pv), |
823
|
|
|
] |
824
|
|
|
) |
825
|
|
|
# normalise weights (probability needs to add up to 1) |
826
|
|
|
weights.weight = weights.weight / weights.weight.sum() |
827
|
|
|
|
828
|
|
|
# get random order at which buildings are chosen |
829
|
|
|
np.random.seed(db.credentials()["--random-seed"]) |
830
|
|
|
buildings_with_hp_order = np.random.choice( |
831
|
|
|
weights.index, |
832
|
|
|
size=len(weights), |
833
|
|
|
replace=False, |
834
|
|
|
p=weights.weight.values, |
835
|
|
|
) |
836
|
|
|
|
837
|
|
|
# select buildings until HP capacity in MV grid is reached (some rest |
838
|
|
|
# capacity will remain) |
839
|
|
|
hp_cumsum = min_hp_cap_per_building.loc[buildings_with_hp_order].cumsum() |
840
|
|
|
buildings_with_hp = hp_cumsum[hp_cumsum <= hp_cap_mv_grid].index |
841
|
|
|
|
842
|
|
|
# choose random heat pumps until remaining heat pumps are larger than remaining |
843
|
|
|
# heat pump capacity |
844
|
|
|
remaining_hp_cap = ( |
845
|
|
|
hp_cap_mv_grid - min_hp_cap_per_building.loc[buildings_with_hp].sum()) |
846
|
|
|
min_cap_buildings_wo_hp = min_hp_cap_per_building.loc[ |
847
|
|
|
building_ids.drop(buildings_with_hp)] |
848
|
|
|
possible_buildings = min_cap_buildings_wo_hp[ |
849
|
|
|
min_cap_buildings_wo_hp <= remaining_hp_cap].index |
850
|
|
|
while len(possible_buildings) > 0: |
851
|
|
|
random.seed(db.credentials()["--random-seed"]) |
852
|
|
|
new_hp_building = random.choice(possible_buildings) |
853
|
|
|
# add new building to building with HP |
854
|
|
|
buildings_with_hp = buildings_with_hp.append(pd.Index([new_hp_building])) |
855
|
|
|
# determine if there are still possible buildings |
856
|
|
|
remaining_hp_cap = ( |
857
|
|
|
hp_cap_mv_grid - min_hp_cap_per_building.loc[buildings_with_hp].sum()) |
858
|
|
|
min_cap_buildings_wo_hp = min_hp_cap_per_building.loc[ |
859
|
|
|
building_ids.drop(buildings_with_hp)] |
860
|
|
|
possible_buildings = min_cap_buildings_wo_hp[ |
861
|
|
|
min_cap_buildings_wo_hp <= remaining_hp_cap].index |
862
|
|
|
|
863
|
|
|
return buildings_with_hp |
864
|
|
|
|
865
|
|
|
|
866
|
|
|
def desaggregate_hp_capacity(min_hp_cap_per_building, hp_cap_mv_grid): |
867
|
|
|
""" |
868
|
|
|
Desaggregates the required total heat pump capacity to buildings. |
869
|
|
|
|
870
|
|
|
All buildings are previously assigned a minimum required heat pump |
871
|
|
|
capacity. If the total heat pump capacity exceeds this, larger heat pumps |
872
|
|
|
are assigned. |
873
|
|
|
|
874
|
|
|
Parameters |
875
|
|
|
------------ |
876
|
|
|
min_hp_cap_per_building : pd.Series |
877
|
|
|
Pandas series with minimum required heat pump capacity per building |
878
|
|
|
in MW. |
879
|
|
|
hp_cap_mv_grid : float |
880
|
|
|
Total heat pump capacity in MW in given MV grid. |
881
|
|
|
|
882
|
|
|
Returns |
883
|
|
|
-------- |
884
|
|
|
pd.Series |
885
|
|
|
Pandas series with heat pump capacity per building in MW. |
886
|
|
|
|
887
|
|
|
""" |
888
|
|
|
# distribute remaining capacity to all buildings with HP depending on |
889
|
|
|
# installed HP capacity |
890
|
|
|
|
891
|
|
|
allocated_cap = min_hp_cap_per_building.sum() |
892
|
|
|
remaining_cap = hp_cap_mv_grid - allocated_cap |
893
|
|
|
|
894
|
|
|
fac = remaining_cap / allocated_cap |
895
|
|
|
hp_cap_per_building = ( |
896
|
|
|
min_hp_cap_per_building * fac + min_hp_cap_per_building |
897
|
|
|
) |
898
|
|
|
return hp_cap_per_building |
899
|
|
|
|
900
|
|
|
|
901
|
|
|
def determine_hp_cap_pypsa_eur_sec(peak_heat_demand, building_ids): |
902
|
|
|
""" |
903
|
|
|
Determines minimum required HP capacity in MV grid in MW as input for |
904
|
|
|
pypsa-eur-sec. |
905
|
|
|
|
906
|
|
|
Parameters |
907
|
|
|
---------- |
908
|
|
|
peak_heat_demand : pd.Series |
909
|
|
|
Series with peak heat demand per building in MW. Index contains the |
910
|
|
|
building ID. |
911
|
|
|
building_ids : pd.Index(int) |
912
|
|
|
Building IDs (as int) of buildings with decentral heating system in given |
913
|
|
|
MV grid. |
914
|
|
|
|
915
|
|
|
Returns |
916
|
|
|
-------- |
917
|
|
|
float |
918
|
|
|
Minimum required HP capacity in MV grid in MW. |
919
|
|
|
|
920
|
|
|
""" |
921
|
|
|
if len(building_ids) > 0: |
922
|
|
|
peak_heat_demand = peak_heat_demand.loc[building_ids] |
923
|
|
|
# determine minimum required heat pump capacity per building |
924
|
|
|
min_hp_cap_buildings = determine_minimum_hp_capacity_per_building( |
925
|
|
|
peak_heat_demand |
926
|
|
|
) |
927
|
|
|
return min_hp_cap_buildings.sum() |
928
|
|
|
else: |
929
|
|
|
return 0.0 |
930
|
|
|
|
931
|
|
|
|
932
|
|
|
def determine_hp_cap_eGon2035(mv_grid_id, peak_heat_demand, building_ids): |
933
|
|
|
""" |
934
|
|
|
Determines which buildings in the MV grid will have a HP (buildings with PV |
935
|
|
|
rooftop are more likely to be assigned) in the eGon2035 scenario, as well as |
936
|
|
|
their respective HP capacity in MW. |
937
|
|
|
|
938
|
|
|
Parameters |
939
|
|
|
----------- |
940
|
|
|
mv_grid_id : int |
941
|
|
|
ID of MV grid. |
942
|
|
|
peak_heat_demand : pd.Series |
943
|
|
|
Series with peak heat demand per building in MW. Index contains the |
944
|
|
|
building ID. |
945
|
|
|
building_ids : pd.Index(int) |
946
|
|
|
Building IDs (as int) of buildings with decentral heating system in |
947
|
|
|
given MV grid. |
948
|
|
|
|
949
|
|
|
""" |
950
|
|
|
|
951
|
|
|
if len(building_ids) > 0: |
952
|
|
|
peak_heat_demand = peak_heat_demand.loc[building_ids] |
953
|
|
|
|
954
|
|
|
# determine minimum required heat pump capacity per building |
955
|
|
|
min_hp_cap_buildings = determine_minimum_hp_capacity_per_building( |
956
|
|
|
peak_heat_demand |
957
|
|
|
) |
958
|
|
|
|
959
|
|
|
# select buildings that will have a heat pump |
960
|
|
|
hp_cap_grid = get_total_heat_pump_capacity_of_mv_grid( |
961
|
|
|
"eGon2035", mv_grid_id |
962
|
|
|
) |
963
|
|
|
buildings_with_hp = determine_buildings_with_hp_in_mv_grid( |
964
|
|
|
hp_cap_grid, min_hp_cap_buildings |
965
|
|
|
) |
966
|
|
|
|
967
|
|
|
# distribute total heat pump capacity to all buildings with HP |
968
|
|
|
hp_cap_per_building = desaggregate_hp_capacity( |
969
|
|
|
min_hp_cap_buildings.loc[buildings_with_hp], hp_cap_grid |
970
|
|
|
) |
971
|
|
|
|
972
|
|
|
return hp_cap_per_building |
973
|
|
|
|
974
|
|
|
else: |
975
|
|
|
return pd.Series() |
976
|
|
|
|
977
|
|
|
|
978
|
|
|
def determine_hp_cap_eGon100RE(mv_grid_id): |
979
|
|
|
"""Wrapper function to determine Heat Pump capacities |
980
|
|
|
for scenario eGon100RE. All buildings without district heating get a heat |
981
|
|
|
pump capacity assigned. |
982
|
|
|
""" |
983
|
|
|
|
984
|
|
|
# determine minimum required heat pump capacity per building |
985
|
|
|
building_ids = get_buildings_with_decentral_heat_demand_in_mv_grid( |
986
|
|
|
"eGon100RE", mv_grid_id |
987
|
|
|
) |
988
|
|
|
|
989
|
|
|
# TODO get peak demand from db |
990
|
|
|
peak_heat_demand = get_peak_demand_per_building( |
|
|
|
|
991
|
|
|
"eGon100RE", building_ids |
992
|
|
|
) |
993
|
|
|
|
994
|
|
|
# determine minimum required heat pump capacity per building |
995
|
|
|
min_hp_cap_buildings = determine_minimum_hp_capacity_per_building( |
996
|
|
|
peak_heat_demand, flexibility_factor=24 / 18, cop=1.7 |
997
|
|
|
) |
998
|
|
|
|
999
|
|
|
# distribute total heat pump capacity to all buildings with HP |
1000
|
|
|
hp_cap_grid = get_total_heat_pump_capacity_of_mv_grid( |
1001
|
|
|
"eGon100RE", mv_grid_id |
1002
|
|
|
) |
1003
|
|
|
hp_cap_per_building = desaggregate_hp_capacity( |
1004
|
|
|
min_hp_cap_buildings, hp_cap_grid |
1005
|
|
|
) |
1006
|
|
|
|
1007
|
|
|
# ToDo Write desaggregated HP capacity to table |
1008
|
|
|
|
1009
|
|
|
|
1010
|
|
|
@timeitlog |
1011
|
|
|
def residential_heat_peak_load_export_bulk(n, max_n=5): |
1012
|
|
|
"""n= [1;max_n]""" |
1013
|
|
|
|
1014
|
|
|
# ========== Register np datatypes with SQLA ========== |
1015
|
|
|
register_adapter(np.float64, adapt_numpy_float64) |
1016
|
|
|
register_adapter(np.int64, adapt_numpy_int64) |
1017
|
|
|
# ===================================================== |
1018
|
|
|
|
1019
|
|
|
log_to_file(residential_heat_peak_load_export_bulk.__qualname__ + f"_{n}") |
1020
|
|
|
if n == 0: |
1021
|
|
|
raise KeyError("n >= 1") |
1022
|
|
|
|
1023
|
|
|
# ToDo @Julian warum ist Abfrage so umständlich? |
1024
|
|
|
with db.session_scope() as session: |
1025
|
|
|
query = ( |
1026
|
|
|
session.query( |
1027
|
|
|
MapZensusGridDistricts.bus_id, |
1028
|
|
|
) |
1029
|
|
|
.filter( |
1030
|
|
|
MapZensusGridDistricts.zensus_population_id |
1031
|
|
|
== EgonPetaHeat.zensus_population_id |
1032
|
|
|
) |
1033
|
|
|
.filter(EgonPetaHeat.sector == "residential") |
1034
|
|
|
.distinct(MapZensusGridDistricts.bus_id) |
1035
|
|
|
) |
1036
|
|
|
mvgd_ids = pd.read_sql(query.statement, query.session.bind, index_col=None) |
1037
|
|
|
|
1038
|
|
|
mvgd_ids = mvgd_ids.sort_values("bus_id").reset_index(drop=True) |
1039
|
|
|
|
1040
|
|
|
mvgd_ids = np.array_split(mvgd_ids["bus_id"].values, max_n) |
1041
|
|
|
|
1042
|
|
|
# TODO mvgd_ids = [kleines mvgd] |
1043
|
|
|
for mvgd in [1556]: #mvgd_ids[n - 1]: |
1044
|
|
|
|
1045
|
|
|
logger.trace(f"MVGD={mvgd} | Start") |
1046
|
|
|
|
1047
|
|
|
# ############### get residential heat demand profiles ############### |
1048
|
|
|
df_heat_ts = calc_residential_heat_profiles_per_mvgd( |
1049
|
|
|
mvgd=mvgd |
1050
|
|
|
) |
1051
|
|
|
|
1052
|
|
|
# pivot to allow aggregation with CTS profiles |
1053
|
|
|
df_heat_ts_2035 = df_heat_ts.loc[ |
1054
|
|
|
:, ["building_id", "day_of_year", "hour", "eGon2035"]] |
1055
|
|
|
df_heat_ts_2035 = df_heat_ts_2035.pivot( |
1056
|
|
|
index=["day_of_year", "hour"], |
1057
|
|
|
columns="building_id", |
1058
|
|
|
values="eGon2035", |
1059
|
|
|
) |
1060
|
|
|
df_heat_ts_2035 = df_heat_ts_2035.sort_index().reset_index(drop=True) |
1061
|
|
|
|
1062
|
|
|
df_heat_ts_100RE = df_heat_ts.loc[ |
1063
|
|
|
:, ["building_id", "day_of_year", "hour", "eGon100RE"]] |
1064
|
|
|
df_heat_ts_100RE = df_heat_ts_100RE.pivot( |
1065
|
|
|
index=["day_of_year", "hour"], |
1066
|
|
|
columns="building_id", |
1067
|
|
|
values="eGon100RE", |
1068
|
|
|
) |
1069
|
|
|
df_heat_ts_100RE = df_heat_ts_100RE.sort_index().reset_index(drop=True) |
1070
|
|
|
|
1071
|
|
|
del df_heat_ts |
1072
|
|
|
|
1073
|
|
|
# ############### get CTS heat demand profiles ############### |
1074
|
|
|
heat_demand_cts_ts_2035 = calc_cts_building_profiles( |
1075
|
|
|
egon_building_ids=[644, 645], |
1076
|
|
|
bus_ids=[1366], |
1077
|
|
|
scenario="eGon2035", |
1078
|
|
|
sector="heat", |
1079
|
|
|
) |
1080
|
|
|
heat_demand_cts_ts_2035.rename( |
1081
|
|
|
columns={644: 1225533, 645: 1225527}, inplace=True) |
1082
|
|
|
heat_demand_cts_ts_100RE = calc_cts_building_profiles( |
1083
|
|
|
egon_building_ids=[644, 645], |
1084
|
|
|
bus_ids=[1366], |
1085
|
|
|
scenario="eGon100RE", |
1086
|
|
|
sector="heat", |
1087
|
|
|
) |
1088
|
|
|
heat_demand_cts_ts_100RE.rename( |
1089
|
|
|
columns={644: 1225533, 645: 1225527}, inplace=True) |
1090
|
|
|
# ToDo change back |
1091
|
|
|
# heat_demand_cts_ts_2035 = calc_cts_building_profiles( |
1092
|
|
|
# egon_building_ids=df_heat_ts.building_id.unique(), |
1093
|
|
|
# bus_ids=[mvgd], |
1094
|
|
|
# scenario="eGon2035", |
1095
|
|
|
# sector="heat", |
1096
|
|
|
# ) |
1097
|
|
|
# heat_demand_cts_ts_100RE = calc_cts_building_profiles( |
1098
|
|
|
# egon_building_ids=df_heat_ts.building_id.unique(), |
1099
|
|
|
# bus_ids=[mvgd], |
1100
|
|
|
# scenario="eGon100RE", |
1101
|
|
|
# sector="heat", |
1102
|
|
|
# ) |
1103
|
|
|
|
1104
|
|
|
# ############# aggregate residential and CTS demand profiles ############# |
1105
|
|
|
df_heat_ts_2035 = pd.concat( |
1106
|
|
|
[df_heat_ts_2035, heat_demand_cts_ts_2035], axis=1 |
1107
|
|
|
) |
1108
|
|
|
df_heat_ts_2035 = df_heat_ts_2035.groupby(axis=1, level=0).sum() |
1109
|
|
|
|
1110
|
|
|
df_heat_ts_100RE = pd.concat( |
1111
|
|
|
[df_heat_ts_100RE, heat_demand_cts_ts_100RE], axis=1 |
1112
|
|
|
) |
1113
|
|
|
df_heat_ts_100RE = df_heat_ts_100RE.groupby(axis=1, level=0).sum() |
1114
|
|
|
|
1115
|
|
|
del heat_demand_cts_ts_2035, heat_demand_cts_ts_100RE |
1116
|
|
|
|
1117
|
|
|
# ##################### export peak loads to DB ################### |
1118
|
|
|
|
1119
|
|
|
# ToDo @Julian kombinierte peak load oder getrennt nach residential und CTS? |
1120
|
|
|
df_peak_loads_2035 = df_heat_ts_2035.max() |
1121
|
|
|
df_peak_loads_100RE = df_heat_ts_100RE.max() |
1122
|
|
|
|
1123
|
|
|
df_peak_loads_db_2035 = df_peak_loads_2035.reset_index().melt( |
1124
|
|
|
id_vars="building_id", |
1125
|
|
|
var_name="scenario", |
1126
|
|
|
value_name="peak_load_in_w", |
1127
|
|
|
) |
1128
|
|
|
df_peak_loads_db_2035["scenario"] = "eGon2035" |
1129
|
|
|
df_peak_loads_db_100RE = df_peak_loads_100RE.reset_index().melt( |
1130
|
|
|
id_vars="building_id", |
1131
|
|
|
var_name="scenario", |
1132
|
|
|
value_name="peak_load_in_w", |
1133
|
|
|
) |
1134
|
|
|
df_peak_loads_db_100RE["scenario"] = "eGon100RE" |
1135
|
|
|
df_peak_loads_db = pd.concat( |
1136
|
|
|
[df_peak_loads_db_2035, df_peak_loads_db_100RE]) |
1137
|
|
|
|
1138
|
|
|
del df_peak_loads_db_2035, df_peak_loads_db_100RE |
1139
|
|
|
|
1140
|
|
|
df_peak_loads_db["sector"] = "residential+CTS" |
1141
|
|
|
# From MW to W |
1142
|
|
|
# ToDo @Julian warum in W? |
1143
|
|
|
df_peak_loads_db["peak_load_in_w"] = df_peak_loads_db["peak_load_in_w"] * 1e6 |
1144
|
|
|
|
1145
|
|
|
logger.trace(f"MVGD={mvgd} | Export to DB") |
1146
|
|
|
|
1147
|
|
|
# TODO export peak loads all buildings both scenarios to db |
1148
|
|
|
# write_table_to_postgres( |
1149
|
|
|
# df_peak_loads_db, BuildingHeatPeakLoads, engine=engine |
1150
|
|
|
# ) |
1151
|
|
|
# logger.trace(f"MVGD={mvgd} | Done") |
1152
|
|
|
|
1153
|
|
|
# ######## determine HP capacity for NEP scenario and pypsa-eur-sec ########## |
1154
|
|
|
|
1155
|
|
|
# get buildings with decentral heating systems in both scenarios |
1156
|
|
|
buildings_decentral_heating_2035 = ( |
1157
|
|
|
get_buildings_with_decentral_heat_demand_in_mv_grid( |
1158
|
|
|
"eGon2035", mvgd |
1159
|
|
|
) |
1160
|
|
|
) |
1161
|
|
|
buildings_decentral_heating_100RE = ( |
1162
|
|
|
get_buildings_with_decentral_heat_demand_in_mv_grid( |
1163
|
|
|
"eGon100RE", mvgd |
1164
|
|
|
) |
1165
|
|
|
) |
1166
|
|
|
|
1167
|
|
|
# determine HP capacity per building for NEP2035 scenario |
1168
|
|
|
hp_cap_per_building_2035 = determine_hp_cap_eGon2035( |
1169
|
|
|
mvgd, df_peak_loads_2035, buildings_decentral_heating_2035) |
1170
|
|
|
buildings_hp_2035 = hp_cap_per_building_2035.index |
1171
|
|
|
buildings_gas_2035 = pd.Index(buildings_decentral_heating_2035).drop( |
1172
|
|
|
buildings_hp_2035) |
1173
|
|
|
|
1174
|
|
|
# determine minimum HP capacity per building for pypsa-eur-sec |
1175
|
|
|
hp_min_cap_mv_grid_pypsa_eur_sec = determine_hp_cap_pypsa_eur_sec( |
1176
|
|
|
df_peak_loads_100RE, buildings_decentral_heating_100RE) |
1177
|
|
|
|
1178
|
|
|
# ######################## write HP capacities to DB ###################### |
1179
|
|
|
|
1180
|
|
|
# ToDo Write HP capacity per building in 2035 (hp_cap_per_building_2035) to |
1181
|
|
|
# db table |
1182
|
|
|
|
1183
|
|
|
# ToDo Write minimum required capacity in pypsa-eur-sec |
1184
|
|
|
# (hp_min_cap_mv_grid_pypsa_eur_sec) to |
1185
|
|
|
# db table for pypsa-eur-sec input |
1186
|
|
|
|
1187
|
|
|
# ################ write aggregated heat profiles to DB ################### |
1188
|
|
|
|
1189
|
|
|
# heat demand time series for buildings with heat pumps |
1190
|
|
|
|
1191
|
|
|
# ToDo Write aggregated heat demand time series of buildings with HP to |
1192
|
|
|
# table to be used in eTraGo - egon_etrago_timeseries_individual_heating |
1193
|
|
|
# TODO Clara uses this table already |
1194
|
|
|
# but will not need it anymore for pypsa eur sec - @Julian? |
1195
|
|
|
# EgonEtragoTimeseriesIndividualHeating |
1196
|
|
|
df_heat_ts_2035.loc[:, buildings_hp_2035].sum(axis=1) |
1197
|
|
|
df_heat_ts_100RE.loc[:, buildings_decentral_heating_100RE].sum(axis=1) |
1198
|
|
|
|
1199
|
|
|
# Change format |
1200
|
|
|
# ToDo @Julian noch notwendig? |
1201
|
|
|
# data = CTS_grid.drop(columns="scenario") |
1202
|
|
|
# df_etrago_cts_heat_profiles = pd.DataFrame( |
1203
|
|
|
# index=data.index, columns=["scn_name", "p_set"] |
1204
|
|
|
# ) |
1205
|
|
|
# df_etrago_cts_heat_profiles.p_set = data.values.tolist() |
1206
|
|
|
# df_etrago_cts_heat_profiles.scn_name = CTS_grid["scenario"] |
1207
|
|
|
# df_etrago_cts_heat_profiles.reset_index(inplace=True) |
1208
|
|
|
|
1209
|
|
|
# # Drop and recreate Table if exists |
1210
|
|
|
# EgonEtragoTimeseriesIndividualHeating.__table__.drop(bind=db.engine(), |
1211
|
|
|
# checkfirst=True) |
1212
|
|
|
# EgonEtragoTimeseriesIndividualHeating.__table__.create(bind=db.engine(), |
1213
|
|
|
# checkfirst=True) |
1214
|
|
|
# |
1215
|
|
|
# # Write heat ts into db |
1216
|
|
|
# with db.session_scope() as session: |
1217
|
|
|
# session.bulk_insert_mappings( |
1218
|
|
|
# EgonEtragoTimeseriesIndividualHeating, |
1219
|
|
|
# df_etrago_cts_heat_profiles.to_dict(orient="records"), |
1220
|
|
|
# ) |
1221
|
|
|
|
1222
|
|
|
# heat demand time series for buildings with gas boilers (only 2035 scenario) |
1223
|
|
|
df_heat_ts_2035.loc[:, buildings_gas_2035].sum(axis=1) |
1224
|
|
|
# ToDo Write other heat demand time series to database - gas voronoi |
1225
|
|
|
# (grid - egon_gas_voronoi mit carrier CH4) |
1226
|
|
|
# erstmal intermediate table |
1227
|
|
|
|
1228
|
|
|
|
1229
|
|
|
def residential_heat_peak_load_export_bulk_1(): |
1230
|
|
|
residential_heat_peak_load_export_bulk(1, max_n=5) |
1231
|
|
|
|
1232
|
|
|
|
1233
|
|
|
def residential_heat_peak_load_export_bulk_2(): |
1234
|
|
|
residential_heat_peak_load_export_bulk(2, max_n=5) |
1235
|
|
|
|
1236
|
|
|
|
1237
|
|
|
def residential_heat_peak_load_export_bulk_3(): |
1238
|
|
|
residential_heat_peak_load_export_bulk(3, max_n=5) |
1239
|
|
|
|
1240
|
|
|
|
1241
|
|
|
def residential_heat_peak_load_export_bulk_4(): |
1242
|
|
|
residential_heat_peak_load_export_bulk(4, max_n=5) |
1243
|
|
|
|
1244
|
|
|
|
1245
|
|
|
def residential_heat_peak_load_export_bulk_5(): |
1246
|
|
|
residential_heat_peak_load_export_bulk(5, max_n=5) |
1247
|
|
|
|
1248
|
|
|
|
1249
|
|
|
def create_peak_load_table(): |
1250
|
|
|
|
1251
|
|
|
BuildingHeatPeakLoads.__table__.create(bind=engine, checkfirst=True) |
1252
|
|
|
|
1253
|
|
|
|
1254
|
|
|
def delete_peak_loads_if_existing(): |
1255
|
|
|
"""Remove all entries""" |
1256
|
|
|
|
1257
|
|
|
with db.session_scope() as session: |
1258
|
|
|
# Buses |
1259
|
|
|
session.query(BuildingHeatPeakLoads).filter( |
1260
|
|
|
BuildingHeatPeakLoads.sector == "residential" |
1261
|
|
|
).delete(synchronize_session=False) |
1262
|
|
|
|
1263
|
|
|
|
1264
|
|
|
if __name__ == "__main__": |
1265
|
|
|
#calc_residential_heat_profiles_per_mvgd(mvgd) |
1266
|
|
|
residential_heat_peak_load_export_bulk_1() |
1267
|
|
|
|