Total Complexity | 71 |
Total Lines | 1849 |
Duplicated Lines | 4.92 % |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like data.datasets.sanity_checks often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | """ |
||
2 | This module does sanity checks for both the eGon2035 and the eGon100RE scenario |
||
3 | separately where a percentage error is given to showcase difference in output |
||
4 | and input values. Please note that there are missing input technologies in the |
||
5 | supply tables. |
||
6 | Authors: @ALonso, @dana, @nailend, @nesnoj, @khelfen |
||
7 | """ |
||
8 | import ast |
||
9 | from math import isclose |
||
10 | from pathlib import Path |
||
11 | |||
12 | from sqlalchemy import Numeric |
||
13 | from sqlalchemy.sql import and_, cast, func, or_ |
||
14 | import matplotlib.pyplot as plt |
||
15 | import numpy as np |
||
16 | import pandas as pd |
||
17 | import seaborn as sns |
||
18 | |||
19 | from egon.data import config, db, logger |
||
20 | from egon.data.datasets import Dataset |
||
21 | from egon.data.datasets.electricity_demand_timeseries.cts_buildings import ( |
||
22 | EgonCtsElectricityDemandBuildingShare, |
||
23 | EgonCtsHeatDemandBuildingShare, |
||
24 | ) |
||
25 | from egon.data.datasets.emobility.motorized_individual_travel.db_classes import ( # noqa: E501 |
||
26 | EgonEvCountMunicipality, |
||
27 | EgonEvCountMvGridDistrict, |
||
28 | EgonEvCountRegistrationDistrict, |
||
29 | EgonEvMvGridDistrict, |
||
30 | EgonEvPool, |
||
31 | EgonEvTrip, |
||
32 | ) |
||
33 | from egon.data.datasets.emobility.motorized_individual_travel.helpers import ( |
||
34 | DATASET_CFG, |
||
35 | read_simbev_metadata_file, |
||
36 | ) |
||
37 | from egon.data.datasets.etrago_setup import ( |
||
38 | EgonPfHvLink, |
||
39 | EgonPfHvLinkTimeseries, |
||
40 | EgonPfHvLoad, |
||
41 | EgonPfHvLoadTimeseries, |
||
42 | EgonPfHvStore, |
||
43 | EgonPfHvStoreTimeseries, |
||
44 | ) |
||
45 | from egon.data.datasets.power_plants.pv_rooftop_buildings import ( |
||
46 | PV_CAP_PER_SQ_M, |
||
47 | ROOF_FACTOR, |
||
48 | SCENARIOS, |
||
49 | load_building_data, |
||
50 | scenario_data, |
||
51 | ) |
||
52 | from egon.data.datasets.gas_grid import ( |
||
53 | define_gas_nodes_list, |
||
54 | define_gas_pipeline_list, |
||
55 | insert_gas_buses_abroad, |
||
56 | ) |
||
57 | from egon.data.datasets.hydrogen_etrago.storage import ( |
||
58 | calculate_and_map_saltcavern_storage_potential, |
||
59 | ) |
||
60 | from egon.data.datasets.pypsaeursec import read_network |
||
61 | from egon.data.datasets.scenario_parameters import get_sector_parameters |
||
62 | from egon.data.datasets.storages.home_batteries import get_cbat_pbat_ratio |
||
63 | import egon.data |
||
64 | |||
65 | TESTMODE_OFF = ( |
||
66 | config.settings()["egon-data"]["--dataset-boundary"] == "Everything" |
||
67 | ) |
||
68 | |||
69 | |||
70 | class SanityChecks(Dataset): |
||
71 | #: |
||
72 | name: str = "SanityChecks" |
||
73 | #: |
||
74 | version: str = "0.0.6" |
||
75 | |||
76 | def __init__(self, dependencies): |
||
77 | super().__init__( |
||
78 | name=self.name, |
||
79 | version=self.version, |
||
80 | dependencies=dependencies, |
||
81 | tasks={ |
||
82 | etrago_eGon2035_electricity, |
||
83 | etrago_eGon2035_heat, |
||
84 | residential_electricity_annual_sum, |
||
85 | residential_electricity_hh_refinement, |
||
86 | cts_electricity_demand_share, |
||
87 | cts_heat_demand_share, |
||
88 | sanitycheck_emobility_mit, |
||
89 | sanitycheck_pv_rooftop_buildings, |
||
90 | sanitycheck_home_batteries, |
||
91 | etrago_eGon2035_gas_DE, |
||
92 | }, |
||
93 | ) |
||
94 | |||
95 | |||
96 | def etrago_eGon2035_electricity(): |
||
97 | """Execute basic sanity checks. |
||
98 | |||
99 | Returns print statements as sanity checks for the electricity sector in |
||
100 | the eGon2035 scenario. |
||
101 | |||
102 | Parameters |
||
103 | ---------- |
||
104 | None |
||
105 | |||
106 | Returns |
||
107 | ------- |
||
108 | None |
||
109 | """ |
||
110 | |||
111 | scn = "eGon2035" |
||
112 | |||
113 | # Section to check generator capacities |
||
114 | logger.info(f"Sanity checks for scenario {scn}") |
||
115 | logger.info( |
||
116 | "For German electricity generators the following deviations between " |
||
117 | "the inputs and outputs can be observed:" |
||
118 | ) |
||
119 | |||
120 | carriers_electricity = [ |
||
121 | "others", |
||
122 | "reservoir", |
||
123 | "run_of_river", |
||
124 | "oil", |
||
125 | "wind_onshore", |
||
126 | "wind_offshore", |
||
127 | "solar", |
||
128 | "solar_rooftop", |
||
129 | "biomass", |
||
130 | ] |
||
131 | |||
132 | for carrier in carriers_electricity: |
||
133 | |||
134 | if carrier == "biomass": |
||
135 | sum_output = db.select_dataframe( |
||
136 | """SELECT scn_name, SUM(p_nom::numeric) as output_capacity_mw |
||
137 | FROM grid.egon_etrago_generator |
||
138 | WHERE bus IN ( |
||
139 | SELECT bus_id FROM grid.egon_etrago_bus |
||
140 | WHERE scn_name = 'eGon2035' |
||
141 | AND country = 'DE') |
||
142 | AND carrier IN ('biomass', 'industrial_biomass_CHP', |
||
143 | 'central_biomass_CHP') |
||
144 | GROUP BY (scn_name); |
||
145 | """, |
||
146 | warning=False, |
||
147 | ) |
||
148 | |||
149 | else: |
||
150 | sum_output = db.select_dataframe( |
||
151 | f"""SELECT scn_name, |
||
152 | SUM(p_nom::numeric) as output_capacity_mw |
||
153 | FROM grid.egon_etrago_generator |
||
154 | WHERE scn_name = '{scn}' |
||
155 | AND carrier IN ('{carrier}') |
||
156 | AND bus IN |
||
157 | (SELECT bus_id |
||
158 | FROM grid.egon_etrago_bus |
||
159 | WHERE scn_name = 'eGon2035' |
||
160 | AND country = 'DE') |
||
161 | GROUP BY (scn_name); |
||
162 | """, |
||
163 | warning=False, |
||
164 | ) |
||
165 | |||
166 | sum_input = db.select_dataframe( |
||
167 | f"""SELECT carrier, SUM(capacity::numeric) as input_capacity_mw |
||
168 | FROM supply.egon_scenario_capacities |
||
169 | WHERE carrier= '{carrier}' |
||
170 | AND scenario_name ='{scn}' |
||
171 | GROUP BY (carrier); |
||
172 | """, |
||
173 | warning=False, |
||
174 | ) |
||
175 | |||
176 | View Code Duplication | if ( |
|
|
|||
177 | sum_output.output_capacity_mw.sum() == 0 |
||
178 | and sum_input.input_capacity_mw.sum() == 0 |
||
179 | ): |
||
180 | logger.info( |
||
181 | f"No capacity for carrier '{carrier}' needed to be" |
||
182 | f" distributed. Everything is fine" |
||
183 | ) |
||
184 | |||
185 | elif ( |
||
186 | sum_input.input_capacity_mw.sum() > 0 |
||
187 | and sum_output.output_capacity_mw.sum() == 0 |
||
188 | ): |
||
189 | logger.info( |
||
190 | f"Error: Capacity for carrier '{carrier}' was not distributed " |
||
191 | f"at all!" |
||
192 | ) |
||
193 | |||
194 | elif ( |
||
195 | sum_output.output_capacity_mw.sum() > 0 |
||
196 | and sum_input.input_capacity_mw.sum() == 0 |
||
197 | ): |
||
198 | logger.info( |
||
199 | f"Error: Eventhough no input capacity was provided for carrier" |
||
200 | f"'{carrier}' a capacity got distributed!" |
||
201 | ) |
||
202 | |||
203 | else: |
||
204 | sum_input["error"] = ( |
||
205 | (sum_output.output_capacity_mw - sum_input.input_capacity_mw) |
||
206 | / sum_input.input_capacity_mw |
||
207 | ) * 100 |
||
208 | g = sum_input["error"].values[0] |
||
209 | |||
210 | logger.info(f"{carrier}: " + str(round(g, 2)) + " %") |
||
211 | |||
212 | # Section to check storage units |
||
213 | |||
214 | logger.info(f"Sanity checks for scenario {scn}") |
||
215 | logger.info( |
||
216 | "For German electrical storage units the following deviations between" |
||
217 | "the inputs and outputs can be observed:" |
||
218 | ) |
||
219 | |||
220 | carriers_electricity = ["pumped_hydro"] |
||
221 | |||
222 | for carrier in carriers_electricity: |
||
223 | |||
224 | sum_output = db.select_dataframe( |
||
225 | f"""SELECT scn_name, SUM(p_nom::numeric) as output_capacity_mw |
||
226 | FROM grid.egon_etrago_storage |
||
227 | WHERE scn_name = '{scn}' |
||
228 | AND carrier IN ('{carrier}') |
||
229 | AND bus IN |
||
230 | (SELECT bus_id |
||
231 | FROM grid.egon_etrago_bus |
||
232 | WHERE scn_name = 'eGon2035' |
||
233 | AND country = 'DE') |
||
234 | GROUP BY (scn_name); |
||
235 | """, |
||
236 | warning=False, |
||
237 | ) |
||
238 | |||
239 | sum_input = db.select_dataframe( |
||
240 | f"""SELECT carrier, SUM(capacity::numeric) as input_capacity_mw |
||
241 | FROM supply.egon_scenario_capacities |
||
242 | WHERE carrier= '{carrier}' |
||
243 | AND scenario_name ='{scn}' |
||
244 | GROUP BY (carrier); |
||
245 | """, |
||
246 | warning=False, |
||
247 | ) |
||
248 | |||
249 | View Code Duplication | if ( |
|
250 | sum_output.output_capacity_mw.sum() == 0 |
||
251 | and sum_input.input_capacity_mw.sum() == 0 |
||
252 | ): |
||
253 | print( |
||
254 | f"No capacity for carrier '{carrier}' needed to be " |
||
255 | f"distributed. Everything is fine" |
||
256 | ) |
||
257 | |||
258 | elif ( |
||
259 | sum_input.input_capacity_mw.sum() > 0 |
||
260 | and sum_output.output_capacity_mw.sum() == 0 |
||
261 | ): |
||
262 | print( |
||
263 | f"Error: Capacity for carrier '{carrier}' was not distributed" |
||
264 | f" at all!" |
||
265 | ) |
||
266 | |||
267 | elif ( |
||
268 | sum_output.output_capacity_mw.sum() > 0 |
||
269 | and sum_input.input_capacity_mw.sum() == 0 |
||
270 | ): |
||
271 | print( |
||
272 | f"Error: Eventhough no input capacity was provided for carrier" |
||
273 | f" '{carrier}' a capacity got distributed!" |
||
274 | ) |
||
275 | |||
276 | else: |
||
277 | sum_input["error"] = ( |
||
278 | (sum_output.output_capacity_mw - sum_input.input_capacity_mw) |
||
279 | / sum_input.input_capacity_mw |
||
280 | ) * 100 |
||
281 | g = sum_input["error"].values[0] |
||
282 | |||
283 | print(f"{carrier}: " + str(round(g, 2)) + " %") |
||
284 | |||
285 | # Section to check loads |
||
286 | |||
287 | print( |
||
288 | "For German electricity loads the following deviations between the" |
||
289 | " input and output can be observed:" |
||
290 | ) |
||
291 | |||
292 | output_demand = db.select_dataframe( |
||
293 | """SELECT a.scn_name, a.carrier, SUM((SELECT SUM(p) |
||
294 | FROM UNNEST(b.p_set) p))/1000000::numeric as load_twh |
||
295 | FROM grid.egon_etrago_load a |
||
296 | JOIN grid.egon_etrago_load_timeseries b |
||
297 | ON (a.load_id = b.load_id) |
||
298 | JOIN grid.egon_etrago_bus c |
||
299 | ON (a.bus=c.bus_id) |
||
300 | AND b.scn_name = 'eGon2035' |
||
301 | AND a.scn_name = 'eGon2035' |
||
302 | AND a.carrier = 'AC' |
||
303 | AND c.scn_name= 'eGon2035' |
||
304 | AND c.country='DE' |
||
305 | GROUP BY (a.scn_name, a.carrier); |
||
306 | |||
307 | """, |
||
308 | warning=False, |
||
309 | )["load_twh"].values[0] |
||
310 | |||
311 | input_cts_ind = db.select_dataframe( |
||
312 | """SELECT scenario, |
||
313 | SUM(demand::numeric/1000000) as demand_mw_regio_cts_ind |
||
314 | FROM demand.egon_demandregio_cts_ind |
||
315 | WHERE scenario= 'eGon2035' |
||
316 | AND year IN ('2035') |
||
317 | GROUP BY (scenario); |
||
318 | |||
319 | """, |
||
320 | warning=False, |
||
321 | )["demand_mw_regio_cts_ind"].values[0] |
||
322 | |||
323 | input_hh = db.select_dataframe( |
||
324 | """SELECT scenario, SUM(demand::numeric/1000000) as demand_mw_regio_hh |
||
325 | FROM demand.egon_demandregio_hh |
||
326 | WHERE scenario= 'eGon2035' |
||
327 | AND year IN ('2035') |
||
328 | GROUP BY (scenario); |
||
329 | """, |
||
330 | warning=False, |
||
331 | )["demand_mw_regio_hh"].values[0] |
||
332 | |||
333 | input_demand = input_hh + input_cts_ind |
||
334 | |||
335 | e = round((output_demand - input_demand) / input_demand, 2) * 100 |
||
336 | |||
337 | print(f"electricity demand: {e} %") |
||
338 | |||
339 | |||
340 | def etrago_eGon2035_heat(): |
||
341 | """Execute basic sanity checks. |
||
342 | |||
343 | Returns print statements as sanity checks for the heat sector in |
||
344 | the eGon2035 scenario. |
||
345 | |||
346 | Parameters |
||
347 | ---------- |
||
348 | None |
||
349 | |||
350 | Returns |
||
351 | ------- |
||
352 | None |
||
353 | """ |
||
354 | |||
355 | # Check input and output values for the carriers "others", |
||
356 | # "reservoir", "run_of_river" and "oil" |
||
357 | |||
358 | scn = "eGon2035" |
||
359 | |||
360 | # Section to check generator capacities |
||
361 | print(f"Sanity checks for scenario {scn}") |
||
362 | print( |
||
363 | "For German heat demands the following deviations between the inputs" |
||
364 | " and outputs can be observed:" |
||
365 | ) |
||
366 | |||
367 | # Sanity checks for heat demand |
||
368 | |||
369 | output_heat_demand = db.select_dataframe( |
||
370 | """SELECT a.scn_name, |
||
371 | (SUM( |
||
372 | (SELECT SUM(p) FROM UNNEST(b.p_set) p))/1000000)::numeric as load_twh |
||
373 | FROM grid.egon_etrago_load a |
||
374 | JOIN grid.egon_etrago_load_timeseries b |
||
375 | ON (a.load_id = b.load_id) |
||
376 | JOIN grid.egon_etrago_bus c |
||
377 | ON (a.bus=c.bus_id) |
||
378 | AND b.scn_name = 'eGon2035' |
||
379 | AND a.scn_name = 'eGon2035' |
||
380 | AND c.scn_name= 'eGon2035' |
||
381 | AND c.country='DE' |
||
382 | AND a.carrier IN ('rural_heat', 'central_heat') |
||
383 | GROUP BY (a.scn_name); |
||
384 | """, |
||
385 | warning=False, |
||
386 | )["load_twh"].values[0] |
||
387 | |||
388 | input_heat_demand = db.select_dataframe( |
||
389 | """SELECT scenario, SUM(demand::numeric/1000000) as demand_mw_peta_heat |
||
390 | FROM demand.egon_peta_heat |
||
391 | WHERE scenario= 'eGon2035' |
||
392 | GROUP BY (scenario); |
||
393 | """, |
||
394 | warning=False, |
||
395 | )["demand_mw_peta_heat"].values[0] |
||
396 | |||
397 | e_demand = ( |
||
398 | round((output_heat_demand - input_heat_demand) / input_heat_demand, 2) |
||
399 | * 100 |
||
400 | ) |
||
401 | |||
402 | logger.info(f"heat demand: {e_demand} %") |
||
403 | |||
404 | # Sanity checks for heat supply |
||
405 | |||
406 | logger.info( |
||
407 | "For German heat supplies the following deviations between the inputs " |
||
408 | "and outputs can be observed:" |
||
409 | ) |
||
410 | |||
411 | # Comparison for central heat pumps |
||
412 | heat_pump_input = db.select_dataframe( |
||
413 | """SELECT carrier, SUM(capacity::numeric) as Urban_central_heat_pump_mw |
||
414 | FROM supply.egon_scenario_capacities |
||
415 | WHERE carrier= 'urban_central_heat_pump' |
||
416 | AND scenario_name IN ('eGon2035') |
||
417 | GROUP BY (carrier); |
||
418 | """, |
||
419 | warning=False, |
||
420 | )["urban_central_heat_pump_mw"].values[0] |
||
421 | |||
422 | heat_pump_output = db.select_dataframe( |
||
423 | """SELECT carrier, SUM(p_nom::numeric) as Central_heat_pump_mw |
||
424 | FROM grid.egon_etrago_link |
||
425 | WHERE carrier= 'central_heat_pump' |
||
426 | AND scn_name IN ('eGon2035') |
||
427 | GROUP BY (carrier); |
||
428 | """, |
||
429 | warning=False, |
||
430 | )["central_heat_pump_mw"].values[0] |
||
431 | |||
432 | e_heat_pump = ( |
||
433 | round((heat_pump_output - heat_pump_input) / heat_pump_output, 2) * 100 |
||
434 | ) |
||
435 | |||
436 | logger.info(f"'central_heat_pump': {e_heat_pump} % ") |
||
437 | |||
438 | # Comparison for residential heat pumps |
||
439 | |||
440 | input_residential_heat_pump = db.select_dataframe( |
||
441 | """SELECT carrier, SUM(capacity::numeric) as residential_heat_pump_mw |
||
442 | FROM supply.egon_scenario_capacities |
||
443 | WHERE carrier= 'residential_rural_heat_pump' |
||
444 | AND scenario_name IN ('eGon2035') |
||
445 | GROUP BY (carrier); |
||
446 | """, |
||
447 | warning=False, |
||
448 | )["residential_heat_pump_mw"].values[0] |
||
449 | |||
450 | output_residential_heat_pump = db.select_dataframe( |
||
451 | """SELECT carrier, SUM(p_nom::numeric) as rural_heat_pump_mw |
||
452 | FROM grid.egon_etrago_link |
||
453 | WHERE carrier= 'rural_heat_pump' |
||
454 | AND scn_name IN ('eGon2035') |
||
455 | GROUP BY (carrier); |
||
456 | """, |
||
457 | warning=False, |
||
458 | )["rural_heat_pump_mw"].values[0] |
||
459 | |||
460 | e_residential_heat_pump = ( |
||
461 | round( |
||
462 | (output_residential_heat_pump - input_residential_heat_pump) |
||
463 | / input_residential_heat_pump, |
||
464 | 2, |
||
465 | ) |
||
466 | * 100 |
||
467 | ) |
||
468 | logger.info(f"'residential heat pumps': {e_residential_heat_pump} %") |
||
469 | |||
470 | # Comparison for resistive heater |
||
471 | resistive_heater_input = db.select_dataframe( |
||
472 | """SELECT carrier, |
||
473 | SUM(capacity::numeric) as Urban_central_resistive_heater_MW |
||
474 | FROM supply.egon_scenario_capacities |
||
475 | WHERE carrier= 'urban_central_resistive_heater' |
||
476 | AND scenario_name IN ('eGon2035') |
||
477 | GROUP BY (carrier); |
||
478 | """, |
||
479 | warning=False, |
||
480 | )["urban_central_resistive_heater_mw"].values[0] |
||
481 | |||
482 | resistive_heater_output = db.select_dataframe( |
||
483 | """SELECT carrier, SUM(p_nom::numeric) as central_resistive_heater_MW |
||
484 | FROM grid.egon_etrago_link |
||
485 | WHERE carrier= 'central_resistive_heater' |
||
486 | AND scn_name IN ('eGon2035') |
||
487 | GROUP BY (carrier); |
||
488 | """, |
||
489 | warning=False, |
||
490 | )["central_resistive_heater_mw"].values[0] |
||
491 | |||
492 | e_resistive_heater = ( |
||
493 | round( |
||
494 | (resistive_heater_output - resistive_heater_input) |
||
495 | / resistive_heater_input, |
||
496 | 2, |
||
497 | ) |
||
498 | * 100 |
||
499 | ) |
||
500 | |||
501 | logger.info(f"'resistive heater': {e_resistive_heater} %") |
||
502 | |||
503 | # Comparison for solar thermal collectors |
||
504 | |||
505 | input_solar_thermal = db.select_dataframe( |
||
506 | """SELECT carrier, SUM(capacity::numeric) as solar_thermal_collector_mw |
||
507 | FROM supply.egon_scenario_capacities |
||
508 | WHERE carrier= 'urban_central_solar_thermal_collector' |
||
509 | AND scenario_name IN ('eGon2035') |
||
510 | GROUP BY (carrier); |
||
511 | """, |
||
512 | warning=False, |
||
513 | )["solar_thermal_collector_mw"].values[0] |
||
514 | |||
515 | output_solar_thermal = db.select_dataframe( |
||
516 | """SELECT carrier, SUM(p_nom::numeric) as solar_thermal_collector_mw |
||
517 | FROM grid.egon_etrago_generator |
||
518 | WHERE carrier= 'solar_thermal_collector' |
||
519 | AND scn_name IN ('eGon2035') |
||
520 | GROUP BY (carrier); |
||
521 | """, |
||
522 | warning=False, |
||
523 | )["solar_thermal_collector_mw"].values[0] |
||
524 | |||
525 | e_solar_thermal = ( |
||
526 | round( |
||
527 | (output_solar_thermal - input_solar_thermal) / input_solar_thermal, |
||
528 | 2, |
||
529 | ) |
||
530 | * 100 |
||
531 | ) |
||
532 | logger.info(f"'solar thermal collector': {e_solar_thermal} %") |
||
533 | |||
534 | # Comparison for geothermal |
||
535 | |||
536 | input_geo_thermal = db.select_dataframe( |
||
537 | """SELECT carrier, |
||
538 | SUM(capacity::numeric) as Urban_central_geo_thermal_MW |
||
539 | FROM supply.egon_scenario_capacities |
||
540 | WHERE carrier= 'urban_central_geo_thermal' |
||
541 | AND scenario_name IN ('eGon2035') |
||
542 | GROUP BY (carrier); |
||
543 | """, |
||
544 | warning=False, |
||
545 | )["urban_central_geo_thermal_mw"].values[0] |
||
546 | |||
547 | output_geo_thermal = db.select_dataframe( |
||
548 | """SELECT carrier, SUM(p_nom::numeric) as geo_thermal_MW |
||
549 | FROM grid.egon_etrago_generator |
||
550 | WHERE carrier= 'geo_thermal' |
||
551 | AND scn_name IN ('eGon2035') |
||
552 | GROUP BY (carrier); |
||
553 | """, |
||
554 | warning=False, |
||
555 | )["geo_thermal_mw"].values[0] |
||
556 | |||
557 | e_geo_thermal = ( |
||
558 | round((output_geo_thermal - input_geo_thermal) / input_geo_thermal, 2) |
||
559 | * 100 |
||
560 | ) |
||
561 | logger.info(f"'geothermal': {e_geo_thermal} %") |
||
562 | |||
563 | |||
564 | def residential_electricity_annual_sum(rtol=1e-5): |
||
565 | """Sanity check for dataset electricity_demand_timeseries : |
||
566 | Demand_Building_Assignment |
||
567 | |||
568 | Aggregate the annual demand of all census cells at NUTS3 to compare |
||
569 | with initial scaling parameters from DemandRegio. |
||
570 | """ |
||
571 | |||
572 | df_nuts3_annual_sum = db.select_dataframe( |
||
573 | sql=""" |
||
574 | SELECT dr.nuts3, dr.scenario, dr.demand_regio_sum, profiles.profile_sum |
||
575 | FROM ( |
||
576 | SELECT scenario, SUM(demand) AS profile_sum, vg250_nuts3 |
||
577 | FROM demand.egon_demandregio_zensus_electricity AS egon, |
||
578 | boundaries.egon_map_zensus_vg250 AS boundaries |
||
579 | Where egon.zensus_population_id = boundaries.zensus_population_id |
||
580 | AND sector = 'residential' |
||
581 | GROUP BY vg250_nuts3, scenario |
||
582 | ) AS profiles |
||
583 | JOIN ( |
||
584 | SELECT nuts3, scenario, sum(demand) AS demand_regio_sum |
||
585 | FROM demand.egon_demandregio_hh |
||
586 | GROUP BY year, scenario, nuts3 |
||
587 | ) AS dr |
||
588 | ON profiles.vg250_nuts3 = dr.nuts3 and profiles.scenario = dr.scenario |
||
589 | """ |
||
590 | ) |
||
591 | |||
592 | np.testing.assert_allclose( |
||
593 | actual=df_nuts3_annual_sum["profile_sum"], |
||
594 | desired=df_nuts3_annual_sum["demand_regio_sum"], |
||
595 | rtol=rtol, |
||
596 | verbose=False, |
||
597 | ) |
||
598 | |||
599 | logger.info( |
||
600 | "Aggregated annual residential electricity demand" |
||
601 | " matches with DemandRegio at NUTS-3." |
||
602 | ) |
||
603 | |||
604 | |||
605 | def residential_electricity_hh_refinement(rtol=1e-5): |
||
606 | """Sanity check for dataset electricity_demand_timeseries : |
||
607 | Household Demands |
||
608 | |||
609 | Check sum of aggregated household types after refinement method |
||
610 | was applied and compare it to the original census values.""" |
||
611 | |||
612 | df_refinement = db.select_dataframe( |
||
613 | sql=""" |
||
614 | SELECT refined.nuts3, refined.characteristics_code, |
||
615 | refined.sum_refined::int, census.sum_census::int |
||
616 | FROM( |
||
617 | SELECT nuts3, characteristics_code, SUM(hh_10types) as sum_refined |
||
618 | FROM society.egon_destatis_zensus_household_per_ha_refined |
||
619 | GROUP BY nuts3, characteristics_code) |
||
620 | AS refined |
||
621 | JOIN( |
||
622 | SELECT t.nuts3, t.characteristics_code, sum(orig) as sum_census |
||
623 | FROM( |
||
624 | SELECT nuts3, cell_id, characteristics_code, |
||
625 | sum(DISTINCT(hh_5types))as orig |
||
626 | FROM society.egon_destatis_zensus_household_per_ha_refined |
||
627 | GROUP BY cell_id, characteristics_code, nuts3) AS t |
||
628 | GROUP BY t.nuts3, t.characteristics_code ) AS census |
||
629 | ON refined.nuts3 = census.nuts3 |
||
630 | AND refined.characteristics_code = census.characteristics_code |
||
631 | """ |
||
632 | ) |
||
633 | |||
634 | np.testing.assert_allclose( |
||
635 | actual=df_refinement["sum_refined"], |
||
636 | desired=df_refinement["sum_census"], |
||
637 | rtol=rtol, |
||
638 | verbose=False, |
||
639 | ) |
||
640 | |||
641 | logger.info("All Aggregated household types match at NUTS-3.") |
||
642 | |||
643 | |||
644 | def cts_electricity_demand_share(rtol=1e-5): |
||
645 | """Sanity check for dataset electricity_demand_timeseries : |
||
646 | CtsBuildings |
||
647 | |||
648 | Check sum of aggregated cts electricity demand share which equals to one |
||
649 | for every substation as the substation profile is linearly disaggregated |
||
650 | to all buildings.""" |
||
651 | |||
652 | with db.session_scope() as session: |
||
653 | cells_query = session.query(EgonCtsElectricityDemandBuildingShare) |
||
654 | |||
655 | df_demand_share = pd.read_sql( |
||
656 | cells_query.statement, cells_query.session.bind, index_col=None |
||
657 | ) |
||
658 | |||
659 | np.testing.assert_allclose( |
||
660 | actual=df_demand_share.groupby(["bus_id", "scenario"])[ |
||
661 | "profile_share" |
||
662 | ].sum(), |
||
663 | desired=1, |
||
664 | rtol=rtol, |
||
665 | verbose=False, |
||
666 | ) |
||
667 | |||
668 | logger.info("The aggregated demand shares equal to one!.") |
||
669 | |||
670 | |||
671 | def cts_heat_demand_share(rtol=1e-5): |
||
672 | """Sanity check for dataset electricity_demand_timeseries |
||
673 | : CtsBuildings |
||
674 | |||
675 | Check sum of aggregated cts heat demand share which equals to one |
||
676 | for every substation as the substation profile is linearly disaggregated |
||
677 | to all buildings.""" |
||
678 | |||
679 | with db.session_scope() as session: |
||
680 | cells_query = session.query(EgonCtsHeatDemandBuildingShare) |
||
681 | |||
682 | df_demand_share = pd.read_sql( |
||
683 | cells_query.statement, cells_query.session.bind, index_col=None |
||
684 | ) |
||
685 | |||
686 | np.testing.assert_allclose( |
||
687 | actual=df_demand_share.groupby(["bus_id", "scenario"])[ |
||
688 | "profile_share" |
||
689 | ].sum(), |
||
690 | desired=1, |
||
691 | rtol=rtol, |
||
692 | verbose=False, |
||
693 | ) |
||
694 | |||
695 | logger.info("The aggregated demand shares equal to one!.") |
||
696 | |||
697 | |||
698 | def sanitycheck_pv_rooftop_buildings(): |
||
699 | def egon_power_plants_pv_roof_building(): |
||
700 | sql = """ |
||
701 | SELECT * |
||
702 | FROM supply.egon_power_plants_pv_roof_building |
||
703 | """ |
||
704 | |||
705 | return db.select_dataframe(sql, index_col="index") |
||
706 | |||
707 | pv_roof_df = egon_power_plants_pv_roof_building() |
||
708 | |||
709 | valid_buildings_gdf = load_building_data() |
||
710 | |||
711 | valid_buildings_gdf = valid_buildings_gdf.assign( |
||
712 | bus_id=valid_buildings_gdf.bus_id.astype(int), |
||
713 | overlay_id=valid_buildings_gdf.overlay_id.astype(int), |
||
714 | max_cap=valid_buildings_gdf.building_area.multiply( |
||
715 | ROOF_FACTOR * PV_CAP_PER_SQ_M |
||
716 | ), |
||
717 | ) |
||
718 | |||
719 | merge_df = pv_roof_df.merge( |
||
720 | valid_buildings_gdf[["building_area"]], |
||
721 | how="left", |
||
722 | left_on="building_id", |
||
723 | right_index=True, |
||
724 | ) |
||
725 | |||
726 | assert ( |
||
727 | len(merge_df.loc[merge_df.building_area.isna()]) == 0 |
||
728 | ), f"{len(merge_df.loc[merge_df.building_area.isna()])} != 0" |
||
729 | |||
730 | scenarios = ["status_quo", "eGon2035"] |
||
731 | |||
732 | base_path = Path(egon.data.__path__[0]).resolve() |
||
733 | |||
734 | res_dir = base_path / "sanity_checks" |
||
735 | |||
736 | res_dir.mkdir(parents=True, exist_ok=True) |
||
737 | |||
738 | for scenario in scenarios: |
||
739 | fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 8)) |
||
740 | |||
741 | scenario_df = merge_df.loc[merge_df.scenario == scenario] |
||
742 | |||
743 | logger.info( |
||
744 | scenario + " Capacity:\n" + str(scenario_df.capacity.describe()) |
||
745 | ) |
||
746 | |||
747 | small_gens_df = scenario_df.loc[scenario_df.capacity < 100] |
||
748 | |||
749 | sns.histplot(data=small_gens_df, x="capacity", ax=ax1).set_title( |
||
750 | scenario |
||
751 | ) |
||
752 | |||
753 | sns.scatterplot( |
||
754 | data=small_gens_df, x="capacity", y="building_area", ax=ax2 |
||
755 | ).set_title(scenario) |
||
756 | |||
757 | plt.tight_layout() |
||
758 | |||
759 | plt.savefig( |
||
760 | res_dir / f"{scenario}_pv_rooftop_distribution.png", |
||
761 | bbox_inches="tight", |
||
762 | ) |
||
763 | |||
764 | for scenario in SCENARIOS: |
||
765 | if scenario == "eGon2035": |
||
766 | assert isclose( |
||
767 | scenario_data(scenario=scenario).capacity.sum(), |
||
768 | merge_df.loc[merge_df.scenario == scenario].capacity.sum(), |
||
769 | rel_tol=1e-02, |
||
770 | ), ( |
||
771 | f"{scenario_data(scenario=scenario).capacity.sum()} != " |
||
772 | f"{merge_df.loc[merge_df.scenario == scenario].capacity.sum()}" |
||
773 | ) |
||
774 | elif scenario == "eGon100RE": |
||
775 | sources = config.datasets()["solar_rooftop"]["sources"] |
||
776 | |||
777 | target = db.select_dataframe( |
||
778 | f""" |
||
779 | SELECT capacity |
||
780 | FROM {sources['scenario_capacities']['schema']}. |
||
781 | {sources['scenario_capacities']['table']} a |
||
782 | WHERE carrier = 'solar_rooftop' |
||
783 | AND scenario_name = '{scenario}' |
||
784 | """ |
||
785 | ).capacity[0] |
||
786 | |||
787 | dataset = config.settings()["egon-data"]["--dataset-boundary"] |
||
788 | |||
789 | View Code Duplication | if dataset == "Schleswig-Holstein": |
|
790 | sources = config.datasets()["scenario_input"]["sources"] |
||
791 | |||
792 | path = Path( |
||
793 | f"./data_bundle_egon_data/nep2035_version2021/" |
||
794 | f"{sources['eGon2035']['capacities']}" |
||
795 | ).resolve() |
||
796 | |||
797 | total_2035 = ( |
||
798 | pd.read_excel( |
||
799 | path, |
||
800 | sheet_name="1.Entwurf_NEP2035_V2021", |
||
801 | index_col="Unnamed: 0", |
||
802 | ).at["PV (Aufdach)", "Summe"] |
||
803 | * 1000 |
||
804 | ) |
||
805 | sh_2035 = scenario_data(scenario="eGon2035").capacity.sum() |
||
806 | |||
807 | share = sh_2035 / total_2035 |
||
808 | |||
809 | target *= share |
||
810 | |||
811 | assert isclose( |
||
812 | target, |
||
813 | merge_df.loc[merge_df.scenario == scenario].capacity.sum(), |
||
814 | rel_tol=1e-02, |
||
815 | ), ( |
||
816 | f"{target} != " |
||
817 | f"{merge_df.loc[merge_df.scenario == scenario].capacity.sum()}" |
||
818 | ) |
||
819 | else: |
||
820 | raise ValueError(f"Scenario {scenario} is not valid.") |
||
821 | |||
822 | |||
823 | def sanitycheck_emobility_mit(): |
||
824 | """Execute sanity checks for eMobility: motorized individual travel |
||
825 | |||
826 | Checks data integrity for eGon2035, eGon2035_lowflex and eGon100RE scenario |
||
827 | using assertions: |
||
828 | 1. Allocated EV numbers and EVs allocated to grid districts |
||
829 | 2. Trip data (original inout data from simBEV) |
||
830 | 3. Model data in eTraGo PF tables (grid.egon_etrago_*) |
||
831 | |||
832 | Parameters |
||
833 | ---------- |
||
834 | None |
||
835 | |||
836 | Returns |
||
837 | ------- |
||
838 | None |
||
839 | """ |
||
840 | |||
841 | def check_ev_allocation(): |
||
842 | # Get target number for scenario |
||
843 | ev_count_target = scenario_variation_parameters["ev_count"] |
||
844 | print(f" Target count: {str(ev_count_target)}") |
||
845 | |||
846 | # Get allocated numbers |
||
847 | ev_counts_dict = {} |
||
848 | with db.session_scope() as session: |
||
849 | for table, level in zip( |
||
850 | [ |
||
851 | EgonEvCountMvGridDistrict, |
||
852 | EgonEvCountMunicipality, |
||
853 | EgonEvCountRegistrationDistrict, |
||
854 | ], |
||
855 | ["Grid District", "Municipality", "Registration District"], |
||
856 | ): |
||
857 | query = session.query( |
||
858 | func.sum( |
||
859 | table.bev_mini |
||
860 | + table.bev_medium |
||
861 | + table.bev_luxury |
||
862 | + table.phev_mini |
||
863 | + table.phev_medium |
||
864 | + table.phev_luxury |
||
865 | ).label("ev_count") |
||
866 | ).filter( |
||
867 | table.scenario == scenario_name, |
||
868 | table.scenario_variation == scenario_var_name, |
||
869 | ) |
||
870 | |||
871 | ev_counts = pd.read_sql( |
||
872 | query.statement, query.session.bind, index_col=None |
||
873 | ) |
||
874 | ev_counts_dict[level] = ev_counts.iloc[0].ev_count |
||
875 | print( |
||
876 | f" Count table: Total count for level {level} " |
||
877 | f"(table: {table.__table__}): " |
||
878 | f"{str(ev_counts_dict[level])}" |
||
879 | ) |
||
880 | |||
881 | # Compare with scenario target (only if not in testmode) |
||
882 | if TESTMODE_OFF: |
||
883 | for level, count in ev_counts_dict.items(): |
||
884 | np.testing.assert_allclose( |
||
885 | count, |
||
886 | ev_count_target, |
||
887 | rtol=0.0001, |
||
888 | err_msg=f"EV numbers in {level} seems to be flawed.", |
||
889 | ) |
||
890 | else: |
||
891 | print(" Testmode is on, skipping sanity check...") |
||
892 | |||
893 | # Get allocated EVs in grid districts |
||
894 | with db.session_scope() as session: |
||
895 | query = session.query( |
||
896 | func.count(EgonEvMvGridDistrict.egon_ev_pool_ev_id).label( |
||
897 | "ev_count" |
||
898 | ), |
||
899 | ).filter( |
||
900 | EgonEvMvGridDistrict.scenario == scenario_name, |
||
901 | EgonEvMvGridDistrict.scenario_variation == scenario_var_name, |
||
902 | ) |
||
903 | ev_count_alloc = ( |
||
904 | pd.read_sql(query.statement, query.session.bind, index_col=None) |
||
905 | .iloc[0] |
||
906 | .ev_count |
||
907 | ) |
||
908 | print( |
||
909 | f" EVs allocated to Grid Districts " |
||
910 | f"(table: {EgonEvMvGridDistrict.__table__}) total count: " |
||
911 | f"{str(ev_count_alloc)}" |
||
912 | ) |
||
913 | |||
914 | # Compare with scenario target (only if not in testmode) |
||
915 | if TESTMODE_OFF: |
||
916 | np.testing.assert_allclose( |
||
917 | ev_count_alloc, |
||
918 | ev_count_target, |
||
919 | rtol=0.0001, |
||
920 | err_msg=( |
||
921 | "EV numbers allocated to Grid Districts seems to be " |
||
922 | "flawed." |
||
923 | ), |
||
924 | ) |
||
925 | else: |
||
926 | print(" Testmode is on, skipping sanity check...") |
||
927 | |||
928 | return ev_count_alloc |
||
929 | |||
930 | def check_trip_data(): |
||
931 | # Check if trips start at timestep 0 and have a max. of 35040 steps |
||
932 | # (8760h in 15min steps) |
||
933 | print(" Checking timeranges...") |
||
934 | with db.session_scope() as session: |
||
935 | query = session.query( |
||
936 | func.count(EgonEvTrip.event_id).label("cnt") |
||
937 | ).filter( |
||
938 | or_( |
||
939 | and_( |
||
940 | EgonEvTrip.park_start > 0, |
||
941 | EgonEvTrip.simbev_event_id == 0, |
||
942 | ), |
||
943 | EgonEvTrip.park_end |
||
944 | > (60 / int(meta_run_config.stepsize)) * 8760, |
||
945 | ), |
||
946 | EgonEvTrip.scenario == scenario_name, |
||
947 | ) |
||
948 | invalid_trips = pd.read_sql( |
||
949 | query.statement, query.session.bind, index_col=None |
||
950 | ) |
||
951 | np.testing.assert_equal( |
||
952 | invalid_trips.iloc[0].cnt, |
||
953 | 0, |
||
954 | err_msg=( |
||
955 | f"{str(invalid_trips.iloc[0].cnt)} trips in table " |
||
956 | f"{EgonEvTrip.__table__} have invalid timesteps." |
||
957 | ), |
||
958 | ) |
||
959 | |||
960 | # Check if charging demand can be covered by available charging energy |
||
961 | # while parking |
||
962 | print(" Compare charging demand with available power...") |
||
963 | with db.session_scope() as session: |
||
964 | query = session.query( |
||
965 | func.count(EgonEvTrip.event_id).label("cnt") |
||
966 | ).filter( |
||
967 | func.round( |
||
968 | cast( |
||
969 | (EgonEvTrip.park_end - EgonEvTrip.park_start + 1) |
||
970 | * EgonEvTrip.charging_capacity_nominal |
||
971 | * (int(meta_run_config.stepsize) / 60), |
||
972 | Numeric, |
||
973 | ), |
||
974 | 3, |
||
975 | ) |
||
976 | < cast(EgonEvTrip.charging_demand, Numeric), |
||
977 | EgonEvTrip.scenario == scenario_name, |
||
978 | ) |
||
979 | invalid_trips = pd.read_sql( |
||
980 | query.statement, query.session.bind, index_col=None |
||
981 | ) |
||
982 | np.testing.assert_equal( |
||
983 | invalid_trips.iloc[0].cnt, |
||
984 | 0, |
||
985 | err_msg=( |
||
986 | f"In {str(invalid_trips.iloc[0].cnt)} trips (table: " |
||
987 | f"{EgonEvTrip.__table__}) the charging demand cannot be " |
||
988 | f"covered by available charging power." |
||
989 | ), |
||
990 | ) |
||
991 | |||
992 | def check_model_data(): |
||
993 | # Check if model components were fully created |
||
994 | print(" Check if all model components were created...") |
||
995 | # Get MVGDs which got EV allocated |
||
996 | with db.session_scope() as session: |
||
997 | query = ( |
||
998 | session.query( |
||
999 | EgonEvMvGridDistrict.bus_id, |
||
1000 | ) |
||
1001 | .filter( |
||
1002 | EgonEvMvGridDistrict.scenario == scenario_name, |
||
1003 | EgonEvMvGridDistrict.scenario_variation |
||
1004 | == scenario_var_name, |
||
1005 | ) |
||
1006 | .group_by(EgonEvMvGridDistrict.bus_id) |
||
1007 | ) |
||
1008 | mvgds_with_ev = ( |
||
1009 | pd.read_sql(query.statement, query.session.bind, index_col=None) |
||
1010 | .bus_id.sort_values() |
||
1011 | .to_list() |
||
1012 | ) |
||
1013 | |||
1014 | # Load model components |
||
1015 | with db.session_scope() as session: |
||
1016 | query = ( |
||
1017 | session.query( |
||
1018 | EgonPfHvLink.bus0.label("mvgd_bus_id"), |
||
1019 | EgonPfHvLoad.bus.label("emob_bus_id"), |
||
1020 | EgonPfHvLoad.load_id.label("load_id"), |
||
1021 | EgonPfHvStore.store_id.label("store_id"), |
||
1022 | ) |
||
1023 | .select_from(EgonPfHvLoad, EgonPfHvStore) |
||
1024 | .join( |
||
1025 | EgonPfHvLoadTimeseries, |
||
1026 | EgonPfHvLoadTimeseries.load_id == EgonPfHvLoad.load_id, |
||
1027 | ) |
||
1028 | .join( |
||
1029 | EgonPfHvStoreTimeseries, |
||
1030 | EgonPfHvStoreTimeseries.store_id == EgonPfHvStore.store_id, |
||
1031 | ) |
||
1032 | .filter( |
||
1033 | EgonPfHvLoad.carrier == "land transport EV", |
||
1034 | EgonPfHvLoad.scn_name == scenario_name, |
||
1035 | EgonPfHvLoadTimeseries.scn_name == scenario_name, |
||
1036 | EgonPfHvStore.carrier == "battery storage", |
||
1037 | EgonPfHvStore.scn_name == scenario_name, |
||
1038 | EgonPfHvStoreTimeseries.scn_name == scenario_name, |
||
1039 | EgonPfHvLink.scn_name == scenario_name, |
||
1040 | EgonPfHvLink.bus1 == EgonPfHvLoad.bus, |
||
1041 | EgonPfHvLink.bus1 == EgonPfHvStore.bus, |
||
1042 | ) |
||
1043 | ) |
||
1044 | model_components = pd.read_sql( |
||
1045 | query.statement, query.session.bind, index_col=None |
||
1046 | ) |
||
1047 | |||
1048 | # Check number of buses with model components connected |
||
1049 | mvgd_buses_with_ev = model_components.loc[ |
||
1050 | model_components.mvgd_bus_id.isin(mvgds_with_ev) |
||
1051 | ] |
||
1052 | np.testing.assert_equal( |
||
1053 | len(mvgds_with_ev), |
||
1054 | len(mvgd_buses_with_ev), |
||
1055 | err_msg=( |
||
1056 | f"Number of Grid Districts with connected model components " |
||
1057 | f"({str(len(mvgd_buses_with_ev))} in tables egon_etrago_*) " |
||
1058 | f"differ from number of Grid Districts that got EVs " |
||
1059 | f"allocated ({len(mvgds_with_ev)} in table " |
||
1060 | f"{EgonEvMvGridDistrict.__table__})." |
||
1061 | ), |
||
1062 | ) |
||
1063 | |||
1064 | # Check if all required components exist (if no id is NaN) |
||
1065 | np.testing.assert_equal( |
||
1066 | model_components.drop_duplicates().isna().any().any(), |
||
1067 | False, |
||
1068 | err_msg=( |
||
1069 | f"Some components are missing (see True values): " |
||
1070 | f"{model_components.drop_duplicates().isna().any()}" |
||
1071 | ), |
||
1072 | ) |
||
1073 | |||
1074 | # Get all model timeseries |
||
1075 | print(" Loading model timeseries...") |
||
1076 | # Get all model timeseries |
||
1077 | model_ts_dict = { |
||
1078 | "Load": { |
||
1079 | "carrier": "land transport EV", |
||
1080 | "table": EgonPfHvLoad, |
||
1081 | "table_ts": EgonPfHvLoadTimeseries, |
||
1082 | "column_id": "load_id", |
||
1083 | "columns_ts": ["p_set"], |
||
1084 | "ts": None, |
||
1085 | }, |
||
1086 | "Link": { |
||
1087 | "carrier": "BEV charger", |
||
1088 | "table": EgonPfHvLink, |
||
1089 | "table_ts": EgonPfHvLinkTimeseries, |
||
1090 | "column_id": "link_id", |
||
1091 | "columns_ts": ["p_max_pu"], |
||
1092 | "ts": None, |
||
1093 | }, |
||
1094 | "Store": { |
||
1095 | "carrier": "battery storage", |
||
1096 | "table": EgonPfHvStore, |
||
1097 | "table_ts": EgonPfHvStoreTimeseries, |
||
1098 | "column_id": "store_id", |
||
1099 | "columns_ts": ["e_min_pu", "e_max_pu"], |
||
1100 | "ts": None, |
||
1101 | }, |
||
1102 | } |
||
1103 | |||
1104 | with db.session_scope() as session: |
||
1105 | for node, attrs in model_ts_dict.items(): |
||
1106 | print(f" Loading {node} timeseries...") |
||
1107 | subquery = ( |
||
1108 | session.query(getattr(attrs["table"], attrs["column_id"])) |
||
1109 | .filter(attrs["table"].carrier == attrs["carrier"]) |
||
1110 | .filter(attrs["table"].scn_name == scenario_name) |
||
1111 | .subquery() |
||
1112 | ) |
||
1113 | |||
1114 | cols = [ |
||
1115 | getattr(attrs["table_ts"], c) for c in attrs["columns_ts"] |
||
1116 | ] |
||
1117 | query = session.query( |
||
1118 | getattr(attrs["table_ts"], attrs["column_id"]), *cols |
||
1119 | ).filter( |
||
1120 | getattr(attrs["table_ts"], attrs["column_id"]).in_( |
||
1121 | subquery |
||
1122 | ), |
||
1123 | attrs["table_ts"].scn_name == scenario_name, |
||
1124 | ) |
||
1125 | attrs["ts"] = pd.read_sql( |
||
1126 | query.statement, |
||
1127 | query.session.bind, |
||
1128 | index_col=attrs["column_id"], |
||
1129 | ) |
||
1130 | |||
1131 | # Check if all timeseries have 8760 steps |
||
1132 | print(" Checking timeranges...") |
||
1133 | for node, attrs in model_ts_dict.items(): |
||
1134 | for col in attrs["columns_ts"]: |
||
1135 | ts = attrs["ts"] |
||
1136 | invalid_ts = ts.loc[ts[col].apply(lambda _: len(_)) != 8760][ |
||
1137 | col |
||
1138 | ].apply(len) |
||
1139 | np.testing.assert_equal( |
||
1140 | len(invalid_ts), |
||
1141 | 0, |
||
1142 | err_msg=( |
||
1143 | f"{str(len(invalid_ts))} rows in timeseries do not " |
||
1144 | f"have 8760 timesteps. Table: " |
||
1145 | f"{attrs['table_ts'].__table__}, Column: {col}, IDs: " |
||
1146 | f"{str(list(invalid_ts.index))}" |
||
1147 | ), |
||
1148 | ) |
||
1149 | |||
1150 | # Compare total energy demand in model with some approximate values |
||
1151 | # (per EV: 14,000 km/a, 0.17 kWh/km) |
||
1152 | print(" Checking energy demand in model...") |
||
1153 | total_energy_model = ( |
||
1154 | model_ts_dict["Load"]["ts"].p_set.apply(lambda _: sum(_)).sum() |
||
1155 | / 1e6 |
||
1156 | ) |
||
1157 | print(f" Total energy amount in model: {total_energy_model} TWh") |
||
1158 | total_energy_scenario_approx = ev_count_alloc * 14000 * 0.17 / 1e9 |
||
1159 | print( |
||
1160 | f" Total approximated energy amount in scenario: " |
||
1161 | f"{total_energy_scenario_approx} TWh" |
||
1162 | ) |
||
1163 | np.testing.assert_allclose( |
||
1164 | total_energy_model, |
||
1165 | total_energy_scenario_approx, |
||
1166 | rtol=0.1, |
||
1167 | err_msg=( |
||
1168 | "The total energy amount in the model deviates heavily " |
||
1169 | "from the approximated value for current scenario." |
||
1170 | ), |
||
1171 | ) |
||
1172 | |||
1173 | # Compare total storage capacity |
||
1174 | print(" Checking storage capacity...") |
||
1175 | # Load storage capacities from model |
||
1176 | with db.session_scope() as session: |
||
1177 | query = session.query( |
||
1178 | func.sum(EgonPfHvStore.e_nom).label("e_nom") |
||
1179 | ).filter( |
||
1180 | EgonPfHvStore.scn_name == scenario_name, |
||
1181 | EgonPfHvStore.carrier == "battery storage", |
||
1182 | ) |
||
1183 | storage_capacity_model = ( |
||
1184 | pd.read_sql( |
||
1185 | query.statement, query.session.bind, index_col=None |
||
1186 | ).e_nom.sum() |
||
1187 | / 1e3 |
||
1188 | ) |
||
1189 | print( |
||
1190 | f" Total storage capacity ({EgonPfHvStore.__table__}): " |
||
1191 | f"{round(storage_capacity_model, 1)} GWh" |
||
1192 | ) |
||
1193 | |||
1194 | # Load occurences of each EV |
||
1195 | with db.session_scope() as session: |
||
1196 | query = ( |
||
1197 | session.query( |
||
1198 | EgonEvMvGridDistrict.bus_id, |
||
1199 | EgonEvPool.type, |
||
1200 | func.count(EgonEvMvGridDistrict.egon_ev_pool_ev_id).label( |
||
1201 | "count" |
||
1202 | ), |
||
1203 | ) |
||
1204 | .join( |
||
1205 | EgonEvPool, |
||
1206 | EgonEvPool.ev_id |
||
1207 | == EgonEvMvGridDistrict.egon_ev_pool_ev_id, |
||
1208 | ) |
||
1209 | .filter( |
||
1210 | EgonEvMvGridDistrict.scenario == scenario_name, |
||
1211 | EgonEvMvGridDistrict.scenario_variation |
||
1212 | == scenario_var_name, |
||
1213 | EgonEvPool.scenario == scenario_name, |
||
1214 | ) |
||
1215 | .group_by(EgonEvMvGridDistrict.bus_id, EgonEvPool.type) |
||
1216 | ) |
||
1217 | count_per_ev_all = pd.read_sql( |
||
1218 | query.statement, query.session.bind, index_col="bus_id" |
||
1219 | ) |
||
1220 | count_per_ev_all["bat_cap"] = count_per_ev_all.type.map( |
||
1221 | meta_tech_data.battery_capacity |
||
1222 | ) |
||
1223 | count_per_ev_all["bat_cap_total_MWh"] = ( |
||
1224 | count_per_ev_all["count"] * count_per_ev_all.bat_cap / 1e3 |
||
1225 | ) |
||
1226 | storage_capacity_simbev = count_per_ev_all.bat_cap_total_MWh.div( |
||
1227 | 1e3 |
||
1228 | ).sum() |
||
1229 | print( |
||
1230 | f" Total storage capacity (simBEV): " |
||
1231 | f"{round(storage_capacity_simbev, 1)} GWh" |
||
1232 | ) |
||
1233 | |||
1234 | np.testing.assert_allclose( |
||
1235 | storage_capacity_model, |
||
1236 | storage_capacity_simbev, |
||
1237 | rtol=0.01, |
||
1238 | err_msg=( |
||
1239 | "The total storage capacity in the model deviates heavily " |
||
1240 | "from the input data provided by simBEV for current scenario." |
||
1241 | ), |
||
1242 | ) |
||
1243 | |||
1244 | # Check SoC storage constraint: e_min_pu < e_max_pu for all timesteps |
||
1245 | print(" Validating SoC constraints...") |
||
1246 | stores_with_invalid_soc = [] |
||
1247 | for idx, row in model_ts_dict["Store"]["ts"].iterrows(): |
||
1248 | ts = row[["e_min_pu", "e_max_pu"]] |
||
1249 | x = np.array(ts.e_min_pu) > np.array(ts.e_max_pu) |
||
1250 | if x.any(): |
||
1251 | stores_with_invalid_soc.append(idx) |
||
1252 | |||
1253 | np.testing.assert_equal( |
||
1254 | len(stores_with_invalid_soc), |
||
1255 | 0, |
||
1256 | err_msg=( |
||
1257 | f"The store constraint e_min_pu < e_max_pu does not apply " |
||
1258 | f"for some storages in {EgonPfHvStoreTimeseries.__table__}. " |
||
1259 | f"Invalid store_ids: {stores_with_invalid_soc}" |
||
1260 | ), |
||
1261 | ) |
||
1262 | |||
1263 | def check_model_data_lowflex_eGon2035(): |
||
1264 | # TODO: Add eGon100RE_lowflex |
||
1265 | print("") |
||
1266 | print("SCENARIO: eGon2035_lowflex") |
||
1267 | |||
1268 | # Compare driving load and charging load |
||
1269 | print(" Loading eGon2035 model timeseries: driving load...") |
||
1270 | with db.session_scope() as session: |
||
1271 | query = ( |
||
1272 | session.query( |
||
1273 | EgonPfHvLoad.load_id, |
||
1274 | EgonPfHvLoadTimeseries.p_set, |
||
1275 | ) |
||
1276 | .join( |
||
1277 | EgonPfHvLoadTimeseries, |
||
1278 | EgonPfHvLoadTimeseries.load_id == EgonPfHvLoad.load_id, |
||
1279 | ) |
||
1280 | .filter( |
||
1281 | EgonPfHvLoad.carrier == "land transport EV", |
||
1282 | EgonPfHvLoad.scn_name == "eGon2035", |
||
1283 | EgonPfHvLoadTimeseries.scn_name == "eGon2035", |
||
1284 | ) |
||
1285 | ) |
||
1286 | model_driving_load = pd.read_sql( |
||
1287 | query.statement, query.session.bind, index_col=None |
||
1288 | ) |
||
1289 | driving_load = np.array(model_driving_load.p_set.to_list()).sum(axis=0) |
||
1290 | |||
1291 | print( |
||
1292 | " Loading eGon2035_lowflex model timeseries: dumb charging " |
||
1293 | "load..." |
||
1294 | ) |
||
1295 | with db.session_scope() as session: |
||
1296 | query = ( |
||
1297 | session.query( |
||
1298 | EgonPfHvLoad.load_id, |
||
1299 | EgonPfHvLoadTimeseries.p_set, |
||
1300 | ) |
||
1301 | .join( |
||
1302 | EgonPfHvLoadTimeseries, |
||
1303 | EgonPfHvLoadTimeseries.load_id == EgonPfHvLoad.load_id, |
||
1304 | ) |
||
1305 | .filter( |
||
1306 | EgonPfHvLoad.carrier == "land transport EV", |
||
1307 | EgonPfHvLoad.scn_name == "eGon2035_lowflex", |
||
1308 | EgonPfHvLoadTimeseries.scn_name == "eGon2035_lowflex", |
||
1309 | ) |
||
1310 | ) |
||
1311 | model_charging_load_lowflex = pd.read_sql( |
||
1312 | query.statement, query.session.bind, index_col=None |
||
1313 | ) |
||
1314 | charging_load = np.array( |
||
1315 | model_charging_load_lowflex.p_set.to_list() |
||
1316 | ).sum(axis=0) |
||
1317 | |||
1318 | # Ratio of driving and charging load should be 0.9 due to charging |
||
1319 | # efficiency |
||
1320 | print(" Compare cumulative loads...") |
||
1321 | print(f" Driving load (eGon2035): {driving_load.sum() / 1e6} TWh") |
||
1322 | print( |
||
1323 | f" Dumb charging load (eGon2035_lowflex): " |
||
1324 | f"{charging_load.sum() / 1e6} TWh" |
||
1325 | ) |
||
1326 | driving_load_theoretical = ( |
||
1327 | float(meta_run_config.eta_cp) * charging_load.sum() |
||
1328 | ) |
||
1329 | np.testing.assert_allclose( |
||
1330 | driving_load.sum(), |
||
1331 | driving_load_theoretical, |
||
1332 | rtol=0.01, |
||
1333 | err_msg=( |
||
1334 | f"The driving load (eGon2035) deviates by more than 1% " |
||
1335 | f"from the theoretical driving load calculated from charging " |
||
1336 | f"load (eGon2035_lowflex) with an efficiency of " |
||
1337 | f"{float(meta_run_config.eta_cp)}." |
||
1338 | ), |
||
1339 | ) |
||
1340 | |||
1341 | print("=====================================================") |
||
1342 | print("=== SANITY CHECKS FOR MOTORIZED INDIVIDUAL TRAVEL ===") |
||
1343 | print("=====================================================") |
||
1344 | |||
1345 | for scenario_name in ["eGon2035", "eGon100RE"]: |
||
1346 | scenario_var_name = DATASET_CFG["scenario"]["variation"][scenario_name] |
||
1347 | |||
1348 | print("") |
||
1349 | print(f"SCENARIO: {scenario_name}, VARIATION: {scenario_var_name}") |
||
1350 | |||
1351 | # Load scenario params for scenario and scenario variation |
||
1352 | scenario_variation_parameters = get_sector_parameters( |
||
1353 | "mobility", scenario=scenario_name |
||
1354 | )["motorized_individual_travel"][scenario_var_name] |
||
1355 | |||
1356 | # Load simBEV run config and tech data |
||
1357 | meta_run_config = read_simbev_metadata_file( |
||
1358 | scenario_name, "config" |
||
1359 | ).loc["basic"] |
||
1360 | meta_tech_data = read_simbev_metadata_file(scenario_name, "tech_data") |
||
1361 | |||
1362 | print("") |
||
1363 | print("Checking EV counts...") |
||
1364 | ev_count_alloc = check_ev_allocation() |
||
1365 | |||
1366 | print("") |
||
1367 | print("Checking trip data...") |
||
1368 | check_trip_data() |
||
1369 | |||
1370 | print("") |
||
1371 | print("Checking model data...") |
||
1372 | check_model_data() |
||
1373 | |||
1374 | print("") |
||
1375 | check_model_data_lowflex_eGon2035() |
||
1376 | |||
1377 | print("=====================================================") |
||
1378 | |||
1379 | |||
1380 | def sanitycheck_home_batteries(): |
||
1381 | # get constants |
||
1382 | constants = config.datasets()["home_batteries"]["constants"] |
||
1383 | scenarios = constants["scenarios"] |
||
1384 | cbat_pbat_ratio = get_cbat_pbat_ratio() |
||
1385 | |||
1386 | sources = config.datasets()["home_batteries"]["sources"] |
||
1387 | targets = config.datasets()["home_batteries"]["targets"] |
||
1388 | |||
1389 | for scenario in scenarios: |
||
1390 | # get home battery capacity per mv grid id |
||
1391 | sql = f""" |
||
1392 | SELECT el_capacity as p_nom, bus_id FROM |
||
1393 | {sources["storage"]["schema"]} |
||
1394 | .{sources["storage"]["table"]} |
||
1395 | WHERE carrier = 'home_battery' |
||
1396 | AND scenario = '{scenario}' |
||
1397 | """ |
||
1398 | |||
1399 | home_batteries_df = db.select_dataframe(sql, index_col="bus_id") |
||
1400 | |||
1401 | home_batteries_df = home_batteries_df.assign( |
||
1402 | capacity=home_batteries_df.p_nom * cbat_pbat_ratio |
||
1403 | ) |
||
1404 | |||
1405 | sql = f""" |
||
1406 | SELECT * FROM |
||
1407 | {targets["home_batteries"]["schema"]} |
||
1408 | .{targets["home_batteries"]["table"]} |
||
1409 | WHERE scenario = '{scenario}' |
||
1410 | """ |
||
1411 | |||
1412 | home_batteries_buildings_df = db.select_dataframe( |
||
1413 | sql, index_col="index" |
||
1414 | ) |
||
1415 | |||
1416 | df = ( |
||
1417 | home_batteries_buildings_df[["bus_id", "p_nom", "capacity"]] |
||
1418 | .groupby("bus_id") |
||
1419 | .sum() |
||
1420 | ) |
||
1421 | |||
1422 | assert (home_batteries_df.round(6) == df.round(6)).all().all() |
||
1423 | |||
1424 | def sanity_check_gas_buses(scn): |
||
1425 | """Execute sanity checks for the gas buses in Germany |
||
1426 | Returns print statements as sanity checks for the CH4 and |
||
1427 | H2_grid grid buses in Germany. The deviation is calculated between |
||
1428 | the number gas grid buses in the database and the original |
||
1429 | Scigrid_gas number of gas buses. |
||
1430 | Parameters |
||
1431 | ---------- |
||
1432 | scn_name : str |
||
1433 | Name of the scenario |
||
1434 | """ |
||
1435 | logger.info(f"BUSES") |
||
1436 | |||
1437 | target_file = ( |
||
1438 | Path(".") / "datasets" / "gas_data" / "data" / "IGGIELGN_Nodes.csv" |
||
1439 | ) |
||
1440 | |||
1441 | Grid_buses_list = pd.read_csv( |
||
1442 | target_file, |
||
1443 | delimiter=";", |
||
1444 | decimal=".", |
||
1445 | usecols=["country_code"], |
||
1446 | ) |
||
1447 | |||
1448 | Grid_buses_list = Grid_buses_list[ |
||
1449 | Grid_buses_list["country_code"].str.match("DE") |
||
1450 | ] |
||
1451 | input_grid_buses = len(Grid_buses_list.index) |
||
1452 | |||
1453 | for carrier in ["CH4", "H2_grid"]: |
||
1454 | |||
1455 | output_grid_buses_df = db.select_dataframe( |
||
1456 | f""" |
||
1457 | SELECT bus_id |
||
1458 | FROM grid.egon_etrago_bus |
||
1459 | WHERE scn_name = '{scn}' |
||
1460 | AND country = 'DE' |
||
1461 | AND carrier = '{carrier}'; |
||
1462 | """, |
||
1463 | warning=False, |
||
1464 | ) |
||
1465 | output_grid_buses = len(output_grid_buses_df.index) |
||
1466 | |||
1467 | e_grid_buses = ( |
||
1468 | round( |
||
1469 | (output_grid_buses - input_grid_buses) / input_grid_buses, |
||
1470 | 2, |
||
1471 | ) |
||
1472 | * 100 |
||
1473 | ) |
||
1474 | logger.info(f"Deviation {carrier} buses: {e_grid_buses} %") |
||
1475 | |||
1476 | |||
1477 | def sanity_check_CH4_stores(scn): |
||
1478 | """Execute sanity checks for the CH4 stores in Germany |
||
1479 | Returns print statements as sanity checks for the CH4 stores |
||
1480 | capacity in Germany. The deviation is calculated between: |
||
1481 | * the sum of the capacities of the stores with carrier 'CH4' |
||
1482 | in the database (for one scenario) and |
||
1483 | * the sum of: |
||
1484 | * the capacity the gas grid allocated to CH4 (total capacity |
||
1485 | in eGon2035 and capacity reduced the share of the grid |
||
1486 | allocated to H2 in eGon100RE) and |
||
1487 | * the sum of the capacities of the stores in the source |
||
1488 | document (Storages from the SciGRID_gas data) |
||
1489 | Parameters |
||
1490 | ---------- |
||
1491 | scn_name : str |
||
1492 | Name of the scenario |
||
1493 | """ |
||
1494 | output_CH4_stores = db.select_dataframe( |
||
1495 | f"""SELECT SUM(e_nom::numeric) as e_nom_germany |
||
1496 | FROM grid.egon_etrago_store |
||
1497 | WHERE scn_name = '{scn}' |
||
1498 | AND carrier = 'CH4' |
||
1499 | AND bus IN |
||
1500 | (SELECT bus_id |
||
1501 | FROM grid.egon_etrago_bus |
||
1502 | WHERE scn_name = '{scn}' |
||
1503 | AND country = 'DE' |
||
1504 | AND carrier = 'CH4'); |
||
1505 | """, |
||
1506 | warning=False, |
||
1507 | )["e_nom_germany"].values[0] |
||
1508 | |||
1509 | target_file = ( |
||
1510 | Path(".") / "datasets" / "gas_data" / "data" / "IGGIELGN_Storages.csv" |
||
1511 | ) |
||
1512 | |||
1513 | CH4_storages_list = pd.read_csv( |
||
1514 | target_file, |
||
1515 | delimiter=";", |
||
1516 | decimal=".", |
||
1517 | usecols=["country_code", "param"], |
||
1518 | ) |
||
1519 | |||
1520 | CH4_storages_list = CH4_storages_list[ |
||
1521 | CH4_storages_list["country_code"].str.match("DE") |
||
1522 | ] |
||
1523 | |||
1524 | max_workingGas_M_m3 = [] |
||
1525 | end_year = [] |
||
1526 | for index, row in CH4_storages_list.iterrows(): |
||
1527 | param = ast.literal_eval(row["param"]) |
||
1528 | end_year.append(param["end_year"]) |
||
1529 | max_workingGas_M_m3.append(param["max_workingGas_M_m3"]) |
||
1530 | CH4_storages_list["max_workingGas_M_m3"] = max_workingGas_M_m3 |
||
1531 | CH4_storages_list["end_year"] = [ |
||
1532 | float("inf") if x == None else x for x in end_year |
||
1533 | ] |
||
1534 | |||
1535 | # Remove unused storage units |
||
1536 | CH4_storages_list = CH4_storages_list[ |
||
1537 | CH4_storages_list["end_year"] |
||
1538 | >= get_sector_parameters("global", scn)["population_year"] |
||
1539 | ] |
||
1540 | |||
1541 | if scn == "eGon2035": |
||
1542 | grid_cap = 130000 |
||
1543 | elif scn == "eGon100RE": |
||
1544 | grid_cap = 13000 * ( |
||
1545 | 1 |
||
1546 | - get_sector_parameters("gas", "eGon100RE")[ |
||
1547 | "retrofitted_CH4pipeline-to-H2pipeline_share" |
||
1548 | ] |
||
1549 | ) |
||
1550 | conv_factor = 10830 # gross calorific value = 39 MJ/m3 (eurogas.org) |
||
1551 | input_CH4_stores = ( |
||
1552 | conv_factor * sum(CH4_storages_list["max_workingGas_M_m3"].to_list()) |
||
1553 | + grid_cap |
||
1554 | ) |
||
1555 | |||
1556 | e_CH4_stores = ( |
||
1557 | round( |
||
1558 | (output_CH4_stores - input_CH4_stores) / input_CH4_stores, |
||
1559 | 2, |
||
1560 | ) |
||
1561 | * 100 |
||
1562 | ) |
||
1563 | logger.info(f"Deviation CH4 stores: {e_CH4_stores} %") |
||
1564 | |||
1565 | |||
1566 | def sanity_check_H2_saltcavern_stores(scn): |
||
1567 | """Execute sanity checks for the H2 saltcavern stores in Germany |
||
1568 | Returns print as sanity checks for the H2 saltcavern potential |
||
1569 | storage capacity in Germany. The deviation is calculated between: |
||
1570 | * the sum of the of the H2 saltcavern potential storage capacity |
||
1571 | (e_nom_max) in the database and |
||
1572 | * the sum of the H2 saltcavern potential storage capacity |
||
1573 | assumed to be the ratio of the areas of 500 m radius around |
||
1574 | substations in each german federal state and the estimated |
||
1575 | total hydrogen storage potential of the corresponding federal |
||
1576 | state (data from InSpEE-DS report). |
||
1577 | This test works also in test mode. |
||
1578 | Parameters |
||
1579 | ---------- |
||
1580 | scn_name : str |
||
1581 | Name of the scenario |
||
1582 | """ |
||
1583 | output_H2_stores = db.select_dataframe( |
||
1584 | f"""SELECT SUM(e_nom_max::numeric) as e_nom_max_germany |
||
1585 | FROM grid.egon_etrago_store |
||
1586 | WHERE scn_name = '{scn}' |
||
1587 | AND carrier = 'H2_underground' |
||
1588 | AND bus IN |
||
1589 | (SELECT bus_id |
||
1590 | FROM grid.egon_etrago_bus |
||
1591 | WHERE scn_name = '{scn}' |
||
1592 | AND country = 'DE' |
||
1593 | AND carrier = 'H2_saltcavern'); |
||
1594 | """, |
||
1595 | warning=False, |
||
1596 | )["e_nom_max_germany"].values[0] |
||
1597 | |||
1598 | storage_potentials = calculate_and_map_saltcavern_storage_potential() |
||
1599 | storage_potentials["storage_potential"] = ( |
||
1600 | storage_potentials["area_fraction"] * storage_potentials["potential"] |
||
1601 | ) |
||
1602 | input_H2_stores = sum(storage_potentials["storage_potential"].to_list()) |
||
1603 | |||
1604 | e_H2_stores = ( |
||
1605 | round( |
||
1606 | (output_H2_stores - input_H2_stores) / input_H2_stores, |
||
1607 | 2, |
||
1608 | ) |
||
1609 | * 100 |
||
1610 | ) |
||
1611 | logger.info(f"Deviation H2 saltcavern stores: {e_H2_stores} %") |
||
1612 | |||
1613 | |||
1614 | def sanity_check_CH4_grid(scn): |
||
1615 | """Execute sanity checks for the gas grid capacity in Germany |
||
1616 | Returns print statements as sanity checks for the CH4 links |
||
1617 | (pipelines) in Germany. The deviation is calculated between |
||
1618 | the sum of the power (p_nom) of all the CH4 pipelines in Germany |
||
1619 | for one scenario in the database and the sum of the powers of the |
||
1620 | imported pipelines. |
||
1621 | In eGon100RE, the sum is reduced by the share of the grid that is |
||
1622 | allocated to hydrogen (share calculated by PyPSA-eur-sec). |
||
1623 | This test works also in test mode. |
||
1624 | Parameters |
||
1625 | ---------- |
||
1626 | scn_name : str |
||
1627 | Name of the scenario |
||
1628 | Returns |
||
1629 | ------- |
||
1630 | scn_name : float |
||
1631 | Sum of the power (p_nom) of all the pipelines in Germany |
||
1632 | """ |
||
1633 | grid_carrier = "CH4" |
||
1634 | output_gas_grid = db.select_dataframe( |
||
1635 | f"""SELECT SUM(p_nom::numeric) as p_nom_germany |
||
1636 | FROM grid.egon_etrago_link |
||
1637 | WHERE scn_name = '{scn}' |
||
1638 | AND carrier = '{grid_carrier}' |
||
1639 | AND bus0 IN |
||
1640 | (SELECT bus_id |
||
1641 | FROM grid.egon_etrago_bus |
||
1642 | WHERE scn_name = '{scn}' |
||
1643 | AND country = 'DE' |
||
1644 | AND carrier = '{grid_carrier}') |
||
1645 | AND bus1 IN |
||
1646 | (SELECT bus_id |
||
1647 | FROM grid.egon_etrago_bus |
||
1648 | WHERE scn_name = '{scn}' |
||
1649 | AND country = 'DE' |
||
1650 | AND carrier = '{grid_carrier}') |
||
1651 | ; |
||
1652 | """, |
||
1653 | warning=False, |
||
1654 | )["p_nom_germany"].values[0] |
||
1655 | |||
1656 | gas_nodes_list = define_gas_nodes_list() |
||
1657 | abroad_gas_nodes_list = insert_gas_buses_abroad() |
||
1658 | gas_grid = define_gas_pipeline_list(gas_nodes_list, abroad_gas_nodes_list) |
||
1659 | gas_grid_germany = gas_grid[ |
||
1660 | (gas_grid["country_0"] == "DE") & (gas_grid["country_1"] == "DE") |
||
1661 | ] |
||
1662 | p_nom_total = sum(gas_grid_germany["p_nom"].to_list()) |
||
1663 | |||
1664 | if scn == "eGon2035": |
||
1665 | input_gas_grid = p_nom_total |
||
1666 | if scn == "eGon100RE": |
||
1667 | input_gas_grid = p_nom_total * ( |
||
1668 | 1 |
||
1669 | - get_sector_parameters("gas", "eGon100RE")[ |
||
1670 | "retrofitted_CH4pipeline-to-H2pipeline_share" |
||
1671 | ] |
||
1672 | ) |
||
1673 | |||
1674 | e_gas_grid = ( |
||
1675 | round( |
||
1676 | (output_gas_grid - input_gas_grid) / input_gas_grid, |
||
1677 | 2, |
||
1678 | ) |
||
1679 | * 100 |
||
1680 | ) |
||
1681 | logger.info(f"Deviation of the capacity of the CH4 grid: {e_gas_grid} %") |
||
1682 | |||
1683 | return p_nom_total |
||
1684 | |||
1685 | |||
1686 | def etrago_eGon2035_gas_DE(): |
||
1687 | """Execute basic sanity checks for the gas sector in eGon2035 |
||
1688 | Returns print statements as sanity checks for the gas sector in |
||
1689 | the eGon2035 scenario for the following components in Germany: |
||
1690 | * Buses: with the function :py:func:`sanity_check_gas_buses` |
||
1691 | * Loads: for the carriers 'CH4_for_industry' and 'H2_for_industry' |
||
1692 | the deviation is calculated between the sum of the loads in the |
||
1693 | database and the sum the loads in the sources document |
||
1694 | (opendata.ffe database) |
||
1695 | * Generators: the deviation is calculated between the sums of the |
||
1696 | nominal powers of the gas generators in the database and of |
||
1697 | the ones in the sources document (Biogaspartner Einspeiseatlas |
||
1698 | Deutschland from the dena and Productions from the SciGRID_gas |
||
1699 | data) |
||
1700 | * Stores: deviations for stores with following carriers are |
||
1701 | calculated: |
||
1702 | * 'CH4': with the function :py:func:`sanity_check_CH4_stores` |
||
1703 | * 'H2_underground': with the function :py:func:`sanity_check_H2_saltcavern_stores` |
||
1704 | * Links: with the function :py:func:`sanity_check_CH4_grid` |
||
1705 | """ |
||
1706 | scn = "eGon2035" |
||
1707 | |||
1708 | if TESTMODE_OFF: |
||
1709 | logger.info(f"Gas sanity checks for scenario {scn}") |
||
1710 | |||
1711 | # Buses |
||
1712 | sanity_check_gas_buses(scn) |
||
1713 | |||
1714 | # Loads |
||
1715 | logger.info(f"LOADS") |
||
1716 | |||
1717 | path = Path(".") / "datasets" / "gas_data" / "demand" |
||
1718 | corr_file = path / "region_corr.json" |
||
1719 | df_corr = pd.read_json(corr_file) |
||
1720 | df_corr = df_corr.loc[:, ["id_region", "name_short"]] |
||
1721 | df_corr.set_index("id_region", inplace=True) |
||
1722 | |||
1723 | for carrier in ["CH4_for_industry", "H2_for_industry"]: |
||
1724 | |||
1725 | output_gas_demand = db.select_dataframe( |
||
1726 | f"""SELECT (SUM( |
||
1727 | (SELECT SUM(p) |
||
1728 | FROM UNNEST(b.p_set) p))/1000000)::numeric as load_twh |
||
1729 | FROM grid.egon_etrago_load a |
||
1730 | JOIN grid.egon_etrago_load_timeseries b |
||
1731 | ON (a.load_id = b.load_id) |
||
1732 | JOIN grid.egon_etrago_bus c |
||
1733 | ON (a.bus=c.bus_id) |
||
1734 | AND b.scn_name = '{scn}' |
||
1735 | AND a.scn_name = '{scn}' |
||
1736 | AND c.scn_name = '{scn}' |
||
1737 | AND c.country = 'DE' |
||
1738 | AND a.carrier = '{carrier}'; |
||
1739 | """, |
||
1740 | warning=False, |
||
1741 | )["load_twh"].values[0] |
||
1742 | |||
1743 | input_gas_demand = pd.read_json( |
||
1744 | path / (carrier + "_eGon2035.json") |
||
1745 | ) |
||
1746 | input_gas_demand = input_gas_demand.loc[:, ["id_region", "value"]] |
||
1747 | input_gas_demand.set_index("id_region", inplace=True) |
||
1748 | input_gas_demand = pd.concat( |
||
1749 | [input_gas_demand, df_corr], axis=1, join="inner" |
||
1750 | ) |
||
1751 | input_gas_demand["NUTS0"] = (input_gas_demand["name_short"].str)[ |
||
1752 | 0:2 |
||
1753 | ] |
||
1754 | input_gas_demand = input_gas_demand[ |
||
1755 | input_gas_demand["NUTS0"].str.match("DE") |
||
1756 | ] |
||
1757 | input_gas_demand = sum(input_gas_demand.value.to_list()) / 1000000 |
||
1758 | |||
1759 | e_demand = ( |
||
1760 | round( |
||
1761 | (output_gas_demand - input_gas_demand) / input_gas_demand, |
||
1762 | 2, |
||
1763 | ) |
||
1764 | * 100 |
||
1765 | ) |
||
1766 | logger.info(f"Deviation {carrier}: {e_demand} %") |
||
1767 | |||
1768 | # Generators |
||
1769 | logger.info(f"GENERATORS") |
||
1770 | carrier_generator = "CH4" |
||
1771 | |||
1772 | output_gas_generation = db.select_dataframe( |
||
1773 | f"""SELECT SUM(p_nom::numeric) as p_nom_germany |
||
1774 | FROM grid.egon_etrago_generator |
||
1775 | WHERE scn_name = '{scn}' |
||
1776 | AND carrier = '{carrier_generator}' |
||
1777 | AND bus IN |
||
1778 | (SELECT bus_id |
||
1779 | FROM grid.egon_etrago_bus |
||
1780 | WHERE scn_name = '{scn}' |
||
1781 | AND country = 'DE' |
||
1782 | AND carrier = '{carrier_generator}'); |
||
1783 | """, |
||
1784 | warning=False, |
||
1785 | )["p_nom_germany"].values[0] |
||
1786 | |||
1787 | target_file = ( |
||
1788 | Path(".") |
||
1789 | / "datasets" |
||
1790 | / "gas_data" |
||
1791 | / "data" |
||
1792 | / "IGGIELGN_Productions.csv" |
||
1793 | ) |
||
1794 | |||
1795 | NG_generators_list = pd.read_csv( |
||
1796 | target_file, |
||
1797 | delimiter=";", |
||
1798 | decimal=".", |
||
1799 | usecols=["country_code", "param"], |
||
1800 | ) |
||
1801 | |||
1802 | NG_generators_list = NG_generators_list[ |
||
1803 | NG_generators_list["country_code"].str.match("DE") |
||
1804 | ] |
||
1805 | |||
1806 | p_NG = 0 |
||
1807 | for index, row in NG_generators_list.iterrows(): |
||
1808 | param = ast.literal_eval(row["param"]) |
||
1809 | p_NG = p_NG + param["max_supply_M_m3_per_d"] |
||
1810 | conversion_factor = 437.5 # MCM/day to MWh/h |
||
1811 | p_NG = p_NG * conversion_factor |
||
1812 | |||
1813 | basename = "Biogaspartner_Einspeiseatlas_Deutschland_2021.xlsx" |
||
1814 | target_file = Path(".") / "datasets" / "gas_data" / basename |
||
1815 | |||
1816 | conversion_factor_b = 0.01083 # m^3/h to MWh/h |
||
1817 | p_biogas = ( |
||
1818 | pd.read_excel( |
||
1819 | target_file, |
||
1820 | usecols=["Einspeisung Biomethan [(N*m^3)/h)]"], |
||
1821 | )["Einspeisung Biomethan [(N*m^3)/h)]"].sum() |
||
1822 | * conversion_factor_b |
||
1823 | ) |
||
1824 | |||
1825 | input_gas_generation = p_NG + p_biogas |
||
1826 | e_generation = ( |
||
1827 | round( |
||
1828 | (output_gas_generation - input_gas_generation) |
||
1829 | / input_gas_generation, |
||
1830 | 2, |
||
1831 | ) |
||
1832 | * 100 |
||
1833 | ) |
||
1834 | logger.info( |
||
1835 | f"Deviation {carrier_generator} generation: {e_generation} %" |
||
1836 | ) |
||
1837 | |||
1838 | # Stores |
||
1839 | logger.info(f"STORES") |
||
1840 | sanity_check_CH4_stores(scn) |
||
1841 | sanity_check_H2_saltcavern_stores(scn) |
||
1842 | |||
1843 | # Links |
||
1844 | logger.info(f"LINKS") |
||
1845 | sanity_check_CH4_grid(scn) |
||
1846 | |||
1847 | else: |
||
1848 | print("Testmode is on, skipping sanity check.") |
||
1849 |