1
|
|
|
""" |
2
|
|
|
This module does sanity checks for both the eGon2035 and the eGon100RE scenario |
3
|
|
|
separately where a percentage error is given to showcase difference in output |
4
|
|
|
and input values. Please note that there are missing input technologies in the |
5
|
|
|
supply tables. |
6
|
|
|
Authors: @ALonso, @dana, @nailend, @nesnoj, @khelfen |
7
|
|
|
""" |
8
|
|
|
import ast |
9
|
|
|
from math import isclose |
10
|
|
|
from pathlib import Path |
11
|
|
|
|
12
|
|
|
from sqlalchemy import Numeric |
13
|
|
|
from sqlalchemy.sql import and_, cast, func, or_ |
14
|
|
|
import matplotlib.pyplot as plt |
15
|
|
|
import numpy as np |
16
|
|
|
import pandas as pd |
17
|
|
|
import seaborn as sns |
18
|
|
|
|
19
|
|
|
from egon.data import config, db, logger |
20
|
|
|
from egon.data.datasets import Dataset |
21
|
|
|
from egon.data.datasets.electricity_demand_timeseries.cts_buildings import ( |
22
|
|
|
EgonCtsElectricityDemandBuildingShare, |
23
|
|
|
EgonCtsHeatDemandBuildingShare, |
24
|
|
|
) |
25
|
|
|
from egon.data.datasets.emobility.motorized_individual_travel.db_classes import ( # noqa: E501 |
26
|
|
|
EgonEvCountMunicipality, |
27
|
|
|
EgonEvCountMvGridDistrict, |
28
|
|
|
EgonEvCountRegistrationDistrict, |
29
|
|
|
EgonEvMvGridDistrict, |
30
|
|
|
EgonEvPool, |
31
|
|
|
EgonEvTrip, |
32
|
|
|
) |
33
|
|
|
from egon.data.datasets.emobility.motorized_individual_travel.helpers import ( |
34
|
|
|
DATASET_CFG, |
35
|
|
|
read_simbev_metadata_file, |
36
|
|
|
) |
37
|
|
|
from egon.data.datasets.etrago_setup import ( |
38
|
|
|
EgonPfHvLink, |
39
|
|
|
EgonPfHvLinkTimeseries, |
40
|
|
|
EgonPfHvLoad, |
41
|
|
|
EgonPfHvLoadTimeseries, |
42
|
|
|
EgonPfHvStore, |
43
|
|
|
EgonPfHvStoreTimeseries, |
44
|
|
|
) |
45
|
|
|
from egon.data.datasets.power_plants.pv_rooftop_buildings import ( |
46
|
|
|
PV_CAP_PER_SQ_M, |
47
|
|
|
ROOF_FACTOR, |
48
|
|
|
SCENARIOS, |
49
|
|
|
load_building_data, |
50
|
|
|
scenario_data, |
51
|
|
|
) |
52
|
|
|
from egon.data.datasets.gas_grid import ( |
53
|
|
|
define_gas_nodes_list, |
54
|
|
|
define_gas_pipeline_list, |
55
|
|
|
insert_gas_buses_abroad, |
56
|
|
|
) |
57
|
|
|
from egon.data.datasets.hydrogen_etrago.storage import ( |
58
|
|
|
calculate_and_map_saltcavern_storage_potential, |
59
|
|
|
) |
60
|
|
|
from egon.data.datasets.pypsaeursec import read_network |
61
|
|
|
from egon.data.datasets.scenario_parameters import get_sector_parameters |
62
|
|
|
from egon.data.datasets.storages.home_batteries import get_cbat_pbat_ratio |
63
|
|
|
import egon.data |
64
|
|
|
|
65
|
|
|
TESTMODE_OFF = ( |
66
|
|
|
config.settings()["egon-data"]["--dataset-boundary"] == "Everything" |
67
|
|
|
) |
68
|
|
|
|
69
|
|
|
|
70
|
|
|
class SanityChecks(Dataset): |
71
|
|
|
#: |
72
|
|
|
name: str = "SanityChecks" |
73
|
|
|
#: |
74
|
|
|
version: str = "0.0.6" |
75
|
|
|
|
76
|
|
|
def __init__(self, dependencies): |
77
|
|
|
super().__init__( |
78
|
|
|
name=self.name, |
79
|
|
|
version=self.version, |
80
|
|
|
dependencies=dependencies, |
81
|
|
|
tasks={ |
82
|
|
|
etrago_eGon2035_electricity, |
83
|
|
|
etrago_eGon2035_heat, |
84
|
|
|
residential_electricity_annual_sum, |
85
|
|
|
residential_electricity_hh_refinement, |
86
|
|
|
cts_electricity_demand_share, |
87
|
|
|
cts_heat_demand_share, |
88
|
|
|
sanitycheck_emobility_mit, |
89
|
|
|
sanitycheck_pv_rooftop_buildings, |
90
|
|
|
sanitycheck_home_batteries, |
91
|
|
|
etrago_eGon2035_gas_DE, |
92
|
|
|
}, |
93
|
|
|
) |
94
|
|
|
|
95
|
|
|
|
96
|
|
|
def etrago_eGon2035_electricity(): |
97
|
|
|
"""Execute basic sanity checks. |
98
|
|
|
|
99
|
|
|
Returns print statements as sanity checks for the electricity sector in |
100
|
|
|
the eGon2035 scenario. |
101
|
|
|
|
102
|
|
|
Parameters |
103
|
|
|
---------- |
104
|
|
|
None |
105
|
|
|
|
106
|
|
|
Returns |
107
|
|
|
------- |
108
|
|
|
None |
109
|
|
|
""" |
110
|
|
|
|
111
|
|
|
scn = "eGon2035" |
112
|
|
|
|
113
|
|
|
# Section to check generator capacities |
114
|
|
|
logger.info(f"Sanity checks for scenario {scn}") |
115
|
|
|
logger.info( |
116
|
|
|
"For German electricity generators the following deviations between " |
117
|
|
|
"the inputs and outputs can be observed:" |
118
|
|
|
) |
119
|
|
|
|
120
|
|
|
carriers_electricity = [ |
121
|
|
|
"others", |
122
|
|
|
"reservoir", |
123
|
|
|
"run_of_river", |
124
|
|
|
"oil", |
125
|
|
|
"wind_onshore", |
126
|
|
|
"wind_offshore", |
127
|
|
|
"solar", |
128
|
|
|
"solar_rooftop", |
129
|
|
|
"biomass", |
130
|
|
|
] |
131
|
|
|
|
132
|
|
|
for carrier in carriers_electricity: |
133
|
|
|
|
134
|
|
|
if carrier == "biomass": |
135
|
|
|
sum_output = db.select_dataframe( |
136
|
|
|
"""SELECT scn_name, SUM(p_nom::numeric) as output_capacity_mw |
137
|
|
|
FROM grid.egon_etrago_generator |
138
|
|
|
WHERE bus IN ( |
139
|
|
|
SELECT bus_id FROM grid.egon_etrago_bus |
140
|
|
|
WHERE scn_name = 'eGon2035' |
141
|
|
|
AND country = 'DE') |
142
|
|
|
AND carrier IN ('biomass', 'industrial_biomass_CHP', |
143
|
|
|
'central_biomass_CHP') |
144
|
|
|
GROUP BY (scn_name); |
145
|
|
|
""", |
146
|
|
|
warning=False, |
147
|
|
|
) |
148
|
|
|
|
149
|
|
|
else: |
150
|
|
|
sum_output = db.select_dataframe( |
151
|
|
|
f"""SELECT scn_name, |
152
|
|
|
SUM(p_nom::numeric) as output_capacity_mw |
153
|
|
|
FROM grid.egon_etrago_generator |
154
|
|
|
WHERE scn_name = '{scn}' |
155
|
|
|
AND carrier IN ('{carrier}') |
156
|
|
|
AND bus IN |
157
|
|
|
(SELECT bus_id |
158
|
|
|
FROM grid.egon_etrago_bus |
159
|
|
|
WHERE scn_name = 'eGon2035' |
160
|
|
|
AND country = 'DE') |
161
|
|
|
GROUP BY (scn_name); |
162
|
|
|
""", |
163
|
|
|
warning=False, |
164
|
|
|
) |
165
|
|
|
|
166
|
|
|
sum_input = db.select_dataframe( |
167
|
|
|
f"""SELECT carrier, SUM(capacity::numeric) as input_capacity_mw |
168
|
|
|
FROM supply.egon_scenario_capacities |
169
|
|
|
WHERE carrier= '{carrier}' |
170
|
|
|
AND scenario_name ='{scn}' |
171
|
|
|
GROUP BY (carrier); |
172
|
|
|
""", |
173
|
|
|
warning=False, |
174
|
|
|
) |
175
|
|
|
|
176
|
|
View Code Duplication |
if ( |
|
|
|
|
177
|
|
|
sum_output.output_capacity_mw.sum() == 0 |
178
|
|
|
and sum_input.input_capacity_mw.sum() == 0 |
179
|
|
|
): |
180
|
|
|
logger.info( |
181
|
|
|
f"No capacity for carrier '{carrier}' needed to be" |
182
|
|
|
f" distributed. Everything is fine" |
183
|
|
|
) |
184
|
|
|
|
185
|
|
|
elif ( |
186
|
|
|
sum_input.input_capacity_mw.sum() > 0 |
187
|
|
|
and sum_output.output_capacity_mw.sum() == 0 |
188
|
|
|
): |
189
|
|
|
logger.info( |
190
|
|
|
f"Error: Capacity for carrier '{carrier}' was not distributed " |
191
|
|
|
f"at all!" |
192
|
|
|
) |
193
|
|
|
|
194
|
|
|
elif ( |
195
|
|
|
sum_output.output_capacity_mw.sum() > 0 |
196
|
|
|
and sum_input.input_capacity_mw.sum() == 0 |
197
|
|
|
): |
198
|
|
|
logger.info( |
199
|
|
|
f"Error: Eventhough no input capacity was provided for carrier" |
200
|
|
|
f"'{carrier}' a capacity got distributed!" |
201
|
|
|
) |
202
|
|
|
|
203
|
|
|
else: |
204
|
|
|
sum_input["error"] = ( |
205
|
|
|
(sum_output.output_capacity_mw - sum_input.input_capacity_mw) |
206
|
|
|
/ sum_input.input_capacity_mw |
207
|
|
|
) * 100 |
208
|
|
|
g = sum_input["error"].values[0] |
209
|
|
|
|
210
|
|
|
logger.info(f"{carrier}: " + str(round(g, 2)) + " %") |
211
|
|
|
|
212
|
|
|
# Section to check storage units |
213
|
|
|
|
214
|
|
|
logger.info(f"Sanity checks for scenario {scn}") |
215
|
|
|
logger.info( |
216
|
|
|
"For German electrical storage units the following deviations between" |
217
|
|
|
"the inputs and outputs can be observed:" |
218
|
|
|
) |
219
|
|
|
|
220
|
|
|
carriers_electricity = ["pumped_hydro"] |
221
|
|
|
|
222
|
|
|
for carrier in carriers_electricity: |
223
|
|
|
|
224
|
|
|
sum_output = db.select_dataframe( |
225
|
|
|
f"""SELECT scn_name, SUM(p_nom::numeric) as output_capacity_mw |
226
|
|
|
FROM grid.egon_etrago_storage |
227
|
|
|
WHERE scn_name = '{scn}' |
228
|
|
|
AND carrier IN ('{carrier}') |
229
|
|
|
AND bus IN |
230
|
|
|
(SELECT bus_id |
231
|
|
|
FROM grid.egon_etrago_bus |
232
|
|
|
WHERE scn_name = 'eGon2035' |
233
|
|
|
AND country = 'DE') |
234
|
|
|
GROUP BY (scn_name); |
235
|
|
|
""", |
236
|
|
|
warning=False, |
237
|
|
|
) |
238
|
|
|
|
239
|
|
|
sum_input = db.select_dataframe( |
240
|
|
|
f"""SELECT carrier, SUM(capacity::numeric) as input_capacity_mw |
241
|
|
|
FROM supply.egon_scenario_capacities |
242
|
|
|
WHERE carrier= '{carrier}' |
243
|
|
|
AND scenario_name ='{scn}' |
244
|
|
|
GROUP BY (carrier); |
245
|
|
|
""", |
246
|
|
|
warning=False, |
247
|
|
|
) |
248
|
|
|
|
249
|
|
View Code Duplication |
if ( |
|
|
|
|
250
|
|
|
sum_output.output_capacity_mw.sum() == 0 |
251
|
|
|
and sum_input.input_capacity_mw.sum() == 0 |
252
|
|
|
): |
253
|
|
|
print( |
254
|
|
|
f"No capacity for carrier '{carrier}' needed to be " |
255
|
|
|
f"distributed. Everything is fine" |
256
|
|
|
) |
257
|
|
|
|
258
|
|
|
elif ( |
259
|
|
|
sum_input.input_capacity_mw.sum() > 0 |
260
|
|
|
and sum_output.output_capacity_mw.sum() == 0 |
261
|
|
|
): |
262
|
|
|
print( |
263
|
|
|
f"Error: Capacity for carrier '{carrier}' was not distributed" |
264
|
|
|
f" at all!" |
265
|
|
|
) |
266
|
|
|
|
267
|
|
|
elif ( |
268
|
|
|
sum_output.output_capacity_mw.sum() > 0 |
269
|
|
|
and sum_input.input_capacity_mw.sum() == 0 |
270
|
|
|
): |
271
|
|
|
print( |
272
|
|
|
f"Error: Eventhough no input capacity was provided for carrier" |
273
|
|
|
f" '{carrier}' a capacity got distributed!" |
274
|
|
|
) |
275
|
|
|
|
276
|
|
|
else: |
277
|
|
|
sum_input["error"] = ( |
278
|
|
|
(sum_output.output_capacity_mw - sum_input.input_capacity_mw) |
279
|
|
|
/ sum_input.input_capacity_mw |
280
|
|
|
) * 100 |
281
|
|
|
g = sum_input["error"].values[0] |
282
|
|
|
|
283
|
|
|
print(f"{carrier}: " + str(round(g, 2)) + " %") |
284
|
|
|
|
285
|
|
|
# Section to check loads |
286
|
|
|
|
287
|
|
|
print( |
288
|
|
|
"For German electricity loads the following deviations between the" |
289
|
|
|
" input and output can be observed:" |
290
|
|
|
) |
291
|
|
|
|
292
|
|
|
output_demand = db.select_dataframe( |
293
|
|
|
"""SELECT a.scn_name, a.carrier, SUM((SELECT SUM(p) |
294
|
|
|
FROM UNNEST(b.p_set) p))/1000000::numeric as load_twh |
295
|
|
|
FROM grid.egon_etrago_load a |
296
|
|
|
JOIN grid.egon_etrago_load_timeseries b |
297
|
|
|
ON (a.load_id = b.load_id) |
298
|
|
|
JOIN grid.egon_etrago_bus c |
299
|
|
|
ON (a.bus=c.bus_id) |
300
|
|
|
AND b.scn_name = 'eGon2035' |
301
|
|
|
AND a.scn_name = 'eGon2035' |
302
|
|
|
AND a.carrier = 'AC' |
303
|
|
|
AND c.scn_name= 'eGon2035' |
304
|
|
|
AND c.country='DE' |
305
|
|
|
GROUP BY (a.scn_name, a.carrier); |
306
|
|
|
|
307
|
|
|
""", |
308
|
|
|
warning=False, |
309
|
|
|
)["load_twh"].values[0] |
310
|
|
|
|
311
|
|
|
input_cts_ind = db.select_dataframe( |
312
|
|
|
"""SELECT scenario, |
313
|
|
|
SUM(demand::numeric/1000000) as demand_mw_regio_cts_ind |
314
|
|
|
FROM demand.egon_demandregio_cts_ind |
315
|
|
|
WHERE scenario= 'eGon2035' |
316
|
|
|
AND year IN ('2035') |
317
|
|
|
GROUP BY (scenario); |
318
|
|
|
|
319
|
|
|
""", |
320
|
|
|
warning=False, |
321
|
|
|
)["demand_mw_regio_cts_ind"].values[0] |
322
|
|
|
|
323
|
|
|
input_hh = db.select_dataframe( |
324
|
|
|
"""SELECT scenario, SUM(demand::numeric/1000000) as demand_mw_regio_hh |
325
|
|
|
FROM demand.egon_demandregio_hh |
326
|
|
|
WHERE scenario= 'eGon2035' |
327
|
|
|
AND year IN ('2035') |
328
|
|
|
GROUP BY (scenario); |
329
|
|
|
""", |
330
|
|
|
warning=False, |
331
|
|
|
)["demand_mw_regio_hh"].values[0] |
332
|
|
|
|
333
|
|
|
input_demand = input_hh + input_cts_ind |
334
|
|
|
|
335
|
|
|
e = round((output_demand - input_demand) / input_demand, 2) * 100 |
336
|
|
|
|
337
|
|
|
print(f"electricity demand: {e} %") |
338
|
|
|
|
339
|
|
|
|
340
|
|
|
def etrago_eGon2035_heat(): |
341
|
|
|
"""Execute basic sanity checks. |
342
|
|
|
|
343
|
|
|
Returns print statements as sanity checks for the heat sector in |
344
|
|
|
the eGon2035 scenario. |
345
|
|
|
|
346
|
|
|
Parameters |
347
|
|
|
---------- |
348
|
|
|
None |
349
|
|
|
|
350
|
|
|
Returns |
351
|
|
|
------- |
352
|
|
|
None |
353
|
|
|
""" |
354
|
|
|
|
355
|
|
|
# Check input and output values for the carriers "others", |
356
|
|
|
# "reservoir", "run_of_river" and "oil" |
357
|
|
|
|
358
|
|
|
scn = "eGon2035" |
359
|
|
|
|
360
|
|
|
# Section to check generator capacities |
361
|
|
|
print(f"Sanity checks for scenario {scn}") |
362
|
|
|
print( |
363
|
|
|
"For German heat demands the following deviations between the inputs" |
364
|
|
|
" and outputs can be observed:" |
365
|
|
|
) |
366
|
|
|
|
367
|
|
|
# Sanity checks for heat demand |
368
|
|
|
|
369
|
|
|
output_heat_demand = db.select_dataframe( |
370
|
|
|
"""SELECT a.scn_name, |
371
|
|
|
(SUM( |
372
|
|
|
(SELECT SUM(p) FROM UNNEST(b.p_set) p))/1000000)::numeric as load_twh |
373
|
|
|
FROM grid.egon_etrago_load a |
374
|
|
|
JOIN grid.egon_etrago_load_timeseries b |
375
|
|
|
ON (a.load_id = b.load_id) |
376
|
|
|
JOIN grid.egon_etrago_bus c |
377
|
|
|
ON (a.bus=c.bus_id) |
378
|
|
|
AND b.scn_name = 'eGon2035' |
379
|
|
|
AND a.scn_name = 'eGon2035' |
380
|
|
|
AND c.scn_name= 'eGon2035' |
381
|
|
|
AND c.country='DE' |
382
|
|
|
AND a.carrier IN ('rural_heat', 'central_heat') |
383
|
|
|
GROUP BY (a.scn_name); |
384
|
|
|
""", |
385
|
|
|
warning=False, |
386
|
|
|
)["load_twh"].values[0] |
387
|
|
|
|
388
|
|
|
input_heat_demand = db.select_dataframe( |
389
|
|
|
"""SELECT scenario, SUM(demand::numeric/1000000) as demand_mw_peta_heat |
390
|
|
|
FROM demand.egon_peta_heat |
391
|
|
|
WHERE scenario= 'eGon2035' |
392
|
|
|
GROUP BY (scenario); |
393
|
|
|
""", |
394
|
|
|
warning=False, |
395
|
|
|
)["demand_mw_peta_heat"].values[0] |
396
|
|
|
|
397
|
|
|
e_demand = ( |
398
|
|
|
round((output_heat_demand - input_heat_demand) / input_heat_demand, 2) |
399
|
|
|
* 100 |
400
|
|
|
) |
401
|
|
|
|
402
|
|
|
logger.info(f"heat demand: {e_demand} %") |
403
|
|
|
|
404
|
|
|
# Sanity checks for heat supply |
405
|
|
|
|
406
|
|
|
logger.info( |
407
|
|
|
"For German heat supplies the following deviations between the inputs " |
408
|
|
|
"and outputs can be observed:" |
409
|
|
|
) |
410
|
|
|
|
411
|
|
|
# Comparison for central heat pumps |
412
|
|
|
heat_pump_input = db.select_dataframe( |
413
|
|
|
"""SELECT carrier, SUM(capacity::numeric) as Urban_central_heat_pump_mw |
414
|
|
|
FROM supply.egon_scenario_capacities |
415
|
|
|
WHERE carrier= 'urban_central_heat_pump' |
416
|
|
|
AND scenario_name IN ('eGon2035') |
417
|
|
|
GROUP BY (carrier); |
418
|
|
|
""", |
419
|
|
|
warning=False, |
420
|
|
|
)["urban_central_heat_pump_mw"].values[0] |
421
|
|
|
|
422
|
|
|
heat_pump_output = db.select_dataframe( |
423
|
|
|
"""SELECT carrier, SUM(p_nom::numeric) as Central_heat_pump_mw |
424
|
|
|
FROM grid.egon_etrago_link |
425
|
|
|
WHERE carrier= 'central_heat_pump' |
426
|
|
|
AND scn_name IN ('eGon2035') |
427
|
|
|
GROUP BY (carrier); |
428
|
|
|
""", |
429
|
|
|
warning=False, |
430
|
|
|
)["central_heat_pump_mw"].values[0] |
431
|
|
|
|
432
|
|
|
e_heat_pump = ( |
433
|
|
|
round((heat_pump_output - heat_pump_input) / heat_pump_output, 2) * 100 |
434
|
|
|
) |
435
|
|
|
|
436
|
|
|
logger.info(f"'central_heat_pump': {e_heat_pump} % ") |
437
|
|
|
|
438
|
|
|
# Comparison for residential heat pumps |
439
|
|
|
|
440
|
|
|
input_residential_heat_pump = db.select_dataframe( |
441
|
|
|
"""SELECT carrier, SUM(capacity::numeric) as residential_heat_pump_mw |
442
|
|
|
FROM supply.egon_scenario_capacities |
443
|
|
|
WHERE carrier= 'residential_rural_heat_pump' |
444
|
|
|
AND scenario_name IN ('eGon2035') |
445
|
|
|
GROUP BY (carrier); |
446
|
|
|
""", |
447
|
|
|
warning=False, |
448
|
|
|
)["residential_heat_pump_mw"].values[0] |
449
|
|
|
|
450
|
|
|
output_residential_heat_pump = db.select_dataframe( |
451
|
|
|
"""SELECT carrier, SUM(p_nom::numeric) as rural_heat_pump_mw |
452
|
|
|
FROM grid.egon_etrago_link |
453
|
|
|
WHERE carrier= 'rural_heat_pump' |
454
|
|
|
AND scn_name IN ('eGon2035') |
455
|
|
|
GROUP BY (carrier); |
456
|
|
|
""", |
457
|
|
|
warning=False, |
458
|
|
|
)["rural_heat_pump_mw"].values[0] |
459
|
|
|
|
460
|
|
|
e_residential_heat_pump = ( |
461
|
|
|
round( |
462
|
|
|
(output_residential_heat_pump - input_residential_heat_pump) |
463
|
|
|
/ input_residential_heat_pump, |
464
|
|
|
2, |
465
|
|
|
) |
466
|
|
|
* 100 |
467
|
|
|
) |
468
|
|
|
logger.info(f"'residential heat pumps': {e_residential_heat_pump} %") |
469
|
|
|
|
470
|
|
|
# Comparison for resistive heater |
471
|
|
|
resistive_heater_input = db.select_dataframe( |
472
|
|
|
"""SELECT carrier, |
473
|
|
|
SUM(capacity::numeric) as Urban_central_resistive_heater_MW |
474
|
|
|
FROM supply.egon_scenario_capacities |
475
|
|
|
WHERE carrier= 'urban_central_resistive_heater' |
476
|
|
|
AND scenario_name IN ('eGon2035') |
477
|
|
|
GROUP BY (carrier); |
478
|
|
|
""", |
479
|
|
|
warning=False, |
480
|
|
|
)["urban_central_resistive_heater_mw"].values[0] |
481
|
|
|
|
482
|
|
|
resistive_heater_output = db.select_dataframe( |
483
|
|
|
"""SELECT carrier, SUM(p_nom::numeric) as central_resistive_heater_MW |
484
|
|
|
FROM grid.egon_etrago_link |
485
|
|
|
WHERE carrier= 'central_resistive_heater' |
486
|
|
|
AND scn_name IN ('eGon2035') |
487
|
|
|
GROUP BY (carrier); |
488
|
|
|
""", |
489
|
|
|
warning=False, |
490
|
|
|
)["central_resistive_heater_mw"].values[0] |
491
|
|
|
|
492
|
|
|
e_resistive_heater = ( |
493
|
|
|
round( |
494
|
|
|
(resistive_heater_output - resistive_heater_input) |
495
|
|
|
/ resistive_heater_input, |
496
|
|
|
2, |
497
|
|
|
) |
498
|
|
|
* 100 |
499
|
|
|
) |
500
|
|
|
|
501
|
|
|
logger.info(f"'resistive heater': {e_resistive_heater} %") |
502
|
|
|
|
503
|
|
|
# Comparison for solar thermal collectors |
504
|
|
|
|
505
|
|
|
input_solar_thermal = db.select_dataframe( |
506
|
|
|
"""SELECT carrier, SUM(capacity::numeric) as solar_thermal_collector_mw |
507
|
|
|
FROM supply.egon_scenario_capacities |
508
|
|
|
WHERE carrier= 'urban_central_solar_thermal_collector' |
509
|
|
|
AND scenario_name IN ('eGon2035') |
510
|
|
|
GROUP BY (carrier); |
511
|
|
|
""", |
512
|
|
|
warning=False, |
513
|
|
|
)["solar_thermal_collector_mw"].values[0] |
514
|
|
|
|
515
|
|
|
output_solar_thermal = db.select_dataframe( |
516
|
|
|
"""SELECT carrier, SUM(p_nom::numeric) as solar_thermal_collector_mw |
517
|
|
|
FROM grid.egon_etrago_generator |
518
|
|
|
WHERE carrier= 'solar_thermal_collector' |
519
|
|
|
AND scn_name IN ('eGon2035') |
520
|
|
|
GROUP BY (carrier); |
521
|
|
|
""", |
522
|
|
|
warning=False, |
523
|
|
|
)["solar_thermal_collector_mw"].values[0] |
524
|
|
|
|
525
|
|
|
e_solar_thermal = ( |
526
|
|
|
round( |
527
|
|
|
(output_solar_thermal - input_solar_thermal) / input_solar_thermal, |
528
|
|
|
2, |
529
|
|
|
) |
530
|
|
|
* 100 |
531
|
|
|
) |
532
|
|
|
logger.info(f"'solar thermal collector': {e_solar_thermal} %") |
533
|
|
|
|
534
|
|
|
# Comparison for geothermal |
535
|
|
|
|
536
|
|
|
input_geo_thermal = db.select_dataframe( |
537
|
|
|
"""SELECT carrier, |
538
|
|
|
SUM(capacity::numeric) as Urban_central_geo_thermal_MW |
539
|
|
|
FROM supply.egon_scenario_capacities |
540
|
|
|
WHERE carrier= 'urban_central_geo_thermal' |
541
|
|
|
AND scenario_name IN ('eGon2035') |
542
|
|
|
GROUP BY (carrier); |
543
|
|
|
""", |
544
|
|
|
warning=False, |
545
|
|
|
)["urban_central_geo_thermal_mw"].values[0] |
546
|
|
|
|
547
|
|
|
output_geo_thermal = db.select_dataframe( |
548
|
|
|
"""SELECT carrier, SUM(p_nom::numeric) as geo_thermal_MW |
549
|
|
|
FROM grid.egon_etrago_generator |
550
|
|
|
WHERE carrier= 'geo_thermal' |
551
|
|
|
AND scn_name IN ('eGon2035') |
552
|
|
|
GROUP BY (carrier); |
553
|
|
|
""", |
554
|
|
|
warning=False, |
555
|
|
|
)["geo_thermal_mw"].values[0] |
556
|
|
|
|
557
|
|
|
e_geo_thermal = ( |
558
|
|
|
round((output_geo_thermal - input_geo_thermal) / input_geo_thermal, 2) |
559
|
|
|
* 100 |
560
|
|
|
) |
561
|
|
|
logger.info(f"'geothermal': {e_geo_thermal} %") |
562
|
|
|
|
563
|
|
|
|
564
|
|
|
def residential_electricity_annual_sum(rtol=1e-5): |
565
|
|
|
"""Sanity check for dataset electricity_demand_timeseries : |
566
|
|
|
Demand_Building_Assignment |
567
|
|
|
|
568
|
|
|
Aggregate the annual demand of all census cells at NUTS3 to compare |
569
|
|
|
with initial scaling parameters from DemandRegio. |
570
|
|
|
""" |
571
|
|
|
|
572
|
|
|
df_nuts3_annual_sum = db.select_dataframe( |
573
|
|
|
sql=""" |
574
|
|
|
SELECT dr.nuts3, dr.scenario, dr.demand_regio_sum, profiles.profile_sum |
575
|
|
|
FROM ( |
576
|
|
|
SELECT scenario, SUM(demand) AS profile_sum, vg250_nuts3 |
577
|
|
|
FROM demand.egon_demandregio_zensus_electricity AS egon, |
578
|
|
|
boundaries.egon_map_zensus_vg250 AS boundaries |
579
|
|
|
Where egon.zensus_population_id = boundaries.zensus_population_id |
580
|
|
|
AND sector = 'residential' |
581
|
|
|
GROUP BY vg250_nuts3, scenario |
582
|
|
|
) AS profiles |
583
|
|
|
JOIN ( |
584
|
|
|
SELECT nuts3, scenario, sum(demand) AS demand_regio_sum |
585
|
|
|
FROM demand.egon_demandregio_hh |
586
|
|
|
GROUP BY year, scenario, nuts3 |
587
|
|
|
) AS dr |
588
|
|
|
ON profiles.vg250_nuts3 = dr.nuts3 and profiles.scenario = dr.scenario |
589
|
|
|
""" |
590
|
|
|
) |
591
|
|
|
|
592
|
|
|
np.testing.assert_allclose( |
593
|
|
|
actual=df_nuts3_annual_sum["profile_sum"], |
594
|
|
|
desired=df_nuts3_annual_sum["demand_regio_sum"], |
595
|
|
|
rtol=rtol, |
596
|
|
|
verbose=False, |
597
|
|
|
) |
598
|
|
|
|
599
|
|
|
logger.info( |
600
|
|
|
"Aggregated annual residential electricity demand" |
601
|
|
|
" matches with DemandRegio at NUTS-3." |
602
|
|
|
) |
603
|
|
|
|
604
|
|
|
|
605
|
|
|
def residential_electricity_hh_refinement(rtol=1e-5): |
606
|
|
|
"""Sanity check for dataset electricity_demand_timeseries : |
607
|
|
|
Household Demands |
608
|
|
|
|
609
|
|
|
Check sum of aggregated household types after refinement method |
610
|
|
|
was applied and compare it to the original census values.""" |
611
|
|
|
|
612
|
|
|
df_refinement = db.select_dataframe( |
613
|
|
|
sql=""" |
614
|
|
|
SELECT refined.nuts3, refined.characteristics_code, |
615
|
|
|
refined.sum_refined::int, census.sum_census::int |
616
|
|
|
FROM( |
617
|
|
|
SELECT nuts3, characteristics_code, SUM(hh_10types) as sum_refined |
618
|
|
|
FROM society.egon_destatis_zensus_household_per_ha_refined |
619
|
|
|
GROUP BY nuts3, characteristics_code) |
620
|
|
|
AS refined |
621
|
|
|
JOIN( |
622
|
|
|
SELECT t.nuts3, t.characteristics_code, sum(orig) as sum_census |
623
|
|
|
FROM( |
624
|
|
|
SELECT nuts3, cell_id, characteristics_code, |
625
|
|
|
sum(DISTINCT(hh_5types))as orig |
626
|
|
|
FROM society.egon_destatis_zensus_household_per_ha_refined |
627
|
|
|
GROUP BY cell_id, characteristics_code, nuts3) AS t |
628
|
|
|
GROUP BY t.nuts3, t.characteristics_code ) AS census |
629
|
|
|
ON refined.nuts3 = census.nuts3 |
630
|
|
|
AND refined.characteristics_code = census.characteristics_code |
631
|
|
|
""" |
632
|
|
|
) |
633
|
|
|
|
634
|
|
|
np.testing.assert_allclose( |
635
|
|
|
actual=df_refinement["sum_refined"], |
636
|
|
|
desired=df_refinement["sum_census"], |
637
|
|
|
rtol=rtol, |
638
|
|
|
verbose=False, |
639
|
|
|
) |
640
|
|
|
|
641
|
|
|
logger.info("All Aggregated household types match at NUTS-3.") |
642
|
|
|
|
643
|
|
|
|
644
|
|
|
def cts_electricity_demand_share(rtol=1e-5): |
645
|
|
|
"""Sanity check for dataset electricity_demand_timeseries : |
646
|
|
|
CtsBuildings |
647
|
|
|
|
648
|
|
|
Check sum of aggregated cts electricity demand share which equals to one |
649
|
|
|
for every substation as the substation profile is linearly disaggregated |
650
|
|
|
to all buildings.""" |
651
|
|
|
|
652
|
|
|
with db.session_scope() as session: |
653
|
|
|
cells_query = session.query(EgonCtsElectricityDemandBuildingShare) |
654
|
|
|
|
655
|
|
|
df_demand_share = pd.read_sql( |
656
|
|
|
cells_query.statement, cells_query.session.bind, index_col=None |
657
|
|
|
) |
658
|
|
|
|
659
|
|
|
np.testing.assert_allclose( |
660
|
|
|
actual=df_demand_share.groupby(["bus_id", "scenario"])[ |
661
|
|
|
"profile_share" |
662
|
|
|
].sum(), |
663
|
|
|
desired=1, |
664
|
|
|
rtol=rtol, |
665
|
|
|
verbose=False, |
666
|
|
|
) |
667
|
|
|
|
668
|
|
|
logger.info("The aggregated demand shares equal to one!.") |
669
|
|
|
|
670
|
|
|
|
671
|
|
|
def cts_heat_demand_share(rtol=1e-5): |
672
|
|
|
"""Sanity check for dataset electricity_demand_timeseries |
673
|
|
|
: CtsBuildings |
674
|
|
|
|
675
|
|
|
Check sum of aggregated cts heat demand share which equals to one |
676
|
|
|
for every substation as the substation profile is linearly disaggregated |
677
|
|
|
to all buildings.""" |
678
|
|
|
|
679
|
|
|
with db.session_scope() as session: |
680
|
|
|
cells_query = session.query(EgonCtsHeatDemandBuildingShare) |
681
|
|
|
|
682
|
|
|
df_demand_share = pd.read_sql( |
683
|
|
|
cells_query.statement, cells_query.session.bind, index_col=None |
684
|
|
|
) |
685
|
|
|
|
686
|
|
|
np.testing.assert_allclose( |
687
|
|
|
actual=df_demand_share.groupby(["bus_id", "scenario"])[ |
688
|
|
|
"profile_share" |
689
|
|
|
].sum(), |
690
|
|
|
desired=1, |
691
|
|
|
rtol=rtol, |
692
|
|
|
verbose=False, |
693
|
|
|
) |
694
|
|
|
|
695
|
|
|
logger.info("The aggregated demand shares equal to one!.") |
696
|
|
|
|
697
|
|
|
|
698
|
|
|
def sanitycheck_pv_rooftop_buildings(): |
699
|
|
|
def egon_power_plants_pv_roof_building(): |
700
|
|
|
sql = """ |
701
|
|
|
SELECT * |
702
|
|
|
FROM supply.egon_power_plants_pv_roof_building |
703
|
|
|
""" |
704
|
|
|
|
705
|
|
|
return db.select_dataframe(sql, index_col="index") |
706
|
|
|
|
707
|
|
|
pv_roof_df = egon_power_plants_pv_roof_building() |
708
|
|
|
|
709
|
|
|
valid_buildings_gdf = load_building_data() |
710
|
|
|
|
711
|
|
|
valid_buildings_gdf = valid_buildings_gdf.assign( |
712
|
|
|
bus_id=valid_buildings_gdf.bus_id.astype(int), |
713
|
|
|
overlay_id=valid_buildings_gdf.overlay_id.astype(int), |
714
|
|
|
max_cap=valid_buildings_gdf.building_area.multiply( |
715
|
|
|
ROOF_FACTOR * PV_CAP_PER_SQ_M |
716
|
|
|
), |
717
|
|
|
) |
718
|
|
|
|
719
|
|
|
merge_df = pv_roof_df.merge( |
720
|
|
|
valid_buildings_gdf[["building_area"]], |
721
|
|
|
how="left", |
722
|
|
|
left_on="building_id", |
723
|
|
|
right_index=True, |
724
|
|
|
) |
725
|
|
|
|
726
|
|
|
assert ( |
727
|
|
|
len(merge_df.loc[merge_df.building_area.isna()]) == 0 |
728
|
|
|
), f"{len(merge_df.loc[merge_df.building_area.isna()])} != 0" |
729
|
|
|
|
730
|
|
|
scenarios = ["status_quo", "eGon2035"] |
731
|
|
|
|
732
|
|
|
base_path = Path(egon.data.__path__[0]).resolve() |
733
|
|
|
|
734
|
|
|
res_dir = base_path / "sanity_checks" |
735
|
|
|
|
736
|
|
|
res_dir.mkdir(parents=True, exist_ok=True) |
737
|
|
|
|
738
|
|
|
for scenario in scenarios: |
739
|
|
|
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 8)) |
740
|
|
|
|
741
|
|
|
scenario_df = merge_df.loc[merge_df.scenario == scenario] |
742
|
|
|
|
743
|
|
|
logger.info( |
744
|
|
|
scenario + " Capacity:\n" + str(scenario_df.capacity.describe()) |
745
|
|
|
) |
746
|
|
|
|
747
|
|
|
small_gens_df = scenario_df.loc[scenario_df.capacity < 100] |
748
|
|
|
|
749
|
|
|
sns.histplot(data=small_gens_df, x="capacity", ax=ax1).set_title( |
750
|
|
|
scenario |
751
|
|
|
) |
752
|
|
|
|
753
|
|
|
sns.scatterplot( |
754
|
|
|
data=small_gens_df, x="capacity", y="building_area", ax=ax2 |
755
|
|
|
).set_title(scenario) |
756
|
|
|
|
757
|
|
|
plt.tight_layout() |
758
|
|
|
|
759
|
|
|
plt.savefig( |
760
|
|
|
res_dir / f"{scenario}_pv_rooftop_distribution.png", |
761
|
|
|
bbox_inches="tight", |
762
|
|
|
) |
763
|
|
|
|
764
|
|
|
for scenario in SCENARIOS: |
765
|
|
|
if scenario == "eGon2035": |
766
|
|
|
assert isclose( |
767
|
|
|
scenario_data(scenario=scenario).capacity.sum(), |
768
|
|
|
merge_df.loc[merge_df.scenario == scenario].capacity.sum(), |
769
|
|
|
rel_tol=1e-02, |
770
|
|
|
), ( |
771
|
|
|
f"{scenario_data(scenario=scenario).capacity.sum()} != " |
772
|
|
|
f"{merge_df.loc[merge_df.scenario == scenario].capacity.sum()}" |
773
|
|
|
) |
774
|
|
|
elif scenario == "eGon100RE": |
775
|
|
|
sources = config.datasets()["solar_rooftop"]["sources"] |
776
|
|
|
|
777
|
|
|
target = db.select_dataframe( |
778
|
|
|
f""" |
779
|
|
|
SELECT capacity |
780
|
|
|
FROM {sources['scenario_capacities']['schema']}. |
781
|
|
|
{sources['scenario_capacities']['table']} a |
782
|
|
|
WHERE carrier = 'solar_rooftop' |
783
|
|
|
AND scenario_name = '{scenario}' |
784
|
|
|
""" |
785
|
|
|
).capacity[0] |
786
|
|
|
|
787
|
|
|
dataset = config.settings()["egon-data"]["--dataset-boundary"] |
788
|
|
|
|
789
|
|
View Code Duplication |
if dataset == "Schleswig-Holstein": |
|
|
|
|
790
|
|
|
sources = config.datasets()["scenario_input"]["sources"] |
791
|
|
|
|
792
|
|
|
path = Path( |
793
|
|
|
f"./data_bundle_egon_data/nep2035_version2021/" |
794
|
|
|
f"{sources['eGon2035']['capacities']}" |
795
|
|
|
).resolve() |
796
|
|
|
|
797
|
|
|
total_2035 = ( |
798
|
|
|
pd.read_excel( |
799
|
|
|
path, |
800
|
|
|
sheet_name="1.Entwurf_NEP2035_V2021", |
801
|
|
|
index_col="Unnamed: 0", |
802
|
|
|
).at["PV (Aufdach)", "Summe"] |
803
|
|
|
* 1000 |
804
|
|
|
) |
805
|
|
|
sh_2035 = scenario_data(scenario="eGon2035").capacity.sum() |
806
|
|
|
|
807
|
|
|
share = sh_2035 / total_2035 |
808
|
|
|
|
809
|
|
|
target *= share |
810
|
|
|
|
811
|
|
|
assert isclose( |
812
|
|
|
target, |
813
|
|
|
merge_df.loc[merge_df.scenario == scenario].capacity.sum(), |
814
|
|
|
rel_tol=1e-02, |
815
|
|
|
), ( |
816
|
|
|
f"{target} != " |
817
|
|
|
f"{merge_df.loc[merge_df.scenario == scenario].capacity.sum()}" |
818
|
|
|
) |
819
|
|
|
else: |
820
|
|
|
raise ValueError(f"Scenario {scenario} is not valid.") |
821
|
|
|
|
822
|
|
|
|
823
|
|
|
def sanitycheck_emobility_mit(): |
824
|
|
|
"""Execute sanity checks for eMobility: motorized individual travel |
825
|
|
|
|
826
|
|
|
Checks data integrity for eGon2035, eGon2035_lowflex and eGon100RE scenario |
827
|
|
|
using assertions: |
828
|
|
|
1. Allocated EV numbers and EVs allocated to grid districts |
829
|
|
|
2. Trip data (original inout data from simBEV) |
830
|
|
|
3. Model data in eTraGo PF tables (grid.egon_etrago_*) |
831
|
|
|
|
832
|
|
|
Parameters |
833
|
|
|
---------- |
834
|
|
|
None |
835
|
|
|
|
836
|
|
|
Returns |
837
|
|
|
------- |
838
|
|
|
None |
839
|
|
|
""" |
840
|
|
|
|
841
|
|
|
def check_ev_allocation(): |
842
|
|
|
# Get target number for scenario |
843
|
|
|
ev_count_target = scenario_variation_parameters["ev_count"] |
844
|
|
|
print(f" Target count: {str(ev_count_target)}") |
845
|
|
|
|
846
|
|
|
# Get allocated numbers |
847
|
|
|
ev_counts_dict = {} |
848
|
|
|
with db.session_scope() as session: |
849
|
|
|
for table, level in zip( |
850
|
|
|
[ |
851
|
|
|
EgonEvCountMvGridDistrict, |
852
|
|
|
EgonEvCountMunicipality, |
853
|
|
|
EgonEvCountRegistrationDistrict, |
854
|
|
|
], |
855
|
|
|
["Grid District", "Municipality", "Registration District"], |
856
|
|
|
): |
857
|
|
|
query = session.query( |
858
|
|
|
func.sum( |
859
|
|
|
table.bev_mini |
860
|
|
|
+ table.bev_medium |
861
|
|
|
+ table.bev_luxury |
862
|
|
|
+ table.phev_mini |
863
|
|
|
+ table.phev_medium |
864
|
|
|
+ table.phev_luxury |
865
|
|
|
).label("ev_count") |
866
|
|
|
).filter( |
867
|
|
|
table.scenario == scenario_name, |
868
|
|
|
table.scenario_variation == scenario_var_name, |
869
|
|
|
) |
870
|
|
|
|
871
|
|
|
ev_counts = pd.read_sql( |
872
|
|
|
query.statement, query.session.bind, index_col=None |
873
|
|
|
) |
874
|
|
|
ev_counts_dict[level] = ev_counts.iloc[0].ev_count |
875
|
|
|
print( |
876
|
|
|
f" Count table: Total count for level {level} " |
877
|
|
|
f"(table: {table.__table__}): " |
878
|
|
|
f"{str(ev_counts_dict[level])}" |
879
|
|
|
) |
880
|
|
|
|
881
|
|
|
# Compare with scenario target (only if not in testmode) |
882
|
|
|
if TESTMODE_OFF: |
883
|
|
|
for level, count in ev_counts_dict.items(): |
884
|
|
|
np.testing.assert_allclose( |
885
|
|
|
count, |
886
|
|
|
ev_count_target, |
887
|
|
|
rtol=0.0001, |
888
|
|
|
err_msg=f"EV numbers in {level} seems to be flawed.", |
889
|
|
|
) |
890
|
|
|
else: |
891
|
|
|
print(" Testmode is on, skipping sanity check...") |
892
|
|
|
|
893
|
|
|
# Get allocated EVs in grid districts |
894
|
|
|
with db.session_scope() as session: |
895
|
|
|
query = session.query( |
896
|
|
|
func.count(EgonEvMvGridDistrict.egon_ev_pool_ev_id).label( |
897
|
|
|
"ev_count" |
898
|
|
|
), |
899
|
|
|
).filter( |
900
|
|
|
EgonEvMvGridDistrict.scenario == scenario_name, |
901
|
|
|
EgonEvMvGridDistrict.scenario_variation == scenario_var_name, |
902
|
|
|
) |
903
|
|
|
ev_count_alloc = ( |
904
|
|
|
pd.read_sql(query.statement, query.session.bind, index_col=None) |
905
|
|
|
.iloc[0] |
906
|
|
|
.ev_count |
907
|
|
|
) |
908
|
|
|
print( |
909
|
|
|
f" EVs allocated to Grid Districts " |
910
|
|
|
f"(table: {EgonEvMvGridDistrict.__table__}) total count: " |
911
|
|
|
f"{str(ev_count_alloc)}" |
912
|
|
|
) |
913
|
|
|
|
914
|
|
|
# Compare with scenario target (only if not in testmode) |
915
|
|
|
if TESTMODE_OFF: |
916
|
|
|
np.testing.assert_allclose( |
917
|
|
|
ev_count_alloc, |
918
|
|
|
ev_count_target, |
919
|
|
|
rtol=0.0001, |
920
|
|
|
err_msg=( |
921
|
|
|
"EV numbers allocated to Grid Districts seems to be " |
922
|
|
|
"flawed." |
923
|
|
|
), |
924
|
|
|
) |
925
|
|
|
else: |
926
|
|
|
print(" Testmode is on, skipping sanity check...") |
927
|
|
|
|
928
|
|
|
return ev_count_alloc |
929
|
|
|
|
930
|
|
|
def check_trip_data(): |
931
|
|
|
# Check if trips start at timestep 0 and have a max. of 35040 steps |
932
|
|
|
# (8760h in 15min steps) |
933
|
|
|
print(" Checking timeranges...") |
934
|
|
|
with db.session_scope() as session: |
935
|
|
|
query = session.query( |
936
|
|
|
func.count(EgonEvTrip.event_id).label("cnt") |
937
|
|
|
).filter( |
938
|
|
|
or_( |
939
|
|
|
and_( |
940
|
|
|
EgonEvTrip.park_start > 0, |
941
|
|
|
EgonEvTrip.simbev_event_id == 0, |
942
|
|
|
), |
943
|
|
|
EgonEvTrip.park_end |
944
|
|
|
> (60 / int(meta_run_config.stepsize)) * 8760, |
945
|
|
|
), |
946
|
|
|
EgonEvTrip.scenario == scenario_name, |
947
|
|
|
) |
948
|
|
|
invalid_trips = pd.read_sql( |
949
|
|
|
query.statement, query.session.bind, index_col=None |
950
|
|
|
) |
951
|
|
|
np.testing.assert_equal( |
952
|
|
|
invalid_trips.iloc[0].cnt, |
953
|
|
|
0, |
954
|
|
|
err_msg=( |
955
|
|
|
f"{str(invalid_trips.iloc[0].cnt)} trips in table " |
956
|
|
|
f"{EgonEvTrip.__table__} have invalid timesteps." |
957
|
|
|
), |
958
|
|
|
) |
959
|
|
|
|
960
|
|
|
# Check if charging demand can be covered by available charging energy |
961
|
|
|
# while parking |
962
|
|
|
print(" Compare charging demand with available power...") |
963
|
|
|
with db.session_scope() as session: |
964
|
|
|
query = session.query( |
965
|
|
|
func.count(EgonEvTrip.event_id).label("cnt") |
966
|
|
|
).filter( |
967
|
|
|
func.round( |
968
|
|
|
cast( |
969
|
|
|
(EgonEvTrip.park_end - EgonEvTrip.park_start + 1) |
970
|
|
|
* EgonEvTrip.charging_capacity_nominal |
971
|
|
|
* (int(meta_run_config.stepsize) / 60), |
972
|
|
|
Numeric, |
973
|
|
|
), |
974
|
|
|
3, |
975
|
|
|
) |
976
|
|
|
< cast(EgonEvTrip.charging_demand, Numeric), |
977
|
|
|
EgonEvTrip.scenario == scenario_name, |
978
|
|
|
) |
979
|
|
|
invalid_trips = pd.read_sql( |
980
|
|
|
query.statement, query.session.bind, index_col=None |
981
|
|
|
) |
982
|
|
|
np.testing.assert_equal( |
983
|
|
|
invalid_trips.iloc[0].cnt, |
984
|
|
|
0, |
985
|
|
|
err_msg=( |
986
|
|
|
f"In {str(invalid_trips.iloc[0].cnt)} trips (table: " |
987
|
|
|
f"{EgonEvTrip.__table__}) the charging demand cannot be " |
988
|
|
|
f"covered by available charging power." |
989
|
|
|
), |
990
|
|
|
) |
991
|
|
|
|
992
|
|
|
def check_model_data(): |
993
|
|
|
# Check if model components were fully created |
994
|
|
|
print(" Check if all model components were created...") |
995
|
|
|
# Get MVGDs which got EV allocated |
996
|
|
|
with db.session_scope() as session: |
997
|
|
|
query = ( |
998
|
|
|
session.query( |
999
|
|
|
EgonEvMvGridDistrict.bus_id, |
1000
|
|
|
) |
1001
|
|
|
.filter( |
1002
|
|
|
EgonEvMvGridDistrict.scenario == scenario_name, |
1003
|
|
|
EgonEvMvGridDistrict.scenario_variation |
1004
|
|
|
== scenario_var_name, |
1005
|
|
|
) |
1006
|
|
|
.group_by(EgonEvMvGridDistrict.bus_id) |
1007
|
|
|
) |
1008
|
|
|
mvgds_with_ev = ( |
1009
|
|
|
pd.read_sql(query.statement, query.session.bind, index_col=None) |
1010
|
|
|
.bus_id.sort_values() |
1011
|
|
|
.to_list() |
1012
|
|
|
) |
1013
|
|
|
|
1014
|
|
|
# Load model components |
1015
|
|
|
with db.session_scope() as session: |
1016
|
|
|
query = ( |
1017
|
|
|
session.query( |
1018
|
|
|
EgonPfHvLink.bus0.label("mvgd_bus_id"), |
1019
|
|
|
EgonPfHvLoad.bus.label("emob_bus_id"), |
1020
|
|
|
EgonPfHvLoad.load_id.label("load_id"), |
1021
|
|
|
EgonPfHvStore.store_id.label("store_id"), |
1022
|
|
|
) |
1023
|
|
|
.select_from(EgonPfHvLoad, EgonPfHvStore) |
1024
|
|
|
.join( |
1025
|
|
|
EgonPfHvLoadTimeseries, |
1026
|
|
|
EgonPfHvLoadTimeseries.load_id == EgonPfHvLoad.load_id, |
1027
|
|
|
) |
1028
|
|
|
.join( |
1029
|
|
|
EgonPfHvStoreTimeseries, |
1030
|
|
|
EgonPfHvStoreTimeseries.store_id == EgonPfHvStore.store_id, |
1031
|
|
|
) |
1032
|
|
|
.filter( |
1033
|
|
|
EgonPfHvLoad.carrier == "land transport EV", |
1034
|
|
|
EgonPfHvLoad.scn_name == scenario_name, |
1035
|
|
|
EgonPfHvLoadTimeseries.scn_name == scenario_name, |
1036
|
|
|
EgonPfHvStore.carrier == "battery storage", |
1037
|
|
|
EgonPfHvStore.scn_name == scenario_name, |
1038
|
|
|
EgonPfHvStoreTimeseries.scn_name == scenario_name, |
1039
|
|
|
EgonPfHvLink.scn_name == scenario_name, |
1040
|
|
|
EgonPfHvLink.bus1 == EgonPfHvLoad.bus, |
1041
|
|
|
EgonPfHvLink.bus1 == EgonPfHvStore.bus, |
1042
|
|
|
) |
1043
|
|
|
) |
1044
|
|
|
model_components = pd.read_sql( |
1045
|
|
|
query.statement, query.session.bind, index_col=None |
1046
|
|
|
) |
1047
|
|
|
|
1048
|
|
|
# Check number of buses with model components connected |
1049
|
|
|
mvgd_buses_with_ev = model_components.loc[ |
1050
|
|
|
model_components.mvgd_bus_id.isin(mvgds_with_ev) |
1051
|
|
|
] |
1052
|
|
|
np.testing.assert_equal( |
1053
|
|
|
len(mvgds_with_ev), |
1054
|
|
|
len(mvgd_buses_with_ev), |
1055
|
|
|
err_msg=( |
1056
|
|
|
f"Number of Grid Districts with connected model components " |
1057
|
|
|
f"({str(len(mvgd_buses_with_ev))} in tables egon_etrago_*) " |
1058
|
|
|
f"differ from number of Grid Districts that got EVs " |
1059
|
|
|
f"allocated ({len(mvgds_with_ev)} in table " |
1060
|
|
|
f"{EgonEvMvGridDistrict.__table__})." |
1061
|
|
|
), |
1062
|
|
|
) |
1063
|
|
|
|
1064
|
|
|
# Check if all required components exist (if no id is NaN) |
1065
|
|
|
np.testing.assert_equal( |
1066
|
|
|
model_components.drop_duplicates().isna().any().any(), |
1067
|
|
|
False, |
1068
|
|
|
err_msg=( |
1069
|
|
|
f"Some components are missing (see True values): " |
1070
|
|
|
f"{model_components.drop_duplicates().isna().any()}" |
1071
|
|
|
), |
1072
|
|
|
) |
1073
|
|
|
|
1074
|
|
|
# Get all model timeseries |
1075
|
|
|
print(" Loading model timeseries...") |
1076
|
|
|
# Get all model timeseries |
1077
|
|
|
model_ts_dict = { |
1078
|
|
|
"Load": { |
1079
|
|
|
"carrier": "land transport EV", |
1080
|
|
|
"table": EgonPfHvLoad, |
1081
|
|
|
"table_ts": EgonPfHvLoadTimeseries, |
1082
|
|
|
"column_id": "load_id", |
1083
|
|
|
"columns_ts": ["p_set"], |
1084
|
|
|
"ts": None, |
1085
|
|
|
}, |
1086
|
|
|
"Link": { |
1087
|
|
|
"carrier": "BEV charger", |
1088
|
|
|
"table": EgonPfHvLink, |
1089
|
|
|
"table_ts": EgonPfHvLinkTimeseries, |
1090
|
|
|
"column_id": "link_id", |
1091
|
|
|
"columns_ts": ["p_max_pu"], |
1092
|
|
|
"ts": None, |
1093
|
|
|
}, |
1094
|
|
|
"Store": { |
1095
|
|
|
"carrier": "battery storage", |
1096
|
|
|
"table": EgonPfHvStore, |
1097
|
|
|
"table_ts": EgonPfHvStoreTimeseries, |
1098
|
|
|
"column_id": "store_id", |
1099
|
|
|
"columns_ts": ["e_min_pu", "e_max_pu"], |
1100
|
|
|
"ts": None, |
1101
|
|
|
}, |
1102
|
|
|
} |
1103
|
|
|
|
1104
|
|
|
with db.session_scope() as session: |
1105
|
|
|
for node, attrs in model_ts_dict.items(): |
1106
|
|
|
print(f" Loading {node} timeseries...") |
1107
|
|
|
subquery = ( |
1108
|
|
|
session.query(getattr(attrs["table"], attrs["column_id"])) |
1109
|
|
|
.filter(attrs["table"].carrier == attrs["carrier"]) |
1110
|
|
|
.filter(attrs["table"].scn_name == scenario_name) |
1111
|
|
|
.subquery() |
1112
|
|
|
) |
1113
|
|
|
|
1114
|
|
|
cols = [ |
1115
|
|
|
getattr(attrs["table_ts"], c) for c in attrs["columns_ts"] |
1116
|
|
|
] |
1117
|
|
|
query = session.query( |
1118
|
|
|
getattr(attrs["table_ts"], attrs["column_id"]), *cols |
1119
|
|
|
).filter( |
1120
|
|
|
getattr(attrs["table_ts"], attrs["column_id"]).in_( |
1121
|
|
|
subquery |
1122
|
|
|
), |
1123
|
|
|
attrs["table_ts"].scn_name == scenario_name, |
1124
|
|
|
) |
1125
|
|
|
attrs["ts"] = pd.read_sql( |
1126
|
|
|
query.statement, |
1127
|
|
|
query.session.bind, |
1128
|
|
|
index_col=attrs["column_id"], |
1129
|
|
|
) |
1130
|
|
|
|
1131
|
|
|
# Check if all timeseries have 8760 steps |
1132
|
|
|
print(" Checking timeranges...") |
1133
|
|
|
for node, attrs in model_ts_dict.items(): |
1134
|
|
|
for col in attrs["columns_ts"]: |
1135
|
|
|
ts = attrs["ts"] |
1136
|
|
|
invalid_ts = ts.loc[ts[col].apply(lambda _: len(_)) != 8760][ |
1137
|
|
|
col |
1138
|
|
|
].apply(len) |
1139
|
|
|
np.testing.assert_equal( |
1140
|
|
|
len(invalid_ts), |
1141
|
|
|
0, |
1142
|
|
|
err_msg=( |
1143
|
|
|
f"{str(len(invalid_ts))} rows in timeseries do not " |
1144
|
|
|
f"have 8760 timesteps. Table: " |
1145
|
|
|
f"{attrs['table_ts'].__table__}, Column: {col}, IDs: " |
1146
|
|
|
f"{str(list(invalid_ts.index))}" |
1147
|
|
|
), |
1148
|
|
|
) |
1149
|
|
|
|
1150
|
|
|
# Compare total energy demand in model with some approximate values |
1151
|
|
|
# (per EV: 14,000 km/a, 0.17 kWh/km) |
1152
|
|
|
print(" Checking energy demand in model...") |
1153
|
|
|
total_energy_model = ( |
1154
|
|
|
model_ts_dict["Load"]["ts"].p_set.apply(lambda _: sum(_)).sum() |
1155
|
|
|
/ 1e6 |
1156
|
|
|
) |
1157
|
|
|
print(f" Total energy amount in model: {total_energy_model} TWh") |
1158
|
|
|
total_energy_scenario_approx = ev_count_alloc * 14000 * 0.17 / 1e9 |
1159
|
|
|
print( |
1160
|
|
|
f" Total approximated energy amount in scenario: " |
1161
|
|
|
f"{total_energy_scenario_approx} TWh" |
1162
|
|
|
) |
1163
|
|
|
np.testing.assert_allclose( |
1164
|
|
|
total_energy_model, |
1165
|
|
|
total_energy_scenario_approx, |
1166
|
|
|
rtol=0.1, |
1167
|
|
|
err_msg=( |
1168
|
|
|
"The total energy amount in the model deviates heavily " |
1169
|
|
|
"from the approximated value for current scenario." |
1170
|
|
|
), |
1171
|
|
|
) |
1172
|
|
|
|
1173
|
|
|
# Compare total storage capacity |
1174
|
|
|
print(" Checking storage capacity...") |
1175
|
|
|
# Load storage capacities from model |
1176
|
|
|
with db.session_scope() as session: |
1177
|
|
|
query = session.query( |
1178
|
|
|
func.sum(EgonPfHvStore.e_nom).label("e_nom") |
1179
|
|
|
).filter( |
1180
|
|
|
EgonPfHvStore.scn_name == scenario_name, |
1181
|
|
|
EgonPfHvStore.carrier == "battery storage", |
1182
|
|
|
) |
1183
|
|
|
storage_capacity_model = ( |
1184
|
|
|
pd.read_sql( |
1185
|
|
|
query.statement, query.session.bind, index_col=None |
1186
|
|
|
).e_nom.sum() |
1187
|
|
|
/ 1e3 |
1188
|
|
|
) |
1189
|
|
|
print( |
1190
|
|
|
f" Total storage capacity ({EgonPfHvStore.__table__}): " |
1191
|
|
|
f"{round(storage_capacity_model, 1)} GWh" |
1192
|
|
|
) |
1193
|
|
|
|
1194
|
|
|
# Load occurences of each EV |
1195
|
|
|
with db.session_scope() as session: |
1196
|
|
|
query = ( |
1197
|
|
|
session.query( |
1198
|
|
|
EgonEvMvGridDistrict.bus_id, |
1199
|
|
|
EgonEvPool.type, |
1200
|
|
|
func.count(EgonEvMvGridDistrict.egon_ev_pool_ev_id).label( |
1201
|
|
|
"count" |
1202
|
|
|
), |
1203
|
|
|
) |
1204
|
|
|
.join( |
1205
|
|
|
EgonEvPool, |
1206
|
|
|
EgonEvPool.ev_id |
1207
|
|
|
== EgonEvMvGridDistrict.egon_ev_pool_ev_id, |
1208
|
|
|
) |
1209
|
|
|
.filter( |
1210
|
|
|
EgonEvMvGridDistrict.scenario == scenario_name, |
1211
|
|
|
EgonEvMvGridDistrict.scenario_variation |
1212
|
|
|
== scenario_var_name, |
1213
|
|
|
EgonEvPool.scenario == scenario_name, |
1214
|
|
|
) |
1215
|
|
|
.group_by(EgonEvMvGridDistrict.bus_id, EgonEvPool.type) |
1216
|
|
|
) |
1217
|
|
|
count_per_ev_all = pd.read_sql( |
1218
|
|
|
query.statement, query.session.bind, index_col="bus_id" |
1219
|
|
|
) |
1220
|
|
|
count_per_ev_all["bat_cap"] = count_per_ev_all.type.map( |
1221
|
|
|
meta_tech_data.battery_capacity |
1222
|
|
|
) |
1223
|
|
|
count_per_ev_all["bat_cap_total_MWh"] = ( |
1224
|
|
|
count_per_ev_all["count"] * count_per_ev_all.bat_cap / 1e3 |
1225
|
|
|
) |
1226
|
|
|
storage_capacity_simbev = count_per_ev_all.bat_cap_total_MWh.div( |
1227
|
|
|
1e3 |
1228
|
|
|
).sum() |
1229
|
|
|
print( |
1230
|
|
|
f" Total storage capacity (simBEV): " |
1231
|
|
|
f"{round(storage_capacity_simbev, 1)} GWh" |
1232
|
|
|
) |
1233
|
|
|
|
1234
|
|
|
np.testing.assert_allclose( |
1235
|
|
|
storage_capacity_model, |
1236
|
|
|
storage_capacity_simbev, |
1237
|
|
|
rtol=0.01, |
1238
|
|
|
err_msg=( |
1239
|
|
|
"The total storage capacity in the model deviates heavily " |
1240
|
|
|
"from the input data provided by simBEV for current scenario." |
1241
|
|
|
), |
1242
|
|
|
) |
1243
|
|
|
|
1244
|
|
|
# Check SoC storage constraint: e_min_pu < e_max_pu for all timesteps |
1245
|
|
|
print(" Validating SoC constraints...") |
1246
|
|
|
stores_with_invalid_soc = [] |
1247
|
|
|
for idx, row in model_ts_dict["Store"]["ts"].iterrows(): |
1248
|
|
|
ts = row[["e_min_pu", "e_max_pu"]] |
1249
|
|
|
x = np.array(ts.e_min_pu) > np.array(ts.e_max_pu) |
1250
|
|
|
if x.any(): |
1251
|
|
|
stores_with_invalid_soc.append(idx) |
1252
|
|
|
|
1253
|
|
|
np.testing.assert_equal( |
1254
|
|
|
len(stores_with_invalid_soc), |
1255
|
|
|
0, |
1256
|
|
|
err_msg=( |
1257
|
|
|
f"The store constraint e_min_pu < e_max_pu does not apply " |
1258
|
|
|
f"for some storages in {EgonPfHvStoreTimeseries.__table__}. " |
1259
|
|
|
f"Invalid store_ids: {stores_with_invalid_soc}" |
1260
|
|
|
), |
1261
|
|
|
) |
1262
|
|
|
|
1263
|
|
|
def check_model_data_lowflex_eGon2035(): |
1264
|
|
|
# TODO: Add eGon100RE_lowflex |
1265
|
|
|
print("") |
1266
|
|
|
print("SCENARIO: eGon2035_lowflex") |
1267
|
|
|
|
1268
|
|
|
# Compare driving load and charging load |
1269
|
|
|
print(" Loading eGon2035 model timeseries: driving load...") |
1270
|
|
|
with db.session_scope() as session: |
1271
|
|
|
query = ( |
1272
|
|
|
session.query( |
1273
|
|
|
EgonPfHvLoad.load_id, |
1274
|
|
|
EgonPfHvLoadTimeseries.p_set, |
1275
|
|
|
) |
1276
|
|
|
.join( |
1277
|
|
|
EgonPfHvLoadTimeseries, |
1278
|
|
|
EgonPfHvLoadTimeseries.load_id == EgonPfHvLoad.load_id, |
1279
|
|
|
) |
1280
|
|
|
.filter( |
1281
|
|
|
EgonPfHvLoad.carrier == "land transport EV", |
1282
|
|
|
EgonPfHvLoad.scn_name == "eGon2035", |
1283
|
|
|
EgonPfHvLoadTimeseries.scn_name == "eGon2035", |
1284
|
|
|
) |
1285
|
|
|
) |
1286
|
|
|
model_driving_load = pd.read_sql( |
1287
|
|
|
query.statement, query.session.bind, index_col=None |
1288
|
|
|
) |
1289
|
|
|
driving_load = np.array(model_driving_load.p_set.to_list()).sum(axis=0) |
1290
|
|
|
|
1291
|
|
|
print( |
1292
|
|
|
" Loading eGon2035_lowflex model timeseries: dumb charging " |
1293
|
|
|
"load..." |
1294
|
|
|
) |
1295
|
|
|
with db.session_scope() as session: |
1296
|
|
|
query = ( |
1297
|
|
|
session.query( |
1298
|
|
|
EgonPfHvLoad.load_id, |
1299
|
|
|
EgonPfHvLoadTimeseries.p_set, |
1300
|
|
|
) |
1301
|
|
|
.join( |
1302
|
|
|
EgonPfHvLoadTimeseries, |
1303
|
|
|
EgonPfHvLoadTimeseries.load_id == EgonPfHvLoad.load_id, |
1304
|
|
|
) |
1305
|
|
|
.filter( |
1306
|
|
|
EgonPfHvLoad.carrier == "land transport EV", |
1307
|
|
|
EgonPfHvLoad.scn_name == "eGon2035_lowflex", |
1308
|
|
|
EgonPfHvLoadTimeseries.scn_name == "eGon2035_lowflex", |
1309
|
|
|
) |
1310
|
|
|
) |
1311
|
|
|
model_charging_load_lowflex = pd.read_sql( |
1312
|
|
|
query.statement, query.session.bind, index_col=None |
1313
|
|
|
) |
1314
|
|
|
charging_load = np.array( |
1315
|
|
|
model_charging_load_lowflex.p_set.to_list() |
1316
|
|
|
).sum(axis=0) |
1317
|
|
|
|
1318
|
|
|
# Ratio of driving and charging load should be 0.9 due to charging |
1319
|
|
|
# efficiency |
1320
|
|
|
print(" Compare cumulative loads...") |
1321
|
|
|
print(f" Driving load (eGon2035): {driving_load.sum() / 1e6} TWh") |
1322
|
|
|
print( |
1323
|
|
|
f" Dumb charging load (eGon2035_lowflex): " |
1324
|
|
|
f"{charging_load.sum() / 1e6} TWh" |
1325
|
|
|
) |
1326
|
|
|
driving_load_theoretical = ( |
1327
|
|
|
float(meta_run_config.eta_cp) * charging_load.sum() |
|
|
|
|
1328
|
|
|
) |
1329
|
|
|
np.testing.assert_allclose( |
1330
|
|
|
driving_load.sum(), |
1331
|
|
|
driving_load_theoretical, |
1332
|
|
|
rtol=0.01, |
1333
|
|
|
err_msg=( |
1334
|
|
|
f"The driving load (eGon2035) deviates by more than 1% " |
1335
|
|
|
f"from the theoretical driving load calculated from charging " |
1336
|
|
|
f"load (eGon2035_lowflex) with an efficiency of " |
1337
|
|
|
f"{float(meta_run_config.eta_cp)}." |
1338
|
|
|
), |
1339
|
|
|
) |
1340
|
|
|
|
1341
|
|
|
print("=====================================================") |
1342
|
|
|
print("=== SANITY CHECKS FOR MOTORIZED INDIVIDUAL TRAVEL ===") |
1343
|
|
|
print("=====================================================") |
1344
|
|
|
|
1345
|
|
|
for scenario_name in ["eGon2035", "eGon100RE"]: |
1346
|
|
|
scenario_var_name = DATASET_CFG["scenario"]["variation"][scenario_name] |
1347
|
|
|
|
1348
|
|
|
print("") |
1349
|
|
|
print(f"SCENARIO: {scenario_name}, VARIATION: {scenario_var_name}") |
1350
|
|
|
|
1351
|
|
|
# Load scenario params for scenario and scenario variation |
1352
|
|
|
scenario_variation_parameters = get_sector_parameters( |
1353
|
|
|
"mobility", scenario=scenario_name |
1354
|
|
|
)["motorized_individual_travel"][scenario_var_name] |
1355
|
|
|
|
1356
|
|
|
# Load simBEV run config and tech data |
1357
|
|
|
meta_run_config = read_simbev_metadata_file( |
1358
|
|
|
scenario_name, "config" |
1359
|
|
|
).loc["basic"] |
1360
|
|
|
meta_tech_data = read_simbev_metadata_file(scenario_name, "tech_data") |
1361
|
|
|
|
1362
|
|
|
print("") |
1363
|
|
|
print("Checking EV counts...") |
1364
|
|
|
ev_count_alloc = check_ev_allocation() |
1365
|
|
|
|
1366
|
|
|
print("") |
1367
|
|
|
print("Checking trip data...") |
1368
|
|
|
check_trip_data() |
1369
|
|
|
|
1370
|
|
|
print("") |
1371
|
|
|
print("Checking model data...") |
1372
|
|
|
check_model_data() |
1373
|
|
|
|
1374
|
|
|
print("") |
1375
|
|
|
check_model_data_lowflex_eGon2035() |
1376
|
|
|
|
1377
|
|
|
print("=====================================================") |
1378
|
|
|
|
1379
|
|
|
|
1380
|
|
|
def sanitycheck_home_batteries(): |
1381
|
|
|
# get constants |
1382
|
|
|
constants = config.datasets()["home_batteries"]["constants"] |
1383
|
|
|
scenarios = constants["scenarios"] |
1384
|
|
|
cbat_pbat_ratio = get_cbat_pbat_ratio() |
1385
|
|
|
|
1386
|
|
|
sources = config.datasets()["home_batteries"]["sources"] |
1387
|
|
|
targets = config.datasets()["home_batteries"]["targets"] |
1388
|
|
|
|
1389
|
|
|
for scenario in scenarios: |
1390
|
|
|
# get home battery capacity per mv grid id |
1391
|
|
|
sql = f""" |
1392
|
|
|
SELECT el_capacity as p_nom, bus_id FROM |
1393
|
|
|
{sources["storage"]["schema"]} |
1394
|
|
|
.{sources["storage"]["table"]} |
1395
|
|
|
WHERE carrier = 'home_battery' |
1396
|
|
|
AND scenario = '{scenario}' |
1397
|
|
|
""" |
1398
|
|
|
|
1399
|
|
|
home_batteries_df = db.select_dataframe(sql, index_col="bus_id") |
1400
|
|
|
|
1401
|
|
|
home_batteries_df = home_batteries_df.assign( |
1402
|
|
|
capacity=home_batteries_df.p_nom * cbat_pbat_ratio |
1403
|
|
|
) |
1404
|
|
|
|
1405
|
|
|
sql = f""" |
1406
|
|
|
SELECT * FROM |
1407
|
|
|
{targets["home_batteries"]["schema"]} |
1408
|
|
|
.{targets["home_batteries"]["table"]} |
1409
|
|
|
WHERE scenario = '{scenario}' |
1410
|
|
|
""" |
1411
|
|
|
|
1412
|
|
|
home_batteries_buildings_df = db.select_dataframe( |
1413
|
|
|
sql, index_col="index" |
1414
|
|
|
) |
1415
|
|
|
|
1416
|
|
|
df = ( |
1417
|
|
|
home_batteries_buildings_df[["bus_id", "p_nom", "capacity"]] |
1418
|
|
|
.groupby("bus_id") |
1419
|
|
|
.sum() |
1420
|
|
|
) |
1421
|
|
|
|
1422
|
|
|
assert (home_batteries_df.round(6) == df.round(6)).all().all() |
1423
|
|
|
|
1424
|
|
|
def sanity_check_gas_buses(scn): |
1425
|
|
|
"""Execute sanity checks for the gas buses in Germany |
1426
|
|
|
Returns print statements as sanity checks for the CH4 and |
1427
|
|
|
H2_grid grid buses in Germany. The deviation is calculated between |
1428
|
|
|
the number gas grid buses in the database and the original |
1429
|
|
|
Scigrid_gas number of gas buses. |
1430
|
|
|
Parameters |
1431
|
|
|
---------- |
1432
|
|
|
scn_name : str |
1433
|
|
|
Name of the scenario |
1434
|
|
|
""" |
1435
|
|
|
logger.info(f"BUSES") |
1436
|
|
|
|
1437
|
|
|
target_file = ( |
1438
|
|
|
Path(".") / "datasets" / "gas_data" / "data" / "IGGIELGN_Nodes.csv" |
1439
|
|
|
) |
1440
|
|
|
|
1441
|
|
|
Grid_buses_list = pd.read_csv( |
1442
|
|
|
target_file, |
1443
|
|
|
delimiter=";", |
1444
|
|
|
decimal=".", |
1445
|
|
|
usecols=["country_code"], |
1446
|
|
|
) |
1447
|
|
|
|
1448
|
|
|
Grid_buses_list = Grid_buses_list[ |
1449
|
|
|
Grid_buses_list["country_code"].str.match("DE") |
1450
|
|
|
] |
1451
|
|
|
input_grid_buses = len(Grid_buses_list.index) |
1452
|
|
|
|
1453
|
|
|
for carrier in ["CH4", "H2_grid"]: |
1454
|
|
|
|
1455
|
|
|
output_grid_buses_df = db.select_dataframe( |
1456
|
|
|
f""" |
1457
|
|
|
SELECT bus_id |
1458
|
|
|
FROM grid.egon_etrago_bus |
1459
|
|
|
WHERE scn_name = '{scn}' |
1460
|
|
|
AND country = 'DE' |
1461
|
|
|
AND carrier = '{carrier}'; |
1462
|
|
|
""", |
1463
|
|
|
warning=False, |
1464
|
|
|
) |
1465
|
|
|
output_grid_buses = len(output_grid_buses_df.index) |
1466
|
|
|
|
1467
|
|
|
e_grid_buses = ( |
1468
|
|
|
round( |
1469
|
|
|
(output_grid_buses - input_grid_buses) / input_grid_buses, |
1470
|
|
|
2, |
1471
|
|
|
) |
1472
|
|
|
* 100 |
1473
|
|
|
) |
1474
|
|
|
logger.info(f"Deviation {carrier} buses: {e_grid_buses} %") |
1475
|
|
|
|
1476
|
|
|
|
1477
|
|
|
def sanity_check_CH4_stores(scn): |
1478
|
|
|
"""Execute sanity checks for the CH4 stores in Germany |
1479
|
|
|
Returns print statements as sanity checks for the CH4 stores |
1480
|
|
|
capacity in Germany. The deviation is calculated between: |
1481
|
|
|
* the sum of the capacities of the stores with carrier 'CH4' |
1482
|
|
|
in the database (for one scenario) and |
1483
|
|
|
* the sum of: |
1484
|
|
|
* the capacity the gas grid allocated to CH4 (total capacity |
1485
|
|
|
in eGon2035 and capacity reduced the share of the grid |
1486
|
|
|
allocated to H2 in eGon100RE) and |
1487
|
|
|
* the sum of the capacities of the stores in the source |
1488
|
|
|
document (Storages from the SciGRID_gas data) |
1489
|
|
|
Parameters |
1490
|
|
|
---------- |
1491
|
|
|
scn_name : str |
1492
|
|
|
Name of the scenario |
1493
|
|
|
""" |
1494
|
|
|
output_CH4_stores = db.select_dataframe( |
1495
|
|
|
f"""SELECT SUM(e_nom::numeric) as e_nom_germany |
1496
|
|
|
FROM grid.egon_etrago_store |
1497
|
|
|
WHERE scn_name = '{scn}' |
1498
|
|
|
AND carrier = 'CH4' |
1499
|
|
|
AND bus IN |
1500
|
|
|
(SELECT bus_id |
1501
|
|
|
FROM grid.egon_etrago_bus |
1502
|
|
|
WHERE scn_name = '{scn}' |
1503
|
|
|
AND country = 'DE' |
1504
|
|
|
AND carrier = 'CH4'); |
1505
|
|
|
""", |
1506
|
|
|
warning=False, |
1507
|
|
|
)["e_nom_germany"].values[0] |
1508
|
|
|
|
1509
|
|
|
target_file = ( |
1510
|
|
|
Path(".") / "datasets" / "gas_data" / "data" / "IGGIELGN_Storages.csv" |
1511
|
|
|
) |
1512
|
|
|
|
1513
|
|
|
CH4_storages_list = pd.read_csv( |
1514
|
|
|
target_file, |
1515
|
|
|
delimiter=";", |
1516
|
|
|
decimal=".", |
1517
|
|
|
usecols=["country_code", "param"], |
1518
|
|
|
) |
1519
|
|
|
|
1520
|
|
|
CH4_storages_list = CH4_storages_list[ |
1521
|
|
|
CH4_storages_list["country_code"].str.match("DE") |
1522
|
|
|
] |
1523
|
|
|
|
1524
|
|
|
max_workingGas_M_m3 = [] |
1525
|
|
|
end_year = [] |
1526
|
|
|
for index, row in CH4_storages_list.iterrows(): |
1527
|
|
|
param = ast.literal_eval(row["param"]) |
1528
|
|
|
end_year.append(param["end_year"]) |
1529
|
|
|
max_workingGas_M_m3.append(param["max_workingGas_M_m3"]) |
1530
|
|
|
CH4_storages_list["max_workingGas_M_m3"] = max_workingGas_M_m3 |
1531
|
|
|
CH4_storages_list["end_year"] = [ |
1532
|
|
|
float("inf") if x == None else x for x in end_year |
1533
|
|
|
] |
1534
|
|
|
|
1535
|
|
|
# Remove unused storage units |
1536
|
|
|
CH4_storages_list = CH4_storages_list[ |
1537
|
|
|
CH4_storages_list["end_year"] |
1538
|
|
|
>= get_sector_parameters("global", scn)["population_year"] |
1539
|
|
|
] |
1540
|
|
|
|
1541
|
|
|
if scn == "eGon2035": |
1542
|
|
|
grid_cap = 130000 |
1543
|
|
|
elif scn == "eGon100RE": |
1544
|
|
|
grid_cap = 13000 * ( |
1545
|
|
|
1 |
1546
|
|
|
- get_sector_parameters("gas", "eGon100RE")[ |
1547
|
|
|
"retrofitted_CH4pipeline-to-H2pipeline_share" |
1548
|
|
|
] |
1549
|
|
|
) |
1550
|
|
|
conv_factor = 10830 # gross calorific value = 39 MJ/m3 (eurogas.org) |
1551
|
|
|
input_CH4_stores = ( |
1552
|
|
|
conv_factor * sum(CH4_storages_list["max_workingGas_M_m3"].to_list()) |
1553
|
|
|
+ grid_cap |
|
|
|
|
1554
|
|
|
) |
1555
|
|
|
|
1556
|
|
|
e_CH4_stores = ( |
1557
|
|
|
round( |
1558
|
|
|
(output_CH4_stores - input_CH4_stores) / input_CH4_stores, |
1559
|
|
|
2, |
1560
|
|
|
) |
1561
|
|
|
* 100 |
1562
|
|
|
) |
1563
|
|
|
logger.info(f"Deviation CH4 stores: {e_CH4_stores} %") |
1564
|
|
|
|
1565
|
|
|
|
1566
|
|
|
def sanity_check_H2_saltcavern_stores(scn): |
1567
|
|
|
"""Execute sanity checks for the H2 saltcavern stores in Germany |
1568
|
|
|
Returns print as sanity checks for the H2 saltcavern potential |
1569
|
|
|
storage capacity in Germany. The deviation is calculated between: |
1570
|
|
|
* the sum of the of the H2 saltcavern potential storage capacity |
1571
|
|
|
(e_nom_max) in the database and |
1572
|
|
|
* the sum of the H2 saltcavern potential storage capacity |
1573
|
|
|
assumed to be the ratio of the areas of 500 m radius around |
1574
|
|
|
substations in each german federal state and the estimated |
1575
|
|
|
total hydrogen storage potential of the corresponding federal |
1576
|
|
|
state (data from InSpEE-DS report). |
1577
|
|
|
This test works also in test mode. |
1578
|
|
|
Parameters |
1579
|
|
|
---------- |
1580
|
|
|
scn_name : str |
1581
|
|
|
Name of the scenario |
1582
|
|
|
""" |
1583
|
|
|
output_H2_stores = db.select_dataframe( |
1584
|
|
|
f"""SELECT SUM(e_nom_max::numeric) as e_nom_max_germany |
1585
|
|
|
FROM grid.egon_etrago_store |
1586
|
|
|
WHERE scn_name = '{scn}' |
1587
|
|
|
AND carrier = 'H2_underground' |
1588
|
|
|
AND bus IN |
1589
|
|
|
(SELECT bus_id |
1590
|
|
|
FROM grid.egon_etrago_bus |
1591
|
|
|
WHERE scn_name = '{scn}' |
1592
|
|
|
AND country = 'DE' |
1593
|
|
|
AND carrier = 'H2_saltcavern'); |
1594
|
|
|
""", |
1595
|
|
|
warning=False, |
1596
|
|
|
)["e_nom_max_germany"].values[0] |
1597
|
|
|
|
1598
|
|
|
storage_potentials = calculate_and_map_saltcavern_storage_potential() |
1599
|
|
|
storage_potentials["storage_potential"] = ( |
1600
|
|
|
storage_potentials["area_fraction"] * storage_potentials["potential"] |
1601
|
|
|
) |
1602
|
|
|
input_H2_stores = sum(storage_potentials["storage_potential"].to_list()) |
1603
|
|
|
|
1604
|
|
|
e_H2_stores = ( |
1605
|
|
|
round( |
1606
|
|
|
(output_H2_stores - input_H2_stores) / input_H2_stores, |
1607
|
|
|
2, |
1608
|
|
|
) |
1609
|
|
|
* 100 |
1610
|
|
|
) |
1611
|
|
|
logger.info(f"Deviation H2 saltcavern stores: {e_H2_stores} %") |
1612
|
|
|
|
1613
|
|
|
|
1614
|
|
|
def sanity_check_CH4_grid(scn): |
1615
|
|
|
"""Execute sanity checks for the gas grid capacity in Germany |
1616
|
|
|
Returns print statements as sanity checks for the CH4 links |
1617
|
|
|
(pipelines) in Germany. The deviation is calculated between |
1618
|
|
|
the sum of the power (p_nom) of all the CH4 pipelines in Germany |
1619
|
|
|
for one scenario in the database and the sum of the powers of the |
1620
|
|
|
imported pipelines. |
1621
|
|
|
In eGon100RE, the sum is reduced by the share of the grid that is |
1622
|
|
|
allocated to hydrogen (share calculated by PyPSA-eur-sec). |
1623
|
|
|
This test works also in test mode. |
1624
|
|
|
Parameters |
1625
|
|
|
---------- |
1626
|
|
|
scn_name : str |
1627
|
|
|
Name of the scenario |
1628
|
|
|
Returns |
1629
|
|
|
------- |
1630
|
|
|
scn_name : float |
1631
|
|
|
Sum of the power (p_nom) of all the pipelines in Germany |
1632
|
|
|
""" |
1633
|
|
|
grid_carrier = "CH4" |
1634
|
|
|
output_gas_grid = db.select_dataframe( |
1635
|
|
|
f"""SELECT SUM(p_nom::numeric) as p_nom_germany |
1636
|
|
|
FROM grid.egon_etrago_link |
1637
|
|
|
WHERE scn_name = '{scn}' |
1638
|
|
|
AND carrier = '{grid_carrier}' |
1639
|
|
|
AND bus0 IN |
1640
|
|
|
(SELECT bus_id |
1641
|
|
|
FROM grid.egon_etrago_bus |
1642
|
|
|
WHERE scn_name = '{scn}' |
1643
|
|
|
AND country = 'DE' |
1644
|
|
|
AND carrier = '{grid_carrier}') |
1645
|
|
|
AND bus1 IN |
1646
|
|
|
(SELECT bus_id |
1647
|
|
|
FROM grid.egon_etrago_bus |
1648
|
|
|
WHERE scn_name = '{scn}' |
1649
|
|
|
AND country = 'DE' |
1650
|
|
|
AND carrier = '{grid_carrier}') |
1651
|
|
|
; |
1652
|
|
|
""", |
1653
|
|
|
warning=False, |
1654
|
|
|
)["p_nom_germany"].values[0] |
1655
|
|
|
|
1656
|
|
|
gas_nodes_list = define_gas_nodes_list() |
1657
|
|
|
abroad_gas_nodes_list = insert_gas_buses_abroad() |
1658
|
|
|
gas_grid = define_gas_pipeline_list(gas_nodes_list, abroad_gas_nodes_list) |
1659
|
|
|
gas_grid_germany = gas_grid[ |
1660
|
|
|
(gas_grid["country_0"] == "DE") & (gas_grid["country_1"] == "DE") |
1661
|
|
|
] |
1662
|
|
|
p_nom_total = sum(gas_grid_germany["p_nom"].to_list()) |
1663
|
|
|
|
1664
|
|
|
if scn == "eGon2035": |
1665
|
|
|
input_gas_grid = p_nom_total |
1666
|
|
|
if scn == "eGon100RE": |
1667
|
|
|
input_gas_grid = p_nom_total * ( |
1668
|
|
|
1 |
1669
|
|
|
- get_sector_parameters("gas", "eGon100RE")[ |
1670
|
|
|
"retrofitted_CH4pipeline-to-H2pipeline_share" |
1671
|
|
|
] |
1672
|
|
|
) |
1673
|
|
|
|
1674
|
|
|
e_gas_grid = ( |
1675
|
|
|
round( |
1676
|
|
|
(output_gas_grid - input_gas_grid) / input_gas_grid, |
|
|
|
|
1677
|
|
|
2, |
1678
|
|
|
) |
1679
|
|
|
* 100 |
1680
|
|
|
) |
1681
|
|
|
logger.info(f"Deviation of the capacity of the CH4 grid: {e_gas_grid} %") |
1682
|
|
|
|
1683
|
|
|
return p_nom_total |
1684
|
|
|
|
1685
|
|
|
|
1686
|
|
|
def etrago_eGon2035_gas_DE(): |
1687
|
|
|
"""Execute basic sanity checks for the gas sector in eGon2035 |
1688
|
|
|
Returns print statements as sanity checks for the gas sector in |
1689
|
|
|
the eGon2035 scenario for the following components in Germany: |
1690
|
|
|
* Buses: with the function :py:func:`sanity_check_gas_buses` |
1691
|
|
|
* Loads: for the carriers 'CH4_for_industry' and 'H2_for_industry' |
1692
|
|
|
the deviation is calculated between the sum of the loads in the |
1693
|
|
|
database and the sum the loads in the sources document |
1694
|
|
|
(opendata.ffe database) |
1695
|
|
|
* Generators: the deviation is calculated between the sums of the |
1696
|
|
|
nominal powers of the gas generators in the database and of |
1697
|
|
|
the ones in the sources document (Biogaspartner Einspeiseatlas |
1698
|
|
|
Deutschland from the dena and Productions from the SciGRID_gas |
1699
|
|
|
data) |
1700
|
|
|
* Stores: deviations for stores with following carriers are |
1701
|
|
|
calculated: |
1702
|
|
|
* 'CH4': with the function :py:func:`sanity_check_CH4_stores` |
1703
|
|
|
* 'H2_underground': with the function :py:func:`sanity_check_H2_saltcavern_stores` |
1704
|
|
|
* Links: with the function :py:func:`sanity_check_CH4_grid` |
1705
|
|
|
""" |
1706
|
|
|
scn = "eGon2035" |
1707
|
|
|
|
1708
|
|
|
if TESTMODE_OFF: |
1709
|
|
|
logger.info(f"Gas sanity checks for scenario {scn}") |
1710
|
|
|
|
1711
|
|
|
# Buses |
1712
|
|
|
sanity_check_gas_buses(scn) |
1713
|
|
|
|
1714
|
|
|
# Loads |
1715
|
|
|
logger.info(f"LOADS") |
1716
|
|
|
|
1717
|
|
|
path = Path(".") / "datasets" / "gas_data" / "demand" |
1718
|
|
|
corr_file = path / "region_corr.json" |
1719
|
|
|
df_corr = pd.read_json(corr_file) |
1720
|
|
|
df_corr = df_corr.loc[:, ["id_region", "name_short"]] |
1721
|
|
|
df_corr.set_index("id_region", inplace=True) |
1722
|
|
|
|
1723
|
|
|
for carrier in ["CH4_for_industry", "H2_for_industry"]: |
1724
|
|
|
|
1725
|
|
|
output_gas_demand = db.select_dataframe( |
1726
|
|
|
f"""SELECT (SUM( |
1727
|
|
|
(SELECT SUM(p) |
1728
|
|
|
FROM UNNEST(b.p_set) p))/1000000)::numeric as load_twh |
1729
|
|
|
FROM grid.egon_etrago_load a |
1730
|
|
|
JOIN grid.egon_etrago_load_timeseries b |
1731
|
|
|
ON (a.load_id = b.load_id) |
1732
|
|
|
JOIN grid.egon_etrago_bus c |
1733
|
|
|
ON (a.bus=c.bus_id) |
1734
|
|
|
AND b.scn_name = '{scn}' |
1735
|
|
|
AND a.scn_name = '{scn}' |
1736
|
|
|
AND c.scn_name = '{scn}' |
1737
|
|
|
AND c.country = 'DE' |
1738
|
|
|
AND a.carrier = '{carrier}'; |
1739
|
|
|
""", |
1740
|
|
|
warning=False, |
1741
|
|
|
)["load_twh"].values[0] |
1742
|
|
|
|
1743
|
|
|
input_gas_demand = pd.read_json( |
1744
|
|
|
path / (carrier + "_eGon2035.json") |
1745
|
|
|
) |
1746
|
|
|
input_gas_demand = input_gas_demand.loc[:, ["id_region", "value"]] |
1747
|
|
|
input_gas_demand.set_index("id_region", inplace=True) |
1748
|
|
|
input_gas_demand = pd.concat( |
1749
|
|
|
[input_gas_demand, df_corr], axis=1, join="inner" |
1750
|
|
|
) |
1751
|
|
|
input_gas_demand["NUTS0"] = (input_gas_demand["name_short"].str)[ |
1752
|
|
|
0:2 |
1753
|
|
|
] |
1754
|
|
|
input_gas_demand = input_gas_demand[ |
1755
|
|
|
input_gas_demand["NUTS0"].str.match("DE") |
1756
|
|
|
] |
1757
|
|
|
input_gas_demand = sum(input_gas_demand.value.to_list()) / 1000000 |
1758
|
|
|
|
1759
|
|
|
e_demand = ( |
1760
|
|
|
round( |
1761
|
|
|
(output_gas_demand - input_gas_demand) / input_gas_demand, |
1762
|
|
|
2, |
1763
|
|
|
) |
1764
|
|
|
* 100 |
1765
|
|
|
) |
1766
|
|
|
logger.info(f"Deviation {carrier}: {e_demand} %") |
1767
|
|
|
|
1768
|
|
|
# Generators |
1769
|
|
|
logger.info(f"GENERATORS") |
1770
|
|
|
carrier_generator = "CH4" |
1771
|
|
|
|
1772
|
|
|
output_gas_generation = db.select_dataframe( |
1773
|
|
|
f"""SELECT SUM(p_nom::numeric) as p_nom_germany |
1774
|
|
|
FROM grid.egon_etrago_generator |
1775
|
|
|
WHERE scn_name = '{scn}' |
1776
|
|
|
AND carrier = '{carrier_generator}' |
1777
|
|
|
AND bus IN |
1778
|
|
|
(SELECT bus_id |
1779
|
|
|
FROM grid.egon_etrago_bus |
1780
|
|
|
WHERE scn_name = '{scn}' |
1781
|
|
|
AND country = 'DE' |
1782
|
|
|
AND carrier = '{carrier_generator}'); |
1783
|
|
|
""", |
1784
|
|
|
warning=False, |
1785
|
|
|
)["p_nom_germany"].values[0] |
1786
|
|
|
|
1787
|
|
|
target_file = ( |
1788
|
|
|
Path(".") |
1789
|
|
|
/ "datasets" |
1790
|
|
|
/ "gas_data" |
1791
|
|
|
/ "data" |
1792
|
|
|
/ "IGGIELGN_Productions.csv" |
1793
|
|
|
) |
1794
|
|
|
|
1795
|
|
|
NG_generators_list = pd.read_csv( |
1796
|
|
|
target_file, |
1797
|
|
|
delimiter=";", |
1798
|
|
|
decimal=".", |
1799
|
|
|
usecols=["country_code", "param"], |
1800
|
|
|
) |
1801
|
|
|
|
1802
|
|
|
NG_generators_list = NG_generators_list[ |
1803
|
|
|
NG_generators_list["country_code"].str.match("DE") |
1804
|
|
|
] |
1805
|
|
|
|
1806
|
|
|
p_NG = 0 |
1807
|
|
|
for index, row in NG_generators_list.iterrows(): |
1808
|
|
|
param = ast.literal_eval(row["param"]) |
1809
|
|
|
p_NG = p_NG + param["max_supply_M_m3_per_d"] |
1810
|
|
|
conversion_factor = 437.5 # MCM/day to MWh/h |
1811
|
|
|
p_NG = p_NG * conversion_factor |
1812
|
|
|
|
1813
|
|
|
basename = "Biogaspartner_Einspeiseatlas_Deutschland_2021.xlsx" |
1814
|
|
|
target_file = Path(".") / "datasets" / "gas_data" / basename |
1815
|
|
|
|
1816
|
|
|
conversion_factor_b = 0.01083 # m^3/h to MWh/h |
1817
|
|
|
p_biogas = ( |
1818
|
|
|
pd.read_excel( |
1819
|
|
|
target_file, |
1820
|
|
|
usecols=["Einspeisung Biomethan [(N*m^3)/h)]"], |
1821
|
|
|
)["Einspeisung Biomethan [(N*m^3)/h)]"].sum() |
1822
|
|
|
* conversion_factor_b |
1823
|
|
|
) |
1824
|
|
|
|
1825
|
|
|
input_gas_generation = p_NG + p_biogas |
1826
|
|
|
e_generation = ( |
1827
|
|
|
round( |
1828
|
|
|
(output_gas_generation - input_gas_generation) |
1829
|
|
|
/ input_gas_generation, |
1830
|
|
|
2, |
1831
|
|
|
) |
1832
|
|
|
* 100 |
1833
|
|
|
) |
1834
|
|
|
logger.info( |
1835
|
|
|
f"Deviation {carrier_generator} generation: {e_generation} %" |
1836
|
|
|
) |
1837
|
|
|
|
1838
|
|
|
# Stores |
1839
|
|
|
logger.info(f"STORES") |
1840
|
|
|
sanity_check_CH4_stores(scn) |
1841
|
|
|
sanity_check_H2_saltcavern_stores(scn) |
1842
|
|
|
|
1843
|
|
|
# Links |
1844
|
|
|
logger.info(f"LINKS") |
1845
|
|
|
sanity_check_CH4_grid(scn) |
1846
|
|
|
|
1847
|
|
|
else: |
1848
|
|
|
print("Testmode is on, skipping sanity check.") |
1849
|
|
|
|