| Total Complexity | 105 |
| Total Lines | 2985 |
| Duplicated Lines | 3.05 % |
| Changes | 0 | ||
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like data.datasets.sanity_checks often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | """ |
||
| 2 | This module does sanity checks for both the eGon2035 and the eGon100RE scenario |
||
| 3 | separately where a percentage error is given to showcase difference in output |
||
| 4 | and input values. Please note that there are missing input technologies in the |
||
| 5 | supply tables. |
||
| 6 | Authors: @ALonso, @dana, @nailend, @nesnoj, @khelfen |
||
| 7 | """ |
||
| 8 | |||
| 9 | from math import isclose |
||
| 10 | from pathlib import Path |
||
| 11 | import ast |
||
| 12 | |||
| 13 | from sqlalchemy import Numeric |
||
| 14 | from sqlalchemy.sql import and_, cast, func, or_ |
||
| 15 | import matplotlib.pyplot as plt |
||
| 16 | import numpy as np |
||
| 17 | import pandas as pd |
||
| 18 | import seaborn as sns |
||
| 19 | |||
| 20 | from egon.data import config, db, logger |
||
| 21 | from egon.data.datasets import Dataset |
||
| 22 | from egon.data.datasets.electricity_demand_timeseries.cts_buildings import ( |
||
| 23 | EgonCtsElectricityDemandBuildingShare, |
||
| 24 | EgonCtsHeatDemandBuildingShare, |
||
| 25 | ) |
||
| 26 | from egon.data.datasets.emobility.motorized_individual_travel.db_classes import ( # noqa: E501 |
||
| 27 | EgonEvCountMunicipality, |
||
| 28 | EgonEvCountMvGridDistrict, |
||
| 29 | EgonEvCountRegistrationDistrict, |
||
| 30 | EgonEvMvGridDistrict, |
||
| 31 | EgonEvPool, |
||
| 32 | EgonEvTrip, |
||
| 33 | ) |
||
| 34 | from egon.data.datasets.emobility.motorized_individual_travel.helpers import ( |
||
| 35 | DATASET_CFG, |
||
| 36 | read_simbev_metadata_file, |
||
| 37 | ) |
||
| 38 | from egon.data.datasets.etrago_setup import ( |
||
| 39 | EgonPfHvLink, |
||
| 40 | EgonPfHvLinkTimeseries, |
||
| 41 | EgonPfHvLoad, |
||
| 42 | EgonPfHvLoadTimeseries, |
||
| 43 | EgonPfHvStore, |
||
| 44 | EgonPfHvStoreTimeseries, |
||
| 45 | ) |
||
| 46 | from egon.data.datasets.gas_grid import ( |
||
| 47 | define_gas_buses_abroad, |
||
| 48 | define_gas_nodes_list, |
||
| 49 | define_gas_pipeline_list, |
||
| 50 | ) |
||
| 51 | from egon.data.datasets.gas_neighbours.eGon2035 import ( |
||
| 52 | calc_capacities, |
||
| 53 | calc_ch4_storage_capacities, |
||
| 54 | calc_global_ch4_demand, |
||
| 55 | calc_global_power_to_h2_demand, |
||
| 56 | calculate_ch4_grid_capacities, |
||
| 57 | import_ch4_demandTS, |
||
| 58 | ) |
||
| 59 | from egon.data.datasets.hydrogen_etrago.storage import ( |
||
| 60 | calculate_and_map_saltcavern_storage_potential, |
||
| 61 | ) |
||
| 62 | from egon.data.datasets.power_plants.pv_rooftop_buildings import ( |
||
| 63 | PV_CAP_PER_SQ_M, |
||
| 64 | ROOF_FACTOR, |
||
| 65 | SCENARIOS, |
||
| 66 | load_building_data, |
||
| 67 | scenario_data, |
||
| 68 | ) |
||
| 69 | from egon.data.datasets.pypsaeur import read_network |
||
| 70 | from egon.data.datasets.scenario_parameters import get_sector_parameters |
||
| 71 | from egon.data.datasets.storages.home_batteries import get_cbat_pbat_ratio |
||
| 72 | import egon.data |
||
| 73 | |||
| 74 | TESTMODE_OFF = ( |
||
| 75 | config.settings()["egon-data"]["--dataset-boundary"] == "Everything" |
||
| 76 | ) |
||
| 77 | |||
| 78 | |||
| 79 | def etrago_eGon2035_electricity(): |
||
| 80 | """Execute basic sanity checks. |
||
| 81 | |||
| 82 | Returns print statements as sanity checks for the electricity sector in |
||
| 83 | the eGon2035 scenario. |
||
| 84 | |||
| 85 | Parameters |
||
| 86 | ---------- |
||
| 87 | None |
||
| 88 | |||
| 89 | Returns |
||
| 90 | ------- |
||
| 91 | None |
||
| 92 | """ |
||
| 93 | |||
| 94 | scn = "eGon2035" |
||
| 95 | |||
| 96 | # Section to check generator capacities |
||
| 97 | logger.info(f"Sanity checks for scenario {scn}") |
||
| 98 | logger.info( |
||
| 99 | "For German electricity generators the following deviations between " |
||
| 100 | "the inputs and outputs can be observed:" |
||
| 101 | ) |
||
| 102 | |||
| 103 | carriers_electricity = [ |
||
| 104 | "others", |
||
| 105 | "reservoir", |
||
| 106 | "run_of_river", |
||
| 107 | "oil", |
||
| 108 | "wind_onshore", |
||
| 109 | "wind_offshore", |
||
| 110 | "solar", |
||
| 111 | "solar_rooftop", |
||
| 112 | "biomass", |
||
| 113 | ] |
||
| 114 | |||
| 115 | for carrier in carriers_electricity: |
||
| 116 | |||
| 117 | if carrier == "biomass": |
||
| 118 | sum_output = db.select_dataframe( |
||
| 119 | """SELECT scn_name, SUM(p_nom::numeric) as output_capacity_mw |
||
| 120 | FROM grid.egon_etrago_generator |
||
| 121 | WHERE bus IN ( |
||
| 122 | SELECT bus_id FROM grid.egon_etrago_bus |
||
| 123 | WHERE scn_name = 'eGon2035' |
||
| 124 | AND country = 'DE') |
||
| 125 | AND carrier IN ('biomass', 'industrial_biomass_CHP', |
||
| 126 | 'central_biomass_CHP') |
||
| 127 | GROUP BY (scn_name); |
||
| 128 | """, |
||
| 129 | warning=False, |
||
| 130 | ) |
||
| 131 | |||
| 132 | else: |
||
| 133 | sum_output = db.select_dataframe( |
||
| 134 | f"""SELECT scn_name, |
||
| 135 | SUM(p_nom::numeric) as output_capacity_mw |
||
| 136 | FROM grid.egon_etrago_generator |
||
| 137 | WHERE scn_name = '{scn}' |
||
| 138 | AND carrier IN ('{carrier}') |
||
| 139 | AND bus IN |
||
| 140 | (SELECT bus_id |
||
| 141 | FROM grid.egon_etrago_bus |
||
| 142 | WHERE scn_name = 'eGon2035' |
||
| 143 | AND country = 'DE') |
||
| 144 | GROUP BY (scn_name); |
||
| 145 | """, |
||
| 146 | warning=False, |
||
| 147 | ) |
||
| 148 | |||
| 149 | sum_input = db.select_dataframe( |
||
| 150 | f"""SELECT carrier, SUM(capacity::numeric) as input_capacity_mw |
||
| 151 | FROM supply.egon_scenario_capacities |
||
| 152 | WHERE carrier= '{carrier}' |
||
| 153 | AND scenario_name ='{scn}' |
||
| 154 | GROUP BY (carrier); |
||
| 155 | """, |
||
| 156 | warning=False, |
||
| 157 | ) |
||
| 158 | |||
| 159 | View Code Duplication | if ( |
|
|
|
|||
| 160 | sum_output.output_capacity_mw.sum() == 0 |
||
| 161 | and sum_input.input_capacity_mw.sum() == 0 |
||
| 162 | ): |
||
| 163 | logger.info( |
||
| 164 | f"No capacity for carrier '{carrier}' needed to be" |
||
| 165 | f" distributed. Everything is fine" |
||
| 166 | ) |
||
| 167 | |||
| 168 | elif ( |
||
| 169 | sum_input.input_capacity_mw.sum() > 0 |
||
| 170 | and sum_output.output_capacity_mw.sum() == 0 |
||
| 171 | ): |
||
| 172 | logger.info( |
||
| 173 | f"Error: Capacity for carrier '{carrier}' was not distributed " |
||
| 174 | f"at all!" |
||
| 175 | ) |
||
| 176 | |||
| 177 | elif ( |
||
| 178 | sum_output.output_capacity_mw.sum() > 0 |
||
| 179 | and sum_input.input_capacity_mw.sum() == 0 |
||
| 180 | ): |
||
| 181 | logger.info( |
||
| 182 | f"Error: Eventhough no input capacity was provided for carrier" |
||
| 183 | f"'{carrier}' a capacity got distributed!" |
||
| 184 | ) |
||
| 185 | |||
| 186 | else: |
||
| 187 | sum_input["error"] = ( |
||
| 188 | (sum_output.output_capacity_mw - sum_input.input_capacity_mw) |
||
| 189 | / sum_input.input_capacity_mw |
||
| 190 | ) * 100 |
||
| 191 | g = sum_input["error"].values[0] |
||
| 192 | |||
| 193 | logger.info(f"{carrier}: " + str(round(g, 2)) + " %") |
||
| 194 | |||
| 195 | # Section to check storage units |
||
| 196 | |||
| 197 | logger.info(f"Sanity checks for scenario {scn}") |
||
| 198 | logger.info( |
||
| 199 | "For German electrical storage units the following deviations between" |
||
| 200 | "the inputs and outputs can be observed:" |
||
| 201 | ) |
||
| 202 | |||
| 203 | carriers_electricity = ["pumped_hydro"] |
||
| 204 | |||
| 205 | for carrier in carriers_electricity: |
||
| 206 | |||
| 207 | sum_output = db.select_dataframe( |
||
| 208 | f"""SELECT scn_name, SUM(p_nom::numeric) as output_capacity_mw |
||
| 209 | FROM grid.egon_etrago_storage |
||
| 210 | WHERE scn_name = '{scn}' |
||
| 211 | AND carrier IN ('{carrier}') |
||
| 212 | AND bus IN |
||
| 213 | (SELECT bus_id |
||
| 214 | FROM grid.egon_etrago_bus |
||
| 215 | WHERE scn_name = 'eGon2035' |
||
| 216 | AND country = 'DE') |
||
| 217 | GROUP BY (scn_name); |
||
| 218 | """, |
||
| 219 | warning=False, |
||
| 220 | ) |
||
| 221 | |||
| 222 | sum_input = db.select_dataframe( |
||
| 223 | f"""SELECT carrier, SUM(capacity::numeric) as input_capacity_mw |
||
| 224 | FROM supply.egon_scenario_capacities |
||
| 225 | WHERE carrier= '{carrier}' |
||
| 226 | AND scenario_name ='{scn}' |
||
| 227 | GROUP BY (carrier); |
||
| 228 | """, |
||
| 229 | warning=False, |
||
| 230 | ) |
||
| 231 | |||
| 232 | View Code Duplication | if ( |
|
| 233 | sum_output.output_capacity_mw.sum() == 0 |
||
| 234 | and sum_input.input_capacity_mw.sum() == 0 |
||
| 235 | ): |
||
| 236 | print( |
||
| 237 | f"No capacity for carrier '{carrier}' needed to be " |
||
| 238 | f"distributed. Everything is fine" |
||
| 239 | ) |
||
| 240 | |||
| 241 | elif ( |
||
| 242 | sum_input.input_capacity_mw.sum() > 0 |
||
| 243 | and sum_output.output_capacity_mw.sum() == 0 |
||
| 244 | ): |
||
| 245 | print( |
||
| 246 | f"Error: Capacity for carrier '{carrier}' was not distributed" |
||
| 247 | f" at all!" |
||
| 248 | ) |
||
| 249 | |||
| 250 | elif ( |
||
| 251 | sum_output.output_capacity_mw.sum() > 0 |
||
| 252 | and sum_input.input_capacity_mw.sum() == 0 |
||
| 253 | ): |
||
| 254 | print( |
||
| 255 | f"Error: Eventhough no input capacity was provided for carrier" |
||
| 256 | f" '{carrier}' a capacity got distributed!" |
||
| 257 | ) |
||
| 258 | |||
| 259 | else: |
||
| 260 | sum_input["error"] = ( |
||
| 261 | (sum_output.output_capacity_mw - sum_input.input_capacity_mw) |
||
| 262 | / sum_input.input_capacity_mw |
||
| 263 | ) * 100 |
||
| 264 | g = sum_input["error"].values[0] |
||
| 265 | |||
| 266 | print(f"{carrier}: " + str(round(g, 2)) + " %") |
||
| 267 | |||
| 268 | # Section to check loads |
||
| 269 | |||
| 270 | print( |
||
| 271 | "For German electricity loads the following deviations between the" |
||
| 272 | " input and output can be observed:" |
||
| 273 | ) |
||
| 274 | |||
| 275 | output_demand = db.select_dataframe( |
||
| 276 | """SELECT a.scn_name, a.carrier, SUM((SELECT SUM(p) |
||
| 277 | FROM UNNEST(b.p_set) p))/1000000::numeric as load_twh |
||
| 278 | FROM grid.egon_etrago_load a |
||
| 279 | JOIN grid.egon_etrago_load_timeseries b |
||
| 280 | ON (a.load_id = b.load_id) |
||
| 281 | JOIN grid.egon_etrago_bus c |
||
| 282 | ON (a.bus=c.bus_id) |
||
| 283 | AND b.scn_name = 'eGon2035' |
||
| 284 | AND a.scn_name = 'eGon2035' |
||
| 285 | AND a.carrier = 'AC' |
||
| 286 | AND c.scn_name= 'eGon2035' |
||
| 287 | AND c.country='DE' |
||
| 288 | GROUP BY (a.scn_name, a.carrier); |
||
| 289 | |||
| 290 | """, |
||
| 291 | warning=False, |
||
| 292 | )["load_twh"].values[0] |
||
| 293 | |||
| 294 | input_cts_ind = db.select_dataframe( |
||
| 295 | """SELECT scenario, |
||
| 296 | SUM(demand::numeric/1000000) as demand_mw_regio_cts_ind |
||
| 297 | FROM demand.egon_demandregio_cts_ind |
||
| 298 | WHERE scenario= 'eGon2035' |
||
| 299 | AND year IN ('2035') |
||
| 300 | GROUP BY (scenario); |
||
| 301 | |||
| 302 | """, |
||
| 303 | warning=False, |
||
| 304 | )["demand_mw_regio_cts_ind"].values[0] |
||
| 305 | |||
| 306 | input_hh = db.select_dataframe( |
||
| 307 | """SELECT scenario, SUM(demand::numeric/1000000) as demand_mw_regio_hh |
||
| 308 | FROM demand.egon_demandregio_hh |
||
| 309 | WHERE scenario= 'eGon2035' |
||
| 310 | AND year IN ('2035') |
||
| 311 | GROUP BY (scenario); |
||
| 312 | """, |
||
| 313 | warning=False, |
||
| 314 | )["demand_mw_regio_hh"].values[0] |
||
| 315 | |||
| 316 | input_demand = input_hh + input_cts_ind |
||
| 317 | |||
| 318 | e = round((output_demand - input_demand) / input_demand, 2) * 100 |
||
| 319 | |||
| 320 | print(f"electricity demand: {e} %") |
||
| 321 | |||
| 322 | |||
| 323 | def etrago_eGon2035_heat(): |
||
| 324 | """Execute basic sanity checks. |
||
| 325 | |||
| 326 | Returns print statements as sanity checks for the heat sector in |
||
| 327 | the eGon2035 scenario. |
||
| 328 | |||
| 329 | Parameters |
||
| 330 | ---------- |
||
| 331 | None |
||
| 332 | |||
| 333 | Returns |
||
| 334 | ------- |
||
| 335 | None |
||
| 336 | """ |
||
| 337 | |||
| 338 | # Check input and output values for the carriers "others", |
||
| 339 | # "reservoir", "run_of_river" and "oil" |
||
| 340 | |||
| 341 | scn = "eGon2035" |
||
| 342 | |||
| 343 | # Section to check generator capacities |
||
| 344 | print(f"Sanity checks for scenario {scn}") |
||
| 345 | print( |
||
| 346 | "For German heat demands the following deviations between the inputs" |
||
| 347 | " and outputs can be observed:" |
||
| 348 | ) |
||
| 349 | |||
| 350 | # Sanity checks for heat demand |
||
| 351 | |||
| 352 | output_heat_demand = db.select_dataframe( |
||
| 353 | """SELECT a.scn_name, |
||
| 354 | (SUM( |
||
| 355 | (SELECT SUM(p) FROM UNNEST(b.p_set) p))/1000000)::numeric as load_twh |
||
| 356 | FROM grid.egon_etrago_load a |
||
| 357 | JOIN grid.egon_etrago_load_timeseries b |
||
| 358 | ON (a.load_id = b.load_id) |
||
| 359 | JOIN grid.egon_etrago_bus c |
||
| 360 | ON (a.bus=c.bus_id) |
||
| 361 | AND b.scn_name = 'eGon2035' |
||
| 362 | AND a.scn_name = 'eGon2035' |
||
| 363 | AND c.scn_name= 'eGon2035' |
||
| 364 | AND c.country='DE' |
||
| 365 | AND a.carrier IN ('rural_heat', 'central_heat') |
||
| 366 | GROUP BY (a.scn_name); |
||
| 367 | """, |
||
| 368 | warning=False, |
||
| 369 | )["load_twh"].values[0] |
||
| 370 | |||
| 371 | input_heat_demand = db.select_dataframe( |
||
| 372 | """SELECT scenario, SUM(demand::numeric/1000000) as demand_mw_peta_heat |
||
| 373 | FROM demand.egon_peta_heat |
||
| 374 | WHERE scenario= 'eGon2035' |
||
| 375 | GROUP BY (scenario); |
||
| 376 | """, |
||
| 377 | warning=False, |
||
| 378 | )["demand_mw_peta_heat"].values[0] |
||
| 379 | |||
| 380 | e_demand = ( |
||
| 381 | round((output_heat_demand - input_heat_demand) / input_heat_demand, 2) |
||
| 382 | * 100 |
||
| 383 | ) |
||
| 384 | |||
| 385 | logger.info(f"heat demand: {e_demand} %") |
||
| 386 | |||
| 387 | # Sanity checks for heat supply |
||
| 388 | |||
| 389 | logger.info( |
||
| 390 | "For German heat supplies the following deviations between the inputs " |
||
| 391 | "and outputs can be observed:" |
||
| 392 | ) |
||
| 393 | |||
| 394 | # Comparison for central heat pumps |
||
| 395 | heat_pump_input = db.select_dataframe( |
||
| 396 | """SELECT carrier, SUM(capacity::numeric) as Urban_central_heat_pump_mw |
||
| 397 | FROM supply.egon_scenario_capacities |
||
| 398 | WHERE carrier= 'urban_central_heat_pump' |
||
| 399 | AND scenario_name IN ('eGon2035') |
||
| 400 | GROUP BY (carrier); |
||
| 401 | """, |
||
| 402 | warning=False, |
||
| 403 | )["urban_central_heat_pump_mw"].values[0] |
||
| 404 | |||
| 405 | heat_pump_output = db.select_dataframe( |
||
| 406 | """SELECT carrier, SUM(p_nom::numeric) as Central_heat_pump_mw |
||
| 407 | FROM grid.egon_etrago_link |
||
| 408 | WHERE carrier= 'central_heat_pump' |
||
| 409 | AND scn_name IN ('eGon2035') |
||
| 410 | GROUP BY (carrier); |
||
| 411 | """, |
||
| 412 | warning=False, |
||
| 413 | )["central_heat_pump_mw"].values[0] |
||
| 414 | |||
| 415 | e_heat_pump = ( |
||
| 416 | round((heat_pump_output - heat_pump_input) / heat_pump_output, 2) * 100 |
||
| 417 | ) |
||
| 418 | |||
| 419 | logger.info(f"'central_heat_pump': {e_heat_pump} % ") |
||
| 420 | |||
| 421 | # Comparison for residential heat pumps |
||
| 422 | |||
| 423 | input_residential_heat_pump = db.select_dataframe( |
||
| 424 | """SELECT carrier, SUM(capacity::numeric) as residential_heat_pump_mw |
||
| 425 | FROM supply.egon_scenario_capacities |
||
| 426 | WHERE carrier= 'residential_rural_heat_pump' |
||
| 427 | AND scenario_name IN ('eGon2035') |
||
| 428 | GROUP BY (carrier); |
||
| 429 | """, |
||
| 430 | warning=False, |
||
| 431 | )["residential_heat_pump_mw"].values[0] |
||
| 432 | |||
| 433 | output_residential_heat_pump = db.select_dataframe( |
||
| 434 | """SELECT carrier, SUM(p_nom::numeric) as rural_heat_pump_mw |
||
| 435 | FROM grid.egon_etrago_link |
||
| 436 | WHERE carrier= 'rural_heat_pump' |
||
| 437 | AND scn_name IN ('eGon2035') |
||
| 438 | GROUP BY (carrier); |
||
| 439 | """, |
||
| 440 | warning=False, |
||
| 441 | )["rural_heat_pump_mw"].values[0] |
||
| 442 | |||
| 443 | e_residential_heat_pump = ( |
||
| 444 | round( |
||
| 445 | (output_residential_heat_pump - input_residential_heat_pump) |
||
| 446 | / input_residential_heat_pump, |
||
| 447 | 2, |
||
| 448 | ) |
||
| 449 | * 100 |
||
| 450 | ) |
||
| 451 | logger.info(f"'residential heat pumps': {e_residential_heat_pump} %") |
||
| 452 | |||
| 453 | # Comparison for resistive heater |
||
| 454 | resistive_heater_input = db.select_dataframe( |
||
| 455 | """SELECT carrier, |
||
| 456 | SUM(capacity::numeric) as Urban_central_resistive_heater_MW |
||
| 457 | FROM supply.egon_scenario_capacities |
||
| 458 | WHERE carrier= 'urban_central_resistive_heater' |
||
| 459 | AND scenario_name IN ('eGon2035') |
||
| 460 | GROUP BY (carrier); |
||
| 461 | """, |
||
| 462 | warning=False, |
||
| 463 | )["urban_central_resistive_heater_mw"].values[0] |
||
| 464 | |||
| 465 | resistive_heater_output = db.select_dataframe( |
||
| 466 | """SELECT carrier, SUM(p_nom::numeric) as central_resistive_heater_MW |
||
| 467 | FROM grid.egon_etrago_link |
||
| 468 | WHERE carrier= 'central_resistive_heater' |
||
| 469 | AND scn_name IN ('eGon2035') |
||
| 470 | GROUP BY (carrier); |
||
| 471 | """, |
||
| 472 | warning=False, |
||
| 473 | )["central_resistive_heater_mw"].values[0] |
||
| 474 | |||
| 475 | e_resistive_heater = ( |
||
| 476 | round( |
||
| 477 | (resistive_heater_output - resistive_heater_input) |
||
| 478 | / resistive_heater_input, |
||
| 479 | 2, |
||
| 480 | ) |
||
| 481 | * 100 |
||
| 482 | ) |
||
| 483 | |||
| 484 | logger.info(f"'resistive heater': {e_resistive_heater} %") |
||
| 485 | |||
| 486 | # Comparison for solar thermal collectors |
||
| 487 | |||
| 488 | input_solar_thermal = db.select_dataframe( |
||
| 489 | """SELECT carrier, SUM(capacity::numeric) as solar_thermal_collector_mw |
||
| 490 | FROM supply.egon_scenario_capacities |
||
| 491 | WHERE carrier= 'urban_central_solar_thermal_collector' |
||
| 492 | AND scenario_name IN ('eGon2035') |
||
| 493 | GROUP BY (carrier); |
||
| 494 | """, |
||
| 495 | warning=False, |
||
| 496 | )["solar_thermal_collector_mw"].values[0] |
||
| 497 | |||
| 498 | output_solar_thermal = db.select_dataframe( |
||
| 499 | """SELECT carrier, SUM(p_nom::numeric) as solar_thermal_collector_mw |
||
| 500 | FROM grid.egon_etrago_generator |
||
| 501 | WHERE carrier= 'solar_thermal_collector' |
||
| 502 | AND scn_name IN ('eGon2035') |
||
| 503 | GROUP BY (carrier); |
||
| 504 | """, |
||
| 505 | warning=False, |
||
| 506 | )["solar_thermal_collector_mw"].values[0] |
||
| 507 | |||
| 508 | e_solar_thermal = ( |
||
| 509 | round( |
||
| 510 | (output_solar_thermal - input_solar_thermal) / input_solar_thermal, |
||
| 511 | 2, |
||
| 512 | ) |
||
| 513 | * 100 |
||
| 514 | ) |
||
| 515 | logger.info(f"'solar thermal collector': {e_solar_thermal} %") |
||
| 516 | |||
| 517 | # Comparison for geothermal |
||
| 518 | |||
| 519 | input_geo_thermal = db.select_dataframe( |
||
| 520 | """SELECT carrier, |
||
| 521 | SUM(capacity::numeric) as Urban_central_geo_thermal_MW |
||
| 522 | FROM supply.egon_scenario_capacities |
||
| 523 | WHERE carrier= 'urban_central_geo_thermal' |
||
| 524 | AND scenario_name IN ('eGon2035') |
||
| 525 | GROUP BY (carrier); |
||
| 526 | """, |
||
| 527 | warning=False, |
||
| 528 | )["urban_central_geo_thermal_mw"].values[0] |
||
| 529 | |||
| 530 | output_geo_thermal = db.select_dataframe( |
||
| 531 | """SELECT carrier, SUM(p_nom::numeric) as geo_thermal_MW |
||
| 532 | FROM grid.egon_etrago_generator |
||
| 533 | WHERE carrier= 'geo_thermal' |
||
| 534 | AND scn_name IN ('eGon2035') |
||
| 535 | GROUP BY (carrier); |
||
| 536 | """, |
||
| 537 | warning=False, |
||
| 538 | )["geo_thermal_mw"].values[0] |
||
| 539 | |||
| 540 | e_geo_thermal = ( |
||
| 541 | round((output_geo_thermal - input_geo_thermal) / input_geo_thermal, 2) |
||
| 542 | * 100 |
||
| 543 | ) |
||
| 544 | logger.info(f"'geothermal': {e_geo_thermal} %") |
||
| 545 | |||
| 546 | |||
| 547 | def residential_electricity_annual_sum(rtol=1e-5): |
||
| 548 | """Sanity check for dataset electricity_demand_timeseries : |
||
| 549 | Demand_Building_Assignment |
||
| 550 | |||
| 551 | Aggregate the annual demand of all census cells at NUTS3 to compare |
||
| 552 | with initial scaling parameters from DemandRegio. |
||
| 553 | """ |
||
| 554 | |||
| 555 | df_nuts3_annual_sum = db.select_dataframe( |
||
| 556 | sql=""" |
||
| 557 | SELECT dr.nuts3, dr.scenario, dr.demand_regio_sum, profiles.profile_sum |
||
| 558 | FROM ( |
||
| 559 | SELECT scenario, SUM(demand) AS profile_sum, vg250_nuts3 |
||
| 560 | FROM demand.egon_demandregio_zensus_electricity AS egon, |
||
| 561 | boundaries.egon_map_zensus_vg250 AS boundaries |
||
| 562 | Where egon.zensus_population_id = boundaries.zensus_population_id |
||
| 563 | AND sector = 'residential' |
||
| 564 | GROUP BY vg250_nuts3, scenario |
||
| 565 | ) AS profiles |
||
| 566 | JOIN ( |
||
| 567 | SELECT nuts3, scenario, sum(demand) AS demand_regio_sum |
||
| 568 | FROM demand.egon_demandregio_hh |
||
| 569 | GROUP BY year, scenario, nuts3 |
||
| 570 | ) AS dr |
||
| 571 | ON profiles.vg250_nuts3 = dr.nuts3 and profiles.scenario = dr.scenario |
||
| 572 | """ |
||
| 573 | ) |
||
| 574 | |||
| 575 | np.testing.assert_allclose( |
||
| 576 | actual=df_nuts3_annual_sum["profile_sum"], |
||
| 577 | desired=df_nuts3_annual_sum["demand_regio_sum"], |
||
| 578 | rtol=rtol, |
||
| 579 | verbose=False, |
||
| 580 | ) |
||
| 581 | |||
| 582 | logger.info( |
||
| 583 | "Aggregated annual residential electricity demand" |
||
| 584 | " matches with DemandRegio at NUTS-3." |
||
| 585 | ) |
||
| 586 | |||
| 587 | |||
| 588 | def residential_electricity_hh_refinement(rtol=1e-5): |
||
| 589 | """Sanity check for dataset electricity_demand_timeseries : |
||
| 590 | Household Demands |
||
| 591 | |||
| 592 | Check sum of aggregated household types after refinement method |
||
| 593 | was applied and compare it to the original census values.""" |
||
| 594 | |||
| 595 | df_refinement = db.select_dataframe( |
||
| 596 | sql=""" |
||
| 597 | SELECT refined.nuts3, refined.characteristics_code, |
||
| 598 | refined.sum_refined::int, census.sum_census::int |
||
| 599 | FROM( |
||
| 600 | SELECT nuts3, characteristics_code, SUM(hh_10types) as sum_refined |
||
| 601 | FROM society.egon_destatis_zensus_household_per_ha_refined |
||
| 602 | GROUP BY nuts3, characteristics_code) |
||
| 603 | AS refined |
||
| 604 | JOIN( |
||
| 605 | SELECT t.nuts3, t.characteristics_code, sum(orig) as sum_census |
||
| 606 | FROM( |
||
| 607 | SELECT nuts3, cell_id, characteristics_code, |
||
| 608 | sum(DISTINCT(hh_5types))as orig |
||
| 609 | FROM society.egon_destatis_zensus_household_per_ha_refined |
||
| 610 | GROUP BY cell_id, characteristics_code, nuts3) AS t |
||
| 611 | GROUP BY t.nuts3, t.characteristics_code ) AS census |
||
| 612 | ON refined.nuts3 = census.nuts3 |
||
| 613 | AND refined.characteristics_code = census.characteristics_code |
||
| 614 | """ |
||
| 615 | ) |
||
| 616 | |||
| 617 | np.testing.assert_allclose( |
||
| 618 | actual=df_refinement["sum_refined"], |
||
| 619 | desired=df_refinement["sum_census"], |
||
| 620 | rtol=rtol, |
||
| 621 | verbose=False, |
||
| 622 | ) |
||
| 623 | |||
| 624 | logger.info("All Aggregated household types match at NUTS-3.") |
||
| 625 | |||
| 626 | |||
| 627 | def cts_electricity_demand_share(rtol=1e-5): |
||
| 628 | """Sanity check for dataset electricity_demand_timeseries : |
||
| 629 | CtsBuildings |
||
| 630 | |||
| 631 | Check sum of aggregated cts electricity demand share which equals to one |
||
| 632 | for every substation as the substation profile is linearly disaggregated |
||
| 633 | to all buildings.""" |
||
| 634 | |||
| 635 | with db.session_scope() as session: |
||
| 636 | cells_query = session.query(EgonCtsElectricityDemandBuildingShare) |
||
| 637 | |||
| 638 | df_demand_share = pd.read_sql( |
||
| 639 | cells_query.statement, cells_query.session.bind, index_col=None |
||
| 640 | ) |
||
| 641 | |||
| 642 | np.testing.assert_allclose( |
||
| 643 | actual=df_demand_share.groupby(["bus_id", "scenario"])[ |
||
| 644 | "profile_share" |
||
| 645 | ].sum(), |
||
| 646 | desired=1, |
||
| 647 | rtol=rtol, |
||
| 648 | verbose=False, |
||
| 649 | ) |
||
| 650 | |||
| 651 | logger.info("The aggregated demand shares equal to one!.") |
||
| 652 | |||
| 653 | |||
| 654 | def cts_heat_demand_share(rtol=1e-5): |
||
| 655 | """Sanity check for dataset electricity_demand_timeseries |
||
| 656 | : CtsBuildings |
||
| 657 | |||
| 658 | Check sum of aggregated cts heat demand share which equals to one |
||
| 659 | for every substation as the substation profile is linearly disaggregated |
||
| 660 | to all buildings.""" |
||
| 661 | |||
| 662 | with db.session_scope() as session: |
||
| 663 | cells_query = session.query(EgonCtsHeatDemandBuildingShare) |
||
| 664 | |||
| 665 | df_demand_share = pd.read_sql( |
||
| 666 | cells_query.statement, cells_query.session.bind, index_col=None |
||
| 667 | ) |
||
| 668 | |||
| 669 | np.testing.assert_allclose( |
||
| 670 | actual=df_demand_share.groupby(["bus_id", "scenario"])[ |
||
| 671 | "profile_share" |
||
| 672 | ].sum(), |
||
| 673 | desired=1, |
||
| 674 | rtol=rtol, |
||
| 675 | verbose=False, |
||
| 676 | ) |
||
| 677 | |||
| 678 | logger.info("The aggregated demand shares equal to one!.") |
||
| 679 | |||
| 680 | |||
| 681 | def sanitycheck_pv_rooftop_buildings(): |
||
| 682 | def egon_power_plants_pv_roof_building(): |
||
| 683 | sql = """ |
||
| 684 | SELECT * |
||
| 685 | FROM supply.egon_power_plants_pv_roof_building |
||
| 686 | """ |
||
| 687 | |||
| 688 | return db.select_dataframe(sql, index_col="index") |
||
| 689 | |||
| 690 | pv_roof_df = egon_power_plants_pv_roof_building() |
||
| 691 | |||
| 692 | valid_buildings_gdf = load_building_data() |
||
| 693 | |||
| 694 | valid_buildings_gdf = valid_buildings_gdf.assign( |
||
| 695 | bus_id=valid_buildings_gdf.bus_id.astype(int), |
||
| 696 | overlay_id=valid_buildings_gdf.overlay_id.astype(int), |
||
| 697 | max_cap=valid_buildings_gdf.building_area.multiply( |
||
| 698 | ROOF_FACTOR * PV_CAP_PER_SQ_M |
||
| 699 | ), |
||
| 700 | ) |
||
| 701 | |||
| 702 | merge_df = pv_roof_df.merge( |
||
| 703 | valid_buildings_gdf[["building_area"]], |
||
| 704 | how="left", |
||
| 705 | left_on="building_id", |
||
| 706 | right_index=True, |
||
| 707 | ) |
||
| 708 | |||
| 709 | assert ( |
||
| 710 | len(merge_df.loc[merge_df.building_area.isna()]) == 0 |
||
| 711 | ), f"{len(merge_df.loc[merge_df.building_area.isna()])} != 0" |
||
| 712 | |||
| 713 | scenarios = ["status_quo", "eGon2035"] |
||
| 714 | |||
| 715 | base_path = Path(egon.data.__path__[0]).resolve() |
||
| 716 | |||
| 717 | res_dir = base_path / "sanity_checks" |
||
| 718 | |||
| 719 | res_dir.mkdir(parents=True, exist_ok=True) |
||
| 720 | |||
| 721 | for scenario in scenarios: |
||
| 722 | fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 8)) |
||
| 723 | |||
| 724 | scenario_df = merge_df.loc[merge_df.scenario == scenario] |
||
| 725 | |||
| 726 | logger.info( |
||
| 727 | scenario + " Capacity:\n" + str(scenario_df.capacity.describe()) |
||
| 728 | ) |
||
| 729 | |||
| 730 | small_gens_df = scenario_df.loc[scenario_df.capacity < 100] |
||
| 731 | |||
| 732 | sns.histplot(data=small_gens_df, x="capacity", ax=ax1).set_title( |
||
| 733 | scenario |
||
| 734 | ) |
||
| 735 | |||
| 736 | sns.scatterplot( |
||
| 737 | data=small_gens_df, x="capacity", y="building_area", ax=ax2 |
||
| 738 | ).set_title(scenario) |
||
| 739 | |||
| 740 | plt.tight_layout() |
||
| 741 | |||
| 742 | plt.savefig( |
||
| 743 | res_dir / f"{scenario}_pv_rooftop_distribution.png", |
||
| 744 | bbox_inches="tight", |
||
| 745 | ) |
||
| 746 | |||
| 747 | for scenario in SCENARIOS: |
||
| 748 | if scenario == "eGon2035": |
||
| 749 | assert isclose( |
||
| 750 | scenario_data(scenario=scenario).capacity.sum(), |
||
| 751 | merge_df.loc[merge_df.scenario == scenario].capacity.sum(), |
||
| 752 | rel_tol=1e-02, |
||
| 753 | ), ( |
||
| 754 | f"{scenario_data(scenario=scenario).capacity.sum()} != " |
||
| 755 | f"{merge_df.loc[merge_df.scenario == scenario].capacity.sum()}" |
||
| 756 | ) |
||
| 757 | elif scenario == "eGon100RE": |
||
| 758 | sources = config.datasets()["solar_rooftop"]["sources"] |
||
| 759 | |||
| 760 | target = db.select_dataframe( |
||
| 761 | f""" |
||
| 762 | SELECT capacity |
||
| 763 | FROM {sources['scenario_capacities']['schema']}. |
||
| 764 | {sources['scenario_capacities']['table']} a |
||
| 765 | WHERE carrier = 'solar_rooftop' |
||
| 766 | AND scenario_name = '{scenario}' |
||
| 767 | """ |
||
| 768 | ).capacity[0] |
||
| 769 | |||
| 770 | dataset = config.settings()["egon-data"]["--dataset-boundary"] |
||
| 771 | |||
| 772 | View Code Duplication | if dataset == "Schleswig-Holstein": |
|
| 773 | sources = config.datasets()["scenario_input"]["sources"] |
||
| 774 | |||
| 775 | path = Path( |
||
| 776 | f"./data_bundle_egon_data/nep2035_version2021/" |
||
| 777 | f"{sources['eGon2035']['capacities']}" |
||
| 778 | ).resolve() |
||
| 779 | |||
| 780 | total_2035 = ( |
||
| 781 | pd.read_excel( |
||
| 782 | path, |
||
| 783 | sheet_name="1.Entwurf_NEP2035_V2021", |
||
| 784 | index_col="Unnamed: 0", |
||
| 785 | ).at["PV (Aufdach)", "Summe"] |
||
| 786 | * 1000 |
||
| 787 | ) |
||
| 788 | sh_2035 = scenario_data(scenario="eGon2035").capacity.sum() |
||
| 789 | |||
| 790 | share = sh_2035 / total_2035 |
||
| 791 | |||
| 792 | target *= share |
||
| 793 | |||
| 794 | assert isclose( |
||
| 795 | target, |
||
| 796 | merge_df.loc[merge_df.scenario == scenario].capacity.sum(), |
||
| 797 | rel_tol=1e-02, |
||
| 798 | ), ( |
||
| 799 | f"{target} != " |
||
| 800 | f"{merge_df.loc[merge_df.scenario == scenario].capacity.sum()}" |
||
| 801 | ) |
||
| 802 | else: |
||
| 803 | raise ValueError(f"Scenario {scenario} is not valid.") |
||
| 804 | |||
| 805 | |||
| 806 | def sanitycheck_emobility_mit(): |
||
| 807 | """Execute sanity checks for eMobility: motorized individual travel |
||
| 808 | |||
| 809 | Checks data integrity for scenarios using assertions: |
||
| 810 | |||
| 811 | 1. Allocated EV numbers and EVs allocated to grid districts |
||
| 812 | 2. Trip data (original inout data from simBEV) |
||
| 813 | 3. Model data in eTraGo PF tables (grid.egon_etrago_*) |
||
| 814 | |||
| 815 | Parameters |
||
| 816 | ---------- |
||
| 817 | None |
||
| 818 | |||
| 819 | Returns |
||
| 820 | ------- |
||
| 821 | None |
||
| 822 | """ |
||
| 823 | |||
| 824 | def check_ev_allocation(): |
||
| 825 | # Get target number for scenario |
||
| 826 | ev_count_target = scenario_variation_parameters["ev_count"] |
||
| 827 | print(f" Target count: {str(ev_count_target)}") |
||
| 828 | |||
| 829 | # Get allocated numbers |
||
| 830 | ev_counts_dict = {} |
||
| 831 | with db.session_scope() as session: |
||
| 832 | for table, level in zip( |
||
| 833 | [ |
||
| 834 | EgonEvCountMvGridDistrict, |
||
| 835 | EgonEvCountMunicipality, |
||
| 836 | EgonEvCountRegistrationDistrict, |
||
| 837 | ], |
||
| 838 | ["Grid District", "Municipality", "Registration District"], |
||
| 839 | ): |
||
| 840 | query = session.query( |
||
| 841 | func.sum( |
||
| 842 | table.bev_mini |
||
| 843 | + table.bev_medium |
||
| 844 | + table.bev_luxury |
||
| 845 | + table.phev_mini |
||
| 846 | + table.phev_medium |
||
| 847 | + table.phev_luxury |
||
| 848 | ).label("ev_count") |
||
| 849 | ).filter( |
||
| 850 | table.scenario == scenario_name, |
||
| 851 | table.scenario_variation == scenario_var_name, |
||
| 852 | ) |
||
| 853 | |||
| 854 | ev_counts = pd.read_sql( |
||
| 855 | query.statement, query.session.bind, index_col=None |
||
| 856 | ) |
||
| 857 | ev_counts_dict[level] = ev_counts.iloc[0].ev_count |
||
| 858 | print( |
||
| 859 | f" Count table: Total count for level {level} " |
||
| 860 | f"(table: {table.__table__}): " |
||
| 861 | f"{str(ev_counts_dict[level])}" |
||
| 862 | ) |
||
| 863 | |||
| 864 | # Compare with scenario target (only if not in testmode) |
||
| 865 | if TESTMODE_OFF: |
||
| 866 | for level, count in ev_counts_dict.items(): |
||
| 867 | np.testing.assert_allclose( |
||
| 868 | count, |
||
| 869 | ev_count_target, |
||
| 870 | rtol=0.0001 if ev_count_target > 1e6 else 0.02, |
||
| 871 | err_msg=f"EV numbers in {level} seems to be flawed.", |
||
| 872 | ) |
||
| 873 | else: |
||
| 874 | print(" Testmode is on, skipping sanity check...") |
||
| 875 | |||
| 876 | # Get allocated EVs in grid districts |
||
| 877 | with db.session_scope() as session: |
||
| 878 | query = session.query( |
||
| 879 | func.count(EgonEvMvGridDistrict.egon_ev_pool_ev_id).label( |
||
| 880 | "ev_count" |
||
| 881 | ), |
||
| 882 | ).filter( |
||
| 883 | EgonEvMvGridDistrict.scenario == scenario_name, |
||
| 884 | EgonEvMvGridDistrict.scenario_variation == scenario_var_name, |
||
| 885 | ) |
||
| 886 | ev_count_alloc = ( |
||
| 887 | pd.read_sql(query.statement, query.session.bind, index_col=None) |
||
| 888 | .iloc[0] |
||
| 889 | .ev_count |
||
| 890 | ) |
||
| 891 | print( |
||
| 892 | f" EVs allocated to Grid Districts " |
||
| 893 | f"(table: {EgonEvMvGridDistrict.__table__}) total count: " |
||
| 894 | f"{str(ev_count_alloc)}" |
||
| 895 | ) |
||
| 896 | |||
| 897 | # Compare with scenario target (only if not in testmode) |
||
| 898 | if TESTMODE_OFF: |
||
| 899 | np.testing.assert_allclose( |
||
| 900 | ev_count_alloc, |
||
| 901 | ev_count_target, |
||
| 902 | rtol=0.0001 if ev_count_target > 1e6 else 0.02, |
||
| 903 | err_msg=( |
||
| 904 | "EV numbers allocated to Grid Districts seems to be " |
||
| 905 | "flawed." |
||
| 906 | ), |
||
| 907 | ) |
||
| 908 | else: |
||
| 909 | print(" Testmode is on, skipping sanity check...") |
||
| 910 | |||
| 911 | return ev_count_alloc |
||
| 912 | |||
| 913 | def check_trip_data(): |
||
| 914 | # Check if trips start at timestep 0 and have a max. of 35040 steps |
||
| 915 | # (8760h in 15min steps) |
||
| 916 | print(" Checking timeranges...") |
||
| 917 | with db.session_scope() as session: |
||
| 918 | query = session.query( |
||
| 919 | func.count(EgonEvTrip.event_id).label("cnt") |
||
| 920 | ).filter( |
||
| 921 | or_( |
||
| 922 | and_( |
||
| 923 | EgonEvTrip.park_start > 0, |
||
| 924 | EgonEvTrip.simbev_event_id == 0, |
||
| 925 | ), |
||
| 926 | EgonEvTrip.park_end |
||
| 927 | > (60 / int(meta_run_config.stepsize)) * 8760, |
||
| 928 | ), |
||
| 929 | EgonEvTrip.scenario == scenario_name, |
||
| 930 | ) |
||
| 931 | invalid_trips = pd.read_sql( |
||
| 932 | query.statement, query.session.bind, index_col=None |
||
| 933 | ) |
||
| 934 | np.testing.assert_equal( |
||
| 935 | invalid_trips.iloc[0].cnt, |
||
| 936 | 0, |
||
| 937 | err_msg=( |
||
| 938 | f"{str(invalid_trips.iloc[0].cnt)} trips in table " |
||
| 939 | f"{EgonEvTrip.__table__} have invalid timesteps." |
||
| 940 | ), |
||
| 941 | ) |
||
| 942 | |||
| 943 | # Check if charging demand can be covered by available charging energy |
||
| 944 | # while parking |
||
| 945 | print(" Compare charging demand with available power...") |
||
| 946 | with db.session_scope() as session: |
||
| 947 | query = session.query( |
||
| 948 | func.count(EgonEvTrip.event_id).label("cnt") |
||
| 949 | ).filter( |
||
| 950 | func.round( |
||
| 951 | cast( |
||
| 952 | (EgonEvTrip.park_end - EgonEvTrip.park_start + 1) |
||
| 953 | * EgonEvTrip.charging_capacity_nominal |
||
| 954 | * (int(meta_run_config.stepsize) / 60), |
||
| 955 | Numeric, |
||
| 956 | ), |
||
| 957 | 3, |
||
| 958 | ) |
||
| 959 | < cast(EgonEvTrip.charging_demand, Numeric), |
||
| 960 | EgonEvTrip.scenario == scenario_name, |
||
| 961 | ) |
||
| 962 | invalid_trips = pd.read_sql( |
||
| 963 | query.statement, query.session.bind, index_col=None |
||
| 964 | ) |
||
| 965 | np.testing.assert_equal( |
||
| 966 | invalid_trips.iloc[0].cnt, |
||
| 967 | 0, |
||
| 968 | err_msg=( |
||
| 969 | f"In {str(invalid_trips.iloc[0].cnt)} trips (table: " |
||
| 970 | f"{EgonEvTrip.__table__}) the charging demand cannot be " |
||
| 971 | f"covered by available charging power." |
||
| 972 | ), |
||
| 973 | ) |
||
| 974 | |||
| 975 | def check_model_data(): |
||
| 976 | # Check if model components were fully created |
||
| 977 | print(" Check if all model components were created...") |
||
| 978 | # Get MVGDs which got EV allocated |
||
| 979 | with db.session_scope() as session: |
||
| 980 | query = ( |
||
| 981 | session.query( |
||
| 982 | EgonEvMvGridDistrict.bus_id, |
||
| 983 | ) |
||
| 984 | .filter( |
||
| 985 | EgonEvMvGridDistrict.scenario == scenario_name, |
||
| 986 | EgonEvMvGridDistrict.scenario_variation |
||
| 987 | == scenario_var_name, |
||
| 988 | ) |
||
| 989 | .group_by(EgonEvMvGridDistrict.bus_id) |
||
| 990 | ) |
||
| 991 | mvgds_with_ev = ( |
||
| 992 | pd.read_sql(query.statement, query.session.bind, index_col=None) |
||
| 993 | .bus_id.sort_values() |
||
| 994 | .to_list() |
||
| 995 | ) |
||
| 996 | |||
| 997 | # Load model components |
||
| 998 | with db.session_scope() as session: |
||
| 999 | query = ( |
||
| 1000 | session.query( |
||
| 1001 | EgonPfHvLink.bus0.label("mvgd_bus_id"), |
||
| 1002 | EgonPfHvLoad.bus.label("emob_bus_id"), |
||
| 1003 | EgonPfHvLoad.load_id.label("load_id"), |
||
| 1004 | EgonPfHvStore.store_id.label("store_id"), |
||
| 1005 | ) |
||
| 1006 | .select_from(EgonPfHvLoad, EgonPfHvStore) |
||
| 1007 | .join( |
||
| 1008 | EgonPfHvLoadTimeseries, |
||
| 1009 | EgonPfHvLoadTimeseries.load_id == EgonPfHvLoad.load_id, |
||
| 1010 | ) |
||
| 1011 | .join( |
||
| 1012 | EgonPfHvStoreTimeseries, |
||
| 1013 | EgonPfHvStoreTimeseries.store_id == EgonPfHvStore.store_id, |
||
| 1014 | ) |
||
| 1015 | .filter( |
||
| 1016 | EgonPfHvLoad.carrier == "land_transport_EV", |
||
| 1017 | EgonPfHvLoad.scn_name == scenario_name, |
||
| 1018 | EgonPfHvLoadTimeseries.scn_name == scenario_name, |
||
| 1019 | EgonPfHvStore.carrier == "battery_storage", |
||
| 1020 | EgonPfHvStore.scn_name == scenario_name, |
||
| 1021 | EgonPfHvStoreTimeseries.scn_name == scenario_name, |
||
| 1022 | EgonPfHvLink.scn_name == scenario_name, |
||
| 1023 | EgonPfHvLink.bus1 == EgonPfHvLoad.bus, |
||
| 1024 | EgonPfHvLink.bus1 == EgonPfHvStore.bus, |
||
| 1025 | ) |
||
| 1026 | ) |
||
| 1027 | model_components = pd.read_sql( |
||
| 1028 | query.statement, query.session.bind, index_col=None |
||
| 1029 | ) |
||
| 1030 | |||
| 1031 | # Check number of buses with model components connected |
||
| 1032 | mvgd_buses_with_ev = model_components.loc[ |
||
| 1033 | model_components.mvgd_bus_id.isin(mvgds_with_ev) |
||
| 1034 | ] |
||
| 1035 | np.testing.assert_equal( |
||
| 1036 | len(mvgds_with_ev), |
||
| 1037 | len(mvgd_buses_with_ev), |
||
| 1038 | err_msg=( |
||
| 1039 | f"Number of Grid Districts with connected model components " |
||
| 1040 | f"({str(len(mvgd_buses_with_ev))} in tables egon_etrago_*) " |
||
| 1041 | f"differ from number of Grid Districts that got EVs " |
||
| 1042 | f"allocated ({len(mvgds_with_ev)} in table " |
||
| 1043 | f"{EgonEvMvGridDistrict.__table__})." |
||
| 1044 | ), |
||
| 1045 | ) |
||
| 1046 | |||
| 1047 | # Check if all required components exist (if no id is NaN) |
||
| 1048 | np.testing.assert_equal( |
||
| 1049 | model_components.drop_duplicates().isna().any().any(), |
||
| 1050 | False, |
||
| 1051 | err_msg=( |
||
| 1052 | f"Some components are missing (see True values): " |
||
| 1053 | f"{model_components.drop_duplicates().isna().any()}" |
||
| 1054 | ), |
||
| 1055 | ) |
||
| 1056 | |||
| 1057 | # Get all model timeseries |
||
| 1058 | print(" Loading model timeseries...") |
||
| 1059 | # Get all model timeseries |
||
| 1060 | model_ts_dict = { |
||
| 1061 | "Load": { |
||
| 1062 | "carrier": "land_transport_EV", |
||
| 1063 | "table": EgonPfHvLoad, |
||
| 1064 | "table_ts": EgonPfHvLoadTimeseries, |
||
| 1065 | "column_id": "load_id", |
||
| 1066 | "columns_ts": ["p_set"], |
||
| 1067 | "ts": None, |
||
| 1068 | }, |
||
| 1069 | "Link": { |
||
| 1070 | "carrier": "BEV_charger", |
||
| 1071 | "table": EgonPfHvLink, |
||
| 1072 | "table_ts": EgonPfHvLinkTimeseries, |
||
| 1073 | "column_id": "link_id", |
||
| 1074 | "columns_ts": ["p_max_pu"], |
||
| 1075 | "ts": None, |
||
| 1076 | }, |
||
| 1077 | "Store": { |
||
| 1078 | "carrier": "battery_storage", |
||
| 1079 | "table": EgonPfHvStore, |
||
| 1080 | "table_ts": EgonPfHvStoreTimeseries, |
||
| 1081 | "column_id": "store_id", |
||
| 1082 | "columns_ts": ["e_min_pu", "e_max_pu"], |
||
| 1083 | "ts": None, |
||
| 1084 | }, |
||
| 1085 | } |
||
| 1086 | |||
| 1087 | with db.session_scope() as session: |
||
| 1088 | for node, attrs in model_ts_dict.items(): |
||
| 1089 | print(f" Loading {node} timeseries...") |
||
| 1090 | subquery = ( |
||
| 1091 | session.query(getattr(attrs["table"], attrs["column_id"])) |
||
| 1092 | .filter(attrs["table"].carrier == attrs["carrier"]) |
||
| 1093 | .filter(attrs["table"].scn_name == scenario_name) |
||
| 1094 | .subquery() |
||
| 1095 | ) |
||
| 1096 | |||
| 1097 | cols = [ |
||
| 1098 | getattr(attrs["table_ts"], c) for c in attrs["columns_ts"] |
||
| 1099 | ] |
||
| 1100 | query = session.query( |
||
| 1101 | getattr(attrs["table_ts"], attrs["column_id"]), *cols |
||
| 1102 | ).filter( |
||
| 1103 | getattr(attrs["table_ts"], attrs["column_id"]).in_( |
||
| 1104 | subquery |
||
| 1105 | ), |
||
| 1106 | attrs["table_ts"].scn_name == scenario_name, |
||
| 1107 | ) |
||
| 1108 | attrs["ts"] = pd.read_sql( |
||
| 1109 | query.statement, |
||
| 1110 | query.session.bind, |
||
| 1111 | index_col=attrs["column_id"], |
||
| 1112 | ) |
||
| 1113 | |||
| 1114 | # Check if all timeseries have 8760 steps |
||
| 1115 | print(" Checking timeranges...") |
||
| 1116 | for node, attrs in model_ts_dict.items(): |
||
| 1117 | for col in attrs["columns_ts"]: |
||
| 1118 | ts = attrs["ts"] |
||
| 1119 | invalid_ts = ts.loc[ts[col].apply(lambda _: len(_)) != 8760][ |
||
| 1120 | col |
||
| 1121 | ].apply(len) |
||
| 1122 | np.testing.assert_equal( |
||
| 1123 | len(invalid_ts), |
||
| 1124 | 0, |
||
| 1125 | err_msg=( |
||
| 1126 | f"{str(len(invalid_ts))} rows in timeseries do not " |
||
| 1127 | f"have 8760 timesteps. Table: " |
||
| 1128 | f"{attrs['table_ts'].__table__}, Column: {col}, IDs: " |
||
| 1129 | f"{str(list(invalid_ts.index))}" |
||
| 1130 | ), |
||
| 1131 | ) |
||
| 1132 | |||
| 1133 | # Compare total energy demand in model with some approximate values |
||
| 1134 | # (per EV: 14,000 km/a, 0.17 kWh/km) |
||
| 1135 | print(" Checking energy demand in model...") |
||
| 1136 | total_energy_model = ( |
||
| 1137 | model_ts_dict["Load"]["ts"].p_set.apply(lambda _: sum(_)).sum() |
||
| 1138 | / 1e6 |
||
| 1139 | ) |
||
| 1140 | print(f" Total energy amount in model: {total_energy_model} TWh") |
||
| 1141 | total_energy_scenario_approx = ev_count_alloc * 14000 * 0.17 / 1e9 |
||
| 1142 | print( |
||
| 1143 | f" Total approximated energy amount in scenario: " |
||
| 1144 | f"{total_energy_scenario_approx} TWh" |
||
| 1145 | ) |
||
| 1146 | np.testing.assert_allclose( |
||
| 1147 | total_energy_model, |
||
| 1148 | total_energy_scenario_approx, |
||
| 1149 | rtol=0.1, |
||
| 1150 | err_msg=( |
||
| 1151 | "The total energy amount in the model deviates more than 10% " |
||
| 1152 | "from the approximated value for current scenario." |
||
| 1153 | ), |
||
| 1154 | ) |
||
| 1155 | |||
| 1156 | # Compare total storage capacity |
||
| 1157 | print(" Checking storage capacity...") |
||
| 1158 | # Load storage capacities from model |
||
| 1159 | with db.session_scope() as session: |
||
| 1160 | query = session.query( |
||
| 1161 | func.sum(EgonPfHvStore.e_nom).label("e_nom") |
||
| 1162 | ).filter( |
||
| 1163 | EgonPfHvStore.scn_name == scenario_name, |
||
| 1164 | EgonPfHvStore.carrier == "battery_storage", |
||
| 1165 | ) |
||
| 1166 | storage_capacity_model = ( |
||
| 1167 | pd.read_sql( |
||
| 1168 | query.statement, query.session.bind, index_col=None |
||
| 1169 | ).e_nom.sum() |
||
| 1170 | / 1e3 |
||
| 1171 | ) |
||
| 1172 | print( |
||
| 1173 | f" Total storage capacity ({EgonPfHvStore.__table__}): " |
||
| 1174 | f"{round(storage_capacity_model, 1)} GWh" |
||
| 1175 | ) |
||
| 1176 | |||
| 1177 | # Load occurences of each EV |
||
| 1178 | with db.session_scope() as session: |
||
| 1179 | query = ( |
||
| 1180 | session.query( |
||
| 1181 | EgonEvMvGridDistrict.bus_id, |
||
| 1182 | EgonEvPool.type, |
||
| 1183 | func.count(EgonEvMvGridDistrict.egon_ev_pool_ev_id).label( |
||
| 1184 | "count" |
||
| 1185 | ), |
||
| 1186 | ) |
||
| 1187 | .join( |
||
| 1188 | EgonEvPool, |
||
| 1189 | EgonEvPool.ev_id |
||
| 1190 | == EgonEvMvGridDistrict.egon_ev_pool_ev_id, |
||
| 1191 | ) |
||
| 1192 | .filter( |
||
| 1193 | EgonEvMvGridDistrict.scenario == scenario_name, |
||
| 1194 | EgonEvMvGridDistrict.scenario_variation |
||
| 1195 | == scenario_var_name, |
||
| 1196 | EgonEvPool.scenario == scenario_name, |
||
| 1197 | ) |
||
| 1198 | .group_by(EgonEvMvGridDistrict.bus_id, EgonEvPool.type) |
||
| 1199 | ) |
||
| 1200 | count_per_ev_all = pd.read_sql( |
||
| 1201 | query.statement, query.session.bind, index_col="bus_id" |
||
| 1202 | ) |
||
| 1203 | count_per_ev_all["bat_cap"] = count_per_ev_all.type.map( |
||
| 1204 | meta_tech_data.battery_capacity |
||
| 1205 | ) |
||
| 1206 | count_per_ev_all["bat_cap_total_MWh"] = ( |
||
| 1207 | count_per_ev_all["count"] * count_per_ev_all.bat_cap / 1e3 |
||
| 1208 | ) |
||
| 1209 | storage_capacity_simbev = count_per_ev_all.bat_cap_total_MWh.div( |
||
| 1210 | 1e3 |
||
| 1211 | ).sum() |
||
| 1212 | print( |
||
| 1213 | f" Total storage capacity (simBEV): " |
||
| 1214 | f"{round(storage_capacity_simbev, 1)} GWh" |
||
| 1215 | ) |
||
| 1216 | |||
| 1217 | np.testing.assert_allclose( |
||
| 1218 | storage_capacity_model, |
||
| 1219 | storage_capacity_simbev, |
||
| 1220 | rtol=0.01, |
||
| 1221 | err_msg=( |
||
| 1222 | "The total storage capacity in the model deviates more than " |
||
| 1223 | "1% from the input data provided by simBEV for current " |
||
| 1224 | "scenario." |
||
| 1225 | ), |
||
| 1226 | ) |
||
| 1227 | |||
| 1228 | # Check SoC storage constraint: e_min_pu < e_max_pu for all timesteps |
||
| 1229 | print(" Validating SoC constraints...") |
||
| 1230 | stores_with_invalid_soc = [] |
||
| 1231 | for idx, row in model_ts_dict["Store"]["ts"].iterrows(): |
||
| 1232 | ts = row[["e_min_pu", "e_max_pu"]] |
||
| 1233 | x = np.array(ts.e_min_pu) > np.array(ts.e_max_pu) |
||
| 1234 | if x.any(): |
||
| 1235 | stores_with_invalid_soc.append(idx) |
||
| 1236 | |||
| 1237 | np.testing.assert_equal( |
||
| 1238 | len(stores_with_invalid_soc), |
||
| 1239 | 0, |
||
| 1240 | err_msg=( |
||
| 1241 | f"The store constraint e_min_pu < e_max_pu does not apply " |
||
| 1242 | f"for some storages in {EgonPfHvStoreTimeseries.__table__}. " |
||
| 1243 | f"Invalid store_ids: {stores_with_invalid_soc}" |
||
| 1244 | ), |
||
| 1245 | ) |
||
| 1246 | |||
| 1247 | def check_model_data_lowflex_eGon2035(): |
||
| 1248 | # TODO: Add eGon100RE_lowflex |
||
| 1249 | print("") |
||
| 1250 | print("SCENARIO: eGon2035_lowflex") |
||
| 1251 | |||
| 1252 | # Compare driving load and charging load |
||
| 1253 | print(" Loading eGon2035 model timeseries: driving load...") |
||
| 1254 | with db.session_scope() as session: |
||
| 1255 | query = ( |
||
| 1256 | session.query( |
||
| 1257 | EgonPfHvLoad.load_id, |
||
| 1258 | EgonPfHvLoadTimeseries.p_set, |
||
| 1259 | ) |
||
| 1260 | .join( |
||
| 1261 | EgonPfHvLoadTimeseries, |
||
| 1262 | EgonPfHvLoadTimeseries.load_id == EgonPfHvLoad.load_id, |
||
| 1263 | ) |
||
| 1264 | .filter( |
||
| 1265 | EgonPfHvLoad.carrier == "land_transport_EV", |
||
| 1266 | EgonPfHvLoad.scn_name == "eGon2035", |
||
| 1267 | EgonPfHvLoadTimeseries.scn_name == "eGon2035", |
||
| 1268 | ) |
||
| 1269 | ) |
||
| 1270 | model_driving_load = pd.read_sql( |
||
| 1271 | query.statement, query.session.bind, index_col=None |
||
| 1272 | ) |
||
| 1273 | driving_load = np.array(model_driving_load.p_set.to_list()).sum(axis=0) |
||
| 1274 | |||
| 1275 | print( |
||
| 1276 | " Loading eGon2035_lowflex model timeseries: dumb charging " |
||
| 1277 | "load..." |
||
| 1278 | ) |
||
| 1279 | with db.session_scope() as session: |
||
| 1280 | query = ( |
||
| 1281 | session.query( |
||
| 1282 | EgonPfHvLoad.load_id, |
||
| 1283 | EgonPfHvLoadTimeseries.p_set, |
||
| 1284 | ) |
||
| 1285 | .join( |
||
| 1286 | EgonPfHvLoadTimeseries, |
||
| 1287 | EgonPfHvLoadTimeseries.load_id == EgonPfHvLoad.load_id, |
||
| 1288 | ) |
||
| 1289 | .filter( |
||
| 1290 | EgonPfHvLoad.carrier == "land_transport_EV", |
||
| 1291 | EgonPfHvLoad.scn_name == "eGon2035_lowflex", |
||
| 1292 | EgonPfHvLoadTimeseries.scn_name == "eGon2035_lowflex", |
||
| 1293 | ) |
||
| 1294 | ) |
||
| 1295 | model_charging_load_lowflex = pd.read_sql( |
||
| 1296 | query.statement, query.session.bind, index_col=None |
||
| 1297 | ) |
||
| 1298 | charging_load = np.array( |
||
| 1299 | model_charging_load_lowflex.p_set.to_list() |
||
| 1300 | ).sum(axis=0) |
||
| 1301 | |||
| 1302 | # Ratio of driving and charging load should be 0.9 due to charging |
||
| 1303 | # efficiency |
||
| 1304 | print(" Compare cumulative loads...") |
||
| 1305 | print(f" Driving load (eGon2035): {driving_load.sum() / 1e6} TWh") |
||
| 1306 | print( |
||
| 1307 | f" Dumb charging load (eGon2035_lowflex): " |
||
| 1308 | f"{charging_load.sum() / 1e6} TWh" |
||
| 1309 | ) |
||
| 1310 | driving_load_theoretical = ( |
||
| 1311 | float(meta_run_config.eta_cp) * charging_load.sum() |
||
| 1312 | ) |
||
| 1313 | np.testing.assert_allclose( |
||
| 1314 | driving_load.sum(), |
||
| 1315 | driving_load_theoretical, |
||
| 1316 | rtol=0.01, |
||
| 1317 | err_msg=( |
||
| 1318 | f"The driving load (eGon2035) deviates by more than 1% " |
||
| 1319 | f"from the theoretical driving load calculated from charging " |
||
| 1320 | f"load (eGon2035_lowflex) with an efficiency of " |
||
| 1321 | f"{float(meta_run_config.eta_cp)}." |
||
| 1322 | ), |
||
| 1323 | ) |
||
| 1324 | |||
| 1325 | print("=====================================================") |
||
| 1326 | print("=== SANITY CHECKS FOR MOTORIZED INDIVIDUAL TRAVEL ===") |
||
| 1327 | print("=====================================================") |
||
| 1328 | |||
| 1329 | for scenario_name in ["eGon2035", "eGon100RE"]: |
||
| 1330 | scenario_var_name = DATASET_CFG["scenario"]["variation"][scenario_name] |
||
| 1331 | |||
| 1332 | print("") |
||
| 1333 | print(f"SCENARIO: {scenario_name}, VARIATION: {scenario_var_name}") |
||
| 1334 | |||
| 1335 | # Load scenario params for scenario and scenario variation |
||
| 1336 | scenario_variation_parameters = get_sector_parameters( |
||
| 1337 | "mobility", scenario=scenario_name |
||
| 1338 | )["motorized_individual_travel"][scenario_var_name] |
||
| 1339 | |||
| 1340 | # Load simBEV run config and tech data |
||
| 1341 | meta_run_config = read_simbev_metadata_file( |
||
| 1342 | scenario_name, "config" |
||
| 1343 | ).loc["basic"] |
||
| 1344 | meta_tech_data = read_simbev_metadata_file(scenario_name, "tech_data") |
||
| 1345 | |||
| 1346 | print("") |
||
| 1347 | print("Checking EV counts...") |
||
| 1348 | ev_count_alloc = check_ev_allocation() |
||
| 1349 | |||
| 1350 | print("") |
||
| 1351 | print("Checking trip data...") |
||
| 1352 | check_trip_data() |
||
| 1353 | |||
| 1354 | print("") |
||
| 1355 | print("Checking model data...") |
||
| 1356 | check_model_data() |
||
| 1357 | |||
| 1358 | print("") |
||
| 1359 | check_model_data_lowflex_eGon2035() |
||
| 1360 | |||
| 1361 | print("=====================================================") |
||
| 1362 | |||
| 1363 | |||
| 1364 | def sanitycheck_home_batteries(): |
||
| 1365 | # get constants |
||
| 1366 | constants = config.datasets()["home_batteries"]["constants"] |
||
| 1367 | scenarios = constants["scenarios"] |
||
| 1368 | cbat_pbat_ratio = get_cbat_pbat_ratio() |
||
| 1369 | |||
| 1370 | sources = config.datasets()["home_batteries"]["sources"] |
||
| 1371 | targets = config.datasets()["home_batteries"]["targets"] |
||
| 1372 | |||
| 1373 | for scenario in scenarios: |
||
| 1374 | # get home battery capacity per mv grid id |
||
| 1375 | sql = f""" |
||
| 1376 | SELECT el_capacity as p_nom, bus_id FROM |
||
| 1377 | {sources["storage"]["schema"]} |
||
| 1378 | .{sources["storage"]["table"]} |
||
| 1379 | WHERE carrier = 'home_battery' |
||
| 1380 | AND scenario = '{scenario}' |
||
| 1381 | """ |
||
| 1382 | |||
| 1383 | home_batteries_df = db.select_dataframe(sql, index_col="bus_id") |
||
| 1384 | |||
| 1385 | home_batteries_df = home_batteries_df.assign( |
||
| 1386 | capacity=home_batteries_df.p_nom * cbat_pbat_ratio |
||
| 1387 | ) |
||
| 1388 | |||
| 1389 | sql = f""" |
||
| 1390 | SELECT * FROM |
||
| 1391 | {targets["home_batteries"]["schema"]} |
||
| 1392 | .{targets["home_batteries"]["table"]} |
||
| 1393 | WHERE scenario = '{scenario}' |
||
| 1394 | """ |
||
| 1395 | |||
| 1396 | home_batteries_buildings_df = db.select_dataframe( |
||
| 1397 | sql, index_col="index" |
||
| 1398 | ) |
||
| 1399 | |||
| 1400 | df = ( |
||
| 1401 | home_batteries_buildings_df[["bus_id", "p_nom", "capacity"]] |
||
| 1402 | .groupby("bus_id") |
||
| 1403 | .sum() |
||
| 1404 | ) |
||
| 1405 | |||
| 1406 | assert (home_batteries_df.round(6) == df.round(6)).all().all() |
||
| 1407 | |||
| 1408 | |||
| 1409 | def sanity_check_gas_buses(scn): |
||
| 1410 | """Execute sanity checks for the gas buses in Germany |
||
| 1411 | |||
| 1412 | Returns print statements as sanity checks for the CH4, H2_grid and |
||
| 1413 | H2_saltcavern buses. |
||
| 1414 | |||
| 1415 | * For all of them, it is checked if they are not isolated. |
||
| 1416 | * For the grid buses, the deviation is calculated between the |
||
| 1417 | number of gas grid buses in the database and the original |
||
| 1418 | Scigrid_gas number of gas buses in Germany. |
||
| 1419 | |||
| 1420 | Parameters |
||
| 1421 | ---------- |
||
| 1422 | scn_name : str |
||
| 1423 | Name of the scenario |
||
| 1424 | |||
| 1425 | """ |
||
| 1426 | logger.info("BUSES") |
||
| 1427 | |||
| 1428 | # Are gas buses isolated? |
||
| 1429 | corresponding_carriers = { |
||
| 1430 | "eGon2035": { |
||
| 1431 | "CH4": "CH4", |
||
| 1432 | "H2_grid": "H2_feedin", |
||
| 1433 | "H2_saltcavern": "power_to_H2", |
||
| 1434 | }, |
||
| 1435 | # "eGon100RE": { |
||
| 1436 | # "CH4": "CH4", |
||
| 1437 | # "H2_grid": "H2_retrofit", |
||
| 1438 | # "H2_saltcavern": "H2_extension", |
||
| 1439 | # } |
||
| 1440 | } |
||
| 1441 | for key in corresponding_carriers[scn]: |
||
| 1442 | isolated_gas_buses = db.select_dataframe( |
||
| 1443 | f""" |
||
| 1444 | SELECT bus_id, carrier, country |
||
| 1445 | FROM grid.egon_etrago_bus |
||
| 1446 | WHERE scn_name = '{scn}' |
||
| 1447 | AND carrier = '{key}' |
||
| 1448 | AND country = 'DE' |
||
| 1449 | AND bus_id NOT IN |
||
| 1450 | (SELECT bus0 |
||
| 1451 | FROM grid.egon_etrago_link |
||
| 1452 | WHERE scn_name = '{scn}' |
||
| 1453 | AND carrier = '{corresponding_carriers[scn][key]}') |
||
| 1454 | AND bus_id NOT IN |
||
| 1455 | (SELECT bus1 |
||
| 1456 | FROM grid.egon_etrago_link |
||
| 1457 | WHERE scn_name = '{scn}' |
||
| 1458 | AND carrier = '{corresponding_carriers[scn][key]}') |
||
| 1459 | ; |
||
| 1460 | """, |
||
| 1461 | warning=False, |
||
| 1462 | ) |
||
| 1463 | if not isolated_gas_buses.empty: |
||
| 1464 | logger.info(f"Isolated {key} buses:") |
||
| 1465 | logger.info(isolated_gas_buses) |
||
| 1466 | |||
| 1467 | # Deviation of the gas grid buses number |
||
| 1468 | target_file = ( |
||
| 1469 | Path(".") / "datasets" / "gas_data" / "data" / "IGGIELGN_Nodes.csv" |
||
| 1470 | ) |
||
| 1471 | |||
| 1472 | Grid_buses_list = pd.read_csv( |
||
| 1473 | target_file, |
||
| 1474 | delimiter=";", |
||
| 1475 | decimal=".", |
||
| 1476 | usecols=["country_code"], |
||
| 1477 | ) |
||
| 1478 | |||
| 1479 | Grid_buses_list = Grid_buses_list[ |
||
| 1480 | Grid_buses_list["country_code"].str.match("DE") |
||
| 1481 | ] |
||
| 1482 | input_grid_buses = len(Grid_buses_list.index) |
||
| 1483 | |||
| 1484 | for carrier in ["CH4", "H2_grid"]: |
||
| 1485 | output_grid_buses_df = db.select_dataframe( |
||
| 1486 | f""" |
||
| 1487 | SELECT bus_id |
||
| 1488 | FROM grid.egon_etrago_bus |
||
| 1489 | WHERE scn_name = '{scn}' |
||
| 1490 | AND country = 'DE' |
||
| 1491 | AND carrier = '{carrier}'; |
||
| 1492 | """, |
||
| 1493 | warning=False, |
||
| 1494 | ) |
||
| 1495 | output_grid_buses = len(output_grid_buses_df.index) |
||
| 1496 | |||
| 1497 | e_grid_buses = ( |
||
| 1498 | round( |
||
| 1499 | (output_grid_buses - input_grid_buses) / input_grid_buses, |
||
| 1500 | 2, |
||
| 1501 | ) |
||
| 1502 | * 100 |
||
| 1503 | ) |
||
| 1504 | logger.info(f"Deviation {carrier} buses: {e_grid_buses} %") |
||
| 1505 | |||
| 1506 | |||
| 1507 | def sanity_check_CH4_stores(scn): |
||
| 1508 | """Execute sanity checks for the CH4 stores in Germany |
||
| 1509 | |||
| 1510 | Returns print statements as sanity checks for the CH4 stores |
||
| 1511 | capacity in Germany. The deviation is calculated between: |
||
| 1512 | |||
| 1513 | * the sum of the capacities of the stores with carrier 'CH4' |
||
| 1514 | in the database (for one scenario) and |
||
| 1515 | * the sum of: |
||
| 1516 | |||
| 1517 | * the capacity the gas grid allocated to CH4 (total capacity |
||
| 1518 | in eGon2035 and capacity reduced the share of the grid |
||
| 1519 | allocated to H2 in eGon100RE) |
||
| 1520 | * the total capacity of the CH4 stores in Germany (source: GIE) |
||
| 1521 | |||
| 1522 | Parameters |
||
| 1523 | ---------- |
||
| 1524 | scn_name : str |
||
| 1525 | Name of the scenario |
||
| 1526 | |||
| 1527 | """ |
||
| 1528 | output_CH4_stores = db.select_dataframe( |
||
| 1529 | f"""SELECT SUM(e_nom::numeric) as e_nom_germany |
||
| 1530 | FROM grid.egon_etrago_store |
||
| 1531 | WHERE scn_name = '{scn}' |
||
| 1532 | AND carrier = 'CH4' |
||
| 1533 | AND bus IN |
||
| 1534 | (SELECT bus_id |
||
| 1535 | FROM grid.egon_etrago_bus |
||
| 1536 | WHERE scn_name = '{scn}' |
||
| 1537 | AND country = 'DE' |
||
| 1538 | AND carrier = 'CH4'); |
||
| 1539 | """, |
||
| 1540 | warning=False, |
||
| 1541 | )["e_nom_germany"].values[0] |
||
| 1542 | |||
| 1543 | if scn == "eGon2035": |
||
| 1544 | grid_cap = 130000 |
||
| 1545 | elif scn == "eGon100RE": |
||
| 1546 | grid_cap = 13000 * ( |
||
| 1547 | 1 |
||
| 1548 | - get_sector_parameters("gas", "eGon100RE")[ |
||
| 1549 | "retrofitted_CH4pipeline-to-H2pipeline_share" |
||
| 1550 | ] |
||
| 1551 | ) |
||
| 1552 | |||
| 1553 | stores_cap_D = 266424202 # MWh GIE https://www.gie.eu/transparency/databases/storage-database/ |
||
| 1554 | |||
| 1555 | input_CH4_stores = stores_cap_D + grid_cap |
||
| 1556 | |||
| 1557 | e_CH4_stores = ( |
||
| 1558 | round( |
||
| 1559 | (output_CH4_stores - input_CH4_stores) / input_CH4_stores, |
||
| 1560 | 2, |
||
| 1561 | ) |
||
| 1562 | * 100 |
||
| 1563 | ) |
||
| 1564 | logger.info(f"Deviation CH4 stores: {e_CH4_stores} %") |
||
| 1565 | |||
| 1566 | |||
| 1567 | def sanity_check_H2_saltcavern_stores(scn): |
||
| 1568 | """Execute sanity checks for the H2 saltcavern stores in Germany |
||
| 1569 | |||
| 1570 | Returns print as sanity checks for the H2 saltcavern potential |
||
| 1571 | storage capacity in Germany. The deviation is calculated between: |
||
| 1572 | |||
| 1573 | * the sum of the of the H2 saltcavern potential storage capacity |
||
| 1574 | (e_nom_max) in the database and |
||
| 1575 | * the sum of the H2 saltcavern potential storage capacity |
||
| 1576 | assumed to be the ratio of the areas of 500 m radius around |
||
| 1577 | substations in each german federal state and the estimated |
||
| 1578 | total hydrogen storage potential of the corresponding federal |
||
| 1579 | state (data from InSpEE-DS report). |
||
| 1580 | |||
| 1581 | This test works also in test mode. |
||
| 1582 | |||
| 1583 | Parameters |
||
| 1584 | ---------- |
||
| 1585 | scn_name : str |
||
| 1586 | Name of the scenario |
||
| 1587 | |||
| 1588 | """ |
||
| 1589 | output_H2_stores = db.select_dataframe( |
||
| 1590 | f"""SELECT SUM(e_nom_max::numeric) as e_nom_max_germany |
||
| 1591 | FROM grid.egon_etrago_store |
||
| 1592 | WHERE scn_name = '{scn}' |
||
| 1593 | AND carrier = 'H2_underground' |
||
| 1594 | AND bus IN |
||
| 1595 | (SELECT bus_id |
||
| 1596 | FROM grid.egon_etrago_bus |
||
| 1597 | WHERE scn_name = '{scn}' |
||
| 1598 | AND country = 'DE' |
||
| 1599 | AND carrier = 'H2_saltcavern'); |
||
| 1600 | """, |
||
| 1601 | warning=False, |
||
| 1602 | )["e_nom_max_germany"].values[0] |
||
| 1603 | |||
| 1604 | storage_potentials = calculate_and_map_saltcavern_storage_potential() |
||
| 1605 | storage_potentials["storage_potential"] = ( |
||
| 1606 | storage_potentials["area_fraction"] * storage_potentials["potential"] |
||
| 1607 | ) |
||
| 1608 | input_H2_stores = sum(storage_potentials["storage_potential"].to_list()) |
||
| 1609 | |||
| 1610 | e_H2_stores = ( |
||
| 1611 | round( |
||
| 1612 | (output_H2_stores - input_H2_stores) / input_H2_stores, |
||
| 1613 | 2, |
||
| 1614 | ) |
||
| 1615 | * 100 |
||
| 1616 | ) |
||
| 1617 | logger.info(f"Deviation H2 saltcavern stores: {e_H2_stores} %") |
||
| 1618 | |||
| 1619 | |||
| 1620 | def sanity_check_gas_one_port(scn): |
||
| 1621 | """Check connections of gas one-port components |
||
| 1622 | |||
| 1623 | Verify that gas one-port component (loads, generators, stores) are |
||
| 1624 | all connected to a bus (of the right carrier) present in the data |
||
| 1625 | base. Return print statements if this is not the case. |
||
| 1626 | These sanity checks are not specific to Germany, they also include |
||
| 1627 | the neighbouring countries. |
||
| 1628 | |||
| 1629 | Parameters |
||
| 1630 | ---------- |
||
| 1631 | scn_name : str |
||
| 1632 | Name of the scenario |
||
| 1633 | |||
| 1634 | """ |
||
| 1635 | if scn == "eGon2035": |
||
| 1636 | # Loads |
||
| 1637 | ## CH4_for_industry Germany |
||
| 1638 | isolated_one_port_c = db.select_dataframe( |
||
| 1639 | f""" |
||
| 1640 | SELECT load_id, bus, carrier, scn_name |
||
| 1641 | FROM grid.egon_etrago_load |
||
| 1642 | WHERE scn_name = '{scn}' |
||
| 1643 | AND carrier = 'CH4_for_industry' |
||
| 1644 | AND bus NOT IN |
||
| 1645 | (SELECT bus_id |
||
| 1646 | FROM grid.egon_etrago_bus |
||
| 1647 | WHERE scn_name = '{scn}' |
||
| 1648 | AND country = 'DE' |
||
| 1649 | AND carrier = 'CH4') |
||
| 1650 | ; |
||
| 1651 | """, |
||
| 1652 | warning=False, |
||
| 1653 | ) |
||
| 1654 | if not isolated_one_port_c.empty: |
||
| 1655 | logger.info("Isolated loads:") |
||
| 1656 | logger.info(isolated_one_port_c) |
||
| 1657 | |||
| 1658 | ## CH4_for_industry abroad |
||
| 1659 | isolated_one_port_c = db.select_dataframe( |
||
| 1660 | f""" |
||
| 1661 | SELECT load_id, bus, carrier, scn_name |
||
| 1662 | FROM grid.egon_etrago_load |
||
| 1663 | WHERE scn_name = '{scn}' |
||
| 1664 | AND carrier = 'CH4' |
||
| 1665 | AND bus NOT IN |
||
| 1666 | (SELECT bus_id |
||
| 1667 | FROM grid.egon_etrago_bus |
||
| 1668 | WHERE scn_name = '{scn}' |
||
| 1669 | AND country != 'DE' |
||
| 1670 | AND carrier = 'CH4') |
||
| 1671 | ; |
||
| 1672 | """, |
||
| 1673 | warning=False, |
||
| 1674 | ) |
||
| 1675 | if not isolated_one_port_c.empty: |
||
| 1676 | logger.info("Isolated loads:") |
||
| 1677 | logger.info(isolated_one_port_c) |
||
| 1678 | |||
| 1679 | ## H2_for_industry |
||
| 1680 | isolated_one_port_c = db.select_dataframe( |
||
| 1681 | f""" |
||
| 1682 | SELECT load_id, bus, carrier, scn_name |
||
| 1683 | FROM grid.egon_etrago_load |
||
| 1684 | WHERE scn_name = '{scn}' |
||
| 1685 | AND carrier = 'H2_for_industry' |
||
| 1686 | AND (bus NOT IN |
||
| 1687 | (SELECT bus_id |
||
| 1688 | FROM grid.egon_etrago_bus |
||
| 1689 | WHERE scn_name = '{scn}' |
||
| 1690 | AND country = 'DE' |
||
| 1691 | AND carrier = 'H2_grid') |
||
| 1692 | AND bus NOT IN |
||
| 1693 | (SELECT bus_id |
||
| 1694 | FROM grid.egon_etrago_bus |
||
| 1695 | WHERE scn_name = '{scn}' |
||
| 1696 | AND country != 'DE' |
||
| 1697 | AND carrier = 'AC')) |
||
| 1698 | ; |
||
| 1699 | """, |
||
| 1700 | warning=False, |
||
| 1701 | ) |
||
| 1702 | if not isolated_one_port_c.empty: |
||
| 1703 | logger.info("Isolated loads:") |
||
| 1704 | logger.info(isolated_one_port_c) |
||
| 1705 | |||
| 1706 | # Genrators |
||
| 1707 | isolated_one_port_c = db.select_dataframe( |
||
| 1708 | f""" |
||
| 1709 | SELECT generator_id, bus, carrier, scn_name |
||
| 1710 | FROM grid.egon_etrago_generator |
||
| 1711 | WHERE scn_name = '{scn}' |
||
| 1712 | AND carrier = 'CH4' |
||
| 1713 | AND bus NOT IN |
||
| 1714 | (SELECT bus_id |
||
| 1715 | FROM grid.egon_etrago_bus |
||
| 1716 | WHERE scn_name = '{scn}' |
||
| 1717 | AND carrier = 'CH4'); |
||
| 1718 | ; |
||
| 1719 | """, |
||
| 1720 | warning=False, |
||
| 1721 | ) |
||
| 1722 | if not isolated_one_port_c.empty: |
||
| 1723 | logger.info("Isolated generators:") |
||
| 1724 | logger.info(isolated_one_port_c) |
||
| 1725 | |||
| 1726 | # Stores |
||
| 1727 | ## CH4 and H2_underground |
||
| 1728 | corresponding_carriers = { |
||
| 1729 | "CH4": "CH4", |
||
| 1730 | "H2_saltcavern": "H2_underground", |
||
| 1731 | } |
||
| 1732 | for key in corresponding_carriers: |
||
| 1733 | isolated_one_port_c = db.select_dataframe( |
||
| 1734 | f""" |
||
| 1735 | SELECT store_id, bus, carrier, scn_name |
||
| 1736 | FROM grid.egon_etrago_store |
||
| 1737 | WHERE scn_name = '{scn}' |
||
| 1738 | AND carrier = '{corresponding_carriers[key]}' |
||
| 1739 | AND bus NOT IN |
||
| 1740 | (SELECT bus_id |
||
| 1741 | FROM grid.egon_etrago_bus |
||
| 1742 | WHERE scn_name = '{scn}' |
||
| 1743 | AND carrier = '{key}') |
||
| 1744 | ; |
||
| 1745 | """, |
||
| 1746 | warning=False, |
||
| 1747 | ) |
||
| 1748 | if not isolated_one_port_c.empty: |
||
| 1749 | logger.info("Isolated stores:") |
||
| 1750 | logger.info(isolated_one_port_c) |
||
| 1751 | |||
| 1752 | ## H2_overground |
||
| 1753 | isolated_one_port_c = db.select_dataframe( |
||
| 1754 | f""" |
||
| 1755 | SELECT store_id, bus, carrier, scn_name |
||
| 1756 | FROM grid.egon_etrago_store |
||
| 1757 | WHERE scn_name = '{scn}' |
||
| 1758 | AND carrier = 'H2_overground' |
||
| 1759 | AND bus NOT IN |
||
| 1760 | (SELECT bus_id |
||
| 1761 | FROM grid.egon_etrago_bus |
||
| 1762 | WHERE scn_name = '{scn}' |
||
| 1763 | AND country = 'DE' |
||
| 1764 | AND carrier = 'H2_saltcavern') |
||
| 1765 | AND bus NOT IN |
||
| 1766 | (SELECT bus_id |
||
| 1767 | FROM grid.egon_etrago_bus |
||
| 1768 | WHERE scn_name = '{scn}' |
||
| 1769 | AND country = 'DE' |
||
| 1770 | AND carrier = 'H2_grid') |
||
| 1771 | ; |
||
| 1772 | """, |
||
| 1773 | warning=False, |
||
| 1774 | ) |
||
| 1775 | if not isolated_one_port_c.empty: |
||
| 1776 | logger.info("Isolated stores:") |
||
| 1777 | logger.info(isolated_one_port_c) |
||
| 1778 | |||
| 1779 | # elif scn == "eGon2035": |
||
| 1780 | |||
| 1781 | |||
| 1782 | def sanity_check_CH4_grid(scn): |
||
| 1783 | """Execute sanity checks for the gas grid capacity in Germany |
||
| 1784 | |||
| 1785 | Returns print statements as sanity checks for the CH4 links |
||
| 1786 | (pipelines) in Germany. The deviation is calculated between |
||
| 1787 | the sum of the power (p_nom) of all the CH4 pipelines in Germany |
||
| 1788 | for one scenario in the database and the sum of the powers of the |
||
| 1789 | imported pipelines. |
||
| 1790 | In eGon100RE, the sum is reduced by the share of the grid that is |
||
| 1791 | allocated to hydrogen (share calculated by PyPSA-eur-sec). |
||
| 1792 | This test works also in test mode. |
||
| 1793 | |||
| 1794 | Parameters |
||
| 1795 | ---------- |
||
| 1796 | scn_name : str |
||
| 1797 | Name of the scenario |
||
| 1798 | |||
| 1799 | Returns |
||
| 1800 | ------- |
||
| 1801 | scn_name : float |
||
| 1802 | Sum of the power (p_nom) of all the pipelines in Germany |
||
| 1803 | |||
| 1804 | """ |
||
| 1805 | grid_carrier = "CH4" |
||
| 1806 | output_gas_grid = db.select_dataframe( |
||
| 1807 | f"""SELECT SUM(p_nom::numeric) as p_nom_germany |
||
| 1808 | FROM grid.egon_etrago_link |
||
| 1809 | WHERE scn_name = '{scn}' |
||
| 1810 | AND carrier = '{grid_carrier}' |
||
| 1811 | AND bus0 IN |
||
| 1812 | (SELECT bus_id |
||
| 1813 | FROM grid.egon_etrago_bus |
||
| 1814 | WHERE scn_name = '{scn}' |
||
| 1815 | AND country = 'DE' |
||
| 1816 | AND carrier = '{grid_carrier}') |
||
| 1817 | AND bus1 IN |
||
| 1818 | (SELECT bus_id |
||
| 1819 | FROM grid.egon_etrago_bus |
||
| 1820 | WHERE scn_name = '{scn}' |
||
| 1821 | AND country = 'DE' |
||
| 1822 | AND carrier = '{grid_carrier}') |
||
| 1823 | ; |
||
| 1824 | """, |
||
| 1825 | warning=False, |
||
| 1826 | )["p_nom_germany"].values[0] |
||
| 1827 | |||
| 1828 | gas_nodes_list = define_gas_nodes_list() |
||
| 1829 | abroad_gas_nodes_list = define_gas_buses_abroad() |
||
| 1830 | gas_grid = define_gas_pipeline_list(gas_nodes_list, abroad_gas_nodes_list) |
||
| 1831 | gas_grid_germany = gas_grid[ |
||
| 1832 | (gas_grid["country_0"] == "DE") & (gas_grid["country_1"] == "DE") |
||
| 1833 | ] |
||
| 1834 | p_nom_total = sum(gas_grid_germany["p_nom"].to_list()) |
||
| 1835 | |||
| 1836 | if scn == "eGon2035": |
||
| 1837 | input_gas_grid = p_nom_total |
||
| 1838 | if scn == "eGon100RE": |
||
| 1839 | input_gas_grid = p_nom_total * ( |
||
| 1840 | 1 |
||
| 1841 | - get_sector_parameters("gas", "eGon100RE")[ |
||
| 1842 | "retrofitted_CH4pipeline-to-H2pipeline_share" |
||
| 1843 | ] |
||
| 1844 | ) |
||
| 1845 | |||
| 1846 | e_gas_grid = ( |
||
| 1847 | round( |
||
| 1848 | (output_gas_grid - input_gas_grid) / input_gas_grid, |
||
| 1849 | 2, |
||
| 1850 | ) |
||
| 1851 | * 100 |
||
| 1852 | ) |
||
| 1853 | logger.info(f"Deviation of the capacity of the CH4 grid: {e_gas_grid} %") |
||
| 1854 | |||
| 1855 | return p_nom_total |
||
| 1856 | |||
| 1857 | |||
| 1858 | def sanity_check_gas_links(scn): |
||
| 1859 | """Check connections of gas links |
||
| 1860 | |||
| 1861 | Verify that gas links are all connected to buses present in the data |
||
| 1862 | base. Return print statements if this is not the case. |
||
| 1863 | This sanity check is not specific to Germany, it also includes |
||
| 1864 | the neighbouring countries. |
||
| 1865 | |||
| 1866 | Parameters |
||
| 1867 | ---------- |
||
| 1868 | scn_name : str |
||
| 1869 | Name of the scenario |
||
| 1870 | |||
| 1871 | """ |
||
| 1872 | carriers = [ |
||
| 1873 | "CH4", |
||
| 1874 | "H2_feedin", |
||
| 1875 | "H2_to_CH4", |
||
| 1876 | "CH4_to_H2", |
||
| 1877 | "H2_to_power", |
||
| 1878 | "power_to_H2", |
||
| 1879 | "OCGT", |
||
| 1880 | "central_gas_boiler", |
||
| 1881 | "central_gas_CHP", |
||
| 1882 | "central_gas_CHP_heat", |
||
| 1883 | "industrial_gas_CHP", |
||
| 1884 | ] |
||
| 1885 | for c in carriers: |
||
| 1886 | link_with_missing_bus = db.select_dataframe( |
||
| 1887 | f""" |
||
| 1888 | SELECT link_id, bus0, bus1, carrier, scn_name |
||
| 1889 | FROM grid.egon_etrago_link |
||
| 1890 | WHERE scn_name = '{scn}' |
||
| 1891 | AND carrier = '{c}' |
||
| 1892 | AND (bus0 NOT IN |
||
| 1893 | (SELECT bus_id |
||
| 1894 | FROM grid.egon_etrago_bus |
||
| 1895 | WHERE scn_name = '{scn}') |
||
| 1896 | OR bus1 NOT IN |
||
| 1897 | (SELECT bus_id |
||
| 1898 | FROM grid.egon_etrago_bus |
||
| 1899 | WHERE scn_name = '{scn}')) |
||
| 1900 | ; |
||
| 1901 | """, |
||
| 1902 | warning=False, |
||
| 1903 | ) |
||
| 1904 | if not link_with_missing_bus.empty: |
||
| 1905 | logger.info("Links with missing bus:") |
||
| 1906 | logger.info(link_with_missing_bus) |
||
| 1907 | |||
| 1908 | |||
| 1909 | def etrago_eGon2035_gas_DE(): |
||
| 1910 | """Execute basic sanity checks for the gas sector in eGon2035 |
||
| 1911 | |||
| 1912 | Returns print statements as sanity checks for the gas sector in |
||
| 1913 | the eGon2035 scenario for the following components in Germany: |
||
| 1914 | |||
| 1915 | * Buses: with the function :py:func:`sanity_check_gas_buses` |
||
| 1916 | * Loads: for the carriers 'CH4_for_industry' and 'H2_for_industry' |
||
| 1917 | the deviation is calculated between the sum of the loads in the |
||
| 1918 | database and the sum the loads in the sources document |
||
| 1919 | (opendata.ffe database) |
||
| 1920 | * Generators: the deviation is calculated between the sums of the |
||
| 1921 | nominal powers of the gas generators in the database and of |
||
| 1922 | the ones in the sources document (Biogaspartner Einspeiseatlas |
||
| 1923 | Deutschland from the dena and Productions from the SciGRID_gas |
||
| 1924 | data) |
||
| 1925 | * Stores: deviations for stores with following carriers are |
||
| 1926 | calculated: |
||
| 1927 | |||
| 1928 | * 'CH4': with the function :py:func:`sanity_check_CH4_stores` |
||
| 1929 | * 'H2_underground': with the function :py:func:`sanity_check_H2_saltcavern_stores` |
||
| 1930 | * One-port components (loads, generators, stores): verification |
||
| 1931 | that they are all connected to a bus present in the data base |
||
| 1932 | with the function :py:func:`sanity_check_gas_one_port` |
||
| 1933 | * Links: verification: |
||
| 1934 | |||
| 1935 | * that the gas links are all connected to buses present in |
||
| 1936 | the data base with the function :py:func:`sanity_check_gas_links` |
||
| 1937 | * of the capacity of the gas grid with the function |
||
| 1938 | :py:func:`sanity_check_CH4_grid` |
||
| 1939 | |||
| 1940 | """ |
||
| 1941 | scn = "eGon2035" |
||
| 1942 | |||
| 1943 | if TESTMODE_OFF: |
||
| 1944 | logger.info(f"Gas sanity checks for scenario {scn}") |
||
| 1945 | |||
| 1946 | # Buses |
||
| 1947 | sanity_check_gas_buses(scn) |
||
| 1948 | |||
| 1949 | # Loads |
||
| 1950 | logger.info("LOADS") |
||
| 1951 | |||
| 1952 | path = Path(".") / "datasets" / "gas_data" / "demand" |
||
| 1953 | corr_file = path / "region_corr.json" |
||
| 1954 | df_corr = pd.read_json(corr_file) |
||
| 1955 | df_corr = df_corr.loc[:, ["id_region", "name_short"]] |
||
| 1956 | df_corr.set_index("id_region", inplace=True) |
||
| 1957 | |||
| 1958 | for carrier in ["CH4_for_industry", "H2_for_industry"]: |
||
| 1959 | |||
| 1960 | output_gas_demand = db.select_dataframe( |
||
| 1961 | f"""SELECT (SUM( |
||
| 1962 | (SELECT SUM(p) |
||
| 1963 | FROM UNNEST(b.p_set) p))/1000000)::numeric as load_twh |
||
| 1964 | FROM grid.egon_etrago_load a |
||
| 1965 | JOIN grid.egon_etrago_load_timeseries b |
||
| 1966 | ON (a.load_id = b.load_id) |
||
| 1967 | JOIN grid.egon_etrago_bus c |
||
| 1968 | ON (a.bus=c.bus_id) |
||
| 1969 | AND b.scn_name = '{scn}' |
||
| 1970 | AND a.scn_name = '{scn}' |
||
| 1971 | AND c.scn_name = '{scn}' |
||
| 1972 | AND c.country = 'DE' |
||
| 1973 | AND a.carrier = '{carrier}'; |
||
| 1974 | """, |
||
| 1975 | warning=False, |
||
| 1976 | )["load_twh"].values[0] |
||
| 1977 | |||
| 1978 | input_gas_demand = pd.read_json( |
||
| 1979 | path / (carrier + "_eGon2035.json") |
||
| 1980 | ) |
||
| 1981 | input_gas_demand = input_gas_demand.loc[:, ["id_region", "value"]] |
||
| 1982 | input_gas_demand.set_index("id_region", inplace=True) |
||
| 1983 | input_gas_demand = pd.concat( |
||
| 1984 | [input_gas_demand, df_corr], axis=1, join="inner" |
||
| 1985 | ) |
||
| 1986 | input_gas_demand["NUTS0"] = (input_gas_demand["name_short"].str)[ |
||
| 1987 | 0:2 |
||
| 1988 | ] |
||
| 1989 | input_gas_demand = input_gas_demand[ |
||
| 1990 | input_gas_demand["NUTS0"].str.match("DE") |
||
| 1991 | ] |
||
| 1992 | input_gas_demand = sum(input_gas_demand.value.to_list()) / 1000000 |
||
| 1993 | |||
| 1994 | e_demand = ( |
||
| 1995 | round( |
||
| 1996 | (output_gas_demand - input_gas_demand) / input_gas_demand, |
||
| 1997 | 2, |
||
| 1998 | ) |
||
| 1999 | * 100 |
||
| 2000 | ) |
||
| 2001 | logger.info(f"Deviation {carrier}: {e_demand} %") |
||
| 2002 | |||
| 2003 | # Generators |
||
| 2004 | logger.info("GENERATORS") |
||
| 2005 | carrier_generator = "CH4" |
||
| 2006 | |||
| 2007 | output_gas_generation = db.select_dataframe( |
||
| 2008 | f"""SELECT SUM(p_nom::numeric) as p_nom_germany |
||
| 2009 | FROM grid.egon_etrago_generator |
||
| 2010 | WHERE scn_name = '{scn}' |
||
| 2011 | AND carrier = '{carrier_generator}' |
||
| 2012 | AND bus IN |
||
| 2013 | (SELECT bus_id |
||
| 2014 | FROM grid.egon_etrago_bus |
||
| 2015 | WHERE scn_name = '{scn}' |
||
| 2016 | AND country = 'DE' |
||
| 2017 | AND carrier = '{carrier_generator}'); |
||
| 2018 | """, |
||
| 2019 | warning=False, |
||
| 2020 | )["p_nom_germany"].values[0] |
||
| 2021 | |||
| 2022 | target_file = ( |
||
| 2023 | Path(".") |
||
| 2024 | / "datasets" |
||
| 2025 | / "gas_data" |
||
| 2026 | / "data" |
||
| 2027 | / "IGGIELGN_Productions.csv" |
||
| 2028 | ) |
||
| 2029 | |||
| 2030 | NG_generators_list = pd.read_csv( |
||
| 2031 | target_file, |
||
| 2032 | delimiter=";", |
||
| 2033 | decimal=".", |
||
| 2034 | usecols=["country_code", "param"], |
||
| 2035 | ) |
||
| 2036 | |||
| 2037 | NG_generators_list = NG_generators_list[ |
||
| 2038 | NG_generators_list["country_code"].str.match("DE") |
||
| 2039 | ] |
||
| 2040 | |||
| 2041 | p_NG = 0 |
||
| 2042 | for index, row in NG_generators_list.iterrows(): |
||
| 2043 | param = ast.literal_eval(row["param"]) |
||
| 2044 | p_NG = p_NG + param["max_supply_M_m3_per_d"] |
||
| 2045 | conversion_factor = 437.5 # MCM/day to MWh/h |
||
| 2046 | p_NG = p_NG * conversion_factor |
||
| 2047 | |||
| 2048 | basename = "Biogaspartner_Einspeiseatlas_Deutschland_2021.xlsx" |
||
| 2049 | target_file = ( |
||
| 2050 | Path(".") / "data_bundle_egon_data" / "gas_data" / basename |
||
| 2051 | ) |
||
| 2052 | |||
| 2053 | conversion_factor_b = 0.01083 # m^3/h to MWh/h |
||
| 2054 | p_biogas = ( |
||
| 2055 | pd.read_excel( |
||
| 2056 | target_file, |
||
| 2057 | usecols=["Einspeisung Biomethan [(N*m^3)/h)]"], |
||
| 2058 | )["Einspeisung Biomethan [(N*m^3)/h)]"].sum() |
||
| 2059 | * conversion_factor_b |
||
| 2060 | ) |
||
| 2061 | |||
| 2062 | input_gas_generation = p_NG + p_biogas |
||
| 2063 | e_generation = ( |
||
| 2064 | round( |
||
| 2065 | (output_gas_generation - input_gas_generation) |
||
| 2066 | / input_gas_generation, |
||
| 2067 | 2, |
||
| 2068 | ) |
||
| 2069 | * 100 |
||
| 2070 | ) |
||
| 2071 | logger.info( |
||
| 2072 | f"Deviation {carrier_generator} generation: {e_generation} %" |
||
| 2073 | ) |
||
| 2074 | |||
| 2075 | # Stores |
||
| 2076 | logger.info("STORES") |
||
| 2077 | sanity_check_CH4_stores(scn) |
||
| 2078 | sanity_check_H2_saltcavern_stores(scn) |
||
| 2079 | |||
| 2080 | # One-port components |
||
| 2081 | sanity_check_gas_one_port(scn) |
||
| 2082 | |||
| 2083 | # Links |
||
| 2084 | logger.info("LINKS") |
||
| 2085 | sanity_check_CH4_grid(scn) |
||
| 2086 | sanity_check_gas_links(scn) |
||
| 2087 | |||
| 2088 | else: |
||
| 2089 | print("Testmode is on, skipping sanity check.") |
||
| 2090 | |||
| 2091 | |||
| 2092 | def etrago_eGon2035_gas_abroad(): |
||
| 2093 | """Execute basic sanity checks for the gas sector in eGon2035 abroad |
||
| 2094 | |||
| 2095 | Returns print statements as sanity checks for the gas sector in |
||
| 2096 | the eGon2035 scenario for the following components in Germany: |
||
| 2097 | |||
| 2098 | * Buses |
||
| 2099 | * Loads: for the carriers 'CH4' and 'H2_for_industry' |
||
| 2100 | the deviation is calculated between the sum of the loads in the |
||
| 2101 | database and the sum in the sources document (TYNDP) |
||
| 2102 | * Generators: the deviation is calculated between the sums of the |
||
| 2103 | nominal powers of the methane generators abroad in the database |
||
| 2104 | and of the ones in the sources document (TYNDP) |
||
| 2105 | * Stores: the deviation for methane stores abroad is calculated |
||
| 2106 | between the sum of the capacities in the data base and the one |
||
| 2107 | of the source document (SciGRID_gas data) |
||
| 2108 | * Links: verification of the capacity of the crossbordering gas |
||
| 2109 | grid pipelines. |
||
| 2110 | |||
| 2111 | """ |
||
| 2112 | scn = "eGon2035" |
||
| 2113 | |||
| 2114 | if TESTMODE_OFF: |
||
| 2115 | logger.info(f"Gas sanity checks abroad for scenario {scn}") |
||
| 2116 | |||
| 2117 | # Buses |
||
| 2118 | logger.info("BUSES") |
||
| 2119 | |||
| 2120 | # Are gas buses isolated? |
||
| 2121 | corresponding_carriers = { |
||
| 2122 | "eGon2035": { |
||
| 2123 | "CH4": "CH4", |
||
| 2124 | }, |
||
| 2125 | # "eGon100RE": { |
||
| 2126 | # "CH4": "CH4", |
||
| 2127 | # "H2_grid": "H2_retrofit", |
||
| 2128 | # } |
||
| 2129 | } |
||
| 2130 | for key in corresponding_carriers[scn]: |
||
| 2131 | isolated_gas_buses_abroad = db.select_dataframe( |
||
| 2132 | f""" |
||
| 2133 | SELECT bus_id, carrier, country |
||
| 2134 | FROM grid.egon_etrago_bus |
||
| 2135 | WHERE scn_name = '{scn}' |
||
| 2136 | AND carrier = '{key}' |
||
| 2137 | AND country != 'DE' |
||
| 2138 | AND bus_id NOT IN |
||
| 2139 | (SELECT bus0 |
||
| 2140 | FROM grid.egon_etrago_link |
||
| 2141 | WHERE scn_name = '{scn}' |
||
| 2142 | AND carrier = '{corresponding_carriers[scn][key]}') |
||
| 2143 | AND bus_id NOT IN |
||
| 2144 | (SELECT bus1 |
||
| 2145 | FROM grid.egon_etrago_link |
||
| 2146 | WHERE scn_name = '{scn}' |
||
| 2147 | AND carrier = '{corresponding_carriers[scn][key]}') |
||
| 2148 | ; |
||
| 2149 | """, |
||
| 2150 | warning=False, |
||
| 2151 | ) |
||
| 2152 | if not isolated_gas_buses_abroad.empty: |
||
| 2153 | logger.info(f"Isolated {key} buses abroad:") |
||
| 2154 | logger.info(isolated_gas_buses_abroad) |
||
| 2155 | |||
| 2156 | # Loads |
||
| 2157 | logger.info("LOADS") |
||
| 2158 | |||
| 2159 | ( |
||
| 2160 | Norway_global_demand_1y, |
||
| 2161 | normalized_ch4_demandTS, |
||
| 2162 | ) = import_ch4_demandTS() |
||
| 2163 | input_CH4_demand_abroad = calc_global_ch4_demand( |
||
| 2164 | Norway_global_demand_1y |
||
| 2165 | ) |
||
| 2166 | input_CH4_demand = input_CH4_demand_abroad["GlobD_2035"].sum() |
||
| 2167 | |||
| 2168 | ## CH4 |
||
| 2169 | output_CH4_demand = db.select_dataframe( |
||
| 2170 | f"""SELECT (SUM( |
||
| 2171 | (SELECT SUM(p) |
||
| 2172 | FROM UNNEST(b.p_set) p)))::numeric as load_mwh |
||
| 2173 | FROM grid.egon_etrago_load a |
||
| 2174 | JOIN grid.egon_etrago_load_timeseries b |
||
| 2175 | ON (a.load_id = b.load_id) |
||
| 2176 | JOIN grid.egon_etrago_bus c |
||
| 2177 | ON (a.bus=c.bus_id) |
||
| 2178 | AND b.scn_name = '{scn}' |
||
| 2179 | AND a.scn_name = '{scn}' |
||
| 2180 | AND c.scn_name = '{scn}' |
||
| 2181 | AND c.country != 'DE' |
||
| 2182 | AND a.carrier = 'CH4'; |
||
| 2183 | """, |
||
| 2184 | warning=False, |
||
| 2185 | )["load_mwh"].values[0] |
||
| 2186 | |||
| 2187 | e_demand_CH4 = ( |
||
| 2188 | round( |
||
| 2189 | (output_CH4_demand - input_CH4_demand) / input_CH4_demand, |
||
| 2190 | 2, |
||
| 2191 | ) |
||
| 2192 | * 100 |
||
| 2193 | ) |
||
| 2194 | logger.info(f"Deviation CH4 load: {e_demand_CH4} %") |
||
| 2195 | |||
| 2196 | ## H2_for_industry |
||
| 2197 | input_power_to_h2_demand_abroad = calc_global_power_to_h2_demand() |
||
| 2198 | input_H2_demand = input_power_to_h2_demand_abroad["GlobD_2035"].sum() |
||
| 2199 | |||
| 2200 | output_H2_demand = db.select_dataframe( |
||
| 2201 | f"""SELECT SUM(p_set::numeric) as p_set_abroad |
||
| 2202 | FROM grid.egon_etrago_load |
||
| 2203 | WHERE scn_name = '{scn}' |
||
| 2204 | AND carrier = 'H2_for_industry' |
||
| 2205 | AND bus IN |
||
| 2206 | (SELECT bus_id |
||
| 2207 | FROM grid.egon_etrago_bus |
||
| 2208 | WHERE scn_name = '{scn}' |
||
| 2209 | AND country != 'DE' |
||
| 2210 | AND carrier = 'AC'); |
||
| 2211 | """, |
||
| 2212 | warning=False, |
||
| 2213 | )["p_set_abroad"].values[0] |
||
| 2214 | |||
| 2215 | e_demand_H2 = ( |
||
| 2216 | round( |
||
| 2217 | (output_H2_demand - input_H2_demand) / input_H2_demand, |
||
| 2218 | 2, |
||
| 2219 | ) |
||
| 2220 | * 100 |
||
| 2221 | ) |
||
| 2222 | logger.info(f"Deviation H2_for_industry load: {e_demand_H2} %") |
||
| 2223 | |||
| 2224 | # Generators |
||
| 2225 | logger.info("GENERATORS ") |
||
| 2226 | CH4_gen = calc_capacities() |
||
| 2227 | input_CH4_gen = CH4_gen["cap_2035"].sum() |
||
| 2228 | |||
| 2229 | output_CH4_gen = db.select_dataframe( |
||
| 2230 | f"""SELECT SUM(p_nom::numeric) as p_nom_abroad |
||
| 2231 | FROM grid.egon_etrago_generator |
||
| 2232 | WHERE scn_name = '{scn}' |
||
| 2233 | AND carrier = 'CH4' |
||
| 2234 | AND bus IN |
||
| 2235 | (SELECT bus_id |
||
| 2236 | FROM grid.egon_etrago_bus |
||
| 2237 | WHERE scn_name = '{scn}' |
||
| 2238 | AND country != 'DE' |
||
| 2239 | AND carrier = 'CH4'); |
||
| 2240 | """, |
||
| 2241 | warning=False, |
||
| 2242 | )["p_nom_abroad"].values[0] |
||
| 2243 | |||
| 2244 | e_gen = ( |
||
| 2245 | round( |
||
| 2246 | (output_CH4_gen - input_CH4_gen) / input_CH4_gen, |
||
| 2247 | 2, |
||
| 2248 | ) |
||
| 2249 | * 100 |
||
| 2250 | ) |
||
| 2251 | logger.info(f"Deviation CH4 generators: {e_gen} %") |
||
| 2252 | |||
| 2253 | # Stores |
||
| 2254 | logger.info("STORES") |
||
| 2255 | ch4_input_capacities = calc_ch4_storage_capacities() |
||
| 2256 | input_CH4_stores = ch4_input_capacities["e_nom"].sum() |
||
| 2257 | |||
| 2258 | output_CH4_stores = db.select_dataframe( |
||
| 2259 | f"""SELECT SUM(e_nom::numeric) as e_nom_abroad |
||
| 2260 | FROM grid.egon_etrago_store |
||
| 2261 | WHERE scn_name = '{scn}' |
||
| 2262 | AND carrier = 'CH4' |
||
| 2263 | AND bus IN |
||
| 2264 | (SELECT bus_id |
||
| 2265 | FROM grid.egon_etrago_bus |
||
| 2266 | WHERE scn_name = '{scn}' |
||
| 2267 | AND country != 'DE' |
||
| 2268 | AND carrier = 'CH4'); |
||
| 2269 | """, |
||
| 2270 | warning=False, |
||
| 2271 | )["e_nom_abroad"].values[0] |
||
| 2272 | |||
| 2273 | e_stores = ( |
||
| 2274 | round( |
||
| 2275 | (output_CH4_stores - input_CH4_stores) / input_CH4_stores, |
||
| 2276 | 2, |
||
| 2277 | ) |
||
| 2278 | * 100 |
||
| 2279 | ) |
||
| 2280 | logger.info(f"Deviation CH4 stores: {e_stores} %") |
||
| 2281 | |||
| 2282 | # Links |
||
| 2283 | logger.info("LINKS") |
||
| 2284 | ch4_grid_input_capacities = calculate_ch4_grid_capacities() |
||
| 2285 | input_CH4_grid = ch4_grid_input_capacities["p_nom"].sum() |
||
| 2286 | |||
| 2287 | grid_carrier = "CH4" |
||
| 2288 | output_gas_grid = db.select_dataframe( |
||
| 2289 | f"""SELECT SUM(p_nom::numeric) as p_nom |
||
| 2290 | FROM grid.egon_etrago_link |
||
| 2291 | WHERE scn_name = '{scn}' |
||
| 2292 | AND carrier = '{grid_carrier}' |
||
| 2293 | AND (bus0 IN |
||
| 2294 | (SELECT bus_id |
||
| 2295 | FROM grid.egon_etrago_bus |
||
| 2296 | WHERE scn_name = '{scn}' |
||
| 2297 | AND country != 'DE' |
||
| 2298 | AND carrier = '{grid_carrier}') |
||
| 2299 | OR bus1 IN |
||
| 2300 | (SELECT bus_id |
||
| 2301 | FROM grid.egon_etrago_bus |
||
| 2302 | WHERE scn_name = '{scn}' |
||
| 2303 | AND country != 'DE' |
||
| 2304 | AND carrier = '{grid_carrier}')) |
||
| 2305 | ; |
||
| 2306 | """, |
||
| 2307 | warning=False, |
||
| 2308 | )["p_nom"].values[0] |
||
| 2309 | |||
| 2310 | e_gas_grid = ( |
||
| 2311 | round( |
||
| 2312 | (output_gas_grid - input_CH4_grid) / input_CH4_grid, |
||
| 2313 | 2, |
||
| 2314 | ) |
||
| 2315 | * 100 |
||
| 2316 | ) |
||
| 2317 | logger.info( |
||
| 2318 | f"Deviation of the capacity of the crossbordering CH4 grid: {e_gas_grid} %" |
||
| 2319 | ) |
||
| 2320 | |||
| 2321 | else: |
||
| 2322 | print("Testmode is on, skipping sanity check.") |
||
| 2323 | |||
| 2324 | |||
| 2325 | def sanitycheck_dsm(): |
||
| 2326 | def df_from_series(s: pd.Series): |
||
| 2327 | return pd.DataFrame.from_dict(dict(zip(s.index, s.values))) |
||
| 2328 | |||
| 2329 | for scenario in ["eGon2035", "eGon100RE"]: |
||
| 2330 | # p_min and p_max |
||
| 2331 | sql = f""" |
||
| 2332 | SELECT link_id, bus0 as bus, p_nom FROM grid.egon_etrago_link |
||
| 2333 | WHERE carrier = 'dsm' |
||
| 2334 | AND scn_name = '{scenario}' |
||
| 2335 | ORDER BY link_id |
||
| 2336 | """ |
||
| 2337 | |||
| 2338 | meta_df = db.select_dataframe(sql, index_col="link_id") |
||
| 2339 | link_ids = str(meta_df.index.tolist())[1:-1] |
||
| 2340 | |||
| 2341 | sql = f""" |
||
| 2342 | SELECT link_id, p_min_pu, p_max_pu |
||
| 2343 | FROM grid.egon_etrago_link_timeseries |
||
| 2344 | WHERE scn_name = '{scenario}' |
||
| 2345 | AND link_id IN ({link_ids}) |
||
| 2346 | ORDER BY link_id |
||
| 2347 | """ |
||
| 2348 | |||
| 2349 | ts_df = db.select_dataframe(sql, index_col="link_id") |
||
| 2350 | |||
| 2351 | p_max_df = df_from_series(ts_df.p_max_pu).mul(meta_df.p_nom) |
||
| 2352 | p_min_df = df_from_series(ts_df.p_min_pu).mul(meta_df.p_nom) |
||
| 2353 | |||
| 2354 | p_max_df.columns = meta_df.bus.tolist() |
||
| 2355 | p_min_df.columns = meta_df.bus.tolist() |
||
| 2356 | |||
| 2357 | targets = config.datasets()["DSM_CTS_industry"]["targets"] |
||
| 2358 | |||
| 2359 | tables = [ |
||
| 2360 | "cts_loadcurves_dsm", |
||
| 2361 | "ind_osm_loadcurves_individual_dsm", |
||
| 2362 | "demandregio_ind_sites_dsm", |
||
| 2363 | "ind_sites_loadcurves_individual", |
||
| 2364 | ] |
||
| 2365 | |||
| 2366 | df_list = [] |
||
| 2367 | |||
| 2368 | for table in tables: |
||
| 2369 | target = targets[table] |
||
| 2370 | sql = f""" |
||
| 2371 | SELECT bus, p_min, p_max, e_max, e_min |
||
| 2372 | FROM {target["schema"]}.{target["table"]} |
||
| 2373 | WHERE scn_name = '{scenario}' |
||
| 2374 | ORDER BY bus |
||
| 2375 | """ |
||
| 2376 | |||
| 2377 | df_list.append(db.select_dataframe(sql)) |
||
| 2378 | |||
| 2379 | individual_ts_df = pd.concat(df_list, ignore_index=True) |
||
| 2380 | |||
| 2381 | groups = individual_ts_df[["bus"]].reset_index().groupby("bus").groups |
||
| 2382 | |||
| 2383 | individual_p_max_df = df_from_series(individual_ts_df.p_max) |
||
| 2384 | |||
| 2385 | individual_p_max_df = pd.DataFrame( |
||
| 2386 | [ |
||
| 2387 | individual_p_max_df[idxs].sum(axis=1) |
||
| 2388 | for idxs in groups.values() |
||
| 2389 | ], |
||
| 2390 | index=groups.keys(), |
||
| 2391 | ).T |
||
| 2392 | |||
| 2393 | individual_p_min_df = df_from_series(individual_ts_df.p_min) |
||
| 2394 | |||
| 2395 | individual_p_min_df = pd.DataFrame( |
||
| 2396 | [ |
||
| 2397 | individual_p_min_df[idxs].sum(axis=1) |
||
| 2398 | for idxs in groups.values() |
||
| 2399 | ], |
||
| 2400 | index=groups.keys(), |
||
| 2401 | ).T |
||
| 2402 | |||
| 2403 | # due to the fact that time series are clipped at zero (either |
||
| 2404 | # direction) there is a little difference between the sum of the |
||
| 2405 | # individual time series and the aggregated time series as the second |
||
| 2406 | # is generated independent of the others. This makes atol=1e-01 |
||
| 2407 | # necessary. |
||
| 2408 | atol = 1e-01 |
||
| 2409 | assert np.allclose(p_max_df, individual_p_max_df, atol=atol) |
||
| 2410 | assert np.allclose(p_min_df, individual_p_min_df, atol=atol) |
||
| 2411 | |||
| 2412 | # e_min and e_max |
||
| 2413 | sql = f""" |
||
| 2414 | SELECT store_id, bus, e_nom FROM grid.egon_etrago_store |
||
| 2415 | WHERE carrier = 'dsm' |
||
| 2416 | AND scn_name = '{scenario}' |
||
| 2417 | ORDER BY store_id |
||
| 2418 | """ |
||
| 2419 | |||
| 2420 | meta_df = db.select_dataframe(sql, index_col="store_id") |
||
| 2421 | store_ids = str(meta_df.index.tolist())[1:-1] |
||
| 2422 | |||
| 2423 | sql = f""" |
||
| 2424 | SELECT store_id, e_min_pu, e_max_pu |
||
| 2425 | FROM grid.egon_etrago_store_timeseries |
||
| 2426 | WHERE scn_name = '{scenario}' |
||
| 2427 | AND store_id IN ({store_ids}) |
||
| 2428 | ORDER BY store_id |
||
| 2429 | """ |
||
| 2430 | |||
| 2431 | ts_df = db.select_dataframe(sql, index_col="store_id") |
||
| 2432 | |||
| 2433 | e_max_df = df_from_series(ts_df.e_max_pu).mul(meta_df.e_nom) |
||
| 2434 | e_min_df = df_from_series(ts_df.e_min_pu).mul(meta_df.e_nom) |
||
| 2435 | |||
| 2436 | e_max_df.columns = meta_df.bus.tolist() |
||
| 2437 | e_min_df.columns = meta_df.bus.tolist() |
||
| 2438 | |||
| 2439 | individual_e_max_df = df_from_series(individual_ts_df.e_max) |
||
| 2440 | |||
| 2441 | individual_e_max_df = pd.DataFrame( |
||
| 2442 | [ |
||
| 2443 | individual_e_max_df[idxs].sum(axis=1) |
||
| 2444 | for idxs in groups.values() |
||
| 2445 | ], |
||
| 2446 | index=groups.keys(), |
||
| 2447 | ).T |
||
| 2448 | individual_e_min_df = df_from_series(individual_ts_df.e_min) |
||
| 2449 | |||
| 2450 | individual_e_min_df = pd.DataFrame( |
||
| 2451 | [ |
||
| 2452 | individual_e_min_df[idxs].sum(axis=1) |
||
| 2453 | for idxs in groups.values() |
||
| 2454 | ], |
||
| 2455 | index=groups.keys(), |
||
| 2456 | ).T |
||
| 2457 | |||
| 2458 | assert np.allclose(e_max_df, individual_e_max_df) |
||
| 2459 | assert np.allclose(e_min_df, individual_e_min_df) |
||
| 2460 | |||
| 2461 | |||
| 2462 | def etrago_timeseries_length(): |
||
| 2463 | |||
| 2464 | for component in ["generator", "load", "link", "store", "storage"]: |
||
| 2465 | |||
| 2466 | columns = db.select_dataframe( |
||
| 2467 | f""" |
||
| 2468 | SELECT * |
||
| 2469 | FROM information_schema.columns |
||
| 2470 | WHERE table_schema = 'grid' |
||
| 2471 | AND table_name = 'egon_etrago_{component}_timeseries' |
||
| 2472 | """ |
||
| 2473 | ) |
||
| 2474 | columns = columns[columns.data_type == "ARRAY"].column_name.values |
||
| 2475 | |||
| 2476 | for col in columns: |
||
| 2477 | lengths = db.select_dataframe( |
||
| 2478 | f""" |
||
| 2479 | SELECT array_length({col}, 1) |
||
| 2480 | FROM grid.egon_etrago_{component}_timeseries; |
||
| 2481 | """ |
||
| 2482 | )["array_length"] |
||
| 2483 | |||
| 2484 | if not lengths.dropna().empty: |
||
| 2485 | assert ( |
||
| 2486 | lengths.dropna() == 8760 |
||
| 2487 | ).all(), ( |
||
| 2488 | f"Timeseries with a length != 8760 for {component} {col}" |
||
| 2489 | ) |
||
| 2490 | else: |
||
| 2491 | print(f"Empty timeseries for {component} {col}") |
||
| 2492 | |||
| 2493 | |||
| 2494 | def generators_links_storages_stores_100RE(scn="eGon100RE"): |
||
| 2495 | # Generators |
||
| 2496 | scn_capacities = db.select_dataframe( |
||
| 2497 | f""" |
||
| 2498 | SELECT * FROM supply.egon_scenario_capacities |
||
| 2499 | WHERE scenario_name = '{scn}' |
||
| 2500 | """, |
||
| 2501 | index_col="index", |
||
| 2502 | ) |
||
| 2503 | |||
| 2504 | map_carrier = { |
||
| 2505 | "urban_central_solar_thermal_collector": "solar_thermal_collector", |
||
| 2506 | "urban_central_geo_thermal": "geo_thermal", |
||
| 2507 | "urban_central_gas_boiler": "central_gas_boiler", |
||
| 2508 | "urban_central_heat_pump": "central_heat_pump", |
||
| 2509 | "urban_central_resistive_heater": "central_resistive_heater", |
||
| 2510 | "gas": "OCGT", |
||
| 2511 | } |
||
| 2512 | |||
| 2513 | scn_capacities["carrier"] = scn_capacities["carrier"].apply( |
||
| 2514 | lambda x: map_carrier[x] if x in map_carrier.keys() else x |
||
| 2515 | ) |
||
| 2516 | |||
| 2517 | carriers_gen_from_supply = [ |
||
| 2518 | "oil", |
||
| 2519 | "solar", |
||
| 2520 | "solar_rooftop", |
||
| 2521 | "wind_onshore", |
||
| 2522 | "lignite", |
||
| 2523 | "coal", |
||
| 2524 | "wind_offshore", |
||
| 2525 | "solar_thermal_collector", |
||
| 2526 | "geo_thermal", |
||
| 2527 | "run_of_river", |
||
| 2528 | "rural_solar_thermal", |
||
| 2529 | "urban_central_gas_CHP", |
||
| 2530 | "urban_central_solid_biomass_CHP", |
||
| 2531 | ] |
||
| 2532 | |||
| 2533 | gen_etrago = db.select_dataframe( |
||
| 2534 | f""" |
||
| 2535 | SELECT * FROM grid.egon_etrago_generator |
||
| 2536 | WHERE scn_name = '{scn}' |
||
| 2537 | AND bus IN (SELECT bus_id from grid.egon_etrago_bus |
||
| 2538 | WHERE scn_name = '{scn}' |
||
| 2539 | AND country = 'DE') |
||
| 2540 | """, |
||
| 2541 | warning=False, |
||
| 2542 | ) |
||
| 2543 | |||
| 2544 | carriers_gen = set(carriers_gen_from_supply + list(gen_etrago["carrier"])) |
||
| 2545 | |||
| 2546 | gen_capacities = pd.DataFrame( |
||
| 2547 | index=list(carriers_gen), columns=["supply_table", scn] |
||
| 2548 | ) |
||
| 2549 | gen_capacities[scn] = gen_etrago.groupby("carrier").p_nom.sum() |
||
| 2550 | |||
| 2551 | gen_capacities["supply_table"] = scn_capacities.set_index("carrier")[ |
||
| 2552 | "capacity" |
||
| 2553 | ] |
||
| 2554 | |||
| 2555 | gen_capacities.dropna(how="all", inplace=True) |
||
| 2556 | |||
| 2557 | print(f"\nMain results regarding generators for {scn}\n") |
||
| 2558 | print(gen_capacities) |
||
| 2559 | |||
| 2560 | ########################################################################### |
||
| 2561 | # Links |
||
| 2562 | |||
| 2563 | carriers_links_from_supply = [ |
||
| 2564 | "central_gas_boiler", |
||
| 2565 | "central_heat_pump", |
||
| 2566 | "central_resistive_heater", |
||
| 2567 | "gas", |
||
| 2568 | "rural_biomass_boiler", |
||
| 2569 | "rural_gas_boiler", |
||
| 2570 | "rural_heat_pump", |
||
| 2571 | "rural_oil_boiler", |
||
| 2572 | "rural_resistive_heater", |
||
| 2573 | ] |
||
| 2574 | |||
| 2575 | link_etrago = db.select_dataframe( |
||
| 2576 | f""" |
||
| 2577 | SELECT * FROM grid.egon_etrago_link |
||
| 2578 | WHERE scn_name = '{scn}' |
||
| 2579 | AND (bus0 IN (SELECT bus_id from grid.egon_etrago_bus |
||
| 2580 | WHERE scn_name = '{scn}' |
||
| 2581 | AND country = 'DE') |
||
| 2582 | OR |
||
| 2583 | bus1 IN (SELECT bus_id from grid.egon_etrago_bus |
||
| 2584 | WHERE scn_name = '{scn}' |
||
| 2585 | AND country = 'DE') |
||
| 2586 | ) |
||
| 2587 | """, |
||
| 2588 | warning=False, |
||
| 2589 | ) |
||
| 2590 | |||
| 2591 | carriers_link = set( |
||
| 2592 | carriers_links_from_supply + list(link_etrago["carrier"]) |
||
| 2593 | ) |
||
| 2594 | |||
| 2595 | link_capacities = pd.DataFrame( |
||
| 2596 | index=list(carriers_link), columns=["supply_table", scn] |
||
| 2597 | ) |
||
| 2598 | |||
| 2599 | link_capacities["eGon100RE"] = link_etrago.groupby("carrier").p_nom.sum() |
||
| 2600 | |||
| 2601 | link_capacities["supply_table"] = scn_capacities.set_index("carrier")[ |
||
| 2602 | "capacity" |
||
| 2603 | ] |
||
| 2604 | |||
| 2605 | link_capacities.dropna(how="all", inplace=True) |
||
| 2606 | |||
| 2607 | print(f"\nMain results regarding links for {scn}\n") |
||
| 2608 | print(link_capacities) |
||
| 2609 | ########################################################################### |
||
| 2610 | # storage |
||
| 2611 | storage_etrago = db.select_dataframe( |
||
| 2612 | f""" |
||
| 2613 | SELECT * FROM grid.egon_etrago_storage |
||
| 2614 | WHERE scn_name = '{scn}' |
||
| 2615 | AND bus IN (SELECT bus_id from grid.egon_etrago_bus |
||
| 2616 | WHERE scn_name = '{scn}' |
||
| 2617 | AND country = 'DE') |
||
| 2618 | """, |
||
| 2619 | ) |
||
| 2620 | |||
| 2621 | carriers_storage_from_supply = ["pumped_hydro"] |
||
| 2622 | |||
| 2623 | carriers_storage = set( |
||
| 2624 | carriers_storage_from_supply + list(storage_etrago["carrier"]) |
||
| 2625 | ) |
||
| 2626 | |||
| 2627 | storage_capacities = pd.DataFrame( |
||
| 2628 | index=list(carriers_storage), columns=["supply_table", scn] |
||
| 2629 | ) |
||
| 2630 | |||
| 2631 | storage_capacities[scn] = storage_etrago.groupby("carrier").p_nom.sum() |
||
| 2632 | |||
| 2633 | storage_capacities["supply_table"] = scn_capacities.set_index("carrier")[ |
||
| 2634 | "capacity" |
||
| 2635 | ] |
||
| 2636 | |||
| 2637 | print(f"\nMain results regarding storage units for {scn}\n") |
||
| 2638 | print(storage_capacities) |
||
| 2639 | ########################################################################### |
||
| 2640 | # stores |
||
| 2641 | stores_etrago = db.select_dataframe( |
||
| 2642 | f""" |
||
| 2643 | SELECT * FROM grid.egon_etrago_store |
||
| 2644 | WHERE scn_name = '{scn}' |
||
| 2645 | AND bus IN (SELECT bus_id from grid.egon_etrago_bus |
||
| 2646 | WHERE scn_name = '{scn}' |
||
| 2647 | AND country = 'DE') |
||
| 2648 | """, |
||
| 2649 | ) |
||
| 2650 | |||
| 2651 | carriers_stores_from_supply = [] |
||
| 2652 | |||
| 2653 | carriers_stores = set( |
||
| 2654 | carriers_stores_from_supply + list(stores_etrago["carrier"]) |
||
| 2655 | ) |
||
| 2656 | |||
| 2657 | stores_capacities = pd.DataFrame( |
||
| 2658 | index=list(carriers_stores), columns=["supply_table", scn] |
||
| 2659 | ) |
||
| 2660 | |||
| 2661 | stores_capacities[scn] = stores_etrago.groupby("carrier").e_nom.sum() |
||
| 2662 | |||
| 2663 | stores_capacities["supply_table"] = scn_capacities.set_index("carrier")[ |
||
| 2664 | "capacity" |
||
| 2665 | ] |
||
| 2666 | |||
| 2667 | print(f"\nMain results regarding stores for {scn}\n") |
||
| 2668 | print(stores_capacities) |
||
| 2669 | |||
| 2670 | return |
||
| 2671 | |||
| 2672 | |||
| 2673 | def electrical_load_100RE(scn="eGon100RE"): |
||
| 2674 | load_summary = pd.DataFrame( |
||
| 2675 | index=[ |
||
| 2676 | "residential", |
||
| 2677 | "commercial", |
||
| 2678 | "industrial", |
||
| 2679 | "total", |
||
| 2680 | ], |
||
| 2681 | columns=["objective", "eGon100RE"], |
||
| 2682 | ) |
||
| 2683 | |||
| 2684 | # Sector Annual electricity demand in TWh |
||
| 2685 | # https://github.com/openego/powerd-data/blob/56b8215928a8dc4fe953d266c563ce0ed98e93f9/src/egon/data/datasets/demandregio/__init__.py#L480 |
||
| 2686 | load_summary.loc["residential", "objective"] = 90.4 |
||
| 2687 | # https://github.com/openego/powerd-data/blob/56b8215928a8dc4fe953d266c563ce0ed98e93f9/src/egon/data/datasets/demandregio/__init__.py#L775 |
||
| 2688 | load_summary.loc["commercial", "objective"] = 146.7 |
||
| 2689 | # https://github.com/openego/powerd-data/blob/56b8215928a8dc4fe953d266c563ce0ed98e93f9/src/egon/data/datasets/demandregio/__init__.py#L775 |
||
| 2690 | load_summary.loc["industrial", "objective"] = 382.9 |
||
| 2691 | load_summary.loc["total", "objective"] = 620.0 |
||
| 2692 | |||
| 2693 | print( |
||
| 2694 | "For German electricity loads the following deviations between the" |
||
| 2695 | " input and output can be observed:" |
||
| 2696 | ) |
||
| 2697 | |||
| 2698 | load_summary.loc["total", "eGon100RE"] = db.select_dataframe( |
||
| 2699 | """SELECT a.scn_name, a.carrier, SUM((SELECT SUM(p) |
||
| 2700 | FROM UNNEST(b.p_set) p))/1000000::numeric as load_twh |
||
| 2701 | FROM grid.egon_etrago_load a |
||
| 2702 | JOIN grid.egon_etrago_load_timeseries b |
||
| 2703 | ON (a.load_id = b.load_id) |
||
| 2704 | JOIN grid.egon_etrago_bus c |
||
| 2705 | ON (a.bus=c.bus_id) |
||
| 2706 | AND b.scn_name = 'eGon100RE' |
||
| 2707 | AND a.scn_name = 'eGon100RE' |
||
| 2708 | AND a.carrier = 'AC' |
||
| 2709 | AND c.scn_name= 'eGon100RE' |
||
| 2710 | AND c.country='DE' |
||
| 2711 | GROUP BY (a.scn_name, a.carrier); |
||
| 2712 | """, |
||
| 2713 | warning=False, |
||
| 2714 | )["load_twh"].values[0] |
||
| 2715 | |||
| 2716 | sources = egon.data.config.datasets()["etrago_electricity"]["sources"] |
||
| 2717 | cts_curves = db.select_dataframe( |
||
| 2718 | f"""SELECT bus_id AS bus, p_set FROM |
||
| 2719 | {sources['cts_curves']['schema']}. |
||
| 2720 | {sources['cts_curves']['table']} |
||
| 2721 | WHERE scn_name = '{scn}'""", |
||
| 2722 | ) |
||
| 2723 | sum_cts_curves = ( |
||
| 2724 | cts_curves.apply(lambda x: sum(x["p_set"]), axis=1).sum() / 1000000 |
||
| 2725 | ) |
||
| 2726 | load_summary.loc["commercial", "eGon100RE"] = sum_cts_curves |
||
| 2727 | |||
| 2728 | # Select data on industrial demands assigned to osm landuse areas |
||
| 2729 | ind_curves_osm = db.select_dataframe( |
||
| 2730 | f"""SELECT bus, p_set FROM |
||
| 2731 | {sources['osm_curves']['schema']}. |
||
| 2732 | {sources['osm_curves']['table']} |
||
| 2733 | WHERE scn_name = '{scn}'""", |
||
| 2734 | ) |
||
| 2735 | sum_ind_curves_osm = ( |
||
| 2736 | ind_curves_osm.apply(lambda x: sum(x["p_set"]), axis=1).sum() / 1000000 |
||
| 2737 | ) |
||
| 2738 | |||
| 2739 | # Select data on industrial demands assigned to industrial sites |
||
| 2740 | |||
| 2741 | ind_curves_sites = db.select_dataframe( |
||
| 2742 | f"""SELECT bus, p_set FROM |
||
| 2743 | {sources['sites_curves']['schema']}. |
||
| 2744 | {sources['sites_curves']['table']} |
||
| 2745 | WHERE scn_name = '{scn}'""", |
||
| 2746 | ) |
||
| 2747 | sum_ind_curves_sites = ( |
||
| 2748 | ind_curves_sites.apply(lambda x: sum(x["p_set"]), axis=1).sum() |
||
| 2749 | / 1000000 |
||
| 2750 | ) |
||
| 2751 | |||
| 2752 | load_summary.loc["industrial", "eGon100RE"] = ( |
||
| 2753 | sum_ind_curves_osm + sum_ind_curves_sites |
||
| 2754 | ) |
||
| 2755 | |||
| 2756 | # Select data on household electricity demands per bus |
||
| 2757 | hh_curves = db.select_dataframe( |
||
| 2758 | f"""SELECT bus_id AS bus, p_set FROM |
||
| 2759 | {sources['household_curves']['schema']}. |
||
| 2760 | {sources['household_curves']['table']} |
||
| 2761 | WHERE scn_name = '{scn}'""", |
||
| 2762 | ) |
||
| 2763 | sum_hh_curves = ( |
||
| 2764 | hh_curves.apply(lambda x: sum(x["p_set"]), axis=1).sum() / 1000000 |
||
| 2765 | ) |
||
| 2766 | load_summary.loc["residential", "eGon100RE"] = sum_hh_curves |
||
| 2767 | |||
| 2768 | load_summary["diff"] = ( |
||
| 2769 | load_summary["eGon100RE"] - load_summary["objective"] |
||
| 2770 | ) |
||
| 2771 | load_summary["diff[%]"] = ( |
||
| 2772 | load_summary["diff"] / load_summary["eGon100RE"] * 100 |
||
| 2773 | ) |
||
| 2774 | |||
| 2775 | print(load_summary) |
||
| 2776 | |||
| 2777 | assert ( |
||
| 2778 | load_summary["diff[%]"] < 1 |
||
| 2779 | ).all(), "electrical loads differ from objective values" |
||
| 2780 | |||
| 2781 | return () |
||
| 2782 | |||
| 2783 | |||
| 2784 | def heat_gas_load_egon100RE(scn="eGon100RE"): |
||
| 2785 | |||
| 2786 | # dictionary for matching pypsa_eur carrier with egon-data carriers |
||
| 2787 | load_carrier_dict = { |
||
| 2788 | "DE0 0 land transport EV": "land transport EV", |
||
| 2789 | "DE0 0 rural heat": "rural_heat", |
||
| 2790 | "DE0 0 urban central heat": "central_heat", |
||
| 2791 | "DE0 0 urban decentral heat": "rural_heat", |
||
| 2792 | "rural heat": "rural_heat", |
||
| 2793 | "H2 for industry": "H2_for_industry", |
||
| 2794 | "gas for industry": "CH4_for_industry", |
||
| 2795 | "urban central heat": "central_heat", |
||
| 2796 | "urban decentral heat": "rural_heat", |
||
| 2797 | "land transport EV": "land transport EV", |
||
| 2798 | } |
||
| 2799 | |||
| 2800 | # filter out NaN values central_heat timeseries |
||
| 2801 | NaN_load_ids = db.select_dataframe( |
||
| 2802 | """ |
||
| 2803 | SELECT load_id from grid.egon_etrago_load_timeseries |
||
| 2804 | WHERE load_id IN (Select load_id |
||
| 2805 | FROM grid.egon_etrago_load |
||
| 2806 | WHERE carrier = 'central_heat') AND (SELECT |
||
| 2807 | bool_or(value::double precision::text = 'NaN') |
||
| 2808 | FROM unnest(p_set) AS value |
||
| 2809 | ) |
||
| 2810 | """ |
||
| 2811 | ) |
||
| 2812 | nan_load_list = tuple(NaN_load_ids["load_id"].tolist()) |
||
| 2813 | nan_load_str = ",".join(map(str, nan_load_list)) |
||
| 2814 | |||
| 2815 | #####loads for eGon100RE |
||
| 2816 | loads_etrago_timeseries = db.select_dataframe( |
||
| 2817 | f""" |
||
| 2818 | SELECT |
||
| 2819 | l.carrier, |
||
| 2820 | SUM( |
||
| 2821 | (SELECT SUM(p) |
||
| 2822 | FROM UNNEST(t.p_set) p) |
||
| 2823 | ) AS total_p_set_timeseries |
||
| 2824 | FROM |
||
| 2825 | grid.egon_etrago_load l |
||
| 2826 | LEFT JOIN |
||
| 2827 | grid.egon_etrago_load_timeseries t ON l.load_id = t.load_id |
||
| 2828 | WHERE |
||
| 2829 | l.scn_name = '{scn}' |
||
| 2830 | AND l.carrier != 'AC' |
||
| 2831 | AND l.bus IN ( |
||
| 2832 | SELECT bus_id |
||
| 2833 | FROM grid.egon_etrago_bus |
||
| 2834 | WHERE scn_name = '{scn}' |
||
| 2835 | AND country = 'DE' |
||
| 2836 | ) |
||
| 2837 | AND l.load_id NOT IN ({nan_load_str}) |
||
| 2838 | |||
| 2839 | GROUP BY |
||
| 2840 | l.carrier |
||
| 2841 | """ |
||
| 2842 | ) |
||
| 2843 | |||
| 2844 | #####loads for pypsa_eur_network |
||
| 2845 | n = read_network() |
||
| 2846 | |||
| 2847 | # aggregate loads with values in timeseries dataframe |
||
| 2848 | df_load_timeseries = n.loads_t.p_set |
||
| 2849 | filtered_columns = [ |
||
| 2850 | col |
||
| 2851 | for col in df_load_timeseries.columns |
||
| 2852 | if col.startswith("DE") and "electricity" not in col |
||
| 2853 | ] |
||
| 2854 | german_loads_timeseries = df_load_timeseries[filtered_columns] |
||
| 2855 | german_loads_timeseries = german_loads_timeseries.drop(columns=["DE0 0"]) |
||
| 2856 | german_loads_timeseries = german_loads_timeseries.mul( |
||
| 2857 | n.snapshot_weightings.generators, axis=0 |
||
| 2858 | ).sum() |
||
| 2859 | german_loads_timeseries = german_loads_timeseries.rename( |
||
| 2860 | index=load_carrier_dict |
||
| 2861 | ) |
||
| 2862 | |||
| 2863 | # sum loads with fixed p_set in loads dataframe |
||
| 2864 | german_load_static_p_set = n.loads[ |
||
| 2865 | n.loads.index.str.startswith("DE") |
||
| 2866 | & ~n.loads.carrier.str.contains("electricity") |
||
| 2867 | ] |
||
| 2868 | german_load_static_p_set = ( |
||
| 2869 | german_load_static_p_set.groupby("carrier").p_set.sum() * 8760 |
||
| 2870 | ) |
||
| 2871 | german_load_static_p_set = german_load_static_p_set.rename( |
||
| 2872 | index=load_carrier_dict |
||
| 2873 | ) |
||
| 2874 | german_load_static_p_set["H2_for_industry"] = ( |
||
| 2875 | german_load_static_p_set["H2_for_industry"] |
||
| 2876 | + +n.links_t.p0[ |
||
| 2877 | n.links.loc[ |
||
| 2878 | n.links.index.str.contains("DE0 0 Fischer-Tropsch") |
||
| 2879 | ].index |
||
| 2880 | ] |
||
| 2881 | .mul(n.snapshot_weightings.generators, axis=0) |
||
| 2882 | .sum() |
||
| 2883 | .sum() |
||
| 2884 | + n.links_t.p0[ |
||
| 2885 | n.links.loc[ |
||
| 2886 | n.links.index.str.contains("DE0 0 methanolisation") |
||
| 2887 | ].index |
||
| 2888 | ] |
||
| 2889 | .mul(n.snapshot_weightings.generators, axis=0) |
||
| 2890 | .sum() |
||
| 2891 | .sum() |
||
| 2892 | ) |
||
| 2893 | |||
| 2894 | # combine p_set and timeseries dataframes from pypsa eur |
||
| 2895 | german_loads_timeseries_df = german_loads_timeseries.to_frame() |
||
| 2896 | german_loads_timeseries_df["carrier"] = german_loads_timeseries_df.index |
||
| 2897 | german_loads_timeseries_df.set_index("carrier", inplace=True) |
||
| 2898 | |||
| 2899 | german_load_static_p_set_df = german_load_static_p_set.to_frame() |
||
| 2900 | german_load_static_p_set_df = german_load_static_p_set_df.groupby( |
||
| 2901 | "carrier", as_index=True |
||
| 2902 | ).sum() |
||
| 2903 | german_loads_timeseries_df = german_loads_timeseries_df.groupby( |
||
| 2904 | "carrier", as_index=True |
||
| 2905 | ).sum() |
||
| 2906 | combined = pd.merge( |
||
| 2907 | german_load_static_p_set_df, |
||
| 2908 | german_loads_timeseries_df, |
||
| 2909 | on="carrier", |
||
| 2910 | how="left", |
||
| 2911 | ) |
||
| 2912 | |||
| 2913 | combined["p_set"] = np.where( |
||
| 2914 | combined["p_set"] == 0, combined[0], combined["p_set"] |
||
| 2915 | ) |
||
| 2916 | combined = combined.drop(columns=[0]) |
||
| 2917 | |||
| 2918 | # carriers_for_comparison |
||
| 2919 | carriers_loads = set( |
||
| 2920 | german_load_static_p_set.index.union( |
||
| 2921 | german_loads_timeseries.index |
||
| 2922 | ).union(loads_etrago_timeseries["carrier"]) |
||
| 2923 | ) |
||
| 2924 | |||
| 2925 | # create dataframe for comparison |
||
| 2926 | loads_capacities = pd.DataFrame( |
||
| 2927 | index=list(carriers_loads), columns=["pypsa_eur", scn] |
||
| 2928 | ) |
||
| 2929 | loads_capacities[scn] = loads_etrago_timeseries.groupby( |
||
| 2930 | "carrier" |
||
| 2931 | ).total_p_set_timeseries.sum() |
||
| 2932 | loads_capacities["pypsa_eur"] = combined["p_set"] |
||
| 2933 | loads_capacities["diff [%]"] = ( |
||
| 2934 | (loads_capacities[scn] - loads_capacities["pypsa_eur"]) |
||
| 2935 | / loads_capacities["pypsa_eur"].replace(0, np.nan) |
||
| 2936 | ) * 100 |
||
| 2937 | |||
| 2938 | print("=" * 50) |
||
| 2939 | print( |
||
| 2940 | "Comparison of Gas and Heat Loads with PyPSA-Eur Data".center(50, "=") |
||
| 2941 | ) |
||
| 2942 | print("=" * 50) |
||
| 2943 | print(loads_capacities) |
||
| 2944 | |||
| 2945 | |||
| 2946 | tasks = () |
||
| 2947 | |||
| 2948 | if "eGon2035" in SCENARIOS: |
||
| 2949 | tasks = tasks + ( |
||
| 2950 | etrago_eGon2035_electricity, |
||
| 2951 | etrago_eGon2035_heat, |
||
| 2952 | residential_electricity_annual_sum, |
||
| 2953 | residential_electricity_hh_refinement, |
||
| 2954 | cts_electricity_demand_share, |
||
| 2955 | cts_heat_demand_share, |
||
| 2956 | sanitycheck_emobility_mit, |
||
| 2957 | sanitycheck_pv_rooftop_buildings, |
||
| 2958 | sanitycheck_home_batteries, |
||
| 2959 | etrago_eGon2035_gas_DE, |
||
| 2960 | etrago_eGon2035_gas_abroad, |
||
| 2961 | sanitycheck_dsm, |
||
| 2962 | ) |
||
| 2963 | |||
| 2964 | if "eGon100RE" in SCENARIOS: |
||
| 2965 | tasks = tasks + ( |
||
| 2966 | electrical_load_100RE, |
||
| 2967 | generators_links_storages_stores_100RE, |
||
| 2968 | etrago_timeseries_length, |
||
| 2969 | heat_gas_load_egon100RE, |
||
| 2970 | ) |
||
| 2971 | |||
| 2972 | |||
| 2973 | class SanityChecks(Dataset): |
||
| 2974 | #: |
||
| 2975 | name: str = "SanityChecks" |
||
| 2976 | #: |
||
| 2977 | version: str = "0.0.8" |
||
| 2978 | |||
| 2979 | def __init__(self, dependencies): |
||
| 2980 | super().__init__( |
||
| 2981 | name=self.name, |
||
| 2982 | version=self.version, |
||
| 2983 | dependencies=dependencies, |
||
| 2984 | tasks=tasks, |
||
| 2985 | ) |
||
| 2986 |