Total Complexity | 103 |
Total Lines | 2935 |
Duplicated Lines | 3.1 % |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like data.datasets.sanity_checks often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | """ |
||
2 | This module does sanity checks for both the eGon2035 and the eGon100RE scenario |
||
3 | separately where a percentage error is given to showcase difference in output |
||
4 | and input values. Please note that there are missing input technologies in the |
||
5 | supply tables. |
||
6 | Authors: @ALonso, @dana, @nailend, @nesnoj, @khelfen |
||
7 | """ |
||
8 | from math import isclose |
||
9 | from pathlib import Path |
||
10 | import ast |
||
11 | |||
12 | from sqlalchemy import Numeric |
||
13 | from sqlalchemy.sql import and_, cast, func, or_ |
||
14 | import matplotlib.pyplot as plt |
||
15 | import numpy as np |
||
16 | import pandas as pd |
||
17 | import seaborn as sns |
||
18 | |||
19 | from egon.data import config, db, logger |
||
20 | from egon.data.datasets import Dataset |
||
21 | from egon.data.datasets.electricity_demand_timeseries.cts_buildings import ( |
||
22 | EgonCtsElectricityDemandBuildingShare, |
||
23 | EgonCtsHeatDemandBuildingShare, |
||
24 | ) |
||
25 | from egon.data.datasets.emobility.motorized_individual_travel.db_classes import ( # noqa: E501 |
||
26 | EgonEvCountMunicipality, |
||
27 | EgonEvCountMvGridDistrict, |
||
28 | EgonEvCountRegistrationDistrict, |
||
29 | EgonEvMvGridDistrict, |
||
30 | EgonEvPool, |
||
31 | EgonEvTrip, |
||
32 | ) |
||
33 | from egon.data.datasets.emobility.motorized_individual_travel.helpers import ( |
||
34 | DATASET_CFG, |
||
35 | read_simbev_metadata_file, |
||
36 | ) |
||
37 | from egon.data.datasets.etrago_setup import ( |
||
38 | EgonPfHvLink, |
||
39 | EgonPfHvLinkTimeseries, |
||
40 | EgonPfHvLoad, |
||
41 | EgonPfHvLoadTimeseries, |
||
42 | EgonPfHvStore, |
||
43 | EgonPfHvStoreTimeseries, |
||
44 | ) |
||
45 | from egon.data.datasets.gas_grid import ( |
||
46 | define_gas_buses_abroad, |
||
47 | define_gas_nodes_list, |
||
48 | define_gas_pipeline_list, |
||
49 | ) |
||
50 | from egon.data.datasets.gas_neighbours.eGon2035 import ( |
||
51 | calc_capacities, |
||
52 | calc_ch4_storage_capacities, |
||
53 | calc_global_ch4_demand, |
||
54 | calc_global_power_to_h2_demand, |
||
55 | calculate_ch4_grid_capacities, |
||
56 | import_ch4_demandTS, |
||
57 | ) |
||
58 | from egon.data.datasets.hydrogen_etrago.storage import ( |
||
59 | calculate_and_map_saltcavern_storage_potential, |
||
60 | ) |
||
61 | from egon.data.datasets.power_plants.pv_rooftop_buildings import ( |
||
62 | PV_CAP_PER_SQ_M, |
||
63 | ROOF_FACTOR, |
||
64 | SCENARIOS, |
||
65 | load_building_data, |
||
66 | scenario_data, |
||
67 | ) |
||
68 | from egon.data.datasets.pypsaeur import read_network |
||
69 | from egon.data.datasets.scenario_parameters import get_sector_parameters |
||
70 | from egon.data.datasets.storages.home_batteries import get_cbat_pbat_ratio |
||
71 | from egon.data.datasets.pypsaeur import read_network |
||
72 | import egon.data |
||
73 | |||
74 | TESTMODE_OFF = ( |
||
75 | config.settings()["egon-data"]["--dataset-boundary"] == "Everything" |
||
76 | ) |
||
77 | |||
78 | |||
79 | def etrago_eGon2035_electricity(): |
||
80 | """Execute basic sanity checks. |
||
81 | |||
82 | Returns print statements as sanity checks for the electricity sector in |
||
83 | the eGon2035 scenario. |
||
84 | |||
85 | Parameters |
||
86 | ---------- |
||
87 | None |
||
88 | |||
89 | Returns |
||
90 | ------- |
||
91 | None |
||
92 | """ |
||
93 | |||
94 | scn = "eGon2035" |
||
95 | |||
96 | # Section to check generator capacities |
||
97 | logger.info(f"Sanity checks for scenario {scn}") |
||
98 | logger.info( |
||
99 | "For German electricity generators the following deviations between " |
||
100 | "the inputs and outputs can be observed:" |
||
101 | ) |
||
102 | |||
103 | carriers_electricity = [ |
||
104 | "others", |
||
105 | "reservoir", |
||
106 | "run_of_river", |
||
107 | "oil", |
||
108 | "wind_onshore", |
||
109 | "wind_offshore", |
||
110 | "solar", |
||
111 | "solar_rooftop", |
||
112 | "biomass", |
||
113 | ] |
||
114 | |||
115 | for carrier in carriers_electricity: |
||
116 | |||
117 | if carrier == "biomass": |
||
118 | sum_output = db.select_dataframe( |
||
119 | """SELECT scn_name, SUM(p_nom::numeric) as output_capacity_mw |
||
120 | FROM grid.egon_etrago_generator |
||
121 | WHERE bus IN ( |
||
122 | SELECT bus_id FROM grid.egon_etrago_bus |
||
123 | WHERE scn_name = 'eGon2035' |
||
124 | AND country = 'DE') |
||
125 | AND carrier IN ('biomass', 'industrial_biomass_CHP', |
||
126 | 'central_biomass_CHP') |
||
127 | GROUP BY (scn_name); |
||
128 | """, |
||
129 | warning=False, |
||
130 | ) |
||
131 | |||
132 | else: |
||
133 | sum_output = db.select_dataframe( |
||
134 | f"""SELECT scn_name, |
||
135 | SUM(p_nom::numeric) as output_capacity_mw |
||
136 | FROM grid.egon_etrago_generator |
||
137 | WHERE scn_name = '{scn}' |
||
138 | AND carrier IN ('{carrier}') |
||
139 | AND bus IN |
||
140 | (SELECT bus_id |
||
141 | FROM grid.egon_etrago_bus |
||
142 | WHERE scn_name = 'eGon2035' |
||
143 | AND country = 'DE') |
||
144 | GROUP BY (scn_name); |
||
145 | """, |
||
146 | warning=False, |
||
147 | ) |
||
148 | |||
149 | sum_input = db.select_dataframe( |
||
150 | f"""SELECT carrier, SUM(capacity::numeric) as input_capacity_mw |
||
151 | FROM supply.egon_scenario_capacities |
||
152 | WHERE carrier= '{carrier}' |
||
153 | AND scenario_name ='{scn}' |
||
154 | GROUP BY (carrier); |
||
155 | """, |
||
156 | warning=False, |
||
157 | ) |
||
158 | |||
159 | View Code Duplication | if ( |
|
|
|||
160 | sum_output.output_capacity_mw.sum() == 0 |
||
161 | and sum_input.input_capacity_mw.sum() == 0 |
||
162 | ): |
||
163 | logger.info( |
||
164 | f"No capacity for carrier '{carrier}' needed to be" |
||
165 | f" distributed. Everything is fine" |
||
166 | ) |
||
167 | |||
168 | elif ( |
||
169 | sum_input.input_capacity_mw.sum() > 0 |
||
170 | and sum_output.output_capacity_mw.sum() == 0 |
||
171 | ): |
||
172 | logger.info( |
||
173 | f"Error: Capacity for carrier '{carrier}' was not distributed " |
||
174 | f"at all!" |
||
175 | ) |
||
176 | |||
177 | elif ( |
||
178 | sum_output.output_capacity_mw.sum() > 0 |
||
179 | and sum_input.input_capacity_mw.sum() == 0 |
||
180 | ): |
||
181 | logger.info( |
||
182 | f"Error: Eventhough no input capacity was provided for carrier" |
||
183 | f"'{carrier}' a capacity got distributed!" |
||
184 | ) |
||
185 | |||
186 | else: |
||
187 | sum_input["error"] = ( |
||
188 | (sum_output.output_capacity_mw - sum_input.input_capacity_mw) |
||
189 | / sum_input.input_capacity_mw |
||
190 | ) * 100 |
||
191 | g = sum_input["error"].values[0] |
||
192 | |||
193 | logger.info(f"{carrier}: " + str(round(g, 2)) + " %") |
||
194 | |||
195 | # Section to check storage units |
||
196 | |||
197 | logger.info(f"Sanity checks for scenario {scn}") |
||
198 | logger.info( |
||
199 | "For German electrical storage units the following deviations between" |
||
200 | "the inputs and outputs can be observed:" |
||
201 | ) |
||
202 | |||
203 | carriers_electricity = ["pumped_hydro"] |
||
204 | |||
205 | for carrier in carriers_electricity: |
||
206 | |||
207 | sum_output = db.select_dataframe( |
||
208 | f"""SELECT scn_name, SUM(p_nom::numeric) as output_capacity_mw |
||
209 | FROM grid.egon_etrago_storage |
||
210 | WHERE scn_name = '{scn}' |
||
211 | AND carrier IN ('{carrier}') |
||
212 | AND bus IN |
||
213 | (SELECT bus_id |
||
214 | FROM grid.egon_etrago_bus |
||
215 | WHERE scn_name = 'eGon2035' |
||
216 | AND country = 'DE') |
||
217 | GROUP BY (scn_name); |
||
218 | """, |
||
219 | warning=False, |
||
220 | ) |
||
221 | |||
222 | sum_input = db.select_dataframe( |
||
223 | f"""SELECT carrier, SUM(capacity::numeric) as input_capacity_mw |
||
224 | FROM supply.egon_scenario_capacities |
||
225 | WHERE carrier= '{carrier}' |
||
226 | AND scenario_name ='{scn}' |
||
227 | GROUP BY (carrier); |
||
228 | """, |
||
229 | warning=False, |
||
230 | ) |
||
231 | |||
232 | View Code Duplication | if ( |
|
233 | sum_output.output_capacity_mw.sum() == 0 |
||
234 | and sum_input.input_capacity_mw.sum() == 0 |
||
235 | ): |
||
236 | print( |
||
237 | f"No capacity for carrier '{carrier}' needed to be " |
||
238 | f"distributed. Everything is fine" |
||
239 | ) |
||
240 | |||
241 | elif ( |
||
242 | sum_input.input_capacity_mw.sum() > 0 |
||
243 | and sum_output.output_capacity_mw.sum() == 0 |
||
244 | ): |
||
245 | print( |
||
246 | f"Error: Capacity for carrier '{carrier}' was not distributed" |
||
247 | f" at all!" |
||
248 | ) |
||
249 | |||
250 | elif ( |
||
251 | sum_output.output_capacity_mw.sum() > 0 |
||
252 | and sum_input.input_capacity_mw.sum() == 0 |
||
253 | ): |
||
254 | print( |
||
255 | f"Error: Eventhough no input capacity was provided for carrier" |
||
256 | f" '{carrier}' a capacity got distributed!" |
||
257 | ) |
||
258 | |||
259 | else: |
||
260 | sum_input["error"] = ( |
||
261 | (sum_output.output_capacity_mw - sum_input.input_capacity_mw) |
||
262 | / sum_input.input_capacity_mw |
||
263 | ) * 100 |
||
264 | g = sum_input["error"].values[0] |
||
265 | |||
266 | print(f"{carrier}: " + str(round(g, 2)) + " %") |
||
267 | |||
268 | # Section to check loads |
||
269 | |||
270 | print( |
||
271 | "For German electricity loads the following deviations between the" |
||
272 | " input and output can be observed:" |
||
273 | ) |
||
274 | |||
275 | output_demand = db.select_dataframe( |
||
276 | """SELECT a.scn_name, a.carrier, SUM((SELECT SUM(p) |
||
277 | FROM UNNEST(b.p_set) p))/1000000::numeric as load_twh |
||
278 | FROM grid.egon_etrago_load a |
||
279 | JOIN grid.egon_etrago_load_timeseries b |
||
280 | ON (a.load_id = b.load_id) |
||
281 | JOIN grid.egon_etrago_bus c |
||
282 | ON (a.bus=c.bus_id) |
||
283 | AND b.scn_name = 'eGon2035' |
||
284 | AND a.scn_name = 'eGon2035' |
||
285 | AND a.carrier = 'AC' |
||
286 | AND c.scn_name= 'eGon2035' |
||
287 | AND c.country='DE' |
||
288 | GROUP BY (a.scn_name, a.carrier); |
||
289 | |||
290 | """, |
||
291 | warning=False, |
||
292 | )["load_twh"].values[0] |
||
293 | |||
294 | input_cts_ind = db.select_dataframe( |
||
295 | """SELECT scenario, |
||
296 | SUM(demand::numeric/1000000) as demand_mw_regio_cts_ind |
||
297 | FROM demand.egon_demandregio_cts_ind |
||
298 | WHERE scenario= 'eGon2035' |
||
299 | AND year IN ('2035') |
||
300 | GROUP BY (scenario); |
||
301 | |||
302 | """, |
||
303 | warning=False, |
||
304 | )["demand_mw_regio_cts_ind"].values[0] |
||
305 | |||
306 | input_hh = db.select_dataframe( |
||
307 | """SELECT scenario, SUM(demand::numeric/1000000) as demand_mw_regio_hh |
||
308 | FROM demand.egon_demandregio_hh |
||
309 | WHERE scenario= 'eGon2035' |
||
310 | AND year IN ('2035') |
||
311 | GROUP BY (scenario); |
||
312 | """, |
||
313 | warning=False, |
||
314 | )["demand_mw_regio_hh"].values[0] |
||
315 | |||
316 | input_demand = input_hh + input_cts_ind |
||
317 | |||
318 | e = round((output_demand - input_demand) / input_demand, 2) * 100 |
||
319 | |||
320 | print(f"electricity demand: {e} %") |
||
321 | |||
322 | |||
323 | def etrago_eGon2035_heat(): |
||
324 | """Execute basic sanity checks. |
||
325 | |||
326 | Returns print statements as sanity checks for the heat sector in |
||
327 | the eGon2035 scenario. |
||
328 | |||
329 | Parameters |
||
330 | ---------- |
||
331 | None |
||
332 | |||
333 | Returns |
||
334 | ------- |
||
335 | None |
||
336 | """ |
||
337 | |||
338 | # Check input and output values for the carriers "others", |
||
339 | # "reservoir", "run_of_river" and "oil" |
||
340 | |||
341 | scn = "eGon2035" |
||
342 | |||
343 | # Section to check generator capacities |
||
344 | print(f"Sanity checks for scenario {scn}") |
||
345 | print( |
||
346 | "For German heat demands the following deviations between the inputs" |
||
347 | " and outputs can be observed:" |
||
348 | ) |
||
349 | |||
350 | # Sanity checks for heat demand |
||
351 | |||
352 | output_heat_demand = db.select_dataframe( |
||
353 | """SELECT a.scn_name, |
||
354 | (SUM( |
||
355 | (SELECT SUM(p) FROM UNNEST(b.p_set) p))/1000000)::numeric as load_twh |
||
356 | FROM grid.egon_etrago_load a |
||
357 | JOIN grid.egon_etrago_load_timeseries b |
||
358 | ON (a.load_id = b.load_id) |
||
359 | JOIN grid.egon_etrago_bus c |
||
360 | ON (a.bus=c.bus_id) |
||
361 | AND b.scn_name = 'eGon2035' |
||
362 | AND a.scn_name = 'eGon2035' |
||
363 | AND c.scn_name= 'eGon2035' |
||
364 | AND c.country='DE' |
||
365 | AND a.carrier IN ('rural_heat', 'central_heat') |
||
366 | GROUP BY (a.scn_name); |
||
367 | """, |
||
368 | warning=False, |
||
369 | )["load_twh"].values[0] |
||
370 | |||
371 | input_heat_demand = db.select_dataframe( |
||
372 | """SELECT scenario, SUM(demand::numeric/1000000) as demand_mw_peta_heat |
||
373 | FROM demand.egon_peta_heat |
||
374 | WHERE scenario= 'eGon2035' |
||
375 | GROUP BY (scenario); |
||
376 | """, |
||
377 | warning=False, |
||
378 | )["demand_mw_peta_heat"].values[0] |
||
379 | |||
380 | e_demand = ( |
||
381 | round((output_heat_demand - input_heat_demand) / input_heat_demand, 2) |
||
382 | * 100 |
||
383 | ) |
||
384 | |||
385 | logger.info(f"heat demand: {e_demand} %") |
||
386 | |||
387 | # Sanity checks for heat supply |
||
388 | |||
389 | logger.info( |
||
390 | "For German heat supplies the following deviations between the inputs " |
||
391 | "and outputs can be observed:" |
||
392 | ) |
||
393 | |||
394 | # Comparison for central heat pumps |
||
395 | heat_pump_input = db.select_dataframe( |
||
396 | """SELECT carrier, SUM(capacity::numeric) as Urban_central_heat_pump_mw |
||
397 | FROM supply.egon_scenario_capacities |
||
398 | WHERE carrier= 'urban_central_heat_pump' |
||
399 | AND scenario_name IN ('eGon2035') |
||
400 | GROUP BY (carrier); |
||
401 | """, |
||
402 | warning=False, |
||
403 | )["urban_central_heat_pump_mw"].values[0] |
||
404 | |||
405 | heat_pump_output = db.select_dataframe( |
||
406 | """SELECT carrier, SUM(p_nom::numeric) as Central_heat_pump_mw |
||
407 | FROM grid.egon_etrago_link |
||
408 | WHERE carrier= 'central_heat_pump' |
||
409 | AND scn_name IN ('eGon2035') |
||
410 | GROUP BY (carrier); |
||
411 | """, |
||
412 | warning=False, |
||
413 | )["central_heat_pump_mw"].values[0] |
||
414 | |||
415 | e_heat_pump = ( |
||
416 | round((heat_pump_output - heat_pump_input) / heat_pump_output, 2) * 100 |
||
417 | ) |
||
418 | |||
419 | logger.info(f"'central_heat_pump': {e_heat_pump} % ") |
||
420 | |||
421 | # Comparison for residential heat pumps |
||
422 | |||
423 | input_residential_heat_pump = db.select_dataframe( |
||
424 | """SELECT carrier, SUM(capacity::numeric) as residential_heat_pump_mw |
||
425 | FROM supply.egon_scenario_capacities |
||
426 | WHERE carrier= 'residential_rural_heat_pump' |
||
427 | AND scenario_name IN ('eGon2035') |
||
428 | GROUP BY (carrier); |
||
429 | """, |
||
430 | warning=False, |
||
431 | )["residential_heat_pump_mw"].values[0] |
||
432 | |||
433 | output_residential_heat_pump = db.select_dataframe( |
||
434 | """SELECT carrier, SUM(p_nom::numeric) as rural_heat_pump_mw |
||
435 | FROM grid.egon_etrago_link |
||
436 | WHERE carrier= 'rural_heat_pump' |
||
437 | AND scn_name IN ('eGon2035') |
||
438 | GROUP BY (carrier); |
||
439 | """, |
||
440 | warning=False, |
||
441 | )["rural_heat_pump_mw"].values[0] |
||
442 | |||
443 | e_residential_heat_pump = ( |
||
444 | round( |
||
445 | (output_residential_heat_pump - input_residential_heat_pump) |
||
446 | / input_residential_heat_pump, |
||
447 | 2, |
||
448 | ) |
||
449 | * 100 |
||
450 | ) |
||
451 | logger.info(f"'residential heat pumps': {e_residential_heat_pump} %") |
||
452 | |||
453 | # Comparison for resistive heater |
||
454 | resistive_heater_input = db.select_dataframe( |
||
455 | """SELECT carrier, |
||
456 | SUM(capacity::numeric) as Urban_central_resistive_heater_MW |
||
457 | FROM supply.egon_scenario_capacities |
||
458 | WHERE carrier= 'urban_central_resistive_heater' |
||
459 | AND scenario_name IN ('eGon2035') |
||
460 | GROUP BY (carrier); |
||
461 | """, |
||
462 | warning=False, |
||
463 | )["urban_central_resistive_heater_mw"].values[0] |
||
464 | |||
465 | resistive_heater_output = db.select_dataframe( |
||
466 | """SELECT carrier, SUM(p_nom::numeric) as central_resistive_heater_MW |
||
467 | FROM grid.egon_etrago_link |
||
468 | WHERE carrier= 'central_resistive_heater' |
||
469 | AND scn_name IN ('eGon2035') |
||
470 | GROUP BY (carrier); |
||
471 | """, |
||
472 | warning=False, |
||
473 | )["central_resistive_heater_mw"].values[0] |
||
474 | |||
475 | e_resistive_heater = ( |
||
476 | round( |
||
477 | (resistive_heater_output - resistive_heater_input) |
||
478 | / resistive_heater_input, |
||
479 | 2, |
||
480 | ) |
||
481 | * 100 |
||
482 | ) |
||
483 | |||
484 | logger.info(f"'resistive heater': {e_resistive_heater} %") |
||
485 | |||
486 | # Comparison for solar thermal collectors |
||
487 | |||
488 | input_solar_thermal = db.select_dataframe( |
||
489 | """SELECT carrier, SUM(capacity::numeric) as solar_thermal_collector_mw |
||
490 | FROM supply.egon_scenario_capacities |
||
491 | WHERE carrier= 'urban_central_solar_thermal_collector' |
||
492 | AND scenario_name IN ('eGon2035') |
||
493 | GROUP BY (carrier); |
||
494 | """, |
||
495 | warning=False, |
||
496 | )["solar_thermal_collector_mw"].values[0] |
||
497 | |||
498 | output_solar_thermal = db.select_dataframe( |
||
499 | """SELECT carrier, SUM(p_nom::numeric) as solar_thermal_collector_mw |
||
500 | FROM grid.egon_etrago_generator |
||
501 | WHERE carrier= 'solar_thermal_collector' |
||
502 | AND scn_name IN ('eGon2035') |
||
503 | GROUP BY (carrier); |
||
504 | """, |
||
505 | warning=False, |
||
506 | )["solar_thermal_collector_mw"].values[0] |
||
507 | |||
508 | e_solar_thermal = ( |
||
509 | round( |
||
510 | (output_solar_thermal - input_solar_thermal) / input_solar_thermal, |
||
511 | 2, |
||
512 | ) |
||
513 | * 100 |
||
514 | ) |
||
515 | logger.info(f"'solar thermal collector': {e_solar_thermal} %") |
||
516 | |||
517 | # Comparison for geothermal |
||
518 | |||
519 | input_geo_thermal = db.select_dataframe( |
||
520 | """SELECT carrier, |
||
521 | SUM(capacity::numeric) as Urban_central_geo_thermal_MW |
||
522 | FROM supply.egon_scenario_capacities |
||
523 | WHERE carrier= 'urban_central_geo_thermal' |
||
524 | AND scenario_name IN ('eGon2035') |
||
525 | GROUP BY (carrier); |
||
526 | """, |
||
527 | warning=False, |
||
528 | )["urban_central_geo_thermal_mw"].values[0] |
||
529 | |||
530 | output_geo_thermal = db.select_dataframe( |
||
531 | """SELECT carrier, SUM(p_nom::numeric) as geo_thermal_MW |
||
532 | FROM grid.egon_etrago_generator |
||
533 | WHERE carrier= 'geo_thermal' |
||
534 | AND scn_name IN ('eGon2035') |
||
535 | GROUP BY (carrier); |
||
536 | """, |
||
537 | warning=False, |
||
538 | )["geo_thermal_mw"].values[0] |
||
539 | |||
540 | e_geo_thermal = ( |
||
541 | round((output_geo_thermal - input_geo_thermal) / input_geo_thermal, 2) |
||
542 | * 100 |
||
543 | ) |
||
544 | logger.info(f"'geothermal': {e_geo_thermal} %") |
||
545 | |||
546 | |||
547 | def residential_electricity_annual_sum(rtol=1e-5): |
||
548 | """Sanity check for dataset electricity_demand_timeseries : |
||
549 | Demand_Building_Assignment |
||
550 | |||
551 | Aggregate the annual demand of all census cells at NUTS3 to compare |
||
552 | with initial scaling parameters from DemandRegio. |
||
553 | """ |
||
554 | |||
555 | df_nuts3_annual_sum = db.select_dataframe( |
||
556 | sql=""" |
||
557 | SELECT dr.nuts3, dr.scenario, dr.demand_regio_sum, profiles.profile_sum |
||
558 | FROM ( |
||
559 | SELECT scenario, SUM(demand) AS profile_sum, vg250_nuts3 |
||
560 | FROM demand.egon_demandregio_zensus_electricity AS egon, |
||
561 | boundaries.egon_map_zensus_vg250 AS boundaries |
||
562 | Where egon.zensus_population_id = boundaries.zensus_population_id |
||
563 | AND sector = 'residential' |
||
564 | GROUP BY vg250_nuts3, scenario |
||
565 | ) AS profiles |
||
566 | JOIN ( |
||
567 | SELECT nuts3, scenario, sum(demand) AS demand_regio_sum |
||
568 | FROM demand.egon_demandregio_hh |
||
569 | GROUP BY year, scenario, nuts3 |
||
570 | ) AS dr |
||
571 | ON profiles.vg250_nuts3 = dr.nuts3 and profiles.scenario = dr.scenario |
||
572 | """ |
||
573 | ) |
||
574 | |||
575 | np.testing.assert_allclose( |
||
576 | actual=df_nuts3_annual_sum["profile_sum"], |
||
577 | desired=df_nuts3_annual_sum["demand_regio_sum"], |
||
578 | rtol=rtol, |
||
579 | verbose=False, |
||
580 | ) |
||
581 | |||
582 | logger.info( |
||
583 | "Aggregated annual residential electricity demand" |
||
584 | " matches with DemandRegio at NUTS-3." |
||
585 | ) |
||
586 | |||
587 | |||
588 | def residential_electricity_hh_refinement(rtol=1e-5): |
||
589 | """Sanity check for dataset electricity_demand_timeseries : |
||
590 | Household Demands |
||
591 | |||
592 | Check sum of aggregated household types after refinement method |
||
593 | was applied and compare it to the original census values.""" |
||
594 | |||
595 | df_refinement = db.select_dataframe( |
||
596 | sql=""" |
||
597 | SELECT refined.nuts3, refined.characteristics_code, |
||
598 | refined.sum_refined::int, census.sum_census::int |
||
599 | FROM( |
||
600 | SELECT nuts3, characteristics_code, SUM(hh_10types) as sum_refined |
||
601 | FROM society.egon_destatis_zensus_household_per_ha_refined |
||
602 | GROUP BY nuts3, characteristics_code) |
||
603 | AS refined |
||
604 | JOIN( |
||
605 | SELECT t.nuts3, t.characteristics_code, sum(orig) as sum_census |
||
606 | FROM( |
||
607 | SELECT nuts3, cell_id, characteristics_code, |
||
608 | sum(DISTINCT(hh_5types))as orig |
||
609 | FROM society.egon_destatis_zensus_household_per_ha_refined |
||
610 | GROUP BY cell_id, characteristics_code, nuts3) AS t |
||
611 | GROUP BY t.nuts3, t.characteristics_code ) AS census |
||
612 | ON refined.nuts3 = census.nuts3 |
||
613 | AND refined.characteristics_code = census.characteristics_code |
||
614 | """ |
||
615 | ) |
||
616 | |||
617 | np.testing.assert_allclose( |
||
618 | actual=df_refinement["sum_refined"], |
||
619 | desired=df_refinement["sum_census"], |
||
620 | rtol=rtol, |
||
621 | verbose=False, |
||
622 | ) |
||
623 | |||
624 | logger.info("All Aggregated household types match at NUTS-3.") |
||
625 | |||
626 | |||
627 | def cts_electricity_demand_share(rtol=1e-5): |
||
628 | """Sanity check for dataset electricity_demand_timeseries : |
||
629 | CtsBuildings |
||
630 | |||
631 | Check sum of aggregated cts electricity demand share which equals to one |
||
632 | for every substation as the substation profile is linearly disaggregated |
||
633 | to all buildings.""" |
||
634 | |||
635 | with db.session_scope() as session: |
||
636 | cells_query = session.query(EgonCtsElectricityDemandBuildingShare) |
||
637 | |||
638 | df_demand_share = pd.read_sql( |
||
639 | cells_query.statement, cells_query.session.bind, index_col=None |
||
640 | ) |
||
641 | |||
642 | np.testing.assert_allclose( |
||
643 | actual=df_demand_share.groupby(["bus_id", "scenario"])[ |
||
644 | "profile_share" |
||
645 | ].sum(), |
||
646 | desired=1, |
||
647 | rtol=rtol, |
||
648 | verbose=False, |
||
649 | ) |
||
650 | |||
651 | logger.info("The aggregated demand shares equal to one!.") |
||
652 | |||
653 | |||
654 | def cts_heat_demand_share(rtol=1e-5): |
||
655 | """Sanity check for dataset electricity_demand_timeseries |
||
656 | : CtsBuildings |
||
657 | |||
658 | Check sum of aggregated cts heat demand share which equals to one |
||
659 | for every substation as the substation profile is linearly disaggregated |
||
660 | to all buildings.""" |
||
661 | |||
662 | with db.session_scope() as session: |
||
663 | cells_query = session.query(EgonCtsHeatDemandBuildingShare) |
||
664 | |||
665 | df_demand_share = pd.read_sql( |
||
666 | cells_query.statement, cells_query.session.bind, index_col=None |
||
667 | ) |
||
668 | |||
669 | np.testing.assert_allclose( |
||
670 | actual=df_demand_share.groupby(["bus_id", "scenario"])[ |
||
671 | "profile_share" |
||
672 | ].sum(), |
||
673 | desired=1, |
||
674 | rtol=rtol, |
||
675 | verbose=False, |
||
676 | ) |
||
677 | |||
678 | logger.info("The aggregated demand shares equal to one!.") |
||
679 | |||
680 | |||
681 | def sanitycheck_pv_rooftop_buildings(): |
||
682 | def egon_power_plants_pv_roof_building(): |
||
683 | sql = """ |
||
684 | SELECT * |
||
685 | FROM supply.egon_power_plants_pv_roof_building |
||
686 | """ |
||
687 | |||
688 | return db.select_dataframe(sql, index_col="index") |
||
689 | |||
690 | pv_roof_df = egon_power_plants_pv_roof_building() |
||
691 | |||
692 | valid_buildings_gdf = load_building_data() |
||
693 | |||
694 | valid_buildings_gdf = valid_buildings_gdf.assign( |
||
695 | bus_id=valid_buildings_gdf.bus_id.astype(int), |
||
696 | overlay_id=valid_buildings_gdf.overlay_id.astype(int), |
||
697 | max_cap=valid_buildings_gdf.building_area.multiply( |
||
698 | ROOF_FACTOR * PV_CAP_PER_SQ_M |
||
699 | ), |
||
700 | ) |
||
701 | |||
702 | merge_df = pv_roof_df.merge( |
||
703 | valid_buildings_gdf[["building_area"]], |
||
704 | how="left", |
||
705 | left_on="building_id", |
||
706 | right_index=True, |
||
707 | ) |
||
708 | |||
709 | assert ( |
||
710 | len(merge_df.loc[merge_df.building_area.isna()]) == 0 |
||
711 | ), f"{len(merge_df.loc[merge_df.building_area.isna()])} != 0" |
||
712 | |||
713 | scenarios = ["status_quo", "eGon2035"] |
||
714 | |||
715 | base_path = Path(egon.data.__path__[0]).resolve() |
||
716 | |||
717 | res_dir = base_path / "sanity_checks" |
||
718 | |||
719 | res_dir.mkdir(parents=True, exist_ok=True) |
||
720 | |||
721 | for scenario in scenarios: |
||
722 | fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 8)) |
||
723 | |||
724 | scenario_df = merge_df.loc[merge_df.scenario == scenario] |
||
725 | |||
726 | logger.info( |
||
727 | scenario + " Capacity:\n" + str(scenario_df.capacity.describe()) |
||
728 | ) |
||
729 | |||
730 | small_gens_df = scenario_df.loc[scenario_df.capacity < 100] |
||
731 | |||
732 | sns.histplot(data=small_gens_df, x="capacity", ax=ax1).set_title( |
||
733 | scenario |
||
734 | ) |
||
735 | |||
736 | sns.scatterplot( |
||
737 | data=small_gens_df, x="capacity", y="building_area", ax=ax2 |
||
738 | ).set_title(scenario) |
||
739 | |||
740 | plt.tight_layout() |
||
741 | |||
742 | plt.savefig( |
||
743 | res_dir / f"{scenario}_pv_rooftop_distribution.png", |
||
744 | bbox_inches="tight", |
||
745 | ) |
||
746 | |||
747 | for scenario in SCENARIOS: |
||
748 | if scenario == "eGon2035": |
||
749 | assert isclose( |
||
750 | scenario_data(scenario=scenario).capacity.sum(), |
||
751 | merge_df.loc[merge_df.scenario == scenario].capacity.sum(), |
||
752 | rel_tol=1e-02, |
||
753 | ), ( |
||
754 | f"{scenario_data(scenario=scenario).capacity.sum()} != " |
||
755 | f"{merge_df.loc[merge_df.scenario == scenario].capacity.sum()}" |
||
756 | ) |
||
757 | elif scenario == "eGon100RE": |
||
758 | sources = config.datasets()["solar_rooftop"]["sources"] |
||
759 | |||
760 | target = db.select_dataframe( |
||
761 | f""" |
||
762 | SELECT capacity |
||
763 | FROM {sources['scenario_capacities']['schema']}. |
||
764 | {sources['scenario_capacities']['table']} a |
||
765 | WHERE carrier = 'solar_rooftop' |
||
766 | AND scenario_name = '{scenario}' |
||
767 | """ |
||
768 | ).capacity[0] |
||
769 | |||
770 | dataset = config.settings()["egon-data"]["--dataset-boundary"] |
||
771 | |||
772 | View Code Duplication | if dataset == "Schleswig-Holstein": |
|
773 | sources = config.datasets()["scenario_input"]["sources"] |
||
774 | |||
775 | path = Path( |
||
776 | f"./data_bundle_egon_data/nep2035_version2021/" |
||
777 | f"{sources['eGon2035']['capacities']}" |
||
778 | ).resolve() |
||
779 | |||
780 | total_2035 = ( |
||
781 | pd.read_excel( |
||
782 | path, |
||
783 | sheet_name="1.Entwurf_NEP2035_V2021", |
||
784 | index_col="Unnamed: 0", |
||
785 | ).at["PV (Aufdach)", "Summe"] |
||
786 | * 1000 |
||
787 | ) |
||
788 | sh_2035 = scenario_data(scenario="eGon2035").capacity.sum() |
||
789 | |||
790 | share = sh_2035 / total_2035 |
||
791 | |||
792 | target *= share |
||
793 | |||
794 | assert isclose( |
||
795 | target, |
||
796 | merge_df.loc[merge_df.scenario == scenario].capacity.sum(), |
||
797 | rel_tol=1e-02, |
||
798 | ), ( |
||
799 | f"{target} != " |
||
800 | f"{merge_df.loc[merge_df.scenario == scenario].capacity.sum()}" |
||
801 | ) |
||
802 | else: |
||
803 | raise ValueError(f"Scenario {scenario} is not valid.") |
||
804 | |||
805 | |||
806 | def sanitycheck_emobility_mit(): |
||
807 | """Execute sanity checks for eMobility: motorized individual travel |
||
808 | |||
809 | Checks data integrity for eGon2035, eGon2035_lowflex and eGon100RE scenario |
||
810 | using assertions: |
||
811 | |||
812 | 1. Allocated EV numbers and EVs allocated to grid districts |
||
813 | 2. Trip data (original inout data from simBEV) |
||
814 | 3. Model data in eTraGo PF tables (grid.egon_etrago_*) |
||
815 | |||
816 | Parameters |
||
817 | ---------- |
||
818 | None |
||
819 | |||
820 | Returns |
||
821 | ------- |
||
822 | None |
||
823 | """ |
||
824 | |||
825 | def check_ev_allocation(): |
||
826 | # Get target number for scenario |
||
827 | ev_count_target = scenario_variation_parameters["ev_count"] |
||
828 | print(f" Target count: {str(ev_count_target)}") |
||
829 | |||
830 | # Get allocated numbers |
||
831 | ev_counts_dict = {} |
||
832 | with db.session_scope() as session: |
||
833 | for table, level in zip( |
||
834 | [ |
||
835 | EgonEvCountMvGridDistrict, |
||
836 | EgonEvCountMunicipality, |
||
837 | EgonEvCountRegistrationDistrict, |
||
838 | ], |
||
839 | ["Grid District", "Municipality", "Registration District"], |
||
840 | ): |
||
841 | query = session.query( |
||
842 | func.sum( |
||
843 | table.bev_mini |
||
844 | + table.bev_medium |
||
845 | + table.bev_luxury |
||
846 | + table.phev_mini |
||
847 | + table.phev_medium |
||
848 | + table.phev_luxury |
||
849 | ).label("ev_count") |
||
850 | ).filter( |
||
851 | table.scenario == scenario_name, |
||
852 | table.scenario_variation == scenario_var_name, |
||
853 | ) |
||
854 | |||
855 | ev_counts = pd.read_sql( |
||
856 | query.statement, query.session.bind, index_col=None |
||
857 | ) |
||
858 | ev_counts_dict[level] = ev_counts.iloc[0].ev_count |
||
859 | print( |
||
860 | f" Count table: Total count for level {level} " |
||
861 | f"(table: {table.__table__}): " |
||
862 | f"{str(ev_counts_dict[level])}" |
||
863 | ) |
||
864 | |||
865 | # Compare with scenario target (only if not in testmode) |
||
866 | if TESTMODE_OFF: |
||
867 | for level, count in ev_counts_dict.items(): |
||
868 | np.testing.assert_allclose( |
||
869 | count, |
||
870 | ev_count_target, |
||
871 | rtol=0.0001, |
||
872 | err_msg=f"EV numbers in {level} seems to be flawed.", |
||
873 | ) |
||
874 | else: |
||
875 | print(" Testmode is on, skipping sanity check...") |
||
876 | |||
877 | # Get allocated EVs in grid districts |
||
878 | with db.session_scope() as session: |
||
879 | query = session.query( |
||
880 | func.count(EgonEvMvGridDistrict.egon_ev_pool_ev_id).label( |
||
881 | "ev_count" |
||
882 | ), |
||
883 | ).filter( |
||
884 | EgonEvMvGridDistrict.scenario == scenario_name, |
||
885 | EgonEvMvGridDistrict.scenario_variation == scenario_var_name, |
||
886 | ) |
||
887 | ev_count_alloc = ( |
||
888 | pd.read_sql(query.statement, query.session.bind, index_col=None) |
||
889 | .iloc[0] |
||
890 | .ev_count |
||
891 | ) |
||
892 | print( |
||
893 | f" EVs allocated to Grid Districts " |
||
894 | f"(table: {EgonEvMvGridDistrict.__table__}) total count: " |
||
895 | f"{str(ev_count_alloc)}" |
||
896 | ) |
||
897 | |||
898 | # Compare with scenario target (only if not in testmode) |
||
899 | if TESTMODE_OFF: |
||
900 | np.testing.assert_allclose( |
||
901 | ev_count_alloc, |
||
902 | ev_count_target, |
||
903 | rtol=0.0001, |
||
904 | err_msg=( |
||
905 | "EV numbers allocated to Grid Districts seems to be " |
||
906 | "flawed." |
||
907 | ), |
||
908 | ) |
||
909 | else: |
||
910 | print(" Testmode is on, skipping sanity check...") |
||
911 | |||
912 | return ev_count_alloc |
||
913 | |||
914 | def check_trip_data(): |
||
915 | # Check if trips start at timestep 0 and have a max. of 35040 steps |
||
916 | # (8760h in 15min steps) |
||
917 | print(" Checking timeranges...") |
||
918 | with db.session_scope() as session: |
||
919 | query = session.query( |
||
920 | func.count(EgonEvTrip.event_id).label("cnt") |
||
921 | ).filter( |
||
922 | or_( |
||
923 | and_( |
||
924 | EgonEvTrip.park_start > 0, |
||
925 | EgonEvTrip.simbev_event_id == 0, |
||
926 | ), |
||
927 | EgonEvTrip.park_end |
||
928 | > (60 / int(meta_run_config.stepsize)) * 8760, |
||
929 | ), |
||
930 | EgonEvTrip.scenario == scenario_name, |
||
931 | ) |
||
932 | invalid_trips = pd.read_sql( |
||
933 | query.statement, query.session.bind, index_col=None |
||
934 | ) |
||
935 | np.testing.assert_equal( |
||
936 | invalid_trips.iloc[0].cnt, |
||
937 | 0, |
||
938 | err_msg=( |
||
939 | f"{str(invalid_trips.iloc[0].cnt)} trips in table " |
||
940 | f"{EgonEvTrip.__table__} have invalid timesteps." |
||
941 | ), |
||
942 | ) |
||
943 | |||
944 | # Check if charging demand can be covered by available charging energy |
||
945 | # while parking |
||
946 | print(" Compare charging demand with available power...") |
||
947 | with db.session_scope() as session: |
||
948 | query = session.query( |
||
949 | func.count(EgonEvTrip.event_id).label("cnt") |
||
950 | ).filter( |
||
951 | func.round( |
||
952 | cast( |
||
953 | (EgonEvTrip.park_end - EgonEvTrip.park_start + 1) |
||
954 | * EgonEvTrip.charging_capacity_nominal |
||
955 | * (int(meta_run_config.stepsize) / 60), |
||
956 | Numeric, |
||
957 | ), |
||
958 | 3, |
||
959 | ) |
||
960 | < cast(EgonEvTrip.charging_demand, Numeric), |
||
961 | EgonEvTrip.scenario == scenario_name, |
||
962 | ) |
||
963 | invalid_trips = pd.read_sql( |
||
964 | query.statement, query.session.bind, index_col=None |
||
965 | ) |
||
966 | np.testing.assert_equal( |
||
967 | invalid_trips.iloc[0].cnt, |
||
968 | 0, |
||
969 | err_msg=( |
||
970 | f"In {str(invalid_trips.iloc[0].cnt)} trips (table: " |
||
971 | f"{EgonEvTrip.__table__}) the charging demand cannot be " |
||
972 | f"covered by available charging power." |
||
973 | ), |
||
974 | ) |
||
975 | |||
976 | def check_model_data(): |
||
977 | # Check if model components were fully created |
||
978 | print(" Check if all model components were created...") |
||
979 | # Get MVGDs which got EV allocated |
||
980 | with db.session_scope() as session: |
||
981 | query = ( |
||
982 | session.query( |
||
983 | EgonEvMvGridDistrict.bus_id, |
||
984 | ) |
||
985 | .filter( |
||
986 | EgonEvMvGridDistrict.scenario == scenario_name, |
||
987 | EgonEvMvGridDistrict.scenario_variation |
||
988 | == scenario_var_name, |
||
989 | ) |
||
990 | .group_by(EgonEvMvGridDistrict.bus_id) |
||
991 | ) |
||
992 | mvgds_with_ev = ( |
||
993 | pd.read_sql(query.statement, query.session.bind, index_col=None) |
||
994 | .bus_id.sort_values() |
||
995 | .to_list() |
||
996 | ) |
||
997 | |||
998 | # Load model components |
||
999 | with db.session_scope() as session: |
||
1000 | query = ( |
||
1001 | session.query( |
||
1002 | EgonPfHvLink.bus0.label("mvgd_bus_id"), |
||
1003 | EgonPfHvLoad.bus.label("emob_bus_id"), |
||
1004 | EgonPfHvLoad.load_id.label("load_id"), |
||
1005 | EgonPfHvStore.store_id.label("store_id"), |
||
1006 | ) |
||
1007 | .select_from(EgonPfHvLoad, EgonPfHvStore) |
||
1008 | .join( |
||
1009 | EgonPfHvLoadTimeseries, |
||
1010 | EgonPfHvLoadTimeseries.load_id == EgonPfHvLoad.load_id, |
||
1011 | ) |
||
1012 | .join( |
||
1013 | EgonPfHvStoreTimeseries, |
||
1014 | EgonPfHvStoreTimeseries.store_id == EgonPfHvStore.store_id, |
||
1015 | ) |
||
1016 | .filter( |
||
1017 | EgonPfHvLoad.carrier == "land_transport_EV", |
||
1018 | EgonPfHvLoad.scn_name == scenario_name, |
||
1019 | EgonPfHvLoadTimeseries.scn_name == scenario_name, |
||
1020 | EgonPfHvStore.carrier == "battery_storage", |
||
1021 | EgonPfHvStore.scn_name == scenario_name, |
||
1022 | EgonPfHvStoreTimeseries.scn_name == scenario_name, |
||
1023 | EgonPfHvLink.scn_name == scenario_name, |
||
1024 | EgonPfHvLink.bus1 == EgonPfHvLoad.bus, |
||
1025 | EgonPfHvLink.bus1 == EgonPfHvStore.bus, |
||
1026 | ) |
||
1027 | ) |
||
1028 | model_components = pd.read_sql( |
||
1029 | query.statement, query.session.bind, index_col=None |
||
1030 | ) |
||
1031 | |||
1032 | # Check number of buses with model components connected |
||
1033 | mvgd_buses_with_ev = model_components.loc[ |
||
1034 | model_components.mvgd_bus_id.isin(mvgds_with_ev) |
||
1035 | ] |
||
1036 | np.testing.assert_equal( |
||
1037 | len(mvgds_with_ev), |
||
1038 | len(mvgd_buses_with_ev), |
||
1039 | err_msg=( |
||
1040 | f"Number of Grid Districts with connected model components " |
||
1041 | f"({str(len(mvgd_buses_with_ev))} in tables egon_etrago_*) " |
||
1042 | f"differ from number of Grid Districts that got EVs " |
||
1043 | f"allocated ({len(mvgds_with_ev)} in table " |
||
1044 | f"{EgonEvMvGridDistrict.__table__})." |
||
1045 | ), |
||
1046 | ) |
||
1047 | |||
1048 | # Check if all required components exist (if no id is NaN) |
||
1049 | np.testing.assert_equal( |
||
1050 | model_components.drop_duplicates().isna().any().any(), |
||
1051 | False, |
||
1052 | err_msg=( |
||
1053 | f"Some components are missing (see True values): " |
||
1054 | f"{model_components.drop_duplicates().isna().any()}" |
||
1055 | ), |
||
1056 | ) |
||
1057 | |||
1058 | # Get all model timeseries |
||
1059 | print(" Loading model timeseries...") |
||
1060 | # Get all model timeseries |
||
1061 | model_ts_dict = { |
||
1062 | "Load": { |
||
1063 | "carrier": "land_transport_EV", |
||
1064 | "table": EgonPfHvLoad, |
||
1065 | "table_ts": EgonPfHvLoadTimeseries, |
||
1066 | "column_id": "load_id", |
||
1067 | "columns_ts": ["p_set"], |
||
1068 | "ts": None, |
||
1069 | }, |
||
1070 | "Link": { |
||
1071 | "carrier": "BEV_charger", |
||
1072 | "table": EgonPfHvLink, |
||
1073 | "table_ts": EgonPfHvLinkTimeseries, |
||
1074 | "column_id": "link_id", |
||
1075 | "columns_ts": ["p_max_pu"], |
||
1076 | "ts": None, |
||
1077 | }, |
||
1078 | "Store": { |
||
1079 | "carrier": "battery_storage", |
||
1080 | "table": EgonPfHvStore, |
||
1081 | "table_ts": EgonPfHvStoreTimeseries, |
||
1082 | "column_id": "store_id", |
||
1083 | "columns_ts": ["e_min_pu", "e_max_pu"], |
||
1084 | "ts": None, |
||
1085 | }, |
||
1086 | } |
||
1087 | |||
1088 | with db.session_scope() as session: |
||
1089 | for node, attrs in model_ts_dict.items(): |
||
1090 | print(f" Loading {node} timeseries...") |
||
1091 | subquery = ( |
||
1092 | session.query(getattr(attrs["table"], attrs["column_id"])) |
||
1093 | .filter(attrs["table"].carrier == attrs["carrier"]) |
||
1094 | .filter(attrs["table"].scn_name == scenario_name) |
||
1095 | .subquery() |
||
1096 | ) |
||
1097 | |||
1098 | cols = [ |
||
1099 | getattr(attrs["table_ts"], c) for c in attrs["columns_ts"] |
||
1100 | ] |
||
1101 | query = session.query( |
||
1102 | getattr(attrs["table_ts"], attrs["column_id"]), *cols |
||
1103 | ).filter( |
||
1104 | getattr(attrs["table_ts"], attrs["column_id"]).in_( |
||
1105 | subquery |
||
1106 | ), |
||
1107 | attrs["table_ts"].scn_name == scenario_name, |
||
1108 | ) |
||
1109 | attrs["ts"] = pd.read_sql( |
||
1110 | query.statement, |
||
1111 | query.session.bind, |
||
1112 | index_col=attrs["column_id"], |
||
1113 | ) |
||
1114 | |||
1115 | # Check if all timeseries have 8760 steps |
||
1116 | print(" Checking timeranges...") |
||
1117 | for node, attrs in model_ts_dict.items(): |
||
1118 | for col in attrs["columns_ts"]: |
||
1119 | ts = attrs["ts"] |
||
1120 | invalid_ts = ts.loc[ts[col].apply(lambda _: len(_)) != 8760][ |
||
1121 | col |
||
1122 | ].apply(len) |
||
1123 | np.testing.assert_equal( |
||
1124 | len(invalid_ts), |
||
1125 | 0, |
||
1126 | err_msg=( |
||
1127 | f"{str(len(invalid_ts))} rows in timeseries do not " |
||
1128 | f"have 8760 timesteps. Table: " |
||
1129 | f"{attrs['table_ts'].__table__}, Column: {col}, IDs: " |
||
1130 | f"{str(list(invalid_ts.index))}" |
||
1131 | ), |
||
1132 | ) |
||
1133 | |||
1134 | # Compare total energy demand in model with some approximate values |
||
1135 | # (per EV: 14,000 km/a, 0.17 kWh/km) |
||
1136 | print(" Checking energy demand in model...") |
||
1137 | total_energy_model = ( |
||
1138 | model_ts_dict["Load"]["ts"].p_set.apply(lambda _: sum(_)).sum() |
||
1139 | / 1e6 |
||
1140 | ) |
||
1141 | print(f" Total energy amount in model: {total_energy_model} TWh") |
||
1142 | total_energy_scenario_approx = ev_count_alloc * 14000 * 0.17 / 1e9 |
||
1143 | print( |
||
1144 | f" Total approximated energy amount in scenario: " |
||
1145 | f"{total_energy_scenario_approx} TWh" |
||
1146 | ) |
||
1147 | np.testing.assert_allclose( |
||
1148 | total_energy_model, |
||
1149 | total_energy_scenario_approx, |
||
1150 | rtol=0.1, |
||
1151 | err_msg=( |
||
1152 | "The total energy amount in the model deviates heavily " |
||
1153 | "from the approximated value for current scenario." |
||
1154 | ), |
||
1155 | ) |
||
1156 | |||
1157 | # Compare total storage capacity |
||
1158 | print(" Checking storage capacity...") |
||
1159 | # Load storage capacities from model |
||
1160 | with db.session_scope() as session: |
||
1161 | query = session.query( |
||
1162 | func.sum(EgonPfHvStore.e_nom).label("e_nom") |
||
1163 | ).filter( |
||
1164 | EgonPfHvStore.scn_name == scenario_name, |
||
1165 | EgonPfHvStore.carrier == "battery_storage", |
||
1166 | ) |
||
1167 | storage_capacity_model = ( |
||
1168 | pd.read_sql( |
||
1169 | query.statement, query.session.bind, index_col=None |
||
1170 | ).e_nom.sum() |
||
1171 | / 1e3 |
||
1172 | ) |
||
1173 | print( |
||
1174 | f" Total storage capacity ({EgonPfHvStore.__table__}): " |
||
1175 | f"{round(storage_capacity_model, 1)} GWh" |
||
1176 | ) |
||
1177 | |||
1178 | # Load occurences of each EV |
||
1179 | with db.session_scope() as session: |
||
1180 | query = ( |
||
1181 | session.query( |
||
1182 | EgonEvMvGridDistrict.bus_id, |
||
1183 | EgonEvPool.type, |
||
1184 | func.count(EgonEvMvGridDistrict.egon_ev_pool_ev_id).label( |
||
1185 | "count" |
||
1186 | ), |
||
1187 | ) |
||
1188 | .join( |
||
1189 | EgonEvPool, |
||
1190 | EgonEvPool.ev_id |
||
1191 | == EgonEvMvGridDistrict.egon_ev_pool_ev_id, |
||
1192 | ) |
||
1193 | .filter( |
||
1194 | EgonEvMvGridDistrict.scenario == scenario_name, |
||
1195 | EgonEvMvGridDistrict.scenario_variation |
||
1196 | == scenario_var_name, |
||
1197 | EgonEvPool.scenario == scenario_name, |
||
1198 | ) |
||
1199 | .group_by(EgonEvMvGridDistrict.bus_id, EgonEvPool.type) |
||
1200 | ) |
||
1201 | count_per_ev_all = pd.read_sql( |
||
1202 | query.statement, query.session.bind, index_col="bus_id" |
||
1203 | ) |
||
1204 | count_per_ev_all["bat_cap"] = count_per_ev_all.type.map( |
||
1205 | meta_tech_data.battery_capacity |
||
1206 | ) |
||
1207 | count_per_ev_all["bat_cap_total_MWh"] = ( |
||
1208 | count_per_ev_all["count"] * count_per_ev_all.bat_cap / 1e3 |
||
1209 | ) |
||
1210 | storage_capacity_simbev = count_per_ev_all.bat_cap_total_MWh.div( |
||
1211 | 1e3 |
||
1212 | ).sum() |
||
1213 | print( |
||
1214 | f" Total storage capacity (simBEV): " |
||
1215 | f"{round(storage_capacity_simbev, 1)} GWh" |
||
1216 | ) |
||
1217 | |||
1218 | np.testing.assert_allclose( |
||
1219 | storage_capacity_model, |
||
1220 | storage_capacity_simbev, |
||
1221 | rtol=0.01, |
||
1222 | err_msg=( |
||
1223 | "The total storage capacity in the model deviates heavily " |
||
1224 | "from the input data provided by simBEV for current scenario." |
||
1225 | ), |
||
1226 | ) |
||
1227 | |||
1228 | # Check SoC storage constraint: e_min_pu < e_max_pu for all timesteps |
||
1229 | print(" Validating SoC constraints...") |
||
1230 | stores_with_invalid_soc = [] |
||
1231 | for idx, row in model_ts_dict["Store"]["ts"].iterrows(): |
||
1232 | ts = row[["e_min_pu", "e_max_pu"]] |
||
1233 | x = np.array(ts.e_min_pu) > np.array(ts.e_max_pu) |
||
1234 | if x.any(): |
||
1235 | stores_with_invalid_soc.append(idx) |
||
1236 | |||
1237 | np.testing.assert_equal( |
||
1238 | len(stores_with_invalid_soc), |
||
1239 | 0, |
||
1240 | err_msg=( |
||
1241 | f"The store constraint e_min_pu < e_max_pu does not apply " |
||
1242 | f"for some storages in {EgonPfHvStoreTimeseries.__table__}. " |
||
1243 | f"Invalid store_ids: {stores_with_invalid_soc}" |
||
1244 | ), |
||
1245 | ) |
||
1246 | |||
1247 | def check_model_data_lowflex_eGon2035(): |
||
1248 | # TODO: Add eGon100RE_lowflex |
||
1249 | print("") |
||
1250 | print("SCENARIO: eGon2035_lowflex") |
||
1251 | |||
1252 | # Compare driving load and charging load |
||
1253 | print(" Loading eGon2035 model timeseries: driving load...") |
||
1254 | with db.session_scope() as session: |
||
1255 | query = ( |
||
1256 | session.query( |
||
1257 | EgonPfHvLoad.load_id, |
||
1258 | EgonPfHvLoadTimeseries.p_set, |
||
1259 | ) |
||
1260 | .join( |
||
1261 | EgonPfHvLoadTimeseries, |
||
1262 | EgonPfHvLoadTimeseries.load_id == EgonPfHvLoad.load_id, |
||
1263 | ) |
||
1264 | .filter( |
||
1265 | EgonPfHvLoad.carrier == "land_transport_EV", |
||
1266 | EgonPfHvLoad.scn_name == "eGon2035", |
||
1267 | EgonPfHvLoadTimeseries.scn_name == "eGon2035", |
||
1268 | ) |
||
1269 | ) |
||
1270 | model_driving_load = pd.read_sql( |
||
1271 | query.statement, query.session.bind, index_col=None |
||
1272 | ) |
||
1273 | driving_load = np.array(model_driving_load.p_set.to_list()).sum(axis=0) |
||
1274 | |||
1275 | print( |
||
1276 | " Loading eGon2035_lowflex model timeseries: dumb charging " |
||
1277 | "load..." |
||
1278 | ) |
||
1279 | with db.session_scope() as session: |
||
1280 | query = ( |
||
1281 | session.query( |
||
1282 | EgonPfHvLoad.load_id, |
||
1283 | EgonPfHvLoadTimeseries.p_set, |
||
1284 | ) |
||
1285 | .join( |
||
1286 | EgonPfHvLoadTimeseries, |
||
1287 | EgonPfHvLoadTimeseries.load_id == EgonPfHvLoad.load_id, |
||
1288 | ) |
||
1289 | .filter( |
||
1290 | EgonPfHvLoad.carrier == "land_transport_EV", |
||
1291 | EgonPfHvLoad.scn_name == "eGon2035_lowflex", |
||
1292 | EgonPfHvLoadTimeseries.scn_name == "eGon2035_lowflex", |
||
1293 | ) |
||
1294 | ) |
||
1295 | model_charging_load_lowflex = pd.read_sql( |
||
1296 | query.statement, query.session.bind, index_col=None |
||
1297 | ) |
||
1298 | charging_load = np.array( |
||
1299 | model_charging_load_lowflex.p_set.to_list() |
||
1300 | ).sum(axis=0) |
||
1301 | |||
1302 | # Ratio of driving and charging load should be 0.9 due to charging |
||
1303 | # efficiency |
||
1304 | print(" Compare cumulative loads...") |
||
1305 | print(f" Driving load (eGon2035): {driving_load.sum() / 1e6} TWh") |
||
1306 | print( |
||
1307 | f" Dumb charging load (eGon2035_lowflex): " |
||
1308 | f"{charging_load.sum() / 1e6} TWh" |
||
1309 | ) |
||
1310 | driving_load_theoretical = ( |
||
1311 | float(meta_run_config.eta_cp) * charging_load.sum() |
||
1312 | ) |
||
1313 | np.testing.assert_allclose( |
||
1314 | driving_load.sum(), |
||
1315 | driving_load_theoretical, |
||
1316 | rtol=0.01, |
||
1317 | err_msg=( |
||
1318 | f"The driving load (eGon2035) deviates by more than 1% " |
||
1319 | f"from the theoretical driving load calculated from charging " |
||
1320 | f"load (eGon2035_lowflex) with an efficiency of " |
||
1321 | f"{float(meta_run_config.eta_cp)}." |
||
1322 | ), |
||
1323 | ) |
||
1324 | |||
1325 | print("=====================================================") |
||
1326 | print("=== SANITY CHECKS FOR MOTORIZED INDIVIDUAL TRAVEL ===") |
||
1327 | print("=====================================================") |
||
1328 | |||
1329 | for scenario_name in ["eGon2035", "eGon100RE"]: |
||
1330 | scenario_var_name = DATASET_CFG["scenario"]["variation"][scenario_name] |
||
1331 | |||
1332 | print("") |
||
1333 | print(f"SCENARIO: {scenario_name}, VARIATION: {scenario_var_name}") |
||
1334 | |||
1335 | # Load scenario params for scenario and scenario variation |
||
1336 | scenario_variation_parameters = get_sector_parameters( |
||
1337 | "mobility", scenario=scenario_name |
||
1338 | )["motorized_individual_travel"][scenario_var_name] |
||
1339 | |||
1340 | # Load simBEV run config and tech data |
||
1341 | meta_run_config = read_simbev_metadata_file( |
||
1342 | scenario_name, "config" |
||
1343 | ).loc["basic"] |
||
1344 | meta_tech_data = read_simbev_metadata_file(scenario_name, "tech_data") |
||
1345 | |||
1346 | print("") |
||
1347 | print("Checking EV counts...") |
||
1348 | ev_count_alloc = check_ev_allocation() |
||
1349 | |||
1350 | print("") |
||
1351 | print("Checking trip data...") |
||
1352 | check_trip_data() |
||
1353 | |||
1354 | print("") |
||
1355 | print("Checking model data...") |
||
1356 | check_model_data() |
||
1357 | |||
1358 | print("") |
||
1359 | check_model_data_lowflex_eGon2035() |
||
1360 | |||
1361 | print("=====================================================") |
||
1362 | |||
1363 | |||
1364 | def sanitycheck_home_batteries(): |
||
1365 | # get constants |
||
1366 | constants = config.datasets()["home_batteries"]["constants"] |
||
1367 | scenarios = constants["scenarios"] |
||
1368 | cbat_pbat_ratio = get_cbat_pbat_ratio() |
||
1369 | |||
1370 | sources = config.datasets()["home_batteries"]["sources"] |
||
1371 | targets = config.datasets()["home_batteries"]["targets"] |
||
1372 | |||
1373 | for scenario in scenarios: |
||
1374 | # get home battery capacity per mv grid id |
||
1375 | sql = f""" |
||
1376 | SELECT el_capacity as p_nom, bus_id FROM |
||
1377 | {sources["storage"]["schema"]} |
||
1378 | .{sources["storage"]["table"]} |
||
1379 | WHERE carrier = 'home_battery' |
||
1380 | AND scenario = '{scenario}' |
||
1381 | """ |
||
1382 | |||
1383 | home_batteries_df = db.select_dataframe(sql, index_col="bus_id") |
||
1384 | |||
1385 | home_batteries_df = home_batteries_df.assign( |
||
1386 | capacity=home_batteries_df.p_nom * cbat_pbat_ratio |
||
1387 | ) |
||
1388 | |||
1389 | sql = f""" |
||
1390 | SELECT * FROM |
||
1391 | {targets["home_batteries"]["schema"]} |
||
1392 | .{targets["home_batteries"]["table"]} |
||
1393 | WHERE scenario = '{scenario}' |
||
1394 | """ |
||
1395 | |||
1396 | home_batteries_buildings_df = db.select_dataframe( |
||
1397 | sql, index_col="index" |
||
1398 | ) |
||
1399 | |||
1400 | df = ( |
||
1401 | home_batteries_buildings_df[["bus_id", "p_nom", "capacity"]] |
||
1402 | .groupby("bus_id") |
||
1403 | .sum() |
||
1404 | ) |
||
1405 | |||
1406 | assert (home_batteries_df.round(6) == df.round(6)).all().all() |
||
1407 | |||
1408 | |||
1409 | def sanity_check_gas_buses(scn): |
||
1410 | """Execute sanity checks for the gas buses in Germany |
||
1411 | |||
1412 | Returns print statements as sanity checks for the CH4, H2_grid and |
||
1413 | H2_saltcavern buses. |
||
1414 | |||
1415 | * For all of them, it is checked if they are not isolated. |
||
1416 | * For the grid buses, the deviation is calculated between the |
||
1417 | number of gas grid buses in the database and the original |
||
1418 | Scigrid_gas number of gas buses in Germany. |
||
1419 | |||
1420 | Parameters |
||
1421 | ---------- |
||
1422 | scn_name : str |
||
1423 | Name of the scenario |
||
1424 | |||
1425 | """ |
||
1426 | logger.info("BUSES") |
||
1427 | |||
1428 | # Are gas buses isolated? |
||
1429 | corresponding_carriers = { |
||
1430 | "eGon2035": { |
||
1431 | "CH4": "CH4", |
||
1432 | "H2_grid": "H2_feedin", |
||
1433 | "H2_saltcavern": "power_to_H2", |
||
1434 | }, |
||
1435 | # "eGon100RE": { |
||
1436 | # "CH4": "CH4", |
||
1437 | # "H2_grid": "H2_retrofit", |
||
1438 | # "H2_saltcavern": "H2_extension", |
||
1439 | # } |
||
1440 | } |
||
1441 | for key in corresponding_carriers[scn]: |
||
1442 | isolated_gas_buses = db.select_dataframe( |
||
1443 | f""" |
||
1444 | SELECT bus_id, carrier, country |
||
1445 | FROM grid.egon_etrago_bus |
||
1446 | WHERE scn_name = '{scn}' |
||
1447 | AND carrier = '{key}' |
||
1448 | AND country = 'DE' |
||
1449 | AND bus_id NOT IN |
||
1450 | (SELECT bus0 |
||
1451 | FROM grid.egon_etrago_link |
||
1452 | WHERE scn_name = '{scn}' |
||
1453 | AND carrier = '{corresponding_carriers[scn][key]}') |
||
1454 | AND bus_id NOT IN |
||
1455 | (SELECT bus1 |
||
1456 | FROM grid.egon_etrago_link |
||
1457 | WHERE scn_name = '{scn}' |
||
1458 | AND carrier = '{corresponding_carriers[scn][key]}') |
||
1459 | ; |
||
1460 | """, |
||
1461 | warning=False, |
||
1462 | ) |
||
1463 | if not isolated_gas_buses.empty: |
||
1464 | logger.info(f"Isolated {key} buses:") |
||
1465 | logger.info(isolated_gas_buses) |
||
1466 | |||
1467 | # Deviation of the gas grid buses number |
||
1468 | target_file = ( |
||
1469 | Path(".") / "datasets" / "gas_data" / "data" / "IGGIELGN_Nodes.csv" |
||
1470 | ) |
||
1471 | |||
1472 | Grid_buses_list = pd.read_csv( |
||
1473 | target_file, |
||
1474 | delimiter=";", |
||
1475 | decimal=".", |
||
1476 | usecols=["country_code"], |
||
1477 | ) |
||
1478 | |||
1479 | Grid_buses_list = Grid_buses_list[ |
||
1480 | Grid_buses_list["country_code"].str.match("DE") |
||
1481 | ] |
||
1482 | input_grid_buses = len(Grid_buses_list.index) |
||
1483 | |||
1484 | for carrier in ["CH4", "H2_grid"]: |
||
1485 | output_grid_buses_df = db.select_dataframe( |
||
1486 | f""" |
||
1487 | SELECT bus_id |
||
1488 | FROM grid.egon_etrago_bus |
||
1489 | WHERE scn_name = '{scn}' |
||
1490 | AND country = 'DE' |
||
1491 | AND carrier = '{carrier}'; |
||
1492 | """, |
||
1493 | warning=False, |
||
1494 | ) |
||
1495 | output_grid_buses = len(output_grid_buses_df.index) |
||
1496 | |||
1497 | e_grid_buses = ( |
||
1498 | round( |
||
1499 | (output_grid_buses - input_grid_buses) / input_grid_buses, |
||
1500 | 2, |
||
1501 | ) |
||
1502 | * 100 |
||
1503 | ) |
||
1504 | logger.info(f"Deviation {carrier} buses: {e_grid_buses} %") |
||
1505 | |||
1506 | |||
1507 | def sanity_check_CH4_stores(scn): |
||
1508 | """Execute sanity checks for the CH4 stores in Germany |
||
1509 | |||
1510 | Returns print statements as sanity checks for the CH4 stores |
||
1511 | capacity in Germany. The deviation is calculated between: |
||
1512 | |||
1513 | * the sum of the capacities of the stores with carrier 'CH4' |
||
1514 | in the database (for one scenario) and |
||
1515 | * the sum of: |
||
1516 | |||
1517 | * the capacity the gas grid allocated to CH4 (total capacity |
||
1518 | in eGon2035 and capacity reduced the share of the grid |
||
1519 | allocated to H2 in eGon100RE) |
||
1520 | * the total capacity of the CH4 stores in Germany (source: GIE) |
||
1521 | |||
1522 | Parameters |
||
1523 | ---------- |
||
1524 | scn_name : str |
||
1525 | Name of the scenario |
||
1526 | |||
1527 | """ |
||
1528 | output_CH4_stores = db.select_dataframe( |
||
1529 | f"""SELECT SUM(e_nom::numeric) as e_nom_germany |
||
1530 | FROM grid.egon_etrago_store |
||
1531 | WHERE scn_name = '{scn}' |
||
1532 | AND carrier = 'CH4' |
||
1533 | AND bus IN |
||
1534 | (SELECT bus_id |
||
1535 | FROM grid.egon_etrago_bus |
||
1536 | WHERE scn_name = '{scn}' |
||
1537 | AND country = 'DE' |
||
1538 | AND carrier = 'CH4'); |
||
1539 | """, |
||
1540 | warning=False, |
||
1541 | )["e_nom_germany"].values[0] |
||
1542 | |||
1543 | if scn == "eGon2035": |
||
1544 | grid_cap = 130000 |
||
1545 | elif scn == "eGon100RE": |
||
1546 | grid_cap = 13000 * ( |
||
1547 | 1 |
||
1548 | - get_sector_parameters("gas", "eGon100RE")[ |
||
1549 | "retrofitted_CH4pipeline-to-H2pipeline_share" |
||
1550 | ] |
||
1551 | ) |
||
1552 | |||
1553 | stores_cap_D = 266424202 # MWh GIE https://www.gie.eu/transparency/databases/storage-database/ |
||
1554 | |||
1555 | input_CH4_stores = stores_cap_D + grid_cap |
||
1556 | |||
1557 | e_CH4_stores = ( |
||
1558 | round( |
||
1559 | (output_CH4_stores - input_CH4_stores) / input_CH4_stores, |
||
1560 | 2, |
||
1561 | ) |
||
1562 | * 100 |
||
1563 | ) |
||
1564 | logger.info(f"Deviation CH4 stores: {e_CH4_stores} %") |
||
1565 | |||
1566 | |||
1567 | def sanity_check_H2_saltcavern_stores(scn): |
||
1568 | """Execute sanity checks for the H2 saltcavern stores in Germany |
||
1569 | |||
1570 | Returns print as sanity checks for the H2 saltcavern potential |
||
1571 | storage capacity in Germany. The deviation is calculated between: |
||
1572 | |||
1573 | * the sum of the of the H2 saltcavern potential storage capacity |
||
1574 | (e_nom_max) in the database and |
||
1575 | * the sum of the H2 saltcavern potential storage capacity |
||
1576 | assumed to be the ratio of the areas of 500 m radius around |
||
1577 | substations in each german federal state and the estimated |
||
1578 | total hydrogen storage potential of the corresponding federal |
||
1579 | state (data from InSpEE-DS report). |
||
1580 | |||
1581 | This test works also in test mode. |
||
1582 | |||
1583 | Parameters |
||
1584 | ---------- |
||
1585 | scn_name : str |
||
1586 | Name of the scenario |
||
1587 | |||
1588 | """ |
||
1589 | output_H2_stores = db.select_dataframe( |
||
1590 | f"""SELECT SUM(e_nom_max::numeric) as e_nom_max_germany |
||
1591 | FROM grid.egon_etrago_store |
||
1592 | WHERE scn_name = '{scn}' |
||
1593 | AND carrier = 'H2_underground' |
||
1594 | AND bus IN |
||
1595 | (SELECT bus_id |
||
1596 | FROM grid.egon_etrago_bus |
||
1597 | WHERE scn_name = '{scn}' |
||
1598 | AND country = 'DE' |
||
1599 | AND carrier = 'H2_saltcavern'); |
||
1600 | """, |
||
1601 | warning=False, |
||
1602 | )["e_nom_max_germany"].values[0] |
||
1603 | |||
1604 | storage_potentials = calculate_and_map_saltcavern_storage_potential() |
||
1605 | storage_potentials["storage_potential"] = ( |
||
1606 | storage_potentials["area_fraction"] * storage_potentials["potential"] |
||
1607 | ) |
||
1608 | input_H2_stores = sum(storage_potentials["storage_potential"].to_list()) |
||
1609 | |||
1610 | e_H2_stores = ( |
||
1611 | round( |
||
1612 | (output_H2_stores - input_H2_stores) / input_H2_stores, |
||
1613 | 2, |
||
1614 | ) |
||
1615 | * 100 |
||
1616 | ) |
||
1617 | logger.info(f"Deviation H2 saltcavern stores: {e_H2_stores} %") |
||
1618 | |||
1619 | |||
1620 | def sanity_check_gas_one_port(scn): |
||
1621 | """Check connections of gas one-port components |
||
1622 | |||
1623 | Verify that gas one-port component (loads, generators, stores) are |
||
1624 | all connected to a bus (of the right carrier) present in the data |
||
1625 | base. Return print statements if this is not the case. |
||
1626 | These sanity checks are not specific to Germany, they also include |
||
1627 | the neighbouring countries. |
||
1628 | |||
1629 | Parameters |
||
1630 | ---------- |
||
1631 | scn_name : str |
||
1632 | Name of the scenario |
||
1633 | |||
1634 | """ |
||
1635 | if scn == "eGon2035": |
||
1636 | # Loads |
||
1637 | ## CH4_for_industry Germany |
||
1638 | isolated_one_port_c = db.select_dataframe( |
||
1639 | f""" |
||
1640 | SELECT load_id, bus, carrier, scn_name |
||
1641 | FROM grid.egon_etrago_load |
||
1642 | WHERE scn_name = '{scn}' |
||
1643 | AND carrier = 'CH4_for_industry' |
||
1644 | AND bus NOT IN |
||
1645 | (SELECT bus_id |
||
1646 | FROM grid.egon_etrago_bus |
||
1647 | WHERE scn_name = '{scn}' |
||
1648 | AND country = 'DE' |
||
1649 | AND carrier = 'CH4') |
||
1650 | ; |
||
1651 | """, |
||
1652 | warning=False, |
||
1653 | ) |
||
1654 | if not isolated_one_port_c.empty: |
||
1655 | logger.info("Isolated loads:") |
||
1656 | logger.info(isolated_one_port_c) |
||
1657 | |||
1658 | ## CH4_for_industry abroad |
||
1659 | isolated_one_port_c = db.select_dataframe( |
||
1660 | f""" |
||
1661 | SELECT load_id, bus, carrier, scn_name |
||
1662 | FROM grid.egon_etrago_load |
||
1663 | WHERE scn_name = '{scn}' |
||
1664 | AND carrier = 'CH4' |
||
1665 | AND bus NOT IN |
||
1666 | (SELECT bus_id |
||
1667 | FROM grid.egon_etrago_bus |
||
1668 | WHERE scn_name = '{scn}' |
||
1669 | AND country != 'DE' |
||
1670 | AND carrier = 'CH4') |
||
1671 | ; |
||
1672 | """, |
||
1673 | warning=False, |
||
1674 | ) |
||
1675 | if not isolated_one_port_c.empty: |
||
1676 | logger.info("Isolated loads:") |
||
1677 | logger.info(isolated_one_port_c) |
||
1678 | |||
1679 | ## H2_for_industry |
||
1680 | isolated_one_port_c = db.select_dataframe( |
||
1681 | f""" |
||
1682 | SELECT load_id, bus, carrier, scn_name |
||
1683 | FROM grid.egon_etrago_load |
||
1684 | WHERE scn_name = '{scn}' |
||
1685 | AND carrier = 'H2_for_industry' |
||
1686 | AND (bus NOT IN |
||
1687 | (SELECT bus_id |
||
1688 | FROM grid.egon_etrago_bus |
||
1689 | WHERE scn_name = '{scn}' |
||
1690 | AND country = 'DE' |
||
1691 | AND carrier = 'H2_grid') |
||
1692 | AND bus NOT IN |
||
1693 | (SELECT bus_id |
||
1694 | FROM grid.egon_etrago_bus |
||
1695 | WHERE scn_name = '{scn}' |
||
1696 | AND country != 'DE' |
||
1697 | AND carrier = 'AC')) |
||
1698 | ; |
||
1699 | """, |
||
1700 | warning=False, |
||
1701 | ) |
||
1702 | if not isolated_one_port_c.empty: |
||
1703 | logger.info("Isolated loads:") |
||
1704 | logger.info(isolated_one_port_c) |
||
1705 | |||
1706 | # Genrators |
||
1707 | isolated_one_port_c = db.select_dataframe( |
||
1708 | f""" |
||
1709 | SELECT generator_id, bus, carrier, scn_name |
||
1710 | FROM grid.egon_etrago_generator |
||
1711 | WHERE scn_name = '{scn}' |
||
1712 | AND carrier = 'CH4' |
||
1713 | AND bus NOT IN |
||
1714 | (SELECT bus_id |
||
1715 | FROM grid.egon_etrago_bus |
||
1716 | WHERE scn_name = '{scn}' |
||
1717 | AND carrier = 'CH4'); |
||
1718 | ; |
||
1719 | """, |
||
1720 | warning=False, |
||
1721 | ) |
||
1722 | if not isolated_one_port_c.empty: |
||
1723 | logger.info("Isolated generators:") |
||
1724 | logger.info(isolated_one_port_c) |
||
1725 | |||
1726 | # Stores |
||
1727 | ## CH4 and H2_underground |
||
1728 | corresponding_carriers = { |
||
1729 | "CH4": "CH4", |
||
1730 | "H2_saltcavern": "H2_underground", |
||
1731 | } |
||
1732 | for key in corresponding_carriers: |
||
1733 | isolated_one_port_c = db.select_dataframe( |
||
1734 | f""" |
||
1735 | SELECT store_id, bus, carrier, scn_name |
||
1736 | FROM grid.egon_etrago_store |
||
1737 | WHERE scn_name = '{scn}' |
||
1738 | AND carrier = '{corresponding_carriers[key]}' |
||
1739 | AND bus NOT IN |
||
1740 | (SELECT bus_id |
||
1741 | FROM grid.egon_etrago_bus |
||
1742 | WHERE scn_name = '{scn}' |
||
1743 | AND carrier = '{key}') |
||
1744 | ; |
||
1745 | """, |
||
1746 | warning=False, |
||
1747 | ) |
||
1748 | if not isolated_one_port_c.empty: |
||
1749 | logger.info("Isolated stores:") |
||
1750 | logger.info(isolated_one_port_c) |
||
1751 | |||
1752 | ## H2_overground |
||
1753 | isolated_one_port_c = db.select_dataframe( |
||
1754 | f""" |
||
1755 | SELECT store_id, bus, carrier, scn_name |
||
1756 | FROM grid.egon_etrago_store |
||
1757 | WHERE scn_name = '{scn}' |
||
1758 | AND carrier = 'H2_overground' |
||
1759 | AND bus NOT IN |
||
1760 | (SELECT bus_id |
||
1761 | FROM grid.egon_etrago_bus |
||
1762 | WHERE scn_name = '{scn}' |
||
1763 | AND country = 'DE' |
||
1764 | AND carrier = 'H2_saltcavern') |
||
1765 | AND bus NOT IN |
||
1766 | (SELECT bus_id |
||
1767 | FROM grid.egon_etrago_bus |
||
1768 | WHERE scn_name = '{scn}' |
||
1769 | AND country = 'DE' |
||
1770 | AND carrier = 'H2_grid') |
||
1771 | ; |
||
1772 | """, |
||
1773 | warning=False, |
||
1774 | ) |
||
1775 | if not isolated_one_port_c.empty: |
||
1776 | logger.info("Isolated stores:") |
||
1777 | logger.info(isolated_one_port_c) |
||
1778 | |||
1779 | # elif scn == "eGon2035": |
||
1780 | |||
1781 | |||
1782 | def sanity_check_CH4_grid(scn): |
||
1783 | """Execute sanity checks for the gas grid capacity in Germany |
||
1784 | |||
1785 | Returns print statements as sanity checks for the CH4 links |
||
1786 | (pipelines) in Germany. The deviation is calculated between |
||
1787 | the sum of the power (p_nom) of all the CH4 pipelines in Germany |
||
1788 | for one scenario in the database and the sum of the powers of the |
||
1789 | imported pipelines. |
||
1790 | In eGon100RE, the sum is reduced by the share of the grid that is |
||
1791 | allocated to hydrogen (share calculated by PyPSA-eur-sec). |
||
1792 | This test works also in test mode. |
||
1793 | |||
1794 | Parameters |
||
1795 | ---------- |
||
1796 | scn_name : str |
||
1797 | Name of the scenario |
||
1798 | |||
1799 | Returns |
||
1800 | ------- |
||
1801 | scn_name : float |
||
1802 | Sum of the power (p_nom) of all the pipelines in Germany |
||
1803 | |||
1804 | """ |
||
1805 | grid_carrier = "CH4" |
||
1806 | output_gas_grid = db.select_dataframe( |
||
1807 | f"""SELECT SUM(p_nom::numeric) as p_nom_germany |
||
1808 | FROM grid.egon_etrago_link |
||
1809 | WHERE scn_name = '{scn}' |
||
1810 | AND carrier = '{grid_carrier}' |
||
1811 | AND bus0 IN |
||
1812 | (SELECT bus_id |
||
1813 | FROM grid.egon_etrago_bus |
||
1814 | WHERE scn_name = '{scn}' |
||
1815 | AND country = 'DE' |
||
1816 | AND carrier = '{grid_carrier}') |
||
1817 | AND bus1 IN |
||
1818 | (SELECT bus_id |
||
1819 | FROM grid.egon_etrago_bus |
||
1820 | WHERE scn_name = '{scn}' |
||
1821 | AND country = 'DE' |
||
1822 | AND carrier = '{grid_carrier}') |
||
1823 | ; |
||
1824 | """, |
||
1825 | warning=False, |
||
1826 | )["p_nom_germany"].values[0] |
||
1827 | |||
1828 | gas_nodes_list = define_gas_nodes_list() |
||
1829 | abroad_gas_nodes_list = define_gas_buses_abroad() |
||
1830 | gas_grid = define_gas_pipeline_list(gas_nodes_list, abroad_gas_nodes_list) |
||
1831 | gas_grid_germany = gas_grid[ |
||
1832 | (gas_grid["country_0"] == "DE") & (gas_grid["country_1"] == "DE") |
||
1833 | ] |
||
1834 | p_nom_total = sum(gas_grid_germany["p_nom"].to_list()) |
||
1835 | |||
1836 | if scn == "eGon2035": |
||
1837 | input_gas_grid = p_nom_total |
||
1838 | if scn == "eGon100RE": |
||
1839 | input_gas_grid = p_nom_total * ( |
||
1840 | 1 |
||
1841 | - get_sector_parameters("gas", "eGon100RE")[ |
||
1842 | "retrofitted_CH4pipeline-to-H2pipeline_share" |
||
1843 | ] |
||
1844 | ) |
||
1845 | |||
1846 | e_gas_grid = ( |
||
1847 | round( |
||
1848 | (output_gas_grid - input_gas_grid) / input_gas_grid, |
||
1849 | 2, |
||
1850 | ) |
||
1851 | * 100 |
||
1852 | ) |
||
1853 | logger.info(f"Deviation of the capacity of the CH4 grid: {e_gas_grid} %") |
||
1854 | |||
1855 | return p_nom_total |
||
1856 | |||
1857 | |||
1858 | def sanity_check_gas_links(scn): |
||
1859 | """Check connections of gas links |
||
1860 | |||
1861 | Verify that gas links are all connected to buses present in the data |
||
1862 | base. Return print statements if this is not the case. |
||
1863 | This sanity check is not specific to Germany, it also includes |
||
1864 | the neighbouring countries. |
||
1865 | |||
1866 | Parameters |
||
1867 | ---------- |
||
1868 | scn_name : str |
||
1869 | Name of the scenario |
||
1870 | |||
1871 | """ |
||
1872 | carriers = [ |
||
1873 | "CH4", |
||
1874 | "H2_feedin", |
||
1875 | "H2_to_CH4", |
||
1876 | "CH4_to_H2", |
||
1877 | "H2_to_power", |
||
1878 | "power_to_H2", |
||
1879 | "OCGT", |
||
1880 | "central_gas_boiler", |
||
1881 | "central_gas_CHP", |
||
1882 | "central_gas_CHP_heat", |
||
1883 | "industrial_gas_CHP", |
||
1884 | ] |
||
1885 | for c in carriers: |
||
1886 | link_with_missing_bus = db.select_dataframe( |
||
1887 | f""" |
||
1888 | SELECT link_id, bus0, bus1, carrier, scn_name |
||
1889 | FROM grid.egon_etrago_link |
||
1890 | WHERE scn_name = '{scn}' |
||
1891 | AND carrier = '{c}' |
||
1892 | AND (bus0 NOT IN |
||
1893 | (SELECT bus_id |
||
1894 | FROM grid.egon_etrago_bus |
||
1895 | WHERE scn_name = '{scn}') |
||
1896 | OR bus1 NOT IN |
||
1897 | (SELECT bus_id |
||
1898 | FROM grid.egon_etrago_bus |
||
1899 | WHERE scn_name = '{scn}')) |
||
1900 | ; |
||
1901 | """, |
||
1902 | warning=False, |
||
1903 | ) |
||
1904 | if not link_with_missing_bus.empty: |
||
1905 | logger.info("Links with missing bus:") |
||
1906 | logger.info(link_with_missing_bus) |
||
1907 | |||
1908 | |||
1909 | def etrago_eGon2035_gas_DE(): |
||
1910 | """Execute basic sanity checks for the gas sector in eGon2035 |
||
1911 | |||
1912 | Returns print statements as sanity checks for the gas sector in |
||
1913 | the eGon2035 scenario for the following components in Germany: |
||
1914 | |||
1915 | * Buses: with the function :py:func:`sanity_check_gas_buses` |
||
1916 | * Loads: for the carriers 'CH4_for_industry' and 'H2_for_industry' |
||
1917 | the deviation is calculated between the sum of the loads in the |
||
1918 | database and the sum the loads in the sources document |
||
1919 | (opendata.ffe database) |
||
1920 | * Generators: the deviation is calculated between the sums of the |
||
1921 | nominal powers of the gas generators in the database and of |
||
1922 | the ones in the sources document (Biogaspartner Einspeiseatlas |
||
1923 | Deutschland from the dena and Productions from the SciGRID_gas |
||
1924 | data) |
||
1925 | * Stores: deviations for stores with following carriers are |
||
1926 | calculated: |
||
1927 | |||
1928 | * 'CH4': with the function :py:func:`sanity_check_CH4_stores` |
||
1929 | * 'H2_underground': with the function :py:func:`sanity_check_H2_saltcavern_stores` |
||
1930 | * One-port components (loads, generators, stores): verification |
||
1931 | that they are all connected to a bus present in the data base |
||
1932 | with the function :py:func:`sanity_check_gas_one_port` |
||
1933 | * Links: verification: |
||
1934 | |||
1935 | * that the gas links are all connected to buses present in |
||
1936 | the data base with the function :py:func:`sanity_check_gas_links` |
||
1937 | * of the capacity of the gas grid with the function |
||
1938 | :py:func:`sanity_check_CH4_grid` |
||
1939 | |||
1940 | """ |
||
1941 | scn = "eGon2035" |
||
1942 | |||
1943 | if TESTMODE_OFF: |
||
1944 | logger.info(f"Gas sanity checks for scenario {scn}") |
||
1945 | |||
1946 | # Buses |
||
1947 | sanity_check_gas_buses(scn) |
||
1948 | |||
1949 | # Loads |
||
1950 | logger.info("LOADS") |
||
1951 | |||
1952 | path = Path(".") / "datasets" / "gas_data" / "demand" |
||
1953 | corr_file = path / "region_corr.json" |
||
1954 | df_corr = pd.read_json(corr_file) |
||
1955 | df_corr = df_corr.loc[:, ["id_region", "name_short"]] |
||
1956 | df_corr.set_index("id_region", inplace=True) |
||
1957 | |||
1958 | for carrier in ["CH4_for_industry", "H2_for_industry"]: |
||
1959 | |||
1960 | output_gas_demand = db.select_dataframe( |
||
1961 | f"""SELECT (SUM( |
||
1962 | (SELECT SUM(p) |
||
1963 | FROM UNNEST(b.p_set) p))/1000000)::numeric as load_twh |
||
1964 | FROM grid.egon_etrago_load a |
||
1965 | JOIN grid.egon_etrago_load_timeseries b |
||
1966 | ON (a.load_id = b.load_id) |
||
1967 | JOIN grid.egon_etrago_bus c |
||
1968 | ON (a.bus=c.bus_id) |
||
1969 | AND b.scn_name = '{scn}' |
||
1970 | AND a.scn_name = '{scn}' |
||
1971 | AND c.scn_name = '{scn}' |
||
1972 | AND c.country = 'DE' |
||
1973 | AND a.carrier = '{carrier}'; |
||
1974 | """, |
||
1975 | warning=False, |
||
1976 | )["load_twh"].values[0] |
||
1977 | |||
1978 | input_gas_demand = pd.read_json( |
||
1979 | path / (carrier + "_eGon2035.json") |
||
1980 | ) |
||
1981 | input_gas_demand = input_gas_demand.loc[:, ["id_region", "value"]] |
||
1982 | input_gas_demand.set_index("id_region", inplace=True) |
||
1983 | input_gas_demand = pd.concat( |
||
1984 | [input_gas_demand, df_corr], axis=1, join="inner" |
||
1985 | ) |
||
1986 | input_gas_demand["NUTS0"] = (input_gas_demand["name_short"].str)[ |
||
1987 | 0:2 |
||
1988 | ] |
||
1989 | input_gas_demand = input_gas_demand[ |
||
1990 | input_gas_demand["NUTS0"].str.match("DE") |
||
1991 | ] |
||
1992 | input_gas_demand = sum(input_gas_demand.value.to_list()) / 1000000 |
||
1993 | |||
1994 | e_demand = ( |
||
1995 | round( |
||
1996 | (output_gas_demand - input_gas_demand) / input_gas_demand, |
||
1997 | 2, |
||
1998 | ) |
||
1999 | * 100 |
||
2000 | ) |
||
2001 | logger.info(f"Deviation {carrier}: {e_demand} %") |
||
2002 | |||
2003 | # Generators |
||
2004 | logger.info("GENERATORS") |
||
2005 | carrier_generator = "CH4" |
||
2006 | |||
2007 | output_gas_generation = db.select_dataframe( |
||
2008 | f"""SELECT SUM(p_nom::numeric) as p_nom_germany |
||
2009 | FROM grid.egon_etrago_generator |
||
2010 | WHERE scn_name = '{scn}' |
||
2011 | AND carrier = '{carrier_generator}' |
||
2012 | AND bus IN |
||
2013 | (SELECT bus_id |
||
2014 | FROM grid.egon_etrago_bus |
||
2015 | WHERE scn_name = '{scn}' |
||
2016 | AND country = 'DE' |
||
2017 | AND carrier = '{carrier_generator}'); |
||
2018 | """, |
||
2019 | warning=False, |
||
2020 | )["p_nom_germany"].values[0] |
||
2021 | |||
2022 | target_file = ( |
||
2023 | Path(".") |
||
2024 | / "datasets" |
||
2025 | / "gas_data" |
||
2026 | / "data" |
||
2027 | / "IGGIELGN_Productions.csv" |
||
2028 | ) |
||
2029 | |||
2030 | NG_generators_list = pd.read_csv( |
||
2031 | target_file, |
||
2032 | delimiter=";", |
||
2033 | decimal=".", |
||
2034 | usecols=["country_code", "param"], |
||
2035 | ) |
||
2036 | |||
2037 | NG_generators_list = NG_generators_list[ |
||
2038 | NG_generators_list["country_code"].str.match("DE") |
||
2039 | ] |
||
2040 | |||
2041 | p_NG = 0 |
||
2042 | for index, row in NG_generators_list.iterrows(): |
||
2043 | param = ast.literal_eval(row["param"]) |
||
2044 | p_NG = p_NG + param["max_supply_M_m3_per_d"] |
||
2045 | conversion_factor = 437.5 # MCM/day to MWh/h |
||
2046 | p_NG = p_NG * conversion_factor |
||
2047 | |||
2048 | basename = "Biogaspartner_Einspeiseatlas_Deutschland_2021.xlsx" |
||
2049 | target_file = Path(".") / "data_bundle_egon_data" / "gas_data" / basename |
||
2050 | |||
2051 | conversion_factor_b = 0.01083 # m^3/h to MWh/h |
||
2052 | p_biogas = ( |
||
2053 | pd.read_excel( |
||
2054 | target_file, |
||
2055 | usecols=["Einspeisung Biomethan [(N*m^3)/h)]"], |
||
2056 | )["Einspeisung Biomethan [(N*m^3)/h)]"].sum() |
||
2057 | * conversion_factor_b |
||
2058 | ) |
||
2059 | |||
2060 | input_gas_generation = p_NG + p_biogas |
||
2061 | e_generation = ( |
||
2062 | round( |
||
2063 | (output_gas_generation - input_gas_generation) |
||
2064 | / input_gas_generation, |
||
2065 | 2, |
||
2066 | ) |
||
2067 | * 100 |
||
2068 | ) |
||
2069 | logger.info( |
||
2070 | f"Deviation {carrier_generator} generation: {e_generation} %" |
||
2071 | ) |
||
2072 | |||
2073 | # Stores |
||
2074 | logger.info("STORES") |
||
2075 | sanity_check_CH4_stores(scn) |
||
2076 | sanity_check_H2_saltcavern_stores(scn) |
||
2077 | |||
2078 | # One-port components |
||
2079 | sanity_check_gas_one_port(scn) |
||
2080 | |||
2081 | # Links |
||
2082 | logger.info("LINKS") |
||
2083 | sanity_check_CH4_grid(scn) |
||
2084 | sanity_check_gas_links(scn) |
||
2085 | |||
2086 | else: |
||
2087 | print("Testmode is on, skipping sanity check.") |
||
2088 | |||
2089 | |||
2090 | def etrago_eGon2035_gas_abroad(): |
||
2091 | """Execute basic sanity checks for the gas sector in eGon2035 abroad |
||
2092 | |||
2093 | Returns print statements as sanity checks for the gas sector in |
||
2094 | the eGon2035 scenario for the following components in Germany: |
||
2095 | |||
2096 | * Buses |
||
2097 | * Loads: for the carriers 'CH4' and 'H2_for_industry' |
||
2098 | the deviation is calculated between the sum of the loads in the |
||
2099 | database and the sum in the sources document (TYNDP) |
||
2100 | * Generators: the deviation is calculated between the sums of the |
||
2101 | nominal powers of the methane generators abroad in the database |
||
2102 | and of the ones in the sources document (TYNDP) |
||
2103 | * Stores: the deviation for methane stores abroad is calculated |
||
2104 | between the sum of the capacities in the data base and the one |
||
2105 | of the source document (SciGRID_gas data) |
||
2106 | * Links: verification of the capacity of the crossbordering gas |
||
2107 | grid pipelines. |
||
2108 | |||
2109 | """ |
||
2110 | scn = "eGon2035" |
||
2111 | |||
2112 | if TESTMODE_OFF: |
||
2113 | logger.info(f"Gas sanity checks abroad for scenario {scn}") |
||
2114 | |||
2115 | # Buses |
||
2116 | logger.info("BUSES") |
||
2117 | |||
2118 | # Are gas buses isolated? |
||
2119 | corresponding_carriers = { |
||
2120 | "eGon2035": { |
||
2121 | "CH4": "CH4", |
||
2122 | }, |
||
2123 | # "eGon100RE": { |
||
2124 | # "CH4": "CH4", |
||
2125 | # "H2_grid": "H2_retrofit", |
||
2126 | # } |
||
2127 | } |
||
2128 | for key in corresponding_carriers[scn]: |
||
2129 | isolated_gas_buses_abroad = db.select_dataframe( |
||
2130 | f""" |
||
2131 | SELECT bus_id, carrier, country |
||
2132 | FROM grid.egon_etrago_bus |
||
2133 | WHERE scn_name = '{scn}' |
||
2134 | AND carrier = '{key}' |
||
2135 | AND country != 'DE' |
||
2136 | AND bus_id NOT IN |
||
2137 | (SELECT bus0 |
||
2138 | FROM grid.egon_etrago_link |
||
2139 | WHERE scn_name = '{scn}' |
||
2140 | AND carrier = '{corresponding_carriers[scn][key]}') |
||
2141 | AND bus_id NOT IN |
||
2142 | (SELECT bus1 |
||
2143 | FROM grid.egon_etrago_link |
||
2144 | WHERE scn_name = '{scn}' |
||
2145 | AND carrier = '{corresponding_carriers[scn][key]}') |
||
2146 | ; |
||
2147 | """, |
||
2148 | warning=False, |
||
2149 | ) |
||
2150 | if not isolated_gas_buses_abroad.empty: |
||
2151 | logger.info(f"Isolated {key} buses abroad:") |
||
2152 | logger.info(isolated_gas_buses_abroad) |
||
2153 | |||
2154 | # Loads |
||
2155 | logger.info("LOADS") |
||
2156 | |||
2157 | ( |
||
2158 | Norway_global_demand_1y, |
||
2159 | normalized_ch4_demandTS, |
||
2160 | ) = import_ch4_demandTS() |
||
2161 | input_CH4_demand_abroad = calc_global_ch4_demand( |
||
2162 | Norway_global_demand_1y |
||
2163 | ) |
||
2164 | input_CH4_demand = input_CH4_demand_abroad["GlobD_2035"].sum() |
||
2165 | |||
2166 | ## CH4 |
||
2167 | output_CH4_demand = db.select_dataframe( |
||
2168 | f"""SELECT (SUM( |
||
2169 | (SELECT SUM(p) |
||
2170 | FROM UNNEST(b.p_set) p)))::numeric as load_mwh |
||
2171 | FROM grid.egon_etrago_load a |
||
2172 | JOIN grid.egon_etrago_load_timeseries b |
||
2173 | ON (a.load_id = b.load_id) |
||
2174 | JOIN grid.egon_etrago_bus c |
||
2175 | ON (a.bus=c.bus_id) |
||
2176 | AND b.scn_name = '{scn}' |
||
2177 | AND a.scn_name = '{scn}' |
||
2178 | AND c.scn_name = '{scn}' |
||
2179 | AND c.country != 'DE' |
||
2180 | AND a.carrier = 'CH4'; |
||
2181 | """, |
||
2182 | warning=False, |
||
2183 | )["load_mwh"].values[0] |
||
2184 | |||
2185 | e_demand_CH4 = ( |
||
2186 | round( |
||
2187 | (output_CH4_demand - input_CH4_demand) / input_CH4_demand, |
||
2188 | 2, |
||
2189 | ) |
||
2190 | * 100 |
||
2191 | ) |
||
2192 | logger.info(f"Deviation CH4 load: {e_demand_CH4} %") |
||
2193 | |||
2194 | ## H2_for_industry |
||
2195 | input_power_to_h2_demand_abroad = calc_global_power_to_h2_demand() |
||
2196 | input_H2_demand = input_power_to_h2_demand_abroad["GlobD_2035"].sum() |
||
2197 | |||
2198 | output_H2_demand = db.select_dataframe( |
||
2199 | f"""SELECT SUM(p_set::numeric) as p_set_abroad |
||
2200 | FROM grid.egon_etrago_load |
||
2201 | WHERE scn_name = '{scn}' |
||
2202 | AND carrier = 'H2_for_industry' |
||
2203 | AND bus IN |
||
2204 | (SELECT bus_id |
||
2205 | FROM grid.egon_etrago_bus |
||
2206 | WHERE scn_name = '{scn}' |
||
2207 | AND country != 'DE' |
||
2208 | AND carrier = 'AC'); |
||
2209 | """, |
||
2210 | warning=False, |
||
2211 | )["p_set_abroad"].values[0] |
||
2212 | |||
2213 | e_demand_H2 = ( |
||
2214 | round( |
||
2215 | (output_H2_demand - input_H2_demand) / input_H2_demand, |
||
2216 | 2, |
||
2217 | ) |
||
2218 | * 100 |
||
2219 | ) |
||
2220 | logger.info(f"Deviation H2_for_industry load: {e_demand_H2} %") |
||
2221 | |||
2222 | # Generators |
||
2223 | logger.info("GENERATORS ") |
||
2224 | CH4_gen = calc_capacities() |
||
2225 | input_CH4_gen = CH4_gen["cap_2035"].sum() |
||
2226 | |||
2227 | output_CH4_gen = db.select_dataframe( |
||
2228 | f"""SELECT SUM(p_nom::numeric) as p_nom_abroad |
||
2229 | FROM grid.egon_etrago_generator |
||
2230 | WHERE scn_name = '{scn}' |
||
2231 | AND carrier = 'CH4' |
||
2232 | AND bus IN |
||
2233 | (SELECT bus_id |
||
2234 | FROM grid.egon_etrago_bus |
||
2235 | WHERE scn_name = '{scn}' |
||
2236 | AND country != 'DE' |
||
2237 | AND carrier = 'CH4'); |
||
2238 | """, |
||
2239 | warning=False, |
||
2240 | )["p_nom_abroad"].values[0] |
||
2241 | |||
2242 | e_gen = ( |
||
2243 | round( |
||
2244 | (output_CH4_gen - input_CH4_gen) / input_CH4_gen, |
||
2245 | 2, |
||
2246 | ) |
||
2247 | * 100 |
||
2248 | ) |
||
2249 | logger.info(f"Deviation CH4 generators: {e_gen} %") |
||
2250 | |||
2251 | # Stores |
||
2252 | logger.info("STORES") |
||
2253 | ch4_input_capacities = calc_ch4_storage_capacities() |
||
2254 | input_CH4_stores = ch4_input_capacities["e_nom"].sum() |
||
2255 | |||
2256 | output_CH4_stores = db.select_dataframe( |
||
2257 | f"""SELECT SUM(e_nom::numeric) as e_nom_abroad |
||
2258 | FROM grid.egon_etrago_store |
||
2259 | WHERE scn_name = '{scn}' |
||
2260 | AND carrier = 'CH4' |
||
2261 | AND bus IN |
||
2262 | (SELECT bus_id |
||
2263 | FROM grid.egon_etrago_bus |
||
2264 | WHERE scn_name = '{scn}' |
||
2265 | AND country != 'DE' |
||
2266 | AND carrier = 'CH4'); |
||
2267 | """, |
||
2268 | warning=False, |
||
2269 | )["e_nom_abroad"].values[0] |
||
2270 | |||
2271 | e_stores = ( |
||
2272 | round( |
||
2273 | (output_CH4_stores - input_CH4_stores) / input_CH4_stores, |
||
2274 | 2, |
||
2275 | ) |
||
2276 | * 100 |
||
2277 | ) |
||
2278 | logger.info(f"Deviation CH4 stores: {e_stores} %") |
||
2279 | |||
2280 | # Links |
||
2281 | logger.info("LINKS") |
||
2282 | ch4_grid_input_capacities = calculate_ch4_grid_capacities() |
||
2283 | input_CH4_grid = ch4_grid_input_capacities["p_nom"].sum() |
||
2284 | |||
2285 | grid_carrier = "CH4" |
||
2286 | output_gas_grid = db.select_dataframe( |
||
2287 | f"""SELECT SUM(p_nom::numeric) as p_nom |
||
2288 | FROM grid.egon_etrago_link |
||
2289 | WHERE scn_name = '{scn}' |
||
2290 | AND carrier = '{grid_carrier}' |
||
2291 | AND (bus0 IN |
||
2292 | (SELECT bus_id |
||
2293 | FROM grid.egon_etrago_bus |
||
2294 | WHERE scn_name = '{scn}' |
||
2295 | AND country != 'DE' |
||
2296 | AND carrier = '{grid_carrier}') |
||
2297 | OR bus1 IN |
||
2298 | (SELECT bus_id |
||
2299 | FROM grid.egon_etrago_bus |
||
2300 | WHERE scn_name = '{scn}' |
||
2301 | AND country != 'DE' |
||
2302 | AND carrier = '{grid_carrier}')) |
||
2303 | ; |
||
2304 | """, |
||
2305 | warning=False, |
||
2306 | )["p_nom"].values[0] |
||
2307 | |||
2308 | e_gas_grid = ( |
||
2309 | round( |
||
2310 | (output_gas_grid - input_CH4_grid) / input_CH4_grid, |
||
2311 | 2, |
||
2312 | ) |
||
2313 | * 100 |
||
2314 | ) |
||
2315 | logger.info( |
||
2316 | f"Deviation of the capacity of the crossbordering CH4 grid: {e_gas_grid} %" |
||
2317 | ) |
||
2318 | |||
2319 | else: |
||
2320 | print("Testmode is on, skipping sanity check.") |
||
2321 | |||
2322 | |||
2323 | def sanitycheck_dsm(): |
||
2324 | def df_from_series(s: pd.Series): |
||
2325 | return pd.DataFrame.from_dict(dict(zip(s.index, s.values))) |
||
2326 | |||
2327 | for scenario in ["eGon2035", "eGon100RE"]: |
||
2328 | # p_min and p_max |
||
2329 | sql = f""" |
||
2330 | SELECT link_id, bus0 as bus, p_nom FROM grid.egon_etrago_link |
||
2331 | WHERE carrier = 'dsm' |
||
2332 | AND scn_name = '{scenario}' |
||
2333 | ORDER BY link_id |
||
2334 | """ |
||
2335 | |||
2336 | meta_df = db.select_dataframe(sql, index_col="link_id") |
||
2337 | link_ids = str(meta_df.index.tolist())[1:-1] |
||
2338 | |||
2339 | sql = f""" |
||
2340 | SELECT link_id, p_min_pu, p_max_pu |
||
2341 | FROM grid.egon_etrago_link_timeseries |
||
2342 | WHERE scn_name = '{scenario}' |
||
2343 | AND link_id IN ({link_ids}) |
||
2344 | ORDER BY link_id |
||
2345 | """ |
||
2346 | |||
2347 | ts_df = db.select_dataframe(sql, index_col="link_id") |
||
2348 | |||
2349 | p_max_df = df_from_series(ts_df.p_max_pu).mul(meta_df.p_nom) |
||
2350 | p_min_df = df_from_series(ts_df.p_min_pu).mul(meta_df.p_nom) |
||
2351 | |||
2352 | p_max_df.columns = meta_df.bus.tolist() |
||
2353 | p_min_df.columns = meta_df.bus.tolist() |
||
2354 | |||
2355 | targets = config.datasets()["DSM_CTS_industry"]["targets"] |
||
2356 | |||
2357 | tables = [ |
||
2358 | "cts_loadcurves_dsm", |
||
2359 | "ind_osm_loadcurves_individual_dsm", |
||
2360 | "demandregio_ind_sites_dsm", |
||
2361 | "ind_sites_loadcurves_individual", |
||
2362 | ] |
||
2363 | |||
2364 | df_list = [] |
||
2365 | |||
2366 | for table in tables: |
||
2367 | target = targets[table] |
||
2368 | sql = f""" |
||
2369 | SELECT bus, p_min, p_max, e_max, e_min |
||
2370 | FROM {target["schema"]}.{target["table"]} |
||
2371 | WHERE scn_name = '{scenario}' |
||
2372 | ORDER BY bus |
||
2373 | """ |
||
2374 | |||
2375 | df_list.append(db.select_dataframe(sql)) |
||
2376 | |||
2377 | individual_ts_df = pd.concat(df_list, ignore_index=True) |
||
2378 | |||
2379 | groups = individual_ts_df[["bus"]].reset_index().groupby("bus").groups |
||
2380 | |||
2381 | individual_p_max_df = df_from_series(individual_ts_df.p_max) |
||
2382 | |||
2383 | individual_p_max_df = pd.DataFrame( |
||
2384 | [ |
||
2385 | individual_p_max_df[idxs].sum(axis=1) |
||
2386 | for idxs in groups.values() |
||
2387 | ], |
||
2388 | index=groups.keys(), |
||
2389 | ).T |
||
2390 | |||
2391 | individual_p_min_df = df_from_series(individual_ts_df.p_min) |
||
2392 | |||
2393 | individual_p_min_df = pd.DataFrame( |
||
2394 | [ |
||
2395 | individual_p_min_df[idxs].sum(axis=1) |
||
2396 | for idxs in groups.values() |
||
2397 | ], |
||
2398 | index=groups.keys(), |
||
2399 | ).T |
||
2400 | |||
2401 | # due to the fact that time series are clipped at zero (either |
||
2402 | # direction) there is a little difference between the sum of the |
||
2403 | # individual time series and the aggregated time series as the second |
||
2404 | # is generated independent of the others. This makes atol=1e-01 |
||
2405 | # necessary. |
||
2406 | atol = 1e-01 |
||
2407 | assert np.allclose(p_max_df, individual_p_max_df, atol=atol) |
||
2408 | assert np.allclose(p_min_df, individual_p_min_df, atol=atol) |
||
2409 | |||
2410 | # e_min and e_max |
||
2411 | sql = f""" |
||
2412 | SELECT store_id, bus, e_nom FROM grid.egon_etrago_store |
||
2413 | WHERE carrier = 'dsm' |
||
2414 | AND scn_name = '{scenario}' |
||
2415 | ORDER BY store_id |
||
2416 | """ |
||
2417 | |||
2418 | meta_df = db.select_dataframe(sql, index_col="store_id") |
||
2419 | store_ids = str(meta_df.index.tolist())[1:-1] |
||
2420 | |||
2421 | sql = f""" |
||
2422 | SELECT store_id, e_min_pu, e_max_pu |
||
2423 | FROM grid.egon_etrago_store_timeseries |
||
2424 | WHERE scn_name = '{scenario}' |
||
2425 | AND store_id IN ({store_ids}) |
||
2426 | ORDER BY store_id |
||
2427 | """ |
||
2428 | |||
2429 | ts_df = db.select_dataframe(sql, index_col="store_id") |
||
2430 | |||
2431 | e_max_df = df_from_series(ts_df.e_max_pu).mul(meta_df.e_nom) |
||
2432 | e_min_df = df_from_series(ts_df.e_min_pu).mul(meta_df.e_nom) |
||
2433 | |||
2434 | e_max_df.columns = meta_df.bus.tolist() |
||
2435 | e_min_df.columns = meta_df.bus.tolist() |
||
2436 | |||
2437 | individual_e_max_df = df_from_series(individual_ts_df.e_max) |
||
2438 | |||
2439 | individual_e_max_df = pd.DataFrame( |
||
2440 | [ |
||
2441 | individual_e_max_df[idxs].sum(axis=1) |
||
2442 | for idxs in groups.values() |
||
2443 | ], |
||
2444 | index=groups.keys(), |
||
2445 | ).T |
||
2446 | individual_e_min_df = df_from_series(individual_ts_df.e_min) |
||
2447 | |||
2448 | individual_e_min_df = pd.DataFrame( |
||
2449 | [ |
||
2450 | individual_e_min_df[idxs].sum(axis=1) |
||
2451 | for idxs in groups.values() |
||
2452 | ], |
||
2453 | index=groups.keys(), |
||
2454 | ).T |
||
2455 | |||
2456 | assert np.allclose(e_max_df, individual_e_max_df) |
||
2457 | assert np.allclose(e_min_df, individual_e_min_df) |
||
2458 | |||
2459 | |||
2460 | def etrago_timeseries_length(): |
||
2461 | |||
2462 | for component in ["generator", "load", "link", "store", "storage"]: |
||
2463 | |||
2464 | columns = db.select_dataframe( |
||
2465 | f""" |
||
2466 | SELECT * |
||
2467 | FROM information_schema.columns |
||
2468 | WHERE table_schema = 'grid' |
||
2469 | AND table_name = 'egon_etrago_{component}_timeseries' |
||
2470 | """ |
||
2471 | ) |
||
2472 | columns = columns[columns.data_type == "ARRAY"].column_name.values |
||
2473 | |||
2474 | for col in columns: |
||
2475 | lengths = db.select_dataframe( |
||
2476 | f""" |
||
2477 | SELECT array_length({col}, 1) |
||
2478 | FROM grid.egon_etrago_{component}_timeseries; |
||
2479 | """ |
||
2480 | )["array_length"] |
||
2481 | |||
2482 | if not lengths.dropna().empty: |
||
2483 | assert (lengths.dropna() == 8760).all(), ( |
||
2484 | f"Timeseries with a length != 8760 for {component} {col}") |
||
2485 | else: |
||
2486 | print(f"Empty timeseries for {component} {col}") |
||
2487 | |||
2488 | |||
2489 | def generators_links_storages_stores_100RE(scn="eGon100RE"): |
||
2490 | # Generators |
||
2491 | scn_capacities = db.select_dataframe( |
||
2492 | f""" |
||
2493 | SELECT * FROM supply.egon_scenario_capacities |
||
2494 | WHERE scenario_name = '{scn}' |
||
2495 | """, |
||
2496 | index_col="index", |
||
2497 | ) |
||
2498 | |||
2499 | map_carrier = { |
||
2500 | "urban_central_solar_thermal_collector": "solar_thermal_collector", |
||
2501 | "urban_central_geo_thermal": "geo_thermal", |
||
2502 | "urban_central_gas_boiler": "central_gas_boiler", |
||
2503 | "urban_central_heat_pump": "central_heat_pump", |
||
2504 | "urban_central_resistive_heater": "central_resistive_heater", |
||
2505 | "gas": "OCGT" |
||
2506 | } |
||
2507 | |||
2508 | scn_capacities["carrier"] = scn_capacities["carrier"].apply( |
||
2509 | lambda x: map_carrier[x] if x in map_carrier.keys() else x |
||
2510 | ) |
||
2511 | |||
2512 | carriers_gen_from_supply = [ |
||
2513 | "oil", |
||
2514 | "solar", |
||
2515 | "solar_rooftop", |
||
2516 | "wind_onshore", |
||
2517 | "lignite", |
||
2518 | "coal", |
||
2519 | "wind_offshore", |
||
2520 | "solar_thermal_collector", |
||
2521 | "geo_thermal", |
||
2522 | "run_of_river", |
||
2523 | "rural_solar_thermal", |
||
2524 | "urban_central_gas_CHP", |
||
2525 | "urban_central_solid_biomass_CHP", |
||
2526 | ] |
||
2527 | |||
2528 | gen_etrago = db.select_dataframe( |
||
2529 | f""" |
||
2530 | SELECT * FROM grid.egon_etrago_generator |
||
2531 | WHERE scn_name = '{scn}' |
||
2532 | AND bus IN (SELECT bus_id from grid.egon_etrago_bus |
||
2533 | WHERE scn_name = '{scn}' |
||
2534 | AND country = 'DE') |
||
2535 | """, |
||
2536 | warning=False, |
||
2537 | ) |
||
2538 | |||
2539 | carriers_gen = set( |
||
2540 | carriers_gen_from_supply |
||
2541 | + list(gen_etrago["carrier"]) |
||
2542 | ) |
||
2543 | |||
2544 | gen_capacities = pd.DataFrame(index=list( |
||
2545 | carriers_gen), columns=["supply_table", scn]) |
||
2546 | gen_capacities[scn] = ( |
||
2547 | gen_etrago.groupby("carrier").p_nom.sum() |
||
2548 | ) |
||
2549 | |||
2550 | gen_capacities["supply_table"] = scn_capacities.set_index("carrier")[ |
||
2551 | "capacity"] |
||
2552 | |||
2553 | gen_capacities.dropna(how="all", inplace=True) |
||
2554 | |||
2555 | print(f"\nMain results regarding generators for {scn}\n") |
||
2556 | print(gen_capacities) |
||
2557 | |||
2558 | ########################################################################### |
||
2559 | # Links |
||
2560 | |||
2561 | carriers_links_from_supply = [ |
||
2562 | "central_gas_boiler", |
||
2563 | "central_heat_pump", |
||
2564 | "central_resistive_heater", |
||
2565 | "gas", |
||
2566 | "rural_biomass_boiler", |
||
2567 | "rural_gas_boiler", |
||
2568 | "rural_heat_pump", |
||
2569 | "rural_oil_boiler", |
||
2570 | "rural_resistive_heater", |
||
2571 | ] |
||
2572 | |||
2573 | link_etrago = db.select_dataframe( |
||
2574 | f""" |
||
2575 | SELECT * FROM grid.egon_etrago_link |
||
2576 | WHERE scn_name = '{scn}' |
||
2577 | AND (bus0 IN (SELECT bus_id from grid.egon_etrago_bus |
||
2578 | WHERE scn_name = '{scn}' |
||
2579 | AND country = 'DE') |
||
2580 | OR |
||
2581 | bus1 IN (SELECT bus_id from grid.egon_etrago_bus |
||
2582 | WHERE scn_name = '{scn}' |
||
2583 | AND country = 'DE') |
||
2584 | ) |
||
2585 | """, |
||
2586 | warning=False, |
||
2587 | ) |
||
2588 | |||
2589 | carriers_link = set( |
||
2590 | carriers_links_from_supply |
||
2591 | + list(link_etrago["carrier"]) |
||
2592 | ) |
||
2593 | |||
2594 | link_capacities = pd.DataFrame(index=list( |
||
2595 | carriers_link), columns=["supply_table", scn]) |
||
2596 | |||
2597 | link_capacities["eGon100RE"] = ( |
||
2598 | link_etrago.groupby("carrier").p_nom.sum() |
||
2599 | ) |
||
2600 | |||
2601 | link_capacities["supply_table"] = scn_capacities.set_index("carrier")[ |
||
2602 | "capacity"] |
||
2603 | |||
2604 | link_capacities.dropna(how="all", inplace=True) |
||
2605 | |||
2606 | print(f"\nMain results regarding links for {scn}\n") |
||
2607 | print(link_capacities) |
||
2608 | ########################################################################### |
||
2609 | # storage |
||
2610 | storage_etrago = db.select_dataframe( |
||
2611 | f""" |
||
2612 | SELECT * FROM grid.egon_etrago_storage |
||
2613 | WHERE scn_name = '{scn}' |
||
2614 | AND bus IN (SELECT bus_id from grid.egon_etrago_bus |
||
2615 | WHERE scn_name = '{scn}' |
||
2616 | AND country = 'DE') |
||
2617 | """, |
||
2618 | ) |
||
2619 | |||
2620 | carriers_storage_from_supply = ["pumped_hydro"] |
||
2621 | |||
2622 | carriers_storage = set( |
||
2623 | carriers_storage_from_supply |
||
2624 | + list(storage_etrago["carrier"]) |
||
2625 | ) |
||
2626 | |||
2627 | storage_capacities = pd.DataFrame( |
||
2628 | index=list(carriers_storage), columns=["supply_table", scn] |
||
2629 | ) |
||
2630 | |||
2631 | storage_capacities[scn] = ( |
||
2632 | storage_etrago.groupby("carrier").p_nom.sum() |
||
2633 | ) |
||
2634 | |||
2635 | storage_capacities["supply_table"] = scn_capacities.set_index("carrier")[ |
||
2636 | "capacity"] |
||
2637 | |||
2638 | print(f"\nMain results regarding storage units for {scn}\n") |
||
2639 | print(storage_capacities) |
||
2640 | ########################################################################### |
||
2641 | # stores |
||
2642 | stores_etrago = db.select_dataframe( |
||
2643 | f""" |
||
2644 | SELECT * FROM grid.egon_etrago_store |
||
2645 | WHERE scn_name = '{scn}' |
||
2646 | AND bus IN (SELECT bus_id from grid.egon_etrago_bus |
||
2647 | WHERE scn_name = '{scn}' |
||
2648 | AND country = 'DE') |
||
2649 | """, |
||
2650 | ) |
||
2651 | |||
2652 | carriers_stores_from_supply = [] |
||
2653 | |||
2654 | carriers_stores = set( |
||
2655 | carriers_stores_from_supply |
||
2656 | + list(stores_etrago["carrier"]) |
||
2657 | ) |
||
2658 | |||
2659 | stores_capacities = pd.DataFrame( |
||
2660 | index=list(carriers_stores), columns=["supply_table", scn] |
||
2661 | ) |
||
2662 | |||
2663 | stores_capacities[scn] = ( |
||
2664 | stores_etrago.groupby("carrier").e_nom.sum() |
||
2665 | ) |
||
2666 | |||
2667 | stores_capacities["supply_table"] = scn_capacities.set_index("carrier")[ |
||
2668 | "capacity"] |
||
2669 | |||
2670 | print(f"\nMain results regarding stores for {scn}\n") |
||
2671 | print(stores_capacities) |
||
2672 | |||
2673 | return |
||
2674 | |||
2675 | |||
2676 | def electrical_load_100RE(scn="eGon100RE"): |
||
2677 | load_summary = pd.DataFrame( |
||
2678 | index=["residential", "commercial", "industrial", "total",], |
||
2679 | columns=["objective", "eGon100RE"]) |
||
2680 | |||
2681 | # Sector Annual electricity demand in TWh |
||
2682 | # https://github.com/openego/powerd-data/blob/56b8215928a8dc4fe953d266c563ce0ed98e93f9/src/egon/data/datasets/demandregio/__init__.py#L480 |
||
2683 | load_summary.loc["residential", "objective"] = 90.4 |
||
2684 | # https://github.com/openego/powerd-data/blob/56b8215928a8dc4fe953d266c563ce0ed98e93f9/src/egon/data/datasets/demandregio/__init__.py#L775 |
||
2685 | load_summary.loc["commercial", "objective"] = 146.7 |
||
2686 | # https://github.com/openego/powerd-data/blob/56b8215928a8dc4fe953d266c563ce0ed98e93f9/src/egon/data/datasets/demandregio/__init__.py#L775 |
||
2687 | load_summary.loc["industrial", "objective"] = 382.9 |
||
2688 | load_summary.loc["total", "objective"] = 620.0 |
||
2689 | |||
2690 | print( |
||
2691 | "For German electricity loads the following deviations between the" |
||
2692 | " input and output can be observed:" |
||
2693 | ) |
||
2694 | |||
2695 | load_summary.loc["total", "eGon100RE"] = db.select_dataframe( |
||
2696 | """SELECT a.scn_name, a.carrier, SUM((SELECT SUM(p) |
||
2697 | FROM UNNEST(b.p_set) p))/1000000::numeric as load_twh |
||
2698 | FROM grid.egon_etrago_load a |
||
2699 | JOIN grid.egon_etrago_load_timeseries b |
||
2700 | ON (a.load_id = b.load_id) |
||
2701 | JOIN grid.egon_etrago_bus c |
||
2702 | ON (a.bus=c.bus_id) |
||
2703 | AND b.scn_name = 'eGon100RE' |
||
2704 | AND a.scn_name = 'eGon100RE' |
||
2705 | AND a.carrier = 'AC' |
||
2706 | AND c.scn_name= 'eGon100RE' |
||
2707 | AND c.country='DE' |
||
2708 | GROUP BY (a.scn_name, a.carrier); |
||
2709 | """, |
||
2710 | warning=False, |
||
2711 | )["load_twh"].values[0] |
||
2712 | |||
2713 | sources = egon.data.config.datasets()["etrago_electricity"]["sources"] |
||
2714 | cts_curves = db.select_dataframe( |
||
2715 | f"""SELECT bus_id AS bus, p_set FROM |
||
2716 | {sources['cts_curves']['schema']}. |
||
2717 | {sources['cts_curves']['table']} |
||
2718 | WHERE scn_name = '{scn}'""", |
||
2719 | ) |
||
2720 | sum_cts_curves = cts_curves.apply( |
||
2721 | lambda x: sum(x["p_set"]), axis=1).sum()/1000000 |
||
2722 | load_summary.loc["commercial", "eGon100RE"] = sum_cts_curves |
||
2723 | |||
2724 | # Select data on industrial demands assigned to osm landuse areas |
||
2725 | ind_curves_osm = db.select_dataframe( |
||
2726 | f"""SELECT bus, p_set FROM |
||
2727 | {sources['osm_curves']['schema']}. |
||
2728 | {sources['osm_curves']['table']} |
||
2729 | WHERE scn_name = '{scn}'""", |
||
2730 | ) |
||
2731 | sum_ind_curves_osm = ind_curves_osm.apply( |
||
2732 | lambda x: sum(x["p_set"]), axis=1).sum()/1000000 |
||
2733 | |||
2734 | # Select data on industrial demands assigned to industrial sites |
||
2735 | |||
2736 | ind_curves_sites = db.select_dataframe( |
||
2737 | f"""SELECT bus, p_set FROM |
||
2738 | {sources['sites_curves']['schema']}. |
||
2739 | {sources['sites_curves']['table']} |
||
2740 | WHERE scn_name = '{scn}'""", |
||
2741 | ) |
||
2742 | sum_ind_curves_sites = ind_curves_sites.apply( |
||
2743 | lambda x: sum(x["p_set"]), axis=1).sum()/1000000 |
||
2744 | |||
2745 | load_summary.loc["industrial", |
||
2746 | "eGon100RE"] = sum_ind_curves_osm + sum_ind_curves_sites |
||
2747 | |||
2748 | # Select data on household electricity demands per bus |
||
2749 | hh_curves = db.select_dataframe( |
||
2750 | f"""SELECT bus_id AS bus, p_set FROM |
||
2751 | {sources['household_curves']['schema']}. |
||
2752 | {sources['household_curves']['table']} |
||
2753 | WHERE scn_name = '{scn}'""", |
||
2754 | ) |
||
2755 | sum_hh_curves = hh_curves.apply( |
||
2756 | lambda x: sum(x["p_set"]), axis=1).sum()/1000000 |
||
2757 | load_summary.loc["residential", "eGon100RE"] = sum_hh_curves |
||
2758 | |||
2759 | load_summary["diff"] = load_summary["eGon100RE"] - \ |
||
2760 | load_summary["objective"] |
||
2761 | load_summary["diff[%]"] = load_summary["diff"] / \ |
||
2762 | load_summary["eGon100RE"] * 100 |
||
2763 | |||
2764 | print(load_summary) |
||
2765 | |||
2766 | assert (load_summary["diff[%]"] < 1).all( |
||
2767 | ), "electrical loads differ from objective values" |
||
2768 | |||
2769 | return () |
||
2770 | |||
2771 | |||
2772 | |||
2773 | def heat_gas_load_egon100RE(scn='eGon100RE'): |
||
2774 | |||
2775 | #dictionary for matching pypsa_eur carrier with egon-data carriers |
||
2776 | load_carrier_dict={ |
||
2777 | 'DE0 0 land transport EV': 'land transport EV', |
||
2778 | 'DE0 0 rural heat': 'rural_heat', |
||
2779 | 'DE0 0 urban central heat': 'central_heat', |
||
2780 | 'DE0 0 urban decentral heat': 'rural_heat', |
||
2781 | 'rural heat': 'rural_heat', |
||
2782 | 'H2 for industry': 'H2_for_industry', |
||
2783 | 'gas for industry': 'CH4_for_industry', |
||
2784 | 'urban central heat': 'central_heat', |
||
2785 | 'urban decentral heat': 'rural_heat', |
||
2786 | 'land transport EV': 'land transport EV', |
||
2787 | } |
||
2788 | |||
2789 | #filter out NaN values central_heat timeseries |
||
2790 | NaN_load_ids=db.select_dataframe( |
||
2791 | """ |
||
2792 | SELECT load_id from grid.egon_etrago_load_timeseries |
||
2793 | WHERE load_id IN (Select load_id |
||
2794 | FROM grid.egon_etrago_load |
||
2795 | WHERE carrier = 'central_heat') AND (SELECT |
||
2796 | bool_or(value::double precision::text = 'NaN') |
||
2797 | FROM unnest(p_set) AS value |
||
2798 | ) |
||
2799 | """ |
||
2800 | ) |
||
2801 | nan_load_list = tuple(NaN_load_ids["load_id"].tolist()) |
||
2802 | nan_load_str = ",".join(map(str, nan_load_list)) |
||
2803 | |||
2804 | #####loads for eGon100RE |
||
2805 | loads_etrago_timeseries = db.select_dataframe( |
||
2806 | f""" |
||
2807 | SELECT |
||
2808 | l.carrier, |
||
2809 | SUM( |
||
2810 | (SELECT SUM(p) |
||
2811 | FROM UNNEST(t.p_set) p) |
||
2812 | ) AS total_p_set_timeseries |
||
2813 | FROM |
||
2814 | grid.egon_etrago_load l |
||
2815 | LEFT JOIN |
||
2816 | grid.egon_etrago_load_timeseries t ON l.load_id = t.load_id |
||
2817 | WHERE |
||
2818 | l.scn_name = '{scn}' |
||
2819 | AND l.carrier != 'AC' |
||
2820 | AND l.bus IN ( |
||
2821 | SELECT bus_id |
||
2822 | FROM grid.egon_etrago_bus |
||
2823 | WHERE scn_name = '{scn}' |
||
2824 | AND country = 'DE' |
||
2825 | ) |
||
2826 | AND l.load_id NOT IN ({nan_load_str}) |
||
2827 | |||
2828 | GROUP BY |
||
2829 | l.carrier |
||
2830 | """ |
||
2831 | ) |
||
2832 | |||
2833 | #####loads for pypsa_eur_network |
||
2834 | n = read_network() |
||
2835 | |||
2836 | #aggregate loads with values in timeseries dataframe |
||
2837 | df_load_timeseries = n.loads_t.p_set |
||
2838 | filtered_columns = [col for col in df_load_timeseries.columns if col.startswith("DE") and "electricity" not in col] |
||
2839 | german_loads_timeseries = df_load_timeseries[filtered_columns] |
||
2840 | german_loads_timeseries = german_loads_timeseries.drop(columns=["DE0 0"]) |
||
2841 | german_loads_timeseries = german_loads_timeseries.mul( |
||
2842 | n.snapshot_weightings.generators,axis= 0).sum() |
||
2843 | german_loads_timeseries = german_loads_timeseries.rename(index=load_carrier_dict) |
||
2844 | |||
2845 | |||
2846 | #sum loads with fixed p_set in loads dataframe |
||
2847 | german_load_static_p_set = n.loads[n.loads.index.str.startswith('DE') & |
||
2848 | ~n.loads.carrier.str.contains('electricity')] |
||
2849 | german_load_static_p_set = german_load_static_p_set.groupby('carrier').p_set.sum()*8760 |
||
2850 | german_load_static_p_set = german_load_static_p_set.rename(index=load_carrier_dict) |
||
2851 | german_load_static_p_set["H2_for_industry"] =( german_load_static_p_set["H2_for_industry"]+ |
||
2852 | +n.links_t.p0[n.links.loc[ |
||
2853 | n.links.index.str.contains( |
||
2854 | "DE0 0 Fischer-Tropsch")].index].mul( |
||
2855 | n.snapshot_weightings.generators, |
||
2856 | axis= 0).sum().sum() |
||
2857 | + n.links_t.p0[n.links.loc[ |
||
2858 | n.links.index.str.contains( |
||
2859 | "DE0 0 methanolisation")].index].mul( |
||
2860 | n.snapshot_weightings.generators, |
||
2861 | axis= 0).sum().sum()) |
||
2862 | |||
2863 | |||
2864 | |||
2865 | #combine p_set and timeseries dataframes from pypsa eur |
||
2866 | german_loads_timeseries_df= german_loads_timeseries.to_frame() |
||
2867 | german_loads_timeseries_df['carrier'] = german_loads_timeseries_df.index |
||
2868 | german_loads_timeseries_df.set_index('carrier', inplace=True) |
||
2869 | |||
2870 | german_load_static_p_set_df= german_load_static_p_set.to_frame() |
||
2871 | german_load_static_p_set_df = german_load_static_p_set_df.groupby("carrier", as_index=True).sum() |
||
2872 | german_loads_timeseries_df = german_loads_timeseries_df.groupby("carrier", as_index=True).sum() |
||
2873 | combined= pd.merge( german_load_static_p_set_df,german_loads_timeseries_df , on="carrier", how="left") |
||
2874 | |||
2875 | combined['p_set'] = np.where(combined['p_set'] == 0, combined[0], combined['p_set']) |
||
2876 | combined = combined.drop(columns=[0]) |
||
2877 | |||
2878 | #carriers_for_comparison |
||
2879 | carriers_loads = set( |
||
2880 | german_load_static_p_set.index |
||
2881 | .union(german_loads_timeseries.index) |
||
2882 | .union(loads_etrago_timeseries["carrier"]) |
||
2883 | ) |
||
2884 | |||
2885 | #create dataframe for comparison |
||
2886 | loads_capacities = pd.DataFrame(index=list(carriers_loads), columns=["pypsa_eur", scn]) |
||
2887 | loads_capacities[scn] = loads_etrago_timeseries.groupby("carrier").total_p_set_timeseries.sum() |
||
2888 | loads_capacities["pypsa_eur"] = combined['p_set'] |
||
2889 | loads_capacities["diff [%]"] = ((loads_capacities[scn] - loads_capacities["pypsa_eur"]) / |
||
2890 | loads_capacities["pypsa_eur"].replace(0, np.nan))*100 |
||
2891 | |||
2892 | print("="*50) |
||
2893 | print("Comparison of Gas and Heat Loads with PyPSA-Eur Data".center(50, "=")) |
||
2894 | print("="*50) |
||
2895 | print(loads_capacities) |
||
2896 | |||
2897 | |||
2898 | |||
2899 | tasks = () |
||
2900 | |||
2901 | if "eGon2035" in SCENARIOS: |
||
2902 | tasks = tasks + (etrago_eGon2035_electricity, |
||
2903 | etrago_eGon2035_heat, |
||
2904 | residential_electricity_annual_sum, |
||
2905 | residential_electricity_hh_refinement, |
||
2906 | cts_electricity_demand_share, |
||
2907 | cts_heat_demand_share, |
||
2908 | sanitycheck_emobility_mit, |
||
2909 | sanitycheck_pv_rooftop_buildings, |
||
2910 | sanitycheck_home_batteries, |
||
2911 | etrago_eGon2035_gas_DE, |
||
2912 | etrago_eGon2035_gas_abroad, |
||
2913 | sanitycheck_dsm, |
||
2914 | etrago_timeseries_length,) |
||
2915 | |||
2916 | if "eGon100RE" in SCENARIOS: |
||
2917 | tasks = tasks + (electrical_load_100RE, |
||
2918 | generators_links_storages_stores_100RE, |
||
2919 | etrago_timeseries_length, |
||
2920 | heat_gas_load_egon100RE,) |
||
2921 | |||
2922 | |||
2923 | class SanityChecks(Dataset): |
||
2924 | #: |
||
2925 | name: str = "SanityChecks" |
||
2926 | #: |
||
2927 | version: str = "0.0.8" |
||
2928 | |||
2929 | def __init__(self, dependencies): |
||
2930 | super().__init__( |
||
2931 | name=self.name, |
||
2932 | version=self.version, |
||
2933 | dependencies=dependencies, |
||
2934 | tasks=tasks, |
||
2935 | ) |
||
2936 |