|
1
|
|
|
""" |
|
2
|
|
|
This module does sanity checks for both the eGon2035 and the eGon100RE scenario |
|
3
|
|
|
separately where a percentage error is given to showcase difference in output |
|
4
|
|
|
and input values. Please note that there are missing input technologies in the |
|
5
|
|
|
supply tables. |
|
6
|
|
|
Authors: @ALonso, @dana, @nailend, @nesnoj, @khelfen |
|
7
|
|
|
""" |
|
8
|
|
|
|
|
9
|
|
|
from math import isclose |
|
10
|
|
|
from pathlib import Path |
|
11
|
|
|
import ast |
|
12
|
|
|
|
|
13
|
|
|
from sqlalchemy import Numeric |
|
14
|
|
|
from sqlalchemy.sql import and_, cast, func, or_ |
|
15
|
|
|
import matplotlib.pyplot as plt |
|
16
|
|
|
import numpy as np |
|
17
|
|
|
import pandas as pd |
|
18
|
|
|
import seaborn as sns |
|
19
|
|
|
|
|
20
|
|
|
from egon.data import config, db, logger |
|
21
|
|
|
from egon.data.datasets import Dataset |
|
22
|
|
|
from egon.data.datasets.electricity_demand_timeseries.cts_buildings import ( |
|
23
|
|
|
EgonCtsElectricityDemandBuildingShare, |
|
24
|
|
|
EgonCtsHeatDemandBuildingShare, |
|
25
|
|
|
) |
|
26
|
|
|
from egon.data.datasets.emobility.motorized_individual_travel.db_classes import ( # noqa: E501 |
|
27
|
|
|
EgonEvCountMunicipality, |
|
28
|
|
|
EgonEvCountMvGridDistrict, |
|
29
|
|
|
EgonEvCountRegistrationDistrict, |
|
30
|
|
|
EgonEvMvGridDistrict, |
|
31
|
|
|
EgonEvPool, |
|
32
|
|
|
EgonEvTrip, |
|
33
|
|
|
) |
|
34
|
|
|
from egon.data.datasets.emobility.motorized_individual_travel.helpers import ( |
|
35
|
|
|
DATASET_CFG, |
|
36
|
|
|
read_simbev_metadata_file, |
|
37
|
|
|
) |
|
38
|
|
|
from egon.data.datasets.etrago_setup import ( |
|
39
|
|
|
EgonPfHvLink, |
|
40
|
|
|
EgonPfHvLinkTimeseries, |
|
41
|
|
|
EgonPfHvLoad, |
|
42
|
|
|
EgonPfHvLoadTimeseries, |
|
43
|
|
|
EgonPfHvStore, |
|
44
|
|
|
EgonPfHvStoreTimeseries, |
|
45
|
|
|
) |
|
46
|
|
|
from egon.data.datasets.gas_grid import ( |
|
47
|
|
|
define_gas_buses_abroad, |
|
48
|
|
|
define_gas_nodes_list, |
|
49
|
|
|
define_gas_pipeline_list, |
|
50
|
|
|
) |
|
51
|
|
|
from egon.data.datasets.gas_neighbours.eGon2035 import ( |
|
52
|
|
|
calc_capacities, |
|
53
|
|
|
calc_ch4_storage_capacities, |
|
54
|
|
|
calc_global_ch4_demand, |
|
55
|
|
|
calc_global_power_to_h2_demand, |
|
56
|
|
|
calculate_ch4_grid_capacities, |
|
57
|
|
|
import_ch4_demandTS, |
|
58
|
|
|
) |
|
59
|
|
|
from egon.data.datasets.hydrogen_etrago.storage import ( |
|
60
|
|
|
calculate_and_map_saltcavern_storage_potential, |
|
61
|
|
|
) |
|
62
|
|
|
from egon.data.datasets.power_plants.pv_rooftop_buildings import ( |
|
63
|
|
|
PV_CAP_PER_SQ_M, |
|
64
|
|
|
ROOF_FACTOR, |
|
65
|
|
|
SCENARIOS, |
|
66
|
|
|
load_building_data, |
|
67
|
|
|
scenario_data, |
|
68
|
|
|
) |
|
69
|
|
|
from egon.data.datasets.pypsaeur import read_network |
|
70
|
|
|
from egon.data.datasets.scenario_parameters import get_sector_parameters |
|
71
|
|
|
from egon.data.datasets.storages.home_batteries import get_cbat_pbat_ratio |
|
72
|
|
|
import egon.data |
|
73
|
|
|
|
|
74
|
|
|
TESTMODE_OFF = ( |
|
75
|
|
|
config.settings()["egon-data"]["--dataset-boundary"] == "Everything" |
|
76
|
|
|
) |
|
77
|
|
|
|
|
78
|
|
|
|
|
79
|
|
|
def etrago_eGon2035_electricity(): |
|
80
|
|
|
"""Execute basic sanity checks. |
|
81
|
|
|
|
|
82
|
|
|
Returns print statements as sanity checks for the electricity sector in |
|
83
|
|
|
the eGon2035 scenario. |
|
84
|
|
|
|
|
85
|
|
|
Parameters |
|
86
|
|
|
---------- |
|
87
|
|
|
None |
|
88
|
|
|
|
|
89
|
|
|
Returns |
|
90
|
|
|
------- |
|
91
|
|
|
None |
|
92
|
|
|
""" |
|
93
|
|
|
|
|
94
|
|
|
scn = "eGon2035" |
|
95
|
|
|
|
|
96
|
|
|
# Section to check generator capacities |
|
97
|
|
|
logger.info(f"Sanity checks for scenario {scn}") |
|
98
|
|
|
logger.info( |
|
99
|
|
|
"For German electricity generators the following deviations between " |
|
100
|
|
|
"the inputs and outputs can be observed:" |
|
101
|
|
|
) |
|
102
|
|
|
|
|
103
|
|
|
carriers_electricity = [ |
|
104
|
|
|
"others", |
|
105
|
|
|
"reservoir", |
|
106
|
|
|
"run_of_river", |
|
107
|
|
|
"oil", |
|
108
|
|
|
"wind_onshore", |
|
109
|
|
|
"wind_offshore", |
|
110
|
|
|
"solar", |
|
111
|
|
|
"solar_rooftop", |
|
112
|
|
|
"biomass", |
|
113
|
|
|
] |
|
114
|
|
|
|
|
115
|
|
|
for carrier in carriers_electricity: |
|
116
|
|
|
|
|
117
|
|
|
if carrier == "biomass": |
|
118
|
|
|
sum_output = db.select_dataframe( |
|
119
|
|
|
"""SELECT scn_name, SUM(p_nom::numeric) as output_capacity_mw |
|
120
|
|
|
FROM grid.egon_etrago_generator |
|
121
|
|
|
WHERE bus IN ( |
|
122
|
|
|
SELECT bus_id FROM grid.egon_etrago_bus |
|
123
|
|
|
WHERE scn_name = 'eGon2035' |
|
124
|
|
|
AND country = 'DE') |
|
125
|
|
|
AND carrier IN ('biomass', 'industrial_biomass_CHP', |
|
126
|
|
|
'central_biomass_CHP') |
|
127
|
|
|
GROUP BY (scn_name); |
|
128
|
|
|
""", |
|
129
|
|
|
warning=False, |
|
130
|
|
|
) |
|
131
|
|
|
|
|
132
|
|
|
else: |
|
133
|
|
|
sum_output = db.select_dataframe( |
|
134
|
|
|
f"""SELECT scn_name, |
|
135
|
|
|
SUM(p_nom::numeric) as output_capacity_mw |
|
136
|
|
|
FROM grid.egon_etrago_generator |
|
137
|
|
|
WHERE scn_name = '{scn}' |
|
138
|
|
|
AND carrier IN ('{carrier}') |
|
139
|
|
|
AND bus IN |
|
140
|
|
|
(SELECT bus_id |
|
141
|
|
|
FROM grid.egon_etrago_bus |
|
142
|
|
|
WHERE scn_name = 'eGon2035' |
|
143
|
|
|
AND country = 'DE') |
|
144
|
|
|
GROUP BY (scn_name); |
|
145
|
|
|
""", |
|
146
|
|
|
warning=False, |
|
147
|
|
|
) |
|
148
|
|
|
|
|
149
|
|
|
sum_input = db.select_dataframe( |
|
150
|
|
|
f"""SELECT carrier, SUM(capacity::numeric) as input_capacity_mw |
|
151
|
|
|
FROM supply.egon_scenario_capacities |
|
152
|
|
|
WHERE carrier= '{carrier}' |
|
153
|
|
|
AND scenario_name ='{scn}' |
|
154
|
|
|
GROUP BY (carrier); |
|
155
|
|
|
""", |
|
156
|
|
|
warning=False, |
|
157
|
|
|
) |
|
158
|
|
|
|
|
159
|
|
View Code Duplication |
if ( |
|
|
|
|
|
|
160
|
|
|
sum_output.output_capacity_mw.sum() == 0 |
|
161
|
|
|
and sum_input.input_capacity_mw.sum() == 0 |
|
162
|
|
|
): |
|
163
|
|
|
logger.info( |
|
164
|
|
|
f"No capacity for carrier '{carrier}' needed to be" |
|
165
|
|
|
f" distributed. Everything is fine" |
|
166
|
|
|
) |
|
167
|
|
|
|
|
168
|
|
|
elif ( |
|
169
|
|
|
sum_input.input_capacity_mw.sum() > 0 |
|
170
|
|
|
and sum_output.output_capacity_mw.sum() == 0 |
|
171
|
|
|
): |
|
172
|
|
|
logger.info( |
|
173
|
|
|
f"Error: Capacity for carrier '{carrier}' was not distributed " |
|
174
|
|
|
f"at all!" |
|
175
|
|
|
) |
|
176
|
|
|
|
|
177
|
|
|
elif ( |
|
178
|
|
|
sum_output.output_capacity_mw.sum() > 0 |
|
179
|
|
|
and sum_input.input_capacity_mw.sum() == 0 |
|
180
|
|
|
): |
|
181
|
|
|
logger.info( |
|
182
|
|
|
f"Error: Eventhough no input capacity was provided for carrier" |
|
183
|
|
|
f"'{carrier}' a capacity got distributed!" |
|
184
|
|
|
) |
|
185
|
|
|
|
|
186
|
|
|
else: |
|
187
|
|
|
sum_input["error"] = ( |
|
188
|
|
|
(sum_output.output_capacity_mw - sum_input.input_capacity_mw) |
|
189
|
|
|
/ sum_input.input_capacity_mw |
|
190
|
|
|
) * 100 |
|
191
|
|
|
g = sum_input["error"].values[0] |
|
192
|
|
|
|
|
193
|
|
|
logger.info(f"{carrier}: " + str(round(g, 2)) + " %") |
|
194
|
|
|
|
|
195
|
|
|
# Section to check storage units |
|
196
|
|
|
|
|
197
|
|
|
logger.info(f"Sanity checks for scenario {scn}") |
|
198
|
|
|
logger.info( |
|
199
|
|
|
"For German electrical storage units the following deviations between" |
|
200
|
|
|
"the inputs and outputs can be observed:" |
|
201
|
|
|
) |
|
202
|
|
|
|
|
203
|
|
|
carriers_electricity = ["pumped_hydro"] |
|
204
|
|
|
|
|
205
|
|
|
for carrier in carriers_electricity: |
|
206
|
|
|
|
|
207
|
|
|
sum_output = db.select_dataframe( |
|
208
|
|
|
f"""SELECT scn_name, SUM(p_nom::numeric) as output_capacity_mw |
|
209
|
|
|
FROM grid.egon_etrago_storage |
|
210
|
|
|
WHERE scn_name = '{scn}' |
|
211
|
|
|
AND carrier IN ('{carrier}') |
|
212
|
|
|
AND bus IN |
|
213
|
|
|
(SELECT bus_id |
|
214
|
|
|
FROM grid.egon_etrago_bus |
|
215
|
|
|
WHERE scn_name = 'eGon2035' |
|
216
|
|
|
AND country = 'DE') |
|
217
|
|
|
GROUP BY (scn_name); |
|
218
|
|
|
""", |
|
219
|
|
|
warning=False, |
|
220
|
|
|
) |
|
221
|
|
|
|
|
222
|
|
|
sum_input = db.select_dataframe( |
|
223
|
|
|
f"""SELECT carrier, SUM(capacity::numeric) as input_capacity_mw |
|
224
|
|
|
FROM supply.egon_scenario_capacities |
|
225
|
|
|
WHERE carrier= '{carrier}' |
|
226
|
|
|
AND scenario_name ='{scn}' |
|
227
|
|
|
GROUP BY (carrier); |
|
228
|
|
|
""", |
|
229
|
|
|
warning=False, |
|
230
|
|
|
) |
|
231
|
|
|
|
|
232
|
|
View Code Duplication |
if ( |
|
|
|
|
|
|
233
|
|
|
sum_output.output_capacity_mw.sum() == 0 |
|
234
|
|
|
and sum_input.input_capacity_mw.sum() == 0 |
|
235
|
|
|
): |
|
236
|
|
|
print( |
|
237
|
|
|
f"No capacity for carrier '{carrier}' needed to be " |
|
238
|
|
|
f"distributed. Everything is fine" |
|
239
|
|
|
) |
|
240
|
|
|
|
|
241
|
|
|
elif ( |
|
242
|
|
|
sum_input.input_capacity_mw.sum() > 0 |
|
243
|
|
|
and sum_output.output_capacity_mw.sum() == 0 |
|
244
|
|
|
): |
|
245
|
|
|
print( |
|
246
|
|
|
f"Error: Capacity for carrier '{carrier}' was not distributed" |
|
247
|
|
|
f" at all!" |
|
248
|
|
|
) |
|
249
|
|
|
|
|
250
|
|
|
elif ( |
|
251
|
|
|
sum_output.output_capacity_mw.sum() > 0 |
|
252
|
|
|
and sum_input.input_capacity_mw.sum() == 0 |
|
253
|
|
|
): |
|
254
|
|
|
print( |
|
255
|
|
|
f"Error: Eventhough no input capacity was provided for carrier" |
|
256
|
|
|
f" '{carrier}' a capacity got distributed!" |
|
257
|
|
|
) |
|
258
|
|
|
|
|
259
|
|
|
else: |
|
260
|
|
|
sum_input["error"] = ( |
|
261
|
|
|
(sum_output.output_capacity_mw - sum_input.input_capacity_mw) |
|
262
|
|
|
/ sum_input.input_capacity_mw |
|
263
|
|
|
) * 100 |
|
264
|
|
|
g = sum_input["error"].values[0] |
|
265
|
|
|
|
|
266
|
|
|
print(f"{carrier}: " + str(round(g, 2)) + " %") |
|
267
|
|
|
|
|
268
|
|
|
# Section to check loads |
|
269
|
|
|
|
|
270
|
|
|
print( |
|
271
|
|
|
"For German electricity loads the following deviations between the" |
|
272
|
|
|
" input and output can be observed:" |
|
273
|
|
|
) |
|
274
|
|
|
|
|
275
|
|
|
output_demand = db.select_dataframe( |
|
276
|
|
|
"""SELECT a.scn_name, a.carrier, SUM((SELECT SUM(p) |
|
277
|
|
|
FROM UNNEST(b.p_set) p))/1000000::numeric as load_twh |
|
278
|
|
|
FROM grid.egon_etrago_load a |
|
279
|
|
|
JOIN grid.egon_etrago_load_timeseries b |
|
280
|
|
|
ON (a.load_id = b.load_id) |
|
281
|
|
|
JOIN grid.egon_etrago_bus c |
|
282
|
|
|
ON (a.bus=c.bus_id) |
|
283
|
|
|
AND b.scn_name = 'eGon2035' |
|
284
|
|
|
AND a.scn_name = 'eGon2035' |
|
285
|
|
|
AND a.carrier = 'AC' |
|
286
|
|
|
AND c.scn_name= 'eGon2035' |
|
287
|
|
|
AND c.country='DE' |
|
288
|
|
|
GROUP BY (a.scn_name, a.carrier); |
|
289
|
|
|
|
|
290
|
|
|
""", |
|
291
|
|
|
warning=False, |
|
292
|
|
|
)["load_twh"].values[0] |
|
293
|
|
|
|
|
294
|
|
|
input_cts_ind = db.select_dataframe( |
|
295
|
|
|
"""SELECT scenario, |
|
296
|
|
|
SUM(demand::numeric/1000000) as demand_mw_regio_cts_ind |
|
297
|
|
|
FROM demand.egon_demandregio_cts_ind |
|
298
|
|
|
WHERE scenario= 'eGon2035' |
|
299
|
|
|
AND year IN ('2035') |
|
300
|
|
|
GROUP BY (scenario); |
|
301
|
|
|
|
|
302
|
|
|
""", |
|
303
|
|
|
warning=False, |
|
304
|
|
|
)["demand_mw_regio_cts_ind"].values[0] |
|
305
|
|
|
|
|
306
|
|
|
input_hh = db.select_dataframe( |
|
307
|
|
|
"""SELECT scenario, SUM(demand::numeric/1000000) as demand_mw_regio_hh |
|
308
|
|
|
FROM demand.egon_demandregio_hh |
|
309
|
|
|
WHERE scenario= 'eGon2035' |
|
310
|
|
|
AND year IN ('2035') |
|
311
|
|
|
GROUP BY (scenario); |
|
312
|
|
|
""", |
|
313
|
|
|
warning=False, |
|
314
|
|
|
)["demand_mw_regio_hh"].values[0] |
|
315
|
|
|
|
|
316
|
|
|
input_demand = input_hh + input_cts_ind |
|
317
|
|
|
|
|
318
|
|
|
e = round((output_demand - input_demand) / input_demand, 2) * 100 |
|
319
|
|
|
|
|
320
|
|
|
print(f"electricity demand: {e} %") |
|
321
|
|
|
|
|
322
|
|
|
|
|
323
|
|
|
def etrago_eGon2035_heat(): |
|
324
|
|
|
"""Execute basic sanity checks. |
|
325
|
|
|
|
|
326
|
|
|
Returns print statements as sanity checks for the heat sector in |
|
327
|
|
|
the eGon2035 scenario. |
|
328
|
|
|
|
|
329
|
|
|
Parameters |
|
330
|
|
|
---------- |
|
331
|
|
|
None |
|
332
|
|
|
|
|
333
|
|
|
Returns |
|
334
|
|
|
------- |
|
335
|
|
|
None |
|
336
|
|
|
""" |
|
337
|
|
|
|
|
338
|
|
|
# Check input and output values for the carriers "others", |
|
339
|
|
|
# "reservoir", "run_of_river" and "oil" |
|
340
|
|
|
|
|
341
|
|
|
scn = "eGon2035" |
|
342
|
|
|
|
|
343
|
|
|
# Section to check generator capacities |
|
344
|
|
|
print(f"Sanity checks for scenario {scn}") |
|
345
|
|
|
print( |
|
346
|
|
|
"For German heat demands the following deviations between the inputs" |
|
347
|
|
|
" and outputs can be observed:" |
|
348
|
|
|
) |
|
349
|
|
|
|
|
350
|
|
|
# Sanity checks for heat demand |
|
351
|
|
|
|
|
352
|
|
|
output_heat_demand = db.select_dataframe( |
|
353
|
|
|
"""SELECT a.scn_name, |
|
354
|
|
|
(SUM( |
|
355
|
|
|
(SELECT SUM(p) FROM UNNEST(b.p_set) p))/1000000)::numeric as load_twh |
|
356
|
|
|
FROM grid.egon_etrago_load a |
|
357
|
|
|
JOIN grid.egon_etrago_load_timeseries b |
|
358
|
|
|
ON (a.load_id = b.load_id) |
|
359
|
|
|
JOIN grid.egon_etrago_bus c |
|
360
|
|
|
ON (a.bus=c.bus_id) |
|
361
|
|
|
AND b.scn_name = 'eGon2035' |
|
362
|
|
|
AND a.scn_name = 'eGon2035' |
|
363
|
|
|
AND c.scn_name= 'eGon2035' |
|
364
|
|
|
AND c.country='DE' |
|
365
|
|
|
AND a.carrier IN ('rural_heat', 'central_heat') |
|
366
|
|
|
GROUP BY (a.scn_name); |
|
367
|
|
|
""", |
|
368
|
|
|
warning=False, |
|
369
|
|
|
)["load_twh"].values[0] |
|
370
|
|
|
|
|
371
|
|
|
input_heat_demand = db.select_dataframe( |
|
372
|
|
|
"""SELECT scenario, SUM(demand::numeric/1000000) as demand_mw_peta_heat |
|
373
|
|
|
FROM demand.egon_peta_heat |
|
374
|
|
|
WHERE scenario= 'eGon2035' |
|
375
|
|
|
GROUP BY (scenario); |
|
376
|
|
|
""", |
|
377
|
|
|
warning=False, |
|
378
|
|
|
)["demand_mw_peta_heat"].values[0] |
|
379
|
|
|
|
|
380
|
|
|
e_demand = ( |
|
381
|
|
|
round((output_heat_demand - input_heat_demand) / input_heat_demand, 2) |
|
382
|
|
|
* 100 |
|
383
|
|
|
) |
|
384
|
|
|
|
|
385
|
|
|
logger.info(f"heat demand: {e_demand} %") |
|
386
|
|
|
|
|
387
|
|
|
# Sanity checks for heat supply |
|
388
|
|
|
|
|
389
|
|
|
logger.info( |
|
390
|
|
|
"For German heat supplies the following deviations between the inputs " |
|
391
|
|
|
"and outputs can be observed:" |
|
392
|
|
|
) |
|
393
|
|
|
|
|
394
|
|
|
# Comparison for central heat pumps |
|
395
|
|
|
heat_pump_input = db.select_dataframe( |
|
396
|
|
|
"""SELECT carrier, SUM(capacity::numeric) as Urban_central_heat_pump_mw |
|
397
|
|
|
FROM supply.egon_scenario_capacities |
|
398
|
|
|
WHERE carrier= 'urban_central_heat_pump' |
|
399
|
|
|
AND scenario_name IN ('eGon2035') |
|
400
|
|
|
GROUP BY (carrier); |
|
401
|
|
|
""", |
|
402
|
|
|
warning=False, |
|
403
|
|
|
)["urban_central_heat_pump_mw"].values[0] |
|
404
|
|
|
|
|
405
|
|
|
heat_pump_output = db.select_dataframe( |
|
406
|
|
|
"""SELECT carrier, SUM(p_nom::numeric) as Central_heat_pump_mw |
|
407
|
|
|
FROM grid.egon_etrago_link |
|
408
|
|
|
WHERE carrier= 'central_heat_pump' |
|
409
|
|
|
AND scn_name IN ('eGon2035') |
|
410
|
|
|
GROUP BY (carrier); |
|
411
|
|
|
""", |
|
412
|
|
|
warning=False, |
|
413
|
|
|
)["central_heat_pump_mw"].values[0] |
|
414
|
|
|
|
|
415
|
|
|
e_heat_pump = ( |
|
416
|
|
|
round((heat_pump_output - heat_pump_input) / heat_pump_output, 2) * 100 |
|
417
|
|
|
) |
|
418
|
|
|
|
|
419
|
|
|
logger.info(f"'central_heat_pump': {e_heat_pump} % ") |
|
420
|
|
|
|
|
421
|
|
|
# Comparison for residential heat pumps |
|
422
|
|
|
|
|
423
|
|
|
input_residential_heat_pump = db.select_dataframe( |
|
424
|
|
|
"""SELECT carrier, SUM(capacity::numeric) as residential_heat_pump_mw |
|
425
|
|
|
FROM supply.egon_scenario_capacities |
|
426
|
|
|
WHERE carrier= 'residential_rural_heat_pump' |
|
427
|
|
|
AND scenario_name IN ('eGon2035') |
|
428
|
|
|
GROUP BY (carrier); |
|
429
|
|
|
""", |
|
430
|
|
|
warning=False, |
|
431
|
|
|
)["residential_heat_pump_mw"].values[0] |
|
432
|
|
|
|
|
433
|
|
|
output_residential_heat_pump = db.select_dataframe( |
|
434
|
|
|
"""SELECT carrier, SUM(p_nom::numeric) as rural_heat_pump_mw |
|
435
|
|
|
FROM grid.egon_etrago_link |
|
436
|
|
|
WHERE carrier= 'rural_heat_pump' |
|
437
|
|
|
AND scn_name IN ('eGon2035') |
|
438
|
|
|
GROUP BY (carrier); |
|
439
|
|
|
""", |
|
440
|
|
|
warning=False, |
|
441
|
|
|
)["rural_heat_pump_mw"].values[0] |
|
442
|
|
|
|
|
443
|
|
|
e_residential_heat_pump = ( |
|
444
|
|
|
round( |
|
445
|
|
|
(output_residential_heat_pump - input_residential_heat_pump) |
|
446
|
|
|
/ input_residential_heat_pump, |
|
447
|
|
|
2, |
|
448
|
|
|
) |
|
449
|
|
|
* 100 |
|
450
|
|
|
) |
|
451
|
|
|
logger.info(f"'residential heat pumps': {e_residential_heat_pump} %") |
|
452
|
|
|
|
|
453
|
|
|
# Comparison for resistive heater |
|
454
|
|
|
resistive_heater_input = db.select_dataframe( |
|
455
|
|
|
"""SELECT carrier, |
|
456
|
|
|
SUM(capacity::numeric) as Urban_central_resistive_heater_MW |
|
457
|
|
|
FROM supply.egon_scenario_capacities |
|
458
|
|
|
WHERE carrier= 'urban_central_resistive_heater' |
|
459
|
|
|
AND scenario_name IN ('eGon2035') |
|
460
|
|
|
GROUP BY (carrier); |
|
461
|
|
|
""", |
|
462
|
|
|
warning=False, |
|
463
|
|
|
)["urban_central_resistive_heater_mw"].values[0] |
|
464
|
|
|
|
|
465
|
|
|
resistive_heater_output = db.select_dataframe( |
|
466
|
|
|
"""SELECT carrier, SUM(p_nom::numeric) as central_resistive_heater_MW |
|
467
|
|
|
FROM grid.egon_etrago_link |
|
468
|
|
|
WHERE carrier= 'central_resistive_heater' |
|
469
|
|
|
AND scn_name IN ('eGon2035') |
|
470
|
|
|
GROUP BY (carrier); |
|
471
|
|
|
""", |
|
472
|
|
|
warning=False, |
|
473
|
|
|
)["central_resistive_heater_mw"].values[0] |
|
474
|
|
|
|
|
475
|
|
|
e_resistive_heater = ( |
|
476
|
|
|
round( |
|
477
|
|
|
(resistive_heater_output - resistive_heater_input) |
|
478
|
|
|
/ resistive_heater_input, |
|
479
|
|
|
2, |
|
480
|
|
|
) |
|
481
|
|
|
* 100 |
|
482
|
|
|
) |
|
483
|
|
|
|
|
484
|
|
|
logger.info(f"'resistive heater': {e_resistive_heater} %") |
|
485
|
|
|
|
|
486
|
|
|
# Comparison for solar thermal collectors |
|
487
|
|
|
|
|
488
|
|
|
input_solar_thermal = db.select_dataframe( |
|
489
|
|
|
"""SELECT carrier, SUM(capacity::numeric) as solar_thermal_collector_mw |
|
490
|
|
|
FROM supply.egon_scenario_capacities |
|
491
|
|
|
WHERE carrier= 'urban_central_solar_thermal_collector' |
|
492
|
|
|
AND scenario_name IN ('eGon2035') |
|
493
|
|
|
GROUP BY (carrier); |
|
494
|
|
|
""", |
|
495
|
|
|
warning=False, |
|
496
|
|
|
)["solar_thermal_collector_mw"].values[0] |
|
497
|
|
|
|
|
498
|
|
|
output_solar_thermal = db.select_dataframe( |
|
499
|
|
|
"""SELECT carrier, SUM(p_nom::numeric) as solar_thermal_collector_mw |
|
500
|
|
|
FROM grid.egon_etrago_generator |
|
501
|
|
|
WHERE carrier= 'solar_thermal_collector' |
|
502
|
|
|
AND scn_name IN ('eGon2035') |
|
503
|
|
|
GROUP BY (carrier); |
|
504
|
|
|
""", |
|
505
|
|
|
warning=False, |
|
506
|
|
|
)["solar_thermal_collector_mw"].values[0] |
|
507
|
|
|
|
|
508
|
|
|
e_solar_thermal = ( |
|
509
|
|
|
round( |
|
510
|
|
|
(output_solar_thermal - input_solar_thermal) / input_solar_thermal, |
|
511
|
|
|
2, |
|
512
|
|
|
) |
|
513
|
|
|
* 100 |
|
514
|
|
|
) |
|
515
|
|
|
logger.info(f"'solar thermal collector': {e_solar_thermal} %") |
|
516
|
|
|
|
|
517
|
|
|
# Comparison for geothermal |
|
518
|
|
|
|
|
519
|
|
|
input_geo_thermal = db.select_dataframe( |
|
520
|
|
|
"""SELECT carrier, |
|
521
|
|
|
SUM(capacity::numeric) as Urban_central_geo_thermal_MW |
|
522
|
|
|
FROM supply.egon_scenario_capacities |
|
523
|
|
|
WHERE carrier= 'urban_central_geo_thermal' |
|
524
|
|
|
AND scenario_name IN ('eGon2035') |
|
525
|
|
|
GROUP BY (carrier); |
|
526
|
|
|
""", |
|
527
|
|
|
warning=False, |
|
528
|
|
|
)["urban_central_geo_thermal_mw"].values[0] |
|
529
|
|
|
|
|
530
|
|
|
output_geo_thermal = db.select_dataframe( |
|
531
|
|
|
"""SELECT carrier, SUM(p_nom::numeric) as geo_thermal_MW |
|
532
|
|
|
FROM grid.egon_etrago_generator |
|
533
|
|
|
WHERE carrier= 'geo_thermal' |
|
534
|
|
|
AND scn_name IN ('eGon2035') |
|
535
|
|
|
GROUP BY (carrier); |
|
536
|
|
|
""", |
|
537
|
|
|
warning=False, |
|
538
|
|
|
)["geo_thermal_mw"].values[0] |
|
539
|
|
|
|
|
540
|
|
|
e_geo_thermal = ( |
|
541
|
|
|
round((output_geo_thermal - input_geo_thermal) / input_geo_thermal, 2) |
|
542
|
|
|
* 100 |
|
543
|
|
|
) |
|
544
|
|
|
logger.info(f"'geothermal': {e_geo_thermal} %") |
|
545
|
|
|
|
|
546
|
|
|
|
|
547
|
|
|
def residential_electricity_annual_sum(rtol=1e-5): |
|
548
|
|
|
"""Sanity check for dataset electricity_demand_timeseries : |
|
549
|
|
|
Demand_Building_Assignment |
|
550
|
|
|
|
|
551
|
|
|
Aggregate the annual demand of all census cells at NUTS3 to compare |
|
552
|
|
|
with initial scaling parameters from DemandRegio. |
|
553
|
|
|
""" |
|
554
|
|
|
|
|
555
|
|
|
df_nuts3_annual_sum = db.select_dataframe( |
|
556
|
|
|
sql=""" |
|
557
|
|
|
SELECT dr.nuts3, dr.scenario, dr.demand_regio_sum, profiles.profile_sum |
|
558
|
|
|
FROM ( |
|
559
|
|
|
SELECT scenario, SUM(demand) AS profile_sum, vg250_nuts3 |
|
560
|
|
|
FROM demand.egon_demandregio_zensus_electricity AS egon, |
|
561
|
|
|
boundaries.egon_map_zensus_vg250 AS boundaries |
|
562
|
|
|
Where egon.zensus_population_id = boundaries.zensus_population_id |
|
563
|
|
|
AND sector = 'residential' |
|
564
|
|
|
GROUP BY vg250_nuts3, scenario |
|
565
|
|
|
) AS profiles |
|
566
|
|
|
JOIN ( |
|
567
|
|
|
SELECT nuts3, scenario, sum(demand) AS demand_regio_sum |
|
568
|
|
|
FROM demand.egon_demandregio_hh |
|
569
|
|
|
GROUP BY year, scenario, nuts3 |
|
570
|
|
|
) AS dr |
|
571
|
|
|
ON profiles.vg250_nuts3 = dr.nuts3 and profiles.scenario = dr.scenario |
|
572
|
|
|
""" |
|
573
|
|
|
) |
|
574
|
|
|
|
|
575
|
|
|
np.testing.assert_allclose( |
|
576
|
|
|
actual=df_nuts3_annual_sum["profile_sum"], |
|
577
|
|
|
desired=df_nuts3_annual_sum["demand_regio_sum"], |
|
578
|
|
|
rtol=rtol, |
|
579
|
|
|
verbose=False, |
|
580
|
|
|
) |
|
581
|
|
|
|
|
582
|
|
|
logger.info( |
|
583
|
|
|
"Aggregated annual residential electricity demand" |
|
584
|
|
|
" matches with DemandRegio at NUTS-3." |
|
585
|
|
|
) |
|
586
|
|
|
|
|
587
|
|
|
|
|
588
|
|
|
def residential_electricity_hh_refinement(rtol=1e-5): |
|
589
|
|
|
"""Sanity check for dataset electricity_demand_timeseries : |
|
590
|
|
|
Household Demands |
|
591
|
|
|
|
|
592
|
|
|
Check sum of aggregated household types after refinement method |
|
593
|
|
|
was applied and compare it to the original census values.""" |
|
594
|
|
|
|
|
595
|
|
|
df_refinement = db.select_dataframe( |
|
596
|
|
|
sql=""" |
|
597
|
|
|
SELECT refined.nuts3, refined.characteristics_code, |
|
598
|
|
|
refined.sum_refined::int, census.sum_census::int |
|
599
|
|
|
FROM( |
|
600
|
|
|
SELECT nuts3, characteristics_code, SUM(hh_10types) as sum_refined |
|
601
|
|
|
FROM society.egon_destatis_zensus_household_per_ha_refined |
|
602
|
|
|
GROUP BY nuts3, characteristics_code) |
|
603
|
|
|
AS refined |
|
604
|
|
|
JOIN( |
|
605
|
|
|
SELECT t.nuts3, t.characteristics_code, sum(orig) as sum_census |
|
606
|
|
|
FROM( |
|
607
|
|
|
SELECT nuts3, cell_id, characteristics_code, |
|
608
|
|
|
sum(DISTINCT(hh_5types))as orig |
|
609
|
|
|
FROM society.egon_destatis_zensus_household_per_ha_refined |
|
610
|
|
|
GROUP BY cell_id, characteristics_code, nuts3) AS t |
|
611
|
|
|
GROUP BY t.nuts3, t.characteristics_code ) AS census |
|
612
|
|
|
ON refined.nuts3 = census.nuts3 |
|
613
|
|
|
AND refined.characteristics_code = census.characteristics_code |
|
614
|
|
|
""" |
|
615
|
|
|
) |
|
616
|
|
|
|
|
617
|
|
|
np.testing.assert_allclose( |
|
618
|
|
|
actual=df_refinement["sum_refined"], |
|
619
|
|
|
desired=df_refinement["sum_census"], |
|
620
|
|
|
rtol=rtol, |
|
621
|
|
|
verbose=False, |
|
622
|
|
|
) |
|
623
|
|
|
|
|
624
|
|
|
logger.info("All Aggregated household types match at NUTS-3.") |
|
625
|
|
|
|
|
626
|
|
|
|
|
627
|
|
|
def cts_electricity_demand_share(rtol=1e-5): |
|
628
|
|
|
"""Sanity check for dataset electricity_demand_timeseries : |
|
629
|
|
|
CtsBuildings |
|
630
|
|
|
|
|
631
|
|
|
Check sum of aggregated cts electricity demand share which equals to one |
|
632
|
|
|
for every substation as the substation profile is linearly disaggregated |
|
633
|
|
|
to all buildings.""" |
|
634
|
|
|
|
|
635
|
|
|
with db.session_scope() as session: |
|
636
|
|
|
cells_query = session.query(EgonCtsElectricityDemandBuildingShare) |
|
637
|
|
|
|
|
638
|
|
|
df_demand_share = pd.read_sql( |
|
639
|
|
|
cells_query.statement, cells_query.session.bind, index_col=None |
|
640
|
|
|
) |
|
641
|
|
|
|
|
642
|
|
|
np.testing.assert_allclose( |
|
643
|
|
|
actual=df_demand_share.groupby(["bus_id", "scenario"])[ |
|
644
|
|
|
"profile_share" |
|
645
|
|
|
].sum(), |
|
646
|
|
|
desired=1, |
|
647
|
|
|
rtol=rtol, |
|
648
|
|
|
verbose=False, |
|
649
|
|
|
) |
|
650
|
|
|
|
|
651
|
|
|
logger.info("The aggregated demand shares equal to one!.") |
|
652
|
|
|
|
|
653
|
|
|
|
|
654
|
|
|
def cts_heat_demand_share(rtol=1e-5): |
|
655
|
|
|
"""Sanity check for dataset electricity_demand_timeseries |
|
656
|
|
|
: CtsBuildings |
|
657
|
|
|
|
|
658
|
|
|
Check sum of aggregated cts heat demand share which equals to one |
|
659
|
|
|
for every substation as the substation profile is linearly disaggregated |
|
660
|
|
|
to all buildings.""" |
|
661
|
|
|
|
|
662
|
|
|
with db.session_scope() as session: |
|
663
|
|
|
cells_query = session.query(EgonCtsHeatDemandBuildingShare) |
|
664
|
|
|
|
|
665
|
|
|
df_demand_share = pd.read_sql( |
|
666
|
|
|
cells_query.statement, cells_query.session.bind, index_col=None |
|
667
|
|
|
) |
|
668
|
|
|
|
|
669
|
|
|
np.testing.assert_allclose( |
|
670
|
|
|
actual=df_demand_share.groupby(["bus_id", "scenario"])[ |
|
671
|
|
|
"profile_share" |
|
672
|
|
|
].sum(), |
|
673
|
|
|
desired=1, |
|
674
|
|
|
rtol=rtol, |
|
675
|
|
|
verbose=False, |
|
676
|
|
|
) |
|
677
|
|
|
|
|
678
|
|
|
logger.info("The aggregated demand shares equal to one!.") |
|
679
|
|
|
|
|
680
|
|
|
|
|
681
|
|
|
def sanitycheck_pv_rooftop_buildings(): |
|
682
|
|
|
def egon_power_plants_pv_roof_building(): |
|
683
|
|
|
sql = """ |
|
684
|
|
|
SELECT * |
|
685
|
|
|
FROM supply.egon_power_plants_pv_roof_building |
|
686
|
|
|
""" |
|
687
|
|
|
|
|
688
|
|
|
return db.select_dataframe(sql, index_col="index") |
|
689
|
|
|
|
|
690
|
|
|
pv_roof_df = egon_power_plants_pv_roof_building() |
|
691
|
|
|
|
|
692
|
|
|
valid_buildings_gdf = load_building_data() |
|
693
|
|
|
|
|
694
|
|
|
valid_buildings_gdf = valid_buildings_gdf.assign( |
|
695
|
|
|
bus_id=valid_buildings_gdf.bus_id.astype(int), |
|
696
|
|
|
overlay_id=valid_buildings_gdf.overlay_id.astype(int), |
|
697
|
|
|
max_cap=valid_buildings_gdf.building_area.multiply( |
|
698
|
|
|
ROOF_FACTOR * PV_CAP_PER_SQ_M |
|
699
|
|
|
), |
|
700
|
|
|
) |
|
701
|
|
|
|
|
702
|
|
|
merge_df = pv_roof_df.merge( |
|
703
|
|
|
valid_buildings_gdf[["building_area"]], |
|
704
|
|
|
how="left", |
|
705
|
|
|
left_on="building_id", |
|
706
|
|
|
right_index=True, |
|
707
|
|
|
) |
|
708
|
|
|
|
|
709
|
|
|
assert ( |
|
710
|
|
|
len(merge_df.loc[merge_df.building_area.isna()]) == 0 |
|
711
|
|
|
), f"{len(merge_df.loc[merge_df.building_area.isna()])} != 0" |
|
712
|
|
|
|
|
713
|
|
|
scenarios = ["status_quo", "eGon2035"] |
|
714
|
|
|
|
|
715
|
|
|
base_path = Path(egon.data.__path__[0]).resolve() |
|
716
|
|
|
|
|
717
|
|
|
res_dir = base_path / "sanity_checks" |
|
718
|
|
|
|
|
719
|
|
|
res_dir.mkdir(parents=True, exist_ok=True) |
|
720
|
|
|
|
|
721
|
|
|
for scenario in scenarios: |
|
722
|
|
|
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 8)) |
|
723
|
|
|
|
|
724
|
|
|
scenario_df = merge_df.loc[merge_df.scenario == scenario] |
|
725
|
|
|
|
|
726
|
|
|
logger.info( |
|
727
|
|
|
scenario + " Capacity:\n" + str(scenario_df.capacity.describe()) |
|
728
|
|
|
) |
|
729
|
|
|
|
|
730
|
|
|
small_gens_df = scenario_df.loc[scenario_df.capacity < 100] |
|
731
|
|
|
|
|
732
|
|
|
sns.histplot(data=small_gens_df, x="capacity", ax=ax1).set_title( |
|
733
|
|
|
scenario |
|
734
|
|
|
) |
|
735
|
|
|
|
|
736
|
|
|
sns.scatterplot( |
|
737
|
|
|
data=small_gens_df, x="capacity", y="building_area", ax=ax2 |
|
738
|
|
|
).set_title(scenario) |
|
739
|
|
|
|
|
740
|
|
|
plt.tight_layout() |
|
741
|
|
|
|
|
742
|
|
|
plt.savefig( |
|
743
|
|
|
res_dir / f"{scenario}_pv_rooftop_distribution.png", |
|
744
|
|
|
bbox_inches="tight", |
|
745
|
|
|
) |
|
746
|
|
|
|
|
747
|
|
|
for scenario in SCENARIOS: |
|
748
|
|
|
if scenario == "eGon2035": |
|
749
|
|
|
assert isclose( |
|
750
|
|
|
scenario_data(scenario=scenario).capacity.sum(), |
|
751
|
|
|
merge_df.loc[merge_df.scenario == scenario].capacity.sum(), |
|
752
|
|
|
rel_tol=1e-02, |
|
753
|
|
|
), ( |
|
754
|
|
|
f"{scenario_data(scenario=scenario).capacity.sum()} != " |
|
755
|
|
|
f"{merge_df.loc[merge_df.scenario == scenario].capacity.sum()}" |
|
756
|
|
|
) |
|
757
|
|
|
elif scenario == "eGon100RE": |
|
758
|
|
|
sources = config.datasets()["solar_rooftop"]["sources"] |
|
759
|
|
|
|
|
760
|
|
|
target = db.select_dataframe( |
|
761
|
|
|
f""" |
|
762
|
|
|
SELECT capacity |
|
763
|
|
|
FROM {sources['scenario_capacities']['schema']}. |
|
764
|
|
|
{sources['scenario_capacities']['table']} a |
|
765
|
|
|
WHERE carrier = 'solar_rooftop' |
|
766
|
|
|
AND scenario_name = '{scenario}' |
|
767
|
|
|
""" |
|
768
|
|
|
).capacity[0] |
|
769
|
|
|
|
|
770
|
|
|
dataset = config.settings()["egon-data"]["--dataset-boundary"] |
|
771
|
|
|
|
|
772
|
|
View Code Duplication |
if dataset == "Schleswig-Holstein": |
|
|
|
|
|
|
773
|
|
|
sources = config.datasets()["scenario_input"]["sources"] |
|
774
|
|
|
|
|
775
|
|
|
path = Path( |
|
776
|
|
|
f"./data_bundle_egon_data/nep2035_version2021/" |
|
777
|
|
|
f"{sources['eGon2035']['capacities']}" |
|
778
|
|
|
).resolve() |
|
779
|
|
|
|
|
780
|
|
|
total_2035 = ( |
|
781
|
|
|
pd.read_excel( |
|
782
|
|
|
path, |
|
783
|
|
|
sheet_name="1.Entwurf_NEP2035_V2021", |
|
784
|
|
|
index_col="Unnamed: 0", |
|
785
|
|
|
).at["PV (Aufdach)", "Summe"] |
|
786
|
|
|
* 1000 |
|
787
|
|
|
) |
|
788
|
|
|
sh_2035 = scenario_data(scenario="eGon2035").capacity.sum() |
|
789
|
|
|
|
|
790
|
|
|
share = sh_2035 / total_2035 |
|
791
|
|
|
|
|
792
|
|
|
target *= share |
|
793
|
|
|
|
|
794
|
|
|
assert isclose( |
|
795
|
|
|
target, |
|
796
|
|
|
merge_df.loc[merge_df.scenario == scenario].capacity.sum(), |
|
797
|
|
|
rel_tol=1e-02, |
|
798
|
|
|
), ( |
|
799
|
|
|
f"{target} != " |
|
800
|
|
|
f"{merge_df.loc[merge_df.scenario == scenario].capacity.sum()}" |
|
801
|
|
|
) |
|
802
|
|
|
else: |
|
803
|
|
|
raise ValueError(f"Scenario {scenario} is not valid.") |
|
804
|
|
|
|
|
805
|
|
|
|
|
806
|
|
|
def sanitycheck_emobility_mit(): |
|
807
|
|
|
"""Execute sanity checks for eMobility: motorized individual travel |
|
808
|
|
|
|
|
809
|
|
|
Checks data integrity for scenarios using assertions: |
|
810
|
|
|
|
|
811
|
|
|
1. Allocated EV numbers and EVs allocated to grid districts |
|
812
|
|
|
2. Trip data (original inout data from simBEV) |
|
813
|
|
|
3. Model data in eTraGo PF tables (grid.egon_etrago_*) |
|
814
|
|
|
|
|
815
|
|
|
Parameters |
|
816
|
|
|
---------- |
|
817
|
|
|
None |
|
818
|
|
|
|
|
819
|
|
|
Returns |
|
820
|
|
|
------- |
|
821
|
|
|
None |
|
822
|
|
|
""" |
|
823
|
|
|
|
|
824
|
|
|
def check_ev_allocation(): |
|
825
|
|
|
# Get target number for scenario |
|
826
|
|
|
ev_count_target = scenario_variation_parameters["ev_count"] |
|
827
|
|
|
print(f" Target count: {str(ev_count_target)}") |
|
828
|
|
|
|
|
829
|
|
|
# Get allocated numbers |
|
830
|
|
|
ev_counts_dict = {} |
|
831
|
|
|
with db.session_scope() as session: |
|
832
|
|
|
for table, level in zip( |
|
833
|
|
|
[ |
|
834
|
|
|
EgonEvCountMvGridDistrict, |
|
835
|
|
|
EgonEvCountMunicipality, |
|
836
|
|
|
EgonEvCountRegistrationDistrict, |
|
837
|
|
|
], |
|
838
|
|
|
["Grid District", "Municipality", "Registration District"], |
|
839
|
|
|
): |
|
840
|
|
|
query = session.query( |
|
841
|
|
|
func.sum( |
|
842
|
|
|
table.bev_mini |
|
843
|
|
|
+ table.bev_medium |
|
844
|
|
|
+ table.bev_luxury |
|
845
|
|
|
+ table.phev_mini |
|
846
|
|
|
+ table.phev_medium |
|
847
|
|
|
+ table.phev_luxury |
|
848
|
|
|
).label("ev_count") |
|
849
|
|
|
).filter( |
|
850
|
|
|
table.scenario == scenario_name, |
|
851
|
|
|
table.scenario_variation == scenario_var_name, |
|
852
|
|
|
) |
|
853
|
|
|
|
|
854
|
|
|
ev_counts = pd.read_sql( |
|
855
|
|
|
query.statement, query.session.bind, index_col=None |
|
856
|
|
|
) |
|
857
|
|
|
ev_counts_dict[level] = ev_counts.iloc[0].ev_count |
|
858
|
|
|
print( |
|
859
|
|
|
f" Count table: Total count for level {level} " |
|
860
|
|
|
f"(table: {table.__table__}): " |
|
861
|
|
|
f"{str(ev_counts_dict[level])}" |
|
862
|
|
|
) |
|
863
|
|
|
|
|
864
|
|
|
# Compare with scenario target (only if not in testmode) |
|
865
|
|
|
if TESTMODE_OFF: |
|
866
|
|
|
for level, count in ev_counts_dict.items(): |
|
867
|
|
|
np.testing.assert_allclose( |
|
868
|
|
|
count, |
|
869
|
|
|
ev_count_target, |
|
870
|
|
|
rtol=0.0001 if ev_count_target > 1e6 else 0.02, |
|
871
|
|
|
err_msg=f"EV numbers in {level} seems to be flawed.", |
|
872
|
|
|
) |
|
873
|
|
|
else: |
|
874
|
|
|
print(" Testmode is on, skipping sanity check...") |
|
875
|
|
|
|
|
876
|
|
|
# Get allocated EVs in grid districts |
|
877
|
|
|
with db.session_scope() as session: |
|
878
|
|
|
query = session.query( |
|
879
|
|
|
func.count(EgonEvMvGridDistrict.egon_ev_pool_ev_id).label( |
|
880
|
|
|
"ev_count" |
|
881
|
|
|
), |
|
882
|
|
|
).filter( |
|
883
|
|
|
EgonEvMvGridDistrict.scenario == scenario_name, |
|
884
|
|
|
EgonEvMvGridDistrict.scenario_variation == scenario_var_name, |
|
885
|
|
|
) |
|
886
|
|
|
ev_count_alloc = ( |
|
887
|
|
|
pd.read_sql(query.statement, query.session.bind, index_col=None) |
|
888
|
|
|
.iloc[0] |
|
889
|
|
|
.ev_count |
|
890
|
|
|
) |
|
891
|
|
|
print( |
|
892
|
|
|
f" EVs allocated to Grid Districts " |
|
893
|
|
|
f"(table: {EgonEvMvGridDistrict.__table__}) total count: " |
|
894
|
|
|
f"{str(ev_count_alloc)}" |
|
895
|
|
|
) |
|
896
|
|
|
|
|
897
|
|
|
# Compare with scenario target (only if not in testmode) |
|
898
|
|
|
if TESTMODE_OFF: |
|
899
|
|
|
np.testing.assert_allclose( |
|
900
|
|
|
ev_count_alloc, |
|
901
|
|
|
ev_count_target, |
|
902
|
|
|
rtol=0.0001 if ev_count_target > 1e6 else 0.02, |
|
903
|
|
|
err_msg=( |
|
904
|
|
|
"EV numbers allocated to Grid Districts seems to be " |
|
905
|
|
|
"flawed." |
|
906
|
|
|
), |
|
907
|
|
|
) |
|
908
|
|
|
else: |
|
909
|
|
|
print(" Testmode is on, skipping sanity check...") |
|
910
|
|
|
|
|
911
|
|
|
return ev_count_alloc |
|
912
|
|
|
|
|
913
|
|
|
def check_trip_data(): |
|
914
|
|
|
# Check if trips start at timestep 0 and have a max. of 35040 steps |
|
915
|
|
|
# (8760h in 15min steps) |
|
916
|
|
|
print(" Checking timeranges...") |
|
917
|
|
|
with db.session_scope() as session: |
|
918
|
|
|
query = session.query( |
|
919
|
|
|
func.count(EgonEvTrip.event_id).label("cnt") |
|
920
|
|
|
).filter( |
|
921
|
|
|
or_( |
|
922
|
|
|
and_( |
|
923
|
|
|
EgonEvTrip.park_start > 0, |
|
924
|
|
|
EgonEvTrip.simbev_event_id == 0, |
|
925
|
|
|
), |
|
926
|
|
|
EgonEvTrip.park_end |
|
927
|
|
|
> (60 / int(meta_run_config.stepsize)) * 8760, |
|
928
|
|
|
), |
|
929
|
|
|
EgonEvTrip.scenario == scenario_name, |
|
930
|
|
|
) |
|
931
|
|
|
invalid_trips = pd.read_sql( |
|
932
|
|
|
query.statement, query.session.bind, index_col=None |
|
933
|
|
|
) |
|
934
|
|
|
np.testing.assert_equal( |
|
935
|
|
|
invalid_trips.iloc[0].cnt, |
|
936
|
|
|
0, |
|
937
|
|
|
err_msg=( |
|
938
|
|
|
f"{str(invalid_trips.iloc[0].cnt)} trips in table " |
|
939
|
|
|
f"{EgonEvTrip.__table__} have invalid timesteps." |
|
940
|
|
|
), |
|
941
|
|
|
) |
|
942
|
|
|
|
|
943
|
|
|
# Check if charging demand can be covered by available charging energy |
|
944
|
|
|
# while parking |
|
945
|
|
|
print(" Compare charging demand with available power...") |
|
946
|
|
|
with db.session_scope() as session: |
|
947
|
|
|
query = session.query( |
|
948
|
|
|
func.count(EgonEvTrip.event_id).label("cnt") |
|
949
|
|
|
).filter( |
|
950
|
|
|
func.round( |
|
951
|
|
|
cast( |
|
952
|
|
|
(EgonEvTrip.park_end - EgonEvTrip.park_start + 1) |
|
953
|
|
|
* EgonEvTrip.charging_capacity_nominal |
|
954
|
|
|
* (int(meta_run_config.stepsize) / 60), |
|
955
|
|
|
Numeric, |
|
956
|
|
|
), |
|
957
|
|
|
3, |
|
958
|
|
|
) |
|
959
|
|
|
< cast(EgonEvTrip.charging_demand, Numeric), |
|
960
|
|
|
EgonEvTrip.scenario == scenario_name, |
|
961
|
|
|
) |
|
962
|
|
|
invalid_trips = pd.read_sql( |
|
963
|
|
|
query.statement, query.session.bind, index_col=None |
|
964
|
|
|
) |
|
965
|
|
|
np.testing.assert_equal( |
|
966
|
|
|
invalid_trips.iloc[0].cnt, |
|
967
|
|
|
0, |
|
968
|
|
|
err_msg=( |
|
969
|
|
|
f"In {str(invalid_trips.iloc[0].cnt)} trips (table: " |
|
970
|
|
|
f"{EgonEvTrip.__table__}) the charging demand cannot be " |
|
971
|
|
|
f"covered by available charging power." |
|
972
|
|
|
), |
|
973
|
|
|
) |
|
974
|
|
|
|
|
975
|
|
|
def check_model_data(): |
|
976
|
|
|
# Check if model components were fully created |
|
977
|
|
|
print(" Check if all model components were created...") |
|
978
|
|
|
# Get MVGDs which got EV allocated |
|
979
|
|
|
with db.session_scope() as session: |
|
980
|
|
|
query = ( |
|
981
|
|
|
session.query( |
|
982
|
|
|
EgonEvMvGridDistrict.bus_id, |
|
983
|
|
|
) |
|
984
|
|
|
.filter( |
|
985
|
|
|
EgonEvMvGridDistrict.scenario == scenario_name, |
|
986
|
|
|
EgonEvMvGridDistrict.scenario_variation |
|
987
|
|
|
== scenario_var_name, |
|
988
|
|
|
) |
|
989
|
|
|
.group_by(EgonEvMvGridDistrict.bus_id) |
|
990
|
|
|
) |
|
991
|
|
|
mvgds_with_ev = ( |
|
992
|
|
|
pd.read_sql(query.statement, query.session.bind, index_col=None) |
|
993
|
|
|
.bus_id.sort_values() |
|
994
|
|
|
.to_list() |
|
995
|
|
|
) |
|
996
|
|
|
|
|
997
|
|
|
# Load model components |
|
998
|
|
|
with db.session_scope() as session: |
|
999
|
|
|
query = ( |
|
1000
|
|
|
session.query( |
|
1001
|
|
|
EgonPfHvLink.bus0.label("mvgd_bus_id"), |
|
1002
|
|
|
EgonPfHvLoad.bus.label("emob_bus_id"), |
|
1003
|
|
|
EgonPfHvLoad.load_id.label("load_id"), |
|
1004
|
|
|
EgonPfHvStore.store_id.label("store_id"), |
|
1005
|
|
|
) |
|
1006
|
|
|
.select_from(EgonPfHvLoad, EgonPfHvStore) |
|
1007
|
|
|
.join( |
|
1008
|
|
|
EgonPfHvLoadTimeseries, |
|
1009
|
|
|
EgonPfHvLoadTimeseries.load_id == EgonPfHvLoad.load_id, |
|
1010
|
|
|
) |
|
1011
|
|
|
.join( |
|
1012
|
|
|
EgonPfHvStoreTimeseries, |
|
1013
|
|
|
EgonPfHvStoreTimeseries.store_id == EgonPfHvStore.store_id, |
|
1014
|
|
|
) |
|
1015
|
|
|
.filter( |
|
1016
|
|
|
EgonPfHvLoad.carrier == "land_transport_EV", |
|
1017
|
|
|
EgonPfHvLoad.scn_name == scenario_name, |
|
1018
|
|
|
EgonPfHvLoadTimeseries.scn_name == scenario_name, |
|
1019
|
|
|
EgonPfHvStore.carrier == "battery_storage", |
|
1020
|
|
|
EgonPfHvStore.scn_name == scenario_name, |
|
1021
|
|
|
EgonPfHvStoreTimeseries.scn_name == scenario_name, |
|
1022
|
|
|
EgonPfHvLink.scn_name == scenario_name, |
|
1023
|
|
|
EgonPfHvLink.bus1 == EgonPfHvLoad.bus, |
|
1024
|
|
|
EgonPfHvLink.bus1 == EgonPfHvStore.bus, |
|
1025
|
|
|
) |
|
1026
|
|
|
) |
|
1027
|
|
|
model_components = pd.read_sql( |
|
1028
|
|
|
query.statement, query.session.bind, index_col=None |
|
1029
|
|
|
) |
|
1030
|
|
|
|
|
1031
|
|
|
# Check number of buses with model components connected |
|
1032
|
|
|
mvgd_buses_with_ev = model_components.loc[ |
|
1033
|
|
|
model_components.mvgd_bus_id.isin(mvgds_with_ev) |
|
1034
|
|
|
] |
|
1035
|
|
|
np.testing.assert_equal( |
|
1036
|
|
|
len(mvgds_with_ev), |
|
1037
|
|
|
len(mvgd_buses_with_ev), |
|
1038
|
|
|
err_msg=( |
|
1039
|
|
|
f"Number of Grid Districts with connected model components " |
|
1040
|
|
|
f"({str(len(mvgd_buses_with_ev))} in tables egon_etrago_*) " |
|
1041
|
|
|
f"differ from number of Grid Districts that got EVs " |
|
1042
|
|
|
f"allocated ({len(mvgds_with_ev)} in table " |
|
1043
|
|
|
f"{EgonEvMvGridDistrict.__table__})." |
|
1044
|
|
|
), |
|
1045
|
|
|
) |
|
1046
|
|
|
|
|
1047
|
|
|
# Check if all required components exist (if no id is NaN) |
|
1048
|
|
|
np.testing.assert_equal( |
|
1049
|
|
|
model_components.drop_duplicates().isna().any().any(), |
|
1050
|
|
|
False, |
|
1051
|
|
|
err_msg=( |
|
1052
|
|
|
f"Some components are missing (see True values): " |
|
1053
|
|
|
f"{model_components.drop_duplicates().isna().any()}" |
|
1054
|
|
|
), |
|
1055
|
|
|
) |
|
1056
|
|
|
|
|
1057
|
|
|
# Get all model timeseries |
|
1058
|
|
|
print(" Loading model timeseries...") |
|
1059
|
|
|
# Get all model timeseries |
|
1060
|
|
|
model_ts_dict = { |
|
1061
|
|
|
"Load": { |
|
1062
|
|
|
"carrier": "land_transport_EV", |
|
1063
|
|
|
"table": EgonPfHvLoad, |
|
1064
|
|
|
"table_ts": EgonPfHvLoadTimeseries, |
|
1065
|
|
|
"column_id": "load_id", |
|
1066
|
|
|
"columns_ts": ["p_set"], |
|
1067
|
|
|
"ts": None, |
|
1068
|
|
|
}, |
|
1069
|
|
|
"Link": { |
|
1070
|
|
|
"carrier": "BEV_charger", |
|
1071
|
|
|
"table": EgonPfHvLink, |
|
1072
|
|
|
"table_ts": EgonPfHvLinkTimeseries, |
|
1073
|
|
|
"column_id": "link_id", |
|
1074
|
|
|
"columns_ts": ["p_max_pu"], |
|
1075
|
|
|
"ts": None, |
|
1076
|
|
|
}, |
|
1077
|
|
|
"Store": { |
|
1078
|
|
|
"carrier": "battery_storage", |
|
1079
|
|
|
"table": EgonPfHvStore, |
|
1080
|
|
|
"table_ts": EgonPfHvStoreTimeseries, |
|
1081
|
|
|
"column_id": "store_id", |
|
1082
|
|
|
"columns_ts": ["e_min_pu", "e_max_pu"], |
|
1083
|
|
|
"ts": None, |
|
1084
|
|
|
}, |
|
1085
|
|
|
} |
|
1086
|
|
|
|
|
1087
|
|
|
with db.session_scope() as session: |
|
1088
|
|
|
for node, attrs in model_ts_dict.items(): |
|
1089
|
|
|
print(f" Loading {node} timeseries...") |
|
1090
|
|
|
subquery = ( |
|
1091
|
|
|
session.query(getattr(attrs["table"], attrs["column_id"])) |
|
1092
|
|
|
.filter(attrs["table"].carrier == attrs["carrier"]) |
|
1093
|
|
|
.filter(attrs["table"].scn_name == scenario_name) |
|
1094
|
|
|
.subquery() |
|
1095
|
|
|
) |
|
1096
|
|
|
|
|
1097
|
|
|
cols = [ |
|
1098
|
|
|
getattr(attrs["table_ts"], c) for c in attrs["columns_ts"] |
|
1099
|
|
|
] |
|
1100
|
|
|
query = session.query( |
|
1101
|
|
|
getattr(attrs["table_ts"], attrs["column_id"]), *cols |
|
1102
|
|
|
).filter( |
|
1103
|
|
|
getattr(attrs["table_ts"], attrs["column_id"]).in_( |
|
1104
|
|
|
subquery |
|
1105
|
|
|
), |
|
1106
|
|
|
attrs["table_ts"].scn_name == scenario_name, |
|
1107
|
|
|
) |
|
1108
|
|
|
attrs["ts"] = pd.read_sql( |
|
1109
|
|
|
query.statement, |
|
1110
|
|
|
query.session.bind, |
|
1111
|
|
|
index_col=attrs["column_id"], |
|
1112
|
|
|
) |
|
1113
|
|
|
|
|
1114
|
|
|
# Check if all timeseries have 8760 steps |
|
1115
|
|
|
print(" Checking timeranges...") |
|
1116
|
|
|
for node, attrs in model_ts_dict.items(): |
|
1117
|
|
|
for col in attrs["columns_ts"]: |
|
1118
|
|
|
ts = attrs["ts"] |
|
1119
|
|
|
invalid_ts = ts.loc[ts[col].apply(lambda _: len(_)) != 8760][ |
|
1120
|
|
|
col |
|
1121
|
|
|
].apply(len) |
|
1122
|
|
|
np.testing.assert_equal( |
|
1123
|
|
|
len(invalid_ts), |
|
1124
|
|
|
0, |
|
1125
|
|
|
err_msg=( |
|
1126
|
|
|
f"{str(len(invalid_ts))} rows in timeseries do not " |
|
1127
|
|
|
f"have 8760 timesteps. Table: " |
|
1128
|
|
|
f"{attrs['table_ts'].__table__}, Column: {col}, IDs: " |
|
1129
|
|
|
f"{str(list(invalid_ts.index))}" |
|
1130
|
|
|
), |
|
1131
|
|
|
) |
|
1132
|
|
|
|
|
1133
|
|
|
# Compare total energy demand in model with some approximate values |
|
1134
|
|
|
# (per EV: 14,000 km/a, 0.17 kWh/km) |
|
1135
|
|
|
print(" Checking energy demand in model...") |
|
1136
|
|
|
total_energy_model = ( |
|
1137
|
|
|
model_ts_dict["Load"]["ts"].p_set.apply(lambda _: sum(_)).sum() |
|
1138
|
|
|
/ 1e6 |
|
1139
|
|
|
) |
|
1140
|
|
|
print(f" Total energy amount in model: {total_energy_model} TWh") |
|
1141
|
|
|
total_energy_scenario_approx = ev_count_alloc * 14000 * 0.17 / 1e9 |
|
1142
|
|
|
print( |
|
1143
|
|
|
f" Total approximated energy amount in scenario: " |
|
1144
|
|
|
f"{total_energy_scenario_approx} TWh" |
|
1145
|
|
|
) |
|
1146
|
|
|
np.testing.assert_allclose( |
|
1147
|
|
|
total_energy_model, |
|
1148
|
|
|
total_energy_scenario_approx, |
|
1149
|
|
|
rtol=0.1, |
|
1150
|
|
|
err_msg=( |
|
1151
|
|
|
"The total energy amount in the model deviates more than 10% " |
|
1152
|
|
|
"from the approximated value for current scenario." |
|
1153
|
|
|
), |
|
1154
|
|
|
) |
|
1155
|
|
|
|
|
1156
|
|
|
# Compare total storage capacity |
|
1157
|
|
|
print(" Checking storage capacity...") |
|
1158
|
|
|
# Load storage capacities from model |
|
1159
|
|
|
with db.session_scope() as session: |
|
1160
|
|
|
query = session.query( |
|
1161
|
|
|
func.sum(EgonPfHvStore.e_nom).label("e_nom") |
|
1162
|
|
|
).filter( |
|
1163
|
|
|
EgonPfHvStore.scn_name == scenario_name, |
|
1164
|
|
|
EgonPfHvStore.carrier == "battery_storage", |
|
1165
|
|
|
) |
|
1166
|
|
|
storage_capacity_model = ( |
|
1167
|
|
|
pd.read_sql( |
|
1168
|
|
|
query.statement, query.session.bind, index_col=None |
|
1169
|
|
|
).e_nom.sum() |
|
1170
|
|
|
/ 1e3 |
|
1171
|
|
|
) |
|
1172
|
|
|
print( |
|
1173
|
|
|
f" Total storage capacity ({EgonPfHvStore.__table__}): " |
|
1174
|
|
|
f"{round(storage_capacity_model, 1)} GWh" |
|
1175
|
|
|
) |
|
1176
|
|
|
|
|
1177
|
|
|
# Load occurences of each EV |
|
1178
|
|
|
with db.session_scope() as session: |
|
1179
|
|
|
query = ( |
|
1180
|
|
|
session.query( |
|
1181
|
|
|
EgonEvMvGridDistrict.bus_id, |
|
1182
|
|
|
EgonEvPool.type, |
|
1183
|
|
|
func.count(EgonEvMvGridDistrict.egon_ev_pool_ev_id).label( |
|
1184
|
|
|
"count" |
|
1185
|
|
|
), |
|
1186
|
|
|
) |
|
1187
|
|
|
.join( |
|
1188
|
|
|
EgonEvPool, |
|
1189
|
|
|
EgonEvPool.ev_id |
|
1190
|
|
|
== EgonEvMvGridDistrict.egon_ev_pool_ev_id, |
|
1191
|
|
|
) |
|
1192
|
|
|
.filter( |
|
1193
|
|
|
EgonEvMvGridDistrict.scenario == scenario_name, |
|
1194
|
|
|
EgonEvMvGridDistrict.scenario_variation |
|
1195
|
|
|
== scenario_var_name, |
|
1196
|
|
|
EgonEvPool.scenario == scenario_name, |
|
1197
|
|
|
) |
|
1198
|
|
|
.group_by(EgonEvMvGridDistrict.bus_id, EgonEvPool.type) |
|
1199
|
|
|
) |
|
1200
|
|
|
count_per_ev_all = pd.read_sql( |
|
1201
|
|
|
query.statement, query.session.bind, index_col="bus_id" |
|
1202
|
|
|
) |
|
1203
|
|
|
count_per_ev_all["bat_cap"] = count_per_ev_all.type.map( |
|
1204
|
|
|
meta_tech_data.battery_capacity |
|
1205
|
|
|
) |
|
1206
|
|
|
count_per_ev_all["bat_cap_total_MWh"] = ( |
|
1207
|
|
|
count_per_ev_all["count"] * count_per_ev_all.bat_cap / 1e3 |
|
1208
|
|
|
) |
|
1209
|
|
|
storage_capacity_simbev = count_per_ev_all.bat_cap_total_MWh.div( |
|
1210
|
|
|
1e3 |
|
1211
|
|
|
).sum() |
|
1212
|
|
|
print( |
|
1213
|
|
|
f" Total storage capacity (simBEV): " |
|
1214
|
|
|
f"{round(storage_capacity_simbev, 1)} GWh" |
|
1215
|
|
|
) |
|
1216
|
|
|
|
|
1217
|
|
|
np.testing.assert_allclose( |
|
1218
|
|
|
storage_capacity_model, |
|
1219
|
|
|
storage_capacity_simbev, |
|
1220
|
|
|
rtol=0.01, |
|
1221
|
|
|
err_msg=( |
|
1222
|
|
|
"The total storage capacity in the model deviates more than " |
|
1223
|
|
|
"1% from the input data provided by simBEV for current " |
|
1224
|
|
|
"scenario." |
|
1225
|
|
|
), |
|
1226
|
|
|
) |
|
1227
|
|
|
|
|
1228
|
|
|
# Check SoC storage constraint: e_min_pu < e_max_pu for all timesteps |
|
1229
|
|
|
print(" Validating SoC constraints...") |
|
1230
|
|
|
stores_with_invalid_soc = [] |
|
1231
|
|
|
for idx, row in model_ts_dict["Store"]["ts"].iterrows(): |
|
1232
|
|
|
ts = row[["e_min_pu", "e_max_pu"]] |
|
1233
|
|
|
x = np.array(ts.e_min_pu) > np.array(ts.e_max_pu) |
|
1234
|
|
|
if x.any(): |
|
1235
|
|
|
stores_with_invalid_soc.append(idx) |
|
1236
|
|
|
|
|
1237
|
|
|
np.testing.assert_equal( |
|
1238
|
|
|
len(stores_with_invalid_soc), |
|
1239
|
|
|
0, |
|
1240
|
|
|
err_msg=( |
|
1241
|
|
|
f"The store constraint e_min_pu < e_max_pu does not apply " |
|
1242
|
|
|
f"for some storages in {EgonPfHvStoreTimeseries.__table__}. " |
|
1243
|
|
|
f"Invalid store_ids: {stores_with_invalid_soc}" |
|
1244
|
|
|
), |
|
1245
|
|
|
) |
|
1246
|
|
|
|
|
1247
|
|
|
def check_model_data_lowflex_eGon2035(): |
|
1248
|
|
|
# TODO: Add eGon100RE_lowflex |
|
1249
|
|
|
print("") |
|
1250
|
|
|
print("SCENARIO: eGon2035_lowflex") |
|
1251
|
|
|
|
|
1252
|
|
|
# Compare driving load and charging load |
|
1253
|
|
|
print(" Loading eGon2035 model timeseries: driving load...") |
|
1254
|
|
|
with db.session_scope() as session: |
|
1255
|
|
|
query = ( |
|
1256
|
|
|
session.query( |
|
1257
|
|
|
EgonPfHvLoad.load_id, |
|
1258
|
|
|
EgonPfHvLoadTimeseries.p_set, |
|
1259
|
|
|
) |
|
1260
|
|
|
.join( |
|
1261
|
|
|
EgonPfHvLoadTimeseries, |
|
1262
|
|
|
EgonPfHvLoadTimeseries.load_id == EgonPfHvLoad.load_id, |
|
1263
|
|
|
) |
|
1264
|
|
|
.filter( |
|
1265
|
|
|
EgonPfHvLoad.carrier == "land_transport_EV", |
|
1266
|
|
|
EgonPfHvLoad.scn_name == "eGon2035", |
|
1267
|
|
|
EgonPfHvLoadTimeseries.scn_name == "eGon2035", |
|
1268
|
|
|
) |
|
1269
|
|
|
) |
|
1270
|
|
|
model_driving_load = pd.read_sql( |
|
1271
|
|
|
query.statement, query.session.bind, index_col=None |
|
1272
|
|
|
) |
|
1273
|
|
|
driving_load = np.array(model_driving_load.p_set.to_list()).sum(axis=0) |
|
1274
|
|
|
|
|
1275
|
|
|
print( |
|
1276
|
|
|
" Loading eGon2035_lowflex model timeseries: dumb charging " |
|
1277
|
|
|
"load..." |
|
1278
|
|
|
) |
|
1279
|
|
|
with db.session_scope() as session: |
|
1280
|
|
|
query = ( |
|
1281
|
|
|
session.query( |
|
1282
|
|
|
EgonPfHvLoad.load_id, |
|
1283
|
|
|
EgonPfHvLoadTimeseries.p_set, |
|
1284
|
|
|
) |
|
1285
|
|
|
.join( |
|
1286
|
|
|
EgonPfHvLoadTimeseries, |
|
1287
|
|
|
EgonPfHvLoadTimeseries.load_id == EgonPfHvLoad.load_id, |
|
1288
|
|
|
) |
|
1289
|
|
|
.filter( |
|
1290
|
|
|
EgonPfHvLoad.carrier == "land_transport_EV", |
|
1291
|
|
|
EgonPfHvLoad.scn_name == "eGon2035_lowflex", |
|
1292
|
|
|
EgonPfHvLoadTimeseries.scn_name == "eGon2035_lowflex", |
|
1293
|
|
|
) |
|
1294
|
|
|
) |
|
1295
|
|
|
model_charging_load_lowflex = pd.read_sql( |
|
1296
|
|
|
query.statement, query.session.bind, index_col=None |
|
1297
|
|
|
) |
|
1298
|
|
|
charging_load = np.array( |
|
1299
|
|
|
model_charging_load_lowflex.p_set.to_list() |
|
1300
|
|
|
).sum(axis=0) |
|
1301
|
|
|
|
|
1302
|
|
|
# Ratio of driving and charging load should be 0.9 due to charging |
|
1303
|
|
|
# efficiency |
|
1304
|
|
|
print(" Compare cumulative loads...") |
|
1305
|
|
|
print(f" Driving load (eGon2035): {driving_load.sum() / 1e6} TWh") |
|
1306
|
|
|
print( |
|
1307
|
|
|
f" Dumb charging load (eGon2035_lowflex): " |
|
1308
|
|
|
f"{charging_load.sum() / 1e6} TWh" |
|
1309
|
|
|
) |
|
1310
|
|
|
driving_load_theoretical = ( |
|
1311
|
|
|
float(meta_run_config.eta_cp) * charging_load.sum() |
|
|
|
|
|
|
1312
|
|
|
) |
|
1313
|
|
|
np.testing.assert_allclose( |
|
1314
|
|
|
driving_load.sum(), |
|
1315
|
|
|
driving_load_theoretical, |
|
1316
|
|
|
rtol=0.01, |
|
1317
|
|
|
err_msg=( |
|
1318
|
|
|
f"The driving load (eGon2035) deviates by more than 1% " |
|
1319
|
|
|
f"from the theoretical driving load calculated from charging " |
|
1320
|
|
|
f"load (eGon2035_lowflex) with an efficiency of " |
|
1321
|
|
|
f"{float(meta_run_config.eta_cp)}." |
|
1322
|
|
|
), |
|
1323
|
|
|
) |
|
1324
|
|
|
|
|
1325
|
|
|
print("=====================================================") |
|
1326
|
|
|
print("=== SANITY CHECKS FOR MOTORIZED INDIVIDUAL TRAVEL ===") |
|
1327
|
|
|
print("=====================================================") |
|
1328
|
|
|
|
|
1329
|
|
|
for scenario_name in ["eGon2035", "eGon100RE"]: |
|
1330
|
|
|
scenario_var_name = DATASET_CFG["scenario"]["variation"][scenario_name] |
|
1331
|
|
|
|
|
1332
|
|
|
print("") |
|
1333
|
|
|
print(f"SCENARIO: {scenario_name}, VARIATION: {scenario_var_name}") |
|
1334
|
|
|
|
|
1335
|
|
|
# Load scenario params for scenario and scenario variation |
|
1336
|
|
|
scenario_variation_parameters = get_sector_parameters( |
|
1337
|
|
|
"mobility", scenario=scenario_name |
|
1338
|
|
|
)["motorized_individual_travel"][scenario_var_name] |
|
1339
|
|
|
|
|
1340
|
|
|
# Load simBEV run config and tech data |
|
1341
|
|
|
meta_run_config = read_simbev_metadata_file( |
|
1342
|
|
|
scenario_name, "config" |
|
1343
|
|
|
).loc["basic"] |
|
1344
|
|
|
meta_tech_data = read_simbev_metadata_file(scenario_name, "tech_data") |
|
1345
|
|
|
|
|
1346
|
|
|
print("") |
|
1347
|
|
|
print("Checking EV counts...") |
|
1348
|
|
|
ev_count_alloc = check_ev_allocation() |
|
1349
|
|
|
|
|
1350
|
|
|
print("") |
|
1351
|
|
|
print("Checking trip data...") |
|
1352
|
|
|
check_trip_data() |
|
1353
|
|
|
|
|
1354
|
|
|
print("") |
|
1355
|
|
|
print("Checking model data...") |
|
1356
|
|
|
check_model_data() |
|
1357
|
|
|
|
|
1358
|
|
|
print("") |
|
1359
|
|
|
check_model_data_lowflex_eGon2035() |
|
1360
|
|
|
|
|
1361
|
|
|
print("=====================================================") |
|
1362
|
|
|
|
|
1363
|
|
|
|
|
1364
|
|
|
def sanitycheck_home_batteries(): |
|
1365
|
|
|
# get constants |
|
1366
|
|
|
constants = config.datasets()["home_batteries"]["constants"] |
|
1367
|
|
|
scenarios = constants["scenarios"] |
|
1368
|
|
|
cbat_pbat_ratio = get_cbat_pbat_ratio() |
|
1369
|
|
|
|
|
1370
|
|
|
sources = config.datasets()["home_batteries"]["sources"] |
|
1371
|
|
|
targets = config.datasets()["home_batteries"]["targets"] |
|
1372
|
|
|
|
|
1373
|
|
|
for scenario in scenarios: |
|
1374
|
|
|
# get home battery capacity per mv grid id |
|
1375
|
|
|
sql = f""" |
|
1376
|
|
|
SELECT el_capacity as p_nom, bus_id FROM |
|
1377
|
|
|
{sources["storage"]["schema"]} |
|
1378
|
|
|
.{sources["storage"]["table"]} |
|
1379
|
|
|
WHERE carrier = 'home_battery' |
|
1380
|
|
|
AND scenario = '{scenario}' |
|
1381
|
|
|
""" |
|
1382
|
|
|
|
|
1383
|
|
|
home_batteries_df = db.select_dataframe(sql, index_col="bus_id") |
|
1384
|
|
|
|
|
1385
|
|
|
home_batteries_df = home_batteries_df.assign( |
|
1386
|
|
|
capacity=home_batteries_df.p_nom * cbat_pbat_ratio |
|
1387
|
|
|
) |
|
1388
|
|
|
|
|
1389
|
|
|
sql = f""" |
|
1390
|
|
|
SELECT * FROM |
|
1391
|
|
|
{targets["home_batteries"]["schema"]} |
|
1392
|
|
|
.{targets["home_batteries"]["table"]} |
|
1393
|
|
|
WHERE scenario = '{scenario}' |
|
1394
|
|
|
""" |
|
1395
|
|
|
|
|
1396
|
|
|
home_batteries_buildings_df = db.select_dataframe( |
|
1397
|
|
|
sql, index_col="index" |
|
1398
|
|
|
) |
|
1399
|
|
|
|
|
1400
|
|
|
df = ( |
|
1401
|
|
|
home_batteries_buildings_df[["bus_id", "p_nom", "capacity"]] |
|
1402
|
|
|
.groupby("bus_id") |
|
1403
|
|
|
.sum() |
|
1404
|
|
|
) |
|
1405
|
|
|
|
|
1406
|
|
|
assert (home_batteries_df.round(6) == df.round(6)).all().all() |
|
1407
|
|
|
|
|
1408
|
|
|
|
|
1409
|
|
|
def sanity_check_gas_buses(scn): |
|
1410
|
|
|
"""Execute sanity checks for the gas buses in Germany |
|
1411
|
|
|
|
|
1412
|
|
|
Returns print statements as sanity checks for the CH4, H2_grid and |
|
1413
|
|
|
H2_saltcavern buses. |
|
1414
|
|
|
|
|
1415
|
|
|
* For all of them, it is checked if they are not isolated. |
|
1416
|
|
|
* For the grid buses, the deviation is calculated between the |
|
1417
|
|
|
number of gas grid buses in the database and the original |
|
1418
|
|
|
Scigrid_gas number of gas buses in Germany. |
|
1419
|
|
|
|
|
1420
|
|
|
Parameters |
|
1421
|
|
|
---------- |
|
1422
|
|
|
scn_name : str |
|
1423
|
|
|
Name of the scenario |
|
1424
|
|
|
|
|
1425
|
|
|
""" |
|
1426
|
|
|
logger.info("BUSES") |
|
1427
|
|
|
|
|
1428
|
|
|
# Are gas buses isolated? |
|
1429
|
|
|
corresponding_carriers = { |
|
1430
|
|
|
"eGon2035": { |
|
1431
|
|
|
"CH4": "CH4", |
|
1432
|
|
|
"H2_grid": "H2_feedin", |
|
1433
|
|
|
"H2_saltcavern": "power_to_H2", |
|
1434
|
|
|
}, |
|
1435
|
|
|
# "eGon100RE": { |
|
1436
|
|
|
# "CH4": "CH4", |
|
1437
|
|
|
# "H2_grid": "H2_retrofit", |
|
1438
|
|
|
# "H2_saltcavern": "H2_extension", |
|
1439
|
|
|
# } |
|
1440
|
|
|
} |
|
1441
|
|
|
for key in corresponding_carriers[scn]: |
|
1442
|
|
|
isolated_gas_buses = db.select_dataframe( |
|
1443
|
|
|
f""" |
|
1444
|
|
|
SELECT bus_id, carrier, country |
|
1445
|
|
|
FROM grid.egon_etrago_bus |
|
1446
|
|
|
WHERE scn_name = '{scn}' |
|
1447
|
|
|
AND carrier = '{key}' |
|
1448
|
|
|
AND country = 'DE' |
|
1449
|
|
|
AND bus_id NOT IN |
|
1450
|
|
|
(SELECT bus0 |
|
1451
|
|
|
FROM grid.egon_etrago_link |
|
1452
|
|
|
WHERE scn_name = '{scn}' |
|
1453
|
|
|
AND carrier = '{corresponding_carriers[scn][key]}') |
|
1454
|
|
|
AND bus_id NOT IN |
|
1455
|
|
|
(SELECT bus1 |
|
1456
|
|
|
FROM grid.egon_etrago_link |
|
1457
|
|
|
WHERE scn_name = '{scn}' |
|
1458
|
|
|
AND carrier = '{corresponding_carriers[scn][key]}') |
|
1459
|
|
|
; |
|
1460
|
|
|
""", |
|
1461
|
|
|
warning=False, |
|
1462
|
|
|
) |
|
1463
|
|
|
if not isolated_gas_buses.empty: |
|
1464
|
|
|
logger.info(f"Isolated {key} buses:") |
|
1465
|
|
|
logger.info(isolated_gas_buses) |
|
1466
|
|
|
|
|
1467
|
|
|
# Deviation of the gas grid buses number |
|
1468
|
|
|
target_file = ( |
|
1469
|
|
|
Path(".") / "datasets" / "gas_data" / "data" / "IGGIELGN_Nodes.csv" |
|
1470
|
|
|
) |
|
1471
|
|
|
|
|
1472
|
|
|
Grid_buses_list = pd.read_csv( |
|
1473
|
|
|
target_file, |
|
1474
|
|
|
delimiter=";", |
|
1475
|
|
|
decimal=".", |
|
1476
|
|
|
usecols=["country_code"], |
|
1477
|
|
|
) |
|
1478
|
|
|
|
|
1479
|
|
|
Grid_buses_list = Grid_buses_list[ |
|
1480
|
|
|
Grid_buses_list["country_code"].str.match("DE") |
|
1481
|
|
|
] |
|
1482
|
|
|
input_grid_buses = len(Grid_buses_list.index) |
|
1483
|
|
|
|
|
1484
|
|
|
for carrier in ["CH4", "H2_grid"]: |
|
1485
|
|
|
output_grid_buses_df = db.select_dataframe( |
|
1486
|
|
|
f""" |
|
1487
|
|
|
SELECT bus_id |
|
1488
|
|
|
FROM grid.egon_etrago_bus |
|
1489
|
|
|
WHERE scn_name = '{scn}' |
|
1490
|
|
|
AND country = 'DE' |
|
1491
|
|
|
AND carrier = '{carrier}'; |
|
1492
|
|
|
""", |
|
1493
|
|
|
warning=False, |
|
1494
|
|
|
) |
|
1495
|
|
|
output_grid_buses = len(output_grid_buses_df.index) |
|
1496
|
|
|
|
|
1497
|
|
|
e_grid_buses = ( |
|
1498
|
|
|
round( |
|
1499
|
|
|
(output_grid_buses - input_grid_buses) / input_grid_buses, |
|
1500
|
|
|
2, |
|
1501
|
|
|
) |
|
1502
|
|
|
* 100 |
|
1503
|
|
|
) |
|
1504
|
|
|
logger.info(f"Deviation {carrier} buses: {e_grid_buses} %") |
|
1505
|
|
|
|
|
1506
|
|
|
|
|
1507
|
|
|
def sanity_check_CH4_stores(scn): |
|
1508
|
|
|
"""Execute sanity checks for the CH4 stores in Germany |
|
1509
|
|
|
|
|
1510
|
|
|
Returns print statements as sanity checks for the CH4 stores |
|
1511
|
|
|
capacity in Germany. The deviation is calculated between: |
|
1512
|
|
|
|
|
1513
|
|
|
* the sum of the capacities of the stores with carrier 'CH4' |
|
1514
|
|
|
in the database (for one scenario) and |
|
1515
|
|
|
* the sum of: |
|
1516
|
|
|
|
|
1517
|
|
|
* the capacity the gas grid allocated to CH4 (total capacity |
|
1518
|
|
|
in eGon2035 and capacity reduced the share of the grid |
|
1519
|
|
|
allocated to H2 in eGon100RE) |
|
1520
|
|
|
* the total capacity of the CH4 stores in Germany (source: GIE) |
|
1521
|
|
|
|
|
1522
|
|
|
Parameters |
|
1523
|
|
|
---------- |
|
1524
|
|
|
scn_name : str |
|
1525
|
|
|
Name of the scenario |
|
1526
|
|
|
|
|
1527
|
|
|
""" |
|
1528
|
|
|
output_CH4_stores = db.select_dataframe( |
|
1529
|
|
|
f"""SELECT SUM(e_nom::numeric) as e_nom_germany |
|
1530
|
|
|
FROM grid.egon_etrago_store |
|
1531
|
|
|
WHERE scn_name = '{scn}' |
|
1532
|
|
|
AND carrier = 'CH4' |
|
1533
|
|
|
AND bus IN |
|
1534
|
|
|
(SELECT bus_id |
|
1535
|
|
|
FROM grid.egon_etrago_bus |
|
1536
|
|
|
WHERE scn_name = '{scn}' |
|
1537
|
|
|
AND country = 'DE' |
|
1538
|
|
|
AND carrier = 'CH4'); |
|
1539
|
|
|
""", |
|
1540
|
|
|
warning=False, |
|
1541
|
|
|
)["e_nom_germany"].values[0] |
|
1542
|
|
|
|
|
1543
|
|
|
if scn == "eGon2035": |
|
1544
|
|
|
grid_cap = 130000 |
|
1545
|
|
|
elif scn == "eGon100RE": |
|
1546
|
|
|
grid_cap = 13000 * ( |
|
1547
|
|
|
1 |
|
1548
|
|
|
- get_sector_parameters("gas", "eGon100RE")[ |
|
1549
|
|
|
"retrofitted_CH4pipeline-to-H2pipeline_share" |
|
1550
|
|
|
] |
|
1551
|
|
|
) |
|
1552
|
|
|
|
|
1553
|
|
|
stores_cap_D = 266424202 # MWh GIE https://www.gie.eu/transparency/databases/storage-database/ |
|
1554
|
|
|
|
|
1555
|
|
|
input_CH4_stores = stores_cap_D + grid_cap |
|
|
|
|
|
|
1556
|
|
|
|
|
1557
|
|
|
e_CH4_stores = ( |
|
1558
|
|
|
round( |
|
1559
|
|
|
(output_CH4_stores - input_CH4_stores) / input_CH4_stores, |
|
1560
|
|
|
2, |
|
1561
|
|
|
) |
|
1562
|
|
|
* 100 |
|
1563
|
|
|
) |
|
1564
|
|
|
logger.info(f"Deviation CH4 stores: {e_CH4_stores} %") |
|
1565
|
|
|
|
|
1566
|
|
|
|
|
1567
|
|
|
def sanity_check_H2_saltcavern_stores(scn): |
|
1568
|
|
|
"""Execute sanity checks for the H2 saltcavern stores in Germany |
|
1569
|
|
|
|
|
1570
|
|
|
Returns print as sanity checks for the H2 saltcavern potential |
|
1571
|
|
|
storage capacity in Germany. The deviation is calculated between: |
|
1572
|
|
|
|
|
1573
|
|
|
* the sum of the of the H2 saltcavern potential storage capacity |
|
1574
|
|
|
(e_nom_max) in the database and |
|
1575
|
|
|
* the sum of the H2 saltcavern potential storage capacity |
|
1576
|
|
|
assumed to be the ratio of the areas of 500 m radius around |
|
1577
|
|
|
substations in each german federal state and the estimated |
|
1578
|
|
|
total hydrogen storage potential of the corresponding federal |
|
1579
|
|
|
state (data from InSpEE-DS report). |
|
1580
|
|
|
|
|
1581
|
|
|
This test works also in test mode. |
|
1582
|
|
|
|
|
1583
|
|
|
Parameters |
|
1584
|
|
|
---------- |
|
1585
|
|
|
scn_name : str |
|
1586
|
|
|
Name of the scenario |
|
1587
|
|
|
|
|
1588
|
|
|
""" |
|
1589
|
|
|
output_H2_stores = db.select_dataframe( |
|
1590
|
|
|
f"""SELECT SUM(e_nom_max::numeric) as e_nom_max_germany |
|
1591
|
|
|
FROM grid.egon_etrago_store |
|
1592
|
|
|
WHERE scn_name = '{scn}' |
|
1593
|
|
|
AND carrier = 'H2_underground' |
|
1594
|
|
|
AND bus IN |
|
1595
|
|
|
(SELECT bus_id |
|
1596
|
|
|
FROM grid.egon_etrago_bus |
|
1597
|
|
|
WHERE scn_name = '{scn}' |
|
1598
|
|
|
AND country = 'DE' |
|
1599
|
|
|
AND carrier = 'H2_saltcavern'); |
|
1600
|
|
|
""", |
|
1601
|
|
|
warning=False, |
|
1602
|
|
|
)["e_nom_max_germany"].values[0] |
|
1603
|
|
|
|
|
1604
|
|
|
storage_potentials = calculate_and_map_saltcavern_storage_potential() |
|
1605
|
|
|
storage_potentials["storage_potential"] = ( |
|
1606
|
|
|
storage_potentials["area_fraction"] * storage_potentials["potential"] |
|
1607
|
|
|
) |
|
1608
|
|
|
input_H2_stores = sum(storage_potentials["storage_potential"].to_list()) |
|
1609
|
|
|
|
|
1610
|
|
|
e_H2_stores = ( |
|
1611
|
|
|
round( |
|
1612
|
|
|
(output_H2_stores - input_H2_stores) / input_H2_stores, |
|
1613
|
|
|
2, |
|
1614
|
|
|
) |
|
1615
|
|
|
* 100 |
|
1616
|
|
|
) |
|
1617
|
|
|
logger.info(f"Deviation H2 saltcavern stores: {e_H2_stores} %") |
|
1618
|
|
|
|
|
1619
|
|
|
|
|
1620
|
|
|
def sanity_check_gas_one_port(scn): |
|
1621
|
|
|
"""Check connections of gas one-port components |
|
1622
|
|
|
|
|
1623
|
|
|
Verify that gas one-port component (loads, generators, stores) are |
|
1624
|
|
|
all connected to a bus (of the right carrier) present in the data |
|
1625
|
|
|
base. Return print statements if this is not the case. |
|
1626
|
|
|
These sanity checks are not specific to Germany, they also include |
|
1627
|
|
|
the neighbouring countries. |
|
1628
|
|
|
|
|
1629
|
|
|
Parameters |
|
1630
|
|
|
---------- |
|
1631
|
|
|
scn_name : str |
|
1632
|
|
|
Name of the scenario |
|
1633
|
|
|
|
|
1634
|
|
|
""" |
|
1635
|
|
|
if scn == "eGon2035": |
|
1636
|
|
|
# Loads |
|
1637
|
|
|
## CH4_for_industry Germany |
|
1638
|
|
|
isolated_one_port_c = db.select_dataframe( |
|
1639
|
|
|
f""" |
|
1640
|
|
|
SELECT load_id, bus, carrier, scn_name |
|
1641
|
|
|
FROM grid.egon_etrago_load |
|
1642
|
|
|
WHERE scn_name = '{scn}' |
|
1643
|
|
|
AND carrier = 'CH4_for_industry' |
|
1644
|
|
|
AND bus NOT IN |
|
1645
|
|
|
(SELECT bus_id |
|
1646
|
|
|
FROM grid.egon_etrago_bus |
|
1647
|
|
|
WHERE scn_name = '{scn}' |
|
1648
|
|
|
AND country = 'DE' |
|
1649
|
|
|
AND carrier = 'CH4') |
|
1650
|
|
|
; |
|
1651
|
|
|
""", |
|
1652
|
|
|
warning=False, |
|
1653
|
|
|
) |
|
1654
|
|
|
if not isolated_one_port_c.empty: |
|
1655
|
|
|
logger.info("Isolated loads:") |
|
1656
|
|
|
logger.info(isolated_one_port_c) |
|
1657
|
|
|
|
|
1658
|
|
|
## CH4_for_industry abroad |
|
1659
|
|
|
isolated_one_port_c = db.select_dataframe( |
|
1660
|
|
|
f""" |
|
1661
|
|
|
SELECT load_id, bus, carrier, scn_name |
|
1662
|
|
|
FROM grid.egon_etrago_load |
|
1663
|
|
|
WHERE scn_name = '{scn}' |
|
1664
|
|
|
AND carrier = 'CH4' |
|
1665
|
|
|
AND bus NOT IN |
|
1666
|
|
|
(SELECT bus_id |
|
1667
|
|
|
FROM grid.egon_etrago_bus |
|
1668
|
|
|
WHERE scn_name = '{scn}' |
|
1669
|
|
|
AND country != 'DE' |
|
1670
|
|
|
AND carrier = 'CH4') |
|
1671
|
|
|
; |
|
1672
|
|
|
""", |
|
1673
|
|
|
warning=False, |
|
1674
|
|
|
) |
|
1675
|
|
|
if not isolated_one_port_c.empty: |
|
1676
|
|
|
logger.info("Isolated loads:") |
|
1677
|
|
|
logger.info(isolated_one_port_c) |
|
1678
|
|
|
|
|
1679
|
|
|
## H2_for_industry |
|
1680
|
|
|
isolated_one_port_c = db.select_dataframe( |
|
1681
|
|
|
f""" |
|
1682
|
|
|
SELECT load_id, bus, carrier, scn_name |
|
1683
|
|
|
FROM grid.egon_etrago_load |
|
1684
|
|
|
WHERE scn_name = '{scn}' |
|
1685
|
|
|
AND carrier = 'H2_for_industry' |
|
1686
|
|
|
AND (bus NOT IN |
|
1687
|
|
|
(SELECT bus_id |
|
1688
|
|
|
FROM grid.egon_etrago_bus |
|
1689
|
|
|
WHERE scn_name = '{scn}' |
|
1690
|
|
|
AND country = 'DE' |
|
1691
|
|
|
AND carrier = 'H2_grid') |
|
1692
|
|
|
AND bus NOT IN |
|
1693
|
|
|
(SELECT bus_id |
|
1694
|
|
|
FROM grid.egon_etrago_bus |
|
1695
|
|
|
WHERE scn_name = '{scn}' |
|
1696
|
|
|
AND country != 'DE' |
|
1697
|
|
|
AND carrier = 'AC')) |
|
1698
|
|
|
; |
|
1699
|
|
|
""", |
|
1700
|
|
|
warning=False, |
|
1701
|
|
|
) |
|
1702
|
|
|
if not isolated_one_port_c.empty: |
|
1703
|
|
|
logger.info("Isolated loads:") |
|
1704
|
|
|
logger.info(isolated_one_port_c) |
|
1705
|
|
|
|
|
1706
|
|
|
# Genrators |
|
1707
|
|
|
isolated_one_port_c = db.select_dataframe( |
|
1708
|
|
|
f""" |
|
1709
|
|
|
SELECT generator_id, bus, carrier, scn_name |
|
1710
|
|
|
FROM grid.egon_etrago_generator |
|
1711
|
|
|
WHERE scn_name = '{scn}' |
|
1712
|
|
|
AND carrier = 'CH4' |
|
1713
|
|
|
AND bus NOT IN |
|
1714
|
|
|
(SELECT bus_id |
|
1715
|
|
|
FROM grid.egon_etrago_bus |
|
1716
|
|
|
WHERE scn_name = '{scn}' |
|
1717
|
|
|
AND carrier = 'CH4'); |
|
1718
|
|
|
; |
|
1719
|
|
|
""", |
|
1720
|
|
|
warning=False, |
|
1721
|
|
|
) |
|
1722
|
|
|
if not isolated_one_port_c.empty: |
|
1723
|
|
|
logger.info("Isolated generators:") |
|
1724
|
|
|
logger.info(isolated_one_port_c) |
|
1725
|
|
|
|
|
1726
|
|
|
# Stores |
|
1727
|
|
|
## CH4 and H2_underground |
|
1728
|
|
|
corresponding_carriers = { |
|
1729
|
|
|
"CH4": "CH4", |
|
1730
|
|
|
"H2_saltcavern": "H2_underground", |
|
1731
|
|
|
} |
|
1732
|
|
|
for key in corresponding_carriers: |
|
1733
|
|
|
isolated_one_port_c = db.select_dataframe( |
|
1734
|
|
|
f""" |
|
1735
|
|
|
SELECT store_id, bus, carrier, scn_name |
|
1736
|
|
|
FROM grid.egon_etrago_store |
|
1737
|
|
|
WHERE scn_name = '{scn}' |
|
1738
|
|
|
AND carrier = '{corresponding_carriers[key]}' |
|
1739
|
|
|
AND bus NOT IN |
|
1740
|
|
|
(SELECT bus_id |
|
1741
|
|
|
FROM grid.egon_etrago_bus |
|
1742
|
|
|
WHERE scn_name = '{scn}' |
|
1743
|
|
|
AND carrier = '{key}') |
|
1744
|
|
|
; |
|
1745
|
|
|
""", |
|
1746
|
|
|
warning=False, |
|
1747
|
|
|
) |
|
1748
|
|
|
if not isolated_one_port_c.empty: |
|
1749
|
|
|
logger.info("Isolated stores:") |
|
1750
|
|
|
logger.info(isolated_one_port_c) |
|
1751
|
|
|
|
|
1752
|
|
|
## H2_overground |
|
1753
|
|
|
isolated_one_port_c = db.select_dataframe( |
|
1754
|
|
|
f""" |
|
1755
|
|
|
SELECT store_id, bus, carrier, scn_name |
|
1756
|
|
|
FROM grid.egon_etrago_store |
|
1757
|
|
|
WHERE scn_name = '{scn}' |
|
1758
|
|
|
AND carrier = 'H2_overground' |
|
1759
|
|
|
AND bus NOT IN |
|
1760
|
|
|
(SELECT bus_id |
|
1761
|
|
|
FROM grid.egon_etrago_bus |
|
1762
|
|
|
WHERE scn_name = '{scn}' |
|
1763
|
|
|
AND country = 'DE' |
|
1764
|
|
|
AND carrier = 'H2_saltcavern') |
|
1765
|
|
|
AND bus NOT IN |
|
1766
|
|
|
(SELECT bus_id |
|
1767
|
|
|
FROM grid.egon_etrago_bus |
|
1768
|
|
|
WHERE scn_name = '{scn}' |
|
1769
|
|
|
AND country = 'DE' |
|
1770
|
|
|
AND carrier = 'H2_grid') |
|
1771
|
|
|
; |
|
1772
|
|
|
""", |
|
1773
|
|
|
warning=False, |
|
1774
|
|
|
) |
|
1775
|
|
|
if not isolated_one_port_c.empty: |
|
1776
|
|
|
logger.info("Isolated stores:") |
|
1777
|
|
|
logger.info(isolated_one_port_c) |
|
1778
|
|
|
|
|
1779
|
|
|
# elif scn == "eGon2035": |
|
1780
|
|
|
|
|
1781
|
|
|
|
|
1782
|
|
|
def sanity_check_CH4_grid(scn): |
|
1783
|
|
|
"""Execute sanity checks for the gas grid capacity in Germany |
|
1784
|
|
|
|
|
1785
|
|
|
Returns print statements as sanity checks for the CH4 links |
|
1786
|
|
|
(pipelines) in Germany. The deviation is calculated between |
|
1787
|
|
|
the sum of the power (p_nom) of all the CH4 pipelines in Germany |
|
1788
|
|
|
for one scenario in the database and the sum of the powers of the |
|
1789
|
|
|
imported pipelines. |
|
1790
|
|
|
In eGon100RE, the sum is reduced by the share of the grid that is |
|
1791
|
|
|
allocated to hydrogen (share calculated by PyPSA-eur-sec). |
|
1792
|
|
|
This test works also in test mode. |
|
1793
|
|
|
|
|
1794
|
|
|
Parameters |
|
1795
|
|
|
---------- |
|
1796
|
|
|
scn_name : str |
|
1797
|
|
|
Name of the scenario |
|
1798
|
|
|
|
|
1799
|
|
|
Returns |
|
1800
|
|
|
------- |
|
1801
|
|
|
scn_name : float |
|
1802
|
|
|
Sum of the power (p_nom) of all the pipelines in Germany |
|
1803
|
|
|
|
|
1804
|
|
|
""" |
|
1805
|
|
|
grid_carrier = "CH4" |
|
1806
|
|
|
output_gas_grid = db.select_dataframe( |
|
1807
|
|
|
f"""SELECT SUM(p_nom::numeric) as p_nom_germany |
|
1808
|
|
|
FROM grid.egon_etrago_link |
|
1809
|
|
|
WHERE scn_name = '{scn}' |
|
1810
|
|
|
AND carrier = '{grid_carrier}' |
|
1811
|
|
|
AND bus0 IN |
|
1812
|
|
|
(SELECT bus_id |
|
1813
|
|
|
FROM grid.egon_etrago_bus |
|
1814
|
|
|
WHERE scn_name = '{scn}' |
|
1815
|
|
|
AND country = 'DE' |
|
1816
|
|
|
AND carrier = '{grid_carrier}') |
|
1817
|
|
|
AND bus1 IN |
|
1818
|
|
|
(SELECT bus_id |
|
1819
|
|
|
FROM grid.egon_etrago_bus |
|
1820
|
|
|
WHERE scn_name = '{scn}' |
|
1821
|
|
|
AND country = 'DE' |
|
1822
|
|
|
AND carrier = '{grid_carrier}') |
|
1823
|
|
|
; |
|
1824
|
|
|
""", |
|
1825
|
|
|
warning=False, |
|
1826
|
|
|
)["p_nom_germany"].values[0] |
|
1827
|
|
|
|
|
1828
|
|
|
gas_nodes_list = define_gas_nodes_list() |
|
1829
|
|
|
abroad_gas_nodes_list = define_gas_buses_abroad() |
|
1830
|
|
|
gas_grid = define_gas_pipeline_list(gas_nodes_list, abroad_gas_nodes_list) |
|
1831
|
|
|
gas_grid_germany = gas_grid[ |
|
1832
|
|
|
(gas_grid["country_0"] == "DE") & (gas_grid["country_1"] == "DE") |
|
1833
|
|
|
] |
|
1834
|
|
|
p_nom_total = sum(gas_grid_germany["p_nom"].to_list()) |
|
1835
|
|
|
|
|
1836
|
|
|
if scn == "eGon2035": |
|
1837
|
|
|
input_gas_grid = p_nom_total |
|
1838
|
|
|
if scn == "eGon100RE": |
|
1839
|
|
|
input_gas_grid = p_nom_total * ( |
|
1840
|
|
|
1 |
|
1841
|
|
|
- get_sector_parameters("gas", "eGon100RE")[ |
|
1842
|
|
|
"retrofitted_CH4pipeline-to-H2pipeline_share" |
|
1843
|
|
|
] |
|
1844
|
|
|
) |
|
1845
|
|
|
|
|
1846
|
|
|
e_gas_grid = ( |
|
1847
|
|
|
round( |
|
1848
|
|
|
(output_gas_grid - input_gas_grid) / input_gas_grid, |
|
|
|
|
|
|
1849
|
|
|
2, |
|
1850
|
|
|
) |
|
1851
|
|
|
* 100 |
|
1852
|
|
|
) |
|
1853
|
|
|
logger.info(f"Deviation of the capacity of the CH4 grid: {e_gas_grid} %") |
|
1854
|
|
|
|
|
1855
|
|
|
return p_nom_total |
|
1856
|
|
|
|
|
1857
|
|
|
|
|
1858
|
|
|
def sanity_check_gas_links(scn): |
|
1859
|
|
|
"""Check connections of gas links |
|
1860
|
|
|
|
|
1861
|
|
|
Verify that gas links are all connected to buses present in the data |
|
1862
|
|
|
base. Return print statements if this is not the case. |
|
1863
|
|
|
This sanity check is not specific to Germany, it also includes |
|
1864
|
|
|
the neighbouring countries. |
|
1865
|
|
|
|
|
1866
|
|
|
Parameters |
|
1867
|
|
|
---------- |
|
1868
|
|
|
scn_name : str |
|
1869
|
|
|
Name of the scenario |
|
1870
|
|
|
|
|
1871
|
|
|
""" |
|
1872
|
|
|
carriers = [ |
|
1873
|
|
|
"CH4", |
|
1874
|
|
|
"H2_feedin", |
|
1875
|
|
|
"H2_to_CH4", |
|
1876
|
|
|
"CH4_to_H2", |
|
1877
|
|
|
"H2_to_power", |
|
1878
|
|
|
"power_to_H2", |
|
1879
|
|
|
"OCGT", |
|
1880
|
|
|
"central_gas_boiler", |
|
1881
|
|
|
"central_gas_CHP", |
|
1882
|
|
|
"central_gas_CHP_heat", |
|
1883
|
|
|
"industrial_gas_CHP", |
|
1884
|
|
|
] |
|
1885
|
|
|
for c in carriers: |
|
1886
|
|
|
link_with_missing_bus = db.select_dataframe( |
|
1887
|
|
|
f""" |
|
1888
|
|
|
SELECT link_id, bus0, bus1, carrier, scn_name |
|
1889
|
|
|
FROM grid.egon_etrago_link |
|
1890
|
|
|
WHERE scn_name = '{scn}' |
|
1891
|
|
|
AND carrier = '{c}' |
|
1892
|
|
|
AND (bus0 NOT IN |
|
1893
|
|
|
(SELECT bus_id |
|
1894
|
|
|
FROM grid.egon_etrago_bus |
|
1895
|
|
|
WHERE scn_name = '{scn}') |
|
1896
|
|
|
OR bus1 NOT IN |
|
1897
|
|
|
(SELECT bus_id |
|
1898
|
|
|
FROM grid.egon_etrago_bus |
|
1899
|
|
|
WHERE scn_name = '{scn}')) |
|
1900
|
|
|
; |
|
1901
|
|
|
""", |
|
1902
|
|
|
warning=False, |
|
1903
|
|
|
) |
|
1904
|
|
|
if not link_with_missing_bus.empty: |
|
1905
|
|
|
logger.info("Links with missing bus:") |
|
1906
|
|
|
logger.info(link_with_missing_bus) |
|
1907
|
|
|
|
|
1908
|
|
|
|
|
1909
|
|
|
def etrago_eGon2035_gas_DE(): |
|
1910
|
|
|
"""Execute basic sanity checks for the gas sector in eGon2035 |
|
1911
|
|
|
|
|
1912
|
|
|
Returns print statements as sanity checks for the gas sector in |
|
1913
|
|
|
the eGon2035 scenario for the following components in Germany: |
|
1914
|
|
|
|
|
1915
|
|
|
* Buses: with the function :py:func:`sanity_check_gas_buses` |
|
1916
|
|
|
* Loads: for the carriers 'CH4_for_industry' and 'H2_for_industry' |
|
1917
|
|
|
the deviation is calculated between the sum of the loads in the |
|
1918
|
|
|
database and the sum the loads in the sources document |
|
1919
|
|
|
(opendata.ffe database) |
|
1920
|
|
|
* Generators: the deviation is calculated between the sums of the |
|
1921
|
|
|
nominal powers of the gas generators in the database and of |
|
1922
|
|
|
the ones in the sources document (Biogaspartner Einspeiseatlas |
|
1923
|
|
|
Deutschland from the dena and Productions from the SciGRID_gas |
|
1924
|
|
|
data) |
|
1925
|
|
|
* Stores: deviations for stores with following carriers are |
|
1926
|
|
|
calculated: |
|
1927
|
|
|
|
|
1928
|
|
|
* 'CH4': with the function :py:func:`sanity_check_CH4_stores` |
|
1929
|
|
|
* 'H2_underground': with the function :py:func:`sanity_check_H2_saltcavern_stores` |
|
1930
|
|
|
* One-port components (loads, generators, stores): verification |
|
1931
|
|
|
that they are all connected to a bus present in the data base |
|
1932
|
|
|
with the function :py:func:`sanity_check_gas_one_port` |
|
1933
|
|
|
* Links: verification: |
|
1934
|
|
|
|
|
1935
|
|
|
* that the gas links are all connected to buses present in |
|
1936
|
|
|
the data base with the function :py:func:`sanity_check_gas_links` |
|
1937
|
|
|
* of the capacity of the gas grid with the function |
|
1938
|
|
|
:py:func:`sanity_check_CH4_grid` |
|
1939
|
|
|
|
|
1940
|
|
|
""" |
|
1941
|
|
|
scn = "eGon2035" |
|
1942
|
|
|
|
|
1943
|
|
|
if TESTMODE_OFF: |
|
1944
|
|
|
logger.info(f"Gas sanity checks for scenario {scn}") |
|
1945
|
|
|
|
|
1946
|
|
|
# Buses |
|
1947
|
|
|
sanity_check_gas_buses(scn) |
|
1948
|
|
|
|
|
1949
|
|
|
# Loads |
|
1950
|
|
|
logger.info("LOADS") |
|
1951
|
|
|
|
|
1952
|
|
|
path = Path(".") / "datasets" / "gas_data" / "demand" |
|
1953
|
|
|
corr_file = path / "region_corr.json" |
|
1954
|
|
|
df_corr = pd.read_json(corr_file) |
|
1955
|
|
|
df_corr = df_corr.loc[:, ["id_region", "name_short"]] |
|
1956
|
|
|
df_corr.set_index("id_region", inplace=True) |
|
1957
|
|
|
|
|
1958
|
|
|
for carrier in ["CH4_for_industry", "H2_for_industry"]: |
|
1959
|
|
|
|
|
1960
|
|
|
output_gas_demand = db.select_dataframe( |
|
1961
|
|
|
f"""SELECT (SUM( |
|
1962
|
|
|
(SELECT SUM(p) |
|
1963
|
|
|
FROM UNNEST(b.p_set) p))/1000000)::numeric as load_twh |
|
1964
|
|
|
FROM grid.egon_etrago_load a |
|
1965
|
|
|
JOIN grid.egon_etrago_load_timeseries b |
|
1966
|
|
|
ON (a.load_id = b.load_id) |
|
1967
|
|
|
JOIN grid.egon_etrago_bus c |
|
1968
|
|
|
ON (a.bus=c.bus_id) |
|
1969
|
|
|
AND b.scn_name = '{scn}' |
|
1970
|
|
|
AND a.scn_name = '{scn}' |
|
1971
|
|
|
AND c.scn_name = '{scn}' |
|
1972
|
|
|
AND c.country = 'DE' |
|
1973
|
|
|
AND a.carrier = '{carrier}'; |
|
1974
|
|
|
""", |
|
1975
|
|
|
warning=False, |
|
1976
|
|
|
)["load_twh"].values[0] |
|
1977
|
|
|
|
|
1978
|
|
|
input_gas_demand = pd.read_json( |
|
1979
|
|
|
path / (carrier + "_eGon2035.json") |
|
1980
|
|
|
) |
|
1981
|
|
|
input_gas_demand = input_gas_demand.loc[:, ["id_region", "value"]] |
|
1982
|
|
|
input_gas_demand.set_index("id_region", inplace=True) |
|
1983
|
|
|
input_gas_demand = pd.concat( |
|
1984
|
|
|
[input_gas_demand, df_corr], axis=1, join="inner" |
|
1985
|
|
|
) |
|
1986
|
|
|
input_gas_demand["NUTS0"] = (input_gas_demand["name_short"].str)[ |
|
1987
|
|
|
0:2 |
|
1988
|
|
|
] |
|
1989
|
|
|
input_gas_demand = input_gas_demand[ |
|
1990
|
|
|
input_gas_demand["NUTS0"].str.match("DE") |
|
1991
|
|
|
] |
|
1992
|
|
|
input_gas_demand = sum(input_gas_demand.value.to_list()) / 1000000 |
|
1993
|
|
|
|
|
1994
|
|
|
e_demand = ( |
|
1995
|
|
|
round( |
|
1996
|
|
|
(output_gas_demand - input_gas_demand) / input_gas_demand, |
|
1997
|
|
|
2, |
|
1998
|
|
|
) |
|
1999
|
|
|
* 100 |
|
2000
|
|
|
) |
|
2001
|
|
|
logger.info(f"Deviation {carrier}: {e_demand} %") |
|
2002
|
|
|
|
|
2003
|
|
|
# Generators |
|
2004
|
|
|
logger.info("GENERATORS") |
|
2005
|
|
|
carrier_generator = "CH4" |
|
2006
|
|
|
|
|
2007
|
|
|
output_gas_generation = db.select_dataframe( |
|
2008
|
|
|
f"""SELECT SUM(p_nom::numeric) as p_nom_germany |
|
2009
|
|
|
FROM grid.egon_etrago_generator |
|
2010
|
|
|
WHERE scn_name = '{scn}' |
|
2011
|
|
|
AND carrier = '{carrier_generator}' |
|
2012
|
|
|
AND bus IN |
|
2013
|
|
|
(SELECT bus_id |
|
2014
|
|
|
FROM grid.egon_etrago_bus |
|
2015
|
|
|
WHERE scn_name = '{scn}' |
|
2016
|
|
|
AND country = 'DE' |
|
2017
|
|
|
AND carrier = '{carrier_generator}'); |
|
2018
|
|
|
""", |
|
2019
|
|
|
warning=False, |
|
2020
|
|
|
)["p_nom_germany"].values[0] |
|
2021
|
|
|
|
|
2022
|
|
|
target_file = ( |
|
2023
|
|
|
Path(".") |
|
2024
|
|
|
/ "datasets" |
|
2025
|
|
|
/ "gas_data" |
|
2026
|
|
|
/ "data" |
|
2027
|
|
|
/ "IGGIELGN_Productions.csv" |
|
2028
|
|
|
) |
|
2029
|
|
|
|
|
2030
|
|
|
NG_generators_list = pd.read_csv( |
|
2031
|
|
|
target_file, |
|
2032
|
|
|
delimiter=";", |
|
2033
|
|
|
decimal=".", |
|
2034
|
|
|
usecols=["country_code", "param"], |
|
2035
|
|
|
) |
|
2036
|
|
|
|
|
2037
|
|
|
NG_generators_list = NG_generators_list[ |
|
2038
|
|
|
NG_generators_list["country_code"].str.match("DE") |
|
2039
|
|
|
] |
|
2040
|
|
|
|
|
2041
|
|
|
p_NG = 0 |
|
2042
|
|
|
for index, row in NG_generators_list.iterrows(): |
|
2043
|
|
|
param = ast.literal_eval(row["param"]) |
|
2044
|
|
|
p_NG = p_NG + param["max_supply_M_m3_per_d"] |
|
2045
|
|
|
conversion_factor = 437.5 # MCM/day to MWh/h |
|
2046
|
|
|
p_NG = p_NG * conversion_factor |
|
2047
|
|
|
|
|
2048
|
|
|
basename = "Biogaspartner_Einspeiseatlas_Deutschland_2021.xlsx" |
|
2049
|
|
|
target_file = ( |
|
2050
|
|
|
Path(".") / "data_bundle_egon_data" / "gas_data" / basename |
|
2051
|
|
|
) |
|
2052
|
|
|
|
|
2053
|
|
|
conversion_factor_b = 0.01083 # m^3/h to MWh/h |
|
2054
|
|
|
p_biogas = ( |
|
2055
|
|
|
pd.read_excel( |
|
2056
|
|
|
target_file, |
|
2057
|
|
|
usecols=["Einspeisung Biomethan [(N*m^3)/h)]"], |
|
2058
|
|
|
)["Einspeisung Biomethan [(N*m^3)/h)]"].sum() |
|
2059
|
|
|
* conversion_factor_b |
|
2060
|
|
|
) |
|
2061
|
|
|
|
|
2062
|
|
|
input_gas_generation = p_NG + p_biogas |
|
2063
|
|
|
e_generation = ( |
|
2064
|
|
|
round( |
|
2065
|
|
|
(output_gas_generation - input_gas_generation) |
|
2066
|
|
|
/ input_gas_generation, |
|
2067
|
|
|
2, |
|
2068
|
|
|
) |
|
2069
|
|
|
* 100 |
|
2070
|
|
|
) |
|
2071
|
|
|
logger.info( |
|
2072
|
|
|
f"Deviation {carrier_generator} generation: {e_generation} %" |
|
2073
|
|
|
) |
|
2074
|
|
|
|
|
2075
|
|
|
# Stores |
|
2076
|
|
|
logger.info("STORES") |
|
2077
|
|
|
sanity_check_CH4_stores(scn) |
|
2078
|
|
|
sanity_check_H2_saltcavern_stores(scn) |
|
2079
|
|
|
|
|
2080
|
|
|
# One-port components |
|
2081
|
|
|
sanity_check_gas_one_port(scn) |
|
2082
|
|
|
|
|
2083
|
|
|
# Links |
|
2084
|
|
|
logger.info("LINKS") |
|
2085
|
|
|
sanity_check_CH4_grid(scn) |
|
2086
|
|
|
sanity_check_gas_links(scn) |
|
2087
|
|
|
|
|
2088
|
|
|
else: |
|
2089
|
|
|
print("Testmode is on, skipping sanity check.") |
|
2090
|
|
|
|
|
2091
|
|
|
|
|
2092
|
|
|
def etrago_eGon2035_gas_abroad(): |
|
2093
|
|
|
"""Execute basic sanity checks for the gas sector in eGon2035 abroad |
|
2094
|
|
|
|
|
2095
|
|
|
Returns print statements as sanity checks for the gas sector in |
|
2096
|
|
|
the eGon2035 scenario for the following components in Germany: |
|
2097
|
|
|
|
|
2098
|
|
|
* Buses |
|
2099
|
|
|
* Loads: for the carriers 'CH4' and 'H2_for_industry' |
|
2100
|
|
|
the deviation is calculated between the sum of the loads in the |
|
2101
|
|
|
database and the sum in the sources document (TYNDP) |
|
2102
|
|
|
* Generators: the deviation is calculated between the sums of the |
|
2103
|
|
|
nominal powers of the methane generators abroad in the database |
|
2104
|
|
|
and of the ones in the sources document (TYNDP) |
|
2105
|
|
|
* Stores: the deviation for methane stores abroad is calculated |
|
2106
|
|
|
between the sum of the capacities in the data base and the one |
|
2107
|
|
|
of the source document (SciGRID_gas data) |
|
2108
|
|
|
* Links: verification of the capacity of the crossbordering gas |
|
2109
|
|
|
grid pipelines. |
|
2110
|
|
|
|
|
2111
|
|
|
""" |
|
2112
|
|
|
scn = "eGon2035" |
|
2113
|
|
|
|
|
2114
|
|
|
if TESTMODE_OFF: |
|
2115
|
|
|
logger.info(f"Gas sanity checks abroad for scenario {scn}") |
|
2116
|
|
|
|
|
2117
|
|
|
# Buses |
|
2118
|
|
|
logger.info("BUSES") |
|
2119
|
|
|
|
|
2120
|
|
|
# Are gas buses isolated? |
|
2121
|
|
|
corresponding_carriers = { |
|
2122
|
|
|
"eGon2035": { |
|
2123
|
|
|
"CH4": "CH4", |
|
2124
|
|
|
}, |
|
2125
|
|
|
# "eGon100RE": { |
|
2126
|
|
|
# "CH4": "CH4", |
|
2127
|
|
|
# "H2_grid": "H2_retrofit", |
|
2128
|
|
|
# } |
|
2129
|
|
|
} |
|
2130
|
|
|
for key in corresponding_carriers[scn]: |
|
2131
|
|
|
isolated_gas_buses_abroad = db.select_dataframe( |
|
2132
|
|
|
f""" |
|
2133
|
|
|
SELECT bus_id, carrier, country |
|
2134
|
|
|
FROM grid.egon_etrago_bus |
|
2135
|
|
|
WHERE scn_name = '{scn}' |
|
2136
|
|
|
AND carrier = '{key}' |
|
2137
|
|
|
AND country != 'DE' |
|
2138
|
|
|
AND bus_id NOT IN |
|
2139
|
|
|
(SELECT bus0 |
|
2140
|
|
|
FROM grid.egon_etrago_link |
|
2141
|
|
|
WHERE scn_name = '{scn}' |
|
2142
|
|
|
AND carrier = '{corresponding_carriers[scn][key]}') |
|
2143
|
|
|
AND bus_id NOT IN |
|
2144
|
|
|
(SELECT bus1 |
|
2145
|
|
|
FROM grid.egon_etrago_link |
|
2146
|
|
|
WHERE scn_name = '{scn}' |
|
2147
|
|
|
AND carrier = '{corresponding_carriers[scn][key]}') |
|
2148
|
|
|
; |
|
2149
|
|
|
""", |
|
2150
|
|
|
warning=False, |
|
2151
|
|
|
) |
|
2152
|
|
|
if not isolated_gas_buses_abroad.empty: |
|
2153
|
|
|
logger.info(f"Isolated {key} buses abroad:") |
|
2154
|
|
|
logger.info(isolated_gas_buses_abroad) |
|
2155
|
|
|
|
|
2156
|
|
|
# Loads |
|
2157
|
|
|
logger.info("LOADS") |
|
2158
|
|
|
|
|
2159
|
|
|
( |
|
2160
|
|
|
Norway_global_demand_1y, |
|
2161
|
|
|
normalized_ch4_demandTS, |
|
2162
|
|
|
) = import_ch4_demandTS() |
|
2163
|
|
|
input_CH4_demand_abroad = calc_global_ch4_demand( |
|
2164
|
|
|
Norway_global_demand_1y |
|
2165
|
|
|
) |
|
2166
|
|
|
input_CH4_demand = input_CH4_demand_abroad["GlobD_2035"].sum() |
|
2167
|
|
|
|
|
2168
|
|
|
## CH4 |
|
2169
|
|
|
output_CH4_demand = db.select_dataframe( |
|
2170
|
|
|
f"""SELECT (SUM( |
|
2171
|
|
|
(SELECT SUM(p) |
|
2172
|
|
|
FROM UNNEST(b.p_set) p)))::numeric as load_mwh |
|
2173
|
|
|
FROM grid.egon_etrago_load a |
|
2174
|
|
|
JOIN grid.egon_etrago_load_timeseries b |
|
2175
|
|
|
ON (a.load_id = b.load_id) |
|
2176
|
|
|
JOIN grid.egon_etrago_bus c |
|
2177
|
|
|
ON (a.bus=c.bus_id) |
|
2178
|
|
|
AND b.scn_name = '{scn}' |
|
2179
|
|
|
AND a.scn_name = '{scn}' |
|
2180
|
|
|
AND c.scn_name = '{scn}' |
|
2181
|
|
|
AND c.country != 'DE' |
|
2182
|
|
|
AND a.carrier = 'CH4'; |
|
2183
|
|
|
""", |
|
2184
|
|
|
warning=False, |
|
2185
|
|
|
)["load_mwh"].values[0] |
|
2186
|
|
|
|
|
2187
|
|
|
e_demand_CH4 = ( |
|
2188
|
|
|
round( |
|
2189
|
|
|
(output_CH4_demand - input_CH4_demand) / input_CH4_demand, |
|
2190
|
|
|
2, |
|
2191
|
|
|
) |
|
2192
|
|
|
* 100 |
|
2193
|
|
|
) |
|
2194
|
|
|
logger.info(f"Deviation CH4 load: {e_demand_CH4} %") |
|
2195
|
|
|
|
|
2196
|
|
|
## H2_for_industry |
|
2197
|
|
|
input_power_to_h2_demand_abroad = calc_global_power_to_h2_demand() |
|
2198
|
|
|
input_H2_demand = input_power_to_h2_demand_abroad["GlobD_2035"].sum() |
|
2199
|
|
|
|
|
2200
|
|
|
output_H2_demand = db.select_dataframe( |
|
2201
|
|
|
f"""SELECT SUM(p_set::numeric) as p_set_abroad |
|
2202
|
|
|
FROM grid.egon_etrago_load |
|
2203
|
|
|
WHERE scn_name = '{scn}' |
|
2204
|
|
|
AND carrier = 'H2_for_industry' |
|
2205
|
|
|
AND bus IN |
|
2206
|
|
|
(SELECT bus_id |
|
2207
|
|
|
FROM grid.egon_etrago_bus |
|
2208
|
|
|
WHERE scn_name = '{scn}' |
|
2209
|
|
|
AND country != 'DE' |
|
2210
|
|
|
AND carrier = 'AC'); |
|
2211
|
|
|
""", |
|
2212
|
|
|
warning=False, |
|
2213
|
|
|
)["p_set_abroad"].values[0] |
|
2214
|
|
|
|
|
2215
|
|
|
e_demand_H2 = ( |
|
2216
|
|
|
round( |
|
2217
|
|
|
(output_H2_demand - input_H2_demand) / input_H2_demand, |
|
2218
|
|
|
2, |
|
2219
|
|
|
) |
|
2220
|
|
|
* 100 |
|
2221
|
|
|
) |
|
2222
|
|
|
logger.info(f"Deviation H2_for_industry load: {e_demand_H2} %") |
|
2223
|
|
|
|
|
2224
|
|
|
# Generators |
|
2225
|
|
|
logger.info("GENERATORS ") |
|
2226
|
|
|
CH4_gen = calc_capacities() |
|
2227
|
|
|
input_CH4_gen = CH4_gen["cap_2035"].sum() |
|
2228
|
|
|
|
|
2229
|
|
|
output_CH4_gen = db.select_dataframe( |
|
2230
|
|
|
f"""SELECT SUM(p_nom::numeric) as p_nom_abroad |
|
2231
|
|
|
FROM grid.egon_etrago_generator |
|
2232
|
|
|
WHERE scn_name = '{scn}' |
|
2233
|
|
|
AND carrier = 'CH4' |
|
2234
|
|
|
AND bus IN |
|
2235
|
|
|
(SELECT bus_id |
|
2236
|
|
|
FROM grid.egon_etrago_bus |
|
2237
|
|
|
WHERE scn_name = '{scn}' |
|
2238
|
|
|
AND country != 'DE' |
|
2239
|
|
|
AND carrier = 'CH4'); |
|
2240
|
|
|
""", |
|
2241
|
|
|
warning=False, |
|
2242
|
|
|
)["p_nom_abroad"].values[0] |
|
2243
|
|
|
|
|
2244
|
|
|
e_gen = ( |
|
2245
|
|
|
round( |
|
2246
|
|
|
(output_CH4_gen - input_CH4_gen) / input_CH4_gen, |
|
2247
|
|
|
2, |
|
2248
|
|
|
) |
|
2249
|
|
|
* 100 |
|
2250
|
|
|
) |
|
2251
|
|
|
logger.info(f"Deviation CH4 generators: {e_gen} %") |
|
2252
|
|
|
|
|
2253
|
|
|
# Stores |
|
2254
|
|
|
logger.info("STORES") |
|
2255
|
|
|
ch4_input_capacities = calc_ch4_storage_capacities() |
|
2256
|
|
|
input_CH4_stores = ch4_input_capacities["e_nom"].sum() |
|
2257
|
|
|
|
|
2258
|
|
|
output_CH4_stores = db.select_dataframe( |
|
2259
|
|
|
f"""SELECT SUM(e_nom::numeric) as e_nom_abroad |
|
2260
|
|
|
FROM grid.egon_etrago_store |
|
2261
|
|
|
WHERE scn_name = '{scn}' |
|
2262
|
|
|
AND carrier = 'CH4' |
|
2263
|
|
|
AND bus IN |
|
2264
|
|
|
(SELECT bus_id |
|
2265
|
|
|
FROM grid.egon_etrago_bus |
|
2266
|
|
|
WHERE scn_name = '{scn}' |
|
2267
|
|
|
AND country != 'DE' |
|
2268
|
|
|
AND carrier = 'CH4'); |
|
2269
|
|
|
""", |
|
2270
|
|
|
warning=False, |
|
2271
|
|
|
)["e_nom_abroad"].values[0] |
|
2272
|
|
|
|
|
2273
|
|
|
e_stores = ( |
|
2274
|
|
|
round( |
|
2275
|
|
|
(output_CH4_stores - input_CH4_stores) / input_CH4_stores, |
|
2276
|
|
|
2, |
|
2277
|
|
|
) |
|
2278
|
|
|
* 100 |
|
2279
|
|
|
) |
|
2280
|
|
|
logger.info(f"Deviation CH4 stores: {e_stores} %") |
|
2281
|
|
|
|
|
2282
|
|
|
# Links |
|
2283
|
|
|
logger.info("LINKS") |
|
2284
|
|
|
ch4_grid_input_capacities = calculate_ch4_grid_capacities() |
|
2285
|
|
|
input_CH4_grid = ch4_grid_input_capacities["p_nom"].sum() |
|
2286
|
|
|
|
|
2287
|
|
|
grid_carrier = "CH4" |
|
2288
|
|
|
output_gas_grid = db.select_dataframe( |
|
2289
|
|
|
f"""SELECT SUM(p_nom::numeric) as p_nom |
|
2290
|
|
|
FROM grid.egon_etrago_link |
|
2291
|
|
|
WHERE scn_name = '{scn}' |
|
2292
|
|
|
AND carrier = '{grid_carrier}' |
|
2293
|
|
|
AND (bus0 IN |
|
2294
|
|
|
(SELECT bus_id |
|
2295
|
|
|
FROM grid.egon_etrago_bus |
|
2296
|
|
|
WHERE scn_name = '{scn}' |
|
2297
|
|
|
AND country != 'DE' |
|
2298
|
|
|
AND carrier = '{grid_carrier}') |
|
2299
|
|
|
OR bus1 IN |
|
2300
|
|
|
(SELECT bus_id |
|
2301
|
|
|
FROM grid.egon_etrago_bus |
|
2302
|
|
|
WHERE scn_name = '{scn}' |
|
2303
|
|
|
AND country != 'DE' |
|
2304
|
|
|
AND carrier = '{grid_carrier}')) |
|
2305
|
|
|
; |
|
2306
|
|
|
""", |
|
2307
|
|
|
warning=False, |
|
2308
|
|
|
)["p_nom"].values[0] |
|
2309
|
|
|
|
|
2310
|
|
|
e_gas_grid = ( |
|
2311
|
|
|
round( |
|
2312
|
|
|
(output_gas_grid - input_CH4_grid) / input_CH4_grid, |
|
2313
|
|
|
2, |
|
2314
|
|
|
) |
|
2315
|
|
|
* 100 |
|
2316
|
|
|
) |
|
2317
|
|
|
logger.info( |
|
2318
|
|
|
f"Deviation of the capacity of the crossbordering CH4 grid: {e_gas_grid} %" |
|
2319
|
|
|
) |
|
2320
|
|
|
|
|
2321
|
|
|
else: |
|
2322
|
|
|
print("Testmode is on, skipping sanity check.") |
|
2323
|
|
|
|
|
2324
|
|
|
|
|
2325
|
|
|
def sanitycheck_dsm(): |
|
2326
|
|
|
def df_from_series(s: pd.Series): |
|
2327
|
|
|
return pd.DataFrame.from_dict(dict(zip(s.index, s.values))) |
|
2328
|
|
|
|
|
2329
|
|
|
for scenario in ["eGon2035", "eGon100RE"]: |
|
2330
|
|
|
# p_min and p_max |
|
2331
|
|
|
sql = f""" |
|
2332
|
|
|
SELECT link_id, bus0 as bus, p_nom FROM grid.egon_etrago_link |
|
2333
|
|
|
WHERE carrier = 'dsm' |
|
2334
|
|
|
AND scn_name = '{scenario}' |
|
2335
|
|
|
ORDER BY link_id |
|
2336
|
|
|
""" |
|
2337
|
|
|
|
|
2338
|
|
|
meta_df = db.select_dataframe(sql, index_col="link_id") |
|
2339
|
|
|
link_ids = str(meta_df.index.tolist())[1:-1] |
|
2340
|
|
|
|
|
2341
|
|
|
sql = f""" |
|
2342
|
|
|
SELECT link_id, p_min_pu, p_max_pu |
|
2343
|
|
|
FROM grid.egon_etrago_link_timeseries |
|
2344
|
|
|
WHERE scn_name = '{scenario}' |
|
2345
|
|
|
AND link_id IN ({link_ids}) |
|
2346
|
|
|
ORDER BY link_id |
|
2347
|
|
|
""" |
|
2348
|
|
|
|
|
2349
|
|
|
ts_df = db.select_dataframe(sql, index_col="link_id") |
|
2350
|
|
|
|
|
2351
|
|
|
p_max_df = df_from_series(ts_df.p_max_pu).mul(meta_df.p_nom) |
|
2352
|
|
|
p_min_df = df_from_series(ts_df.p_min_pu).mul(meta_df.p_nom) |
|
2353
|
|
|
|
|
2354
|
|
|
p_max_df.columns = meta_df.bus.tolist() |
|
2355
|
|
|
p_min_df.columns = meta_df.bus.tolist() |
|
2356
|
|
|
|
|
2357
|
|
|
targets = config.datasets()["DSM_CTS_industry"]["targets"] |
|
2358
|
|
|
|
|
2359
|
|
|
tables = [ |
|
2360
|
|
|
"cts_loadcurves_dsm", |
|
2361
|
|
|
"ind_osm_loadcurves_individual_dsm", |
|
2362
|
|
|
"demandregio_ind_sites_dsm", |
|
2363
|
|
|
"ind_sites_loadcurves_individual", |
|
2364
|
|
|
] |
|
2365
|
|
|
|
|
2366
|
|
|
df_list = [] |
|
2367
|
|
|
|
|
2368
|
|
|
for table in tables: |
|
2369
|
|
|
target = targets[table] |
|
2370
|
|
|
sql = f""" |
|
2371
|
|
|
SELECT bus, p_min, p_max, e_max, e_min |
|
2372
|
|
|
FROM {target["schema"]}.{target["table"]} |
|
2373
|
|
|
WHERE scn_name = '{scenario}' |
|
2374
|
|
|
ORDER BY bus |
|
2375
|
|
|
""" |
|
2376
|
|
|
|
|
2377
|
|
|
df_list.append(db.select_dataframe(sql)) |
|
2378
|
|
|
|
|
2379
|
|
|
individual_ts_df = pd.concat(df_list, ignore_index=True) |
|
2380
|
|
|
|
|
2381
|
|
|
groups = individual_ts_df[["bus"]].reset_index().groupby("bus").groups |
|
2382
|
|
|
|
|
2383
|
|
|
individual_p_max_df = df_from_series(individual_ts_df.p_max) |
|
2384
|
|
|
|
|
2385
|
|
|
individual_p_max_df = pd.DataFrame( |
|
2386
|
|
|
[ |
|
2387
|
|
|
individual_p_max_df[idxs].sum(axis=1) |
|
2388
|
|
|
for idxs in groups.values() |
|
2389
|
|
|
], |
|
2390
|
|
|
index=groups.keys(), |
|
2391
|
|
|
).T |
|
2392
|
|
|
|
|
2393
|
|
|
individual_p_min_df = df_from_series(individual_ts_df.p_min) |
|
2394
|
|
|
|
|
2395
|
|
|
individual_p_min_df = pd.DataFrame( |
|
2396
|
|
|
[ |
|
2397
|
|
|
individual_p_min_df[idxs].sum(axis=1) |
|
2398
|
|
|
for idxs in groups.values() |
|
2399
|
|
|
], |
|
2400
|
|
|
index=groups.keys(), |
|
2401
|
|
|
).T |
|
2402
|
|
|
|
|
2403
|
|
|
# due to the fact that time series are clipped at zero (either |
|
2404
|
|
|
# direction) there is a little difference between the sum of the |
|
2405
|
|
|
# individual time series and the aggregated time series as the second |
|
2406
|
|
|
# is generated independent of the others. This makes atol=1e-01 |
|
2407
|
|
|
# necessary. |
|
2408
|
|
|
atol = 1e-01 |
|
2409
|
|
|
assert np.allclose(p_max_df, individual_p_max_df, atol=atol) |
|
2410
|
|
|
assert np.allclose(p_min_df, individual_p_min_df, atol=atol) |
|
2411
|
|
|
|
|
2412
|
|
|
# e_min and e_max |
|
2413
|
|
|
sql = f""" |
|
2414
|
|
|
SELECT store_id, bus, e_nom FROM grid.egon_etrago_store |
|
2415
|
|
|
WHERE carrier = 'dsm' |
|
2416
|
|
|
AND scn_name = '{scenario}' |
|
2417
|
|
|
ORDER BY store_id |
|
2418
|
|
|
""" |
|
2419
|
|
|
|
|
2420
|
|
|
meta_df = db.select_dataframe(sql, index_col="store_id") |
|
2421
|
|
|
store_ids = str(meta_df.index.tolist())[1:-1] |
|
2422
|
|
|
|
|
2423
|
|
|
sql = f""" |
|
2424
|
|
|
SELECT store_id, e_min_pu, e_max_pu |
|
2425
|
|
|
FROM grid.egon_etrago_store_timeseries |
|
2426
|
|
|
WHERE scn_name = '{scenario}' |
|
2427
|
|
|
AND store_id IN ({store_ids}) |
|
2428
|
|
|
ORDER BY store_id |
|
2429
|
|
|
""" |
|
2430
|
|
|
|
|
2431
|
|
|
ts_df = db.select_dataframe(sql, index_col="store_id") |
|
2432
|
|
|
|
|
2433
|
|
|
e_max_df = df_from_series(ts_df.e_max_pu).mul(meta_df.e_nom) |
|
2434
|
|
|
e_min_df = df_from_series(ts_df.e_min_pu).mul(meta_df.e_nom) |
|
2435
|
|
|
|
|
2436
|
|
|
e_max_df.columns = meta_df.bus.tolist() |
|
2437
|
|
|
e_min_df.columns = meta_df.bus.tolist() |
|
2438
|
|
|
|
|
2439
|
|
|
individual_e_max_df = df_from_series(individual_ts_df.e_max) |
|
2440
|
|
|
|
|
2441
|
|
|
individual_e_max_df = pd.DataFrame( |
|
2442
|
|
|
[ |
|
2443
|
|
|
individual_e_max_df[idxs].sum(axis=1) |
|
2444
|
|
|
for idxs in groups.values() |
|
2445
|
|
|
], |
|
2446
|
|
|
index=groups.keys(), |
|
2447
|
|
|
).T |
|
2448
|
|
|
individual_e_min_df = df_from_series(individual_ts_df.e_min) |
|
2449
|
|
|
|
|
2450
|
|
|
individual_e_min_df = pd.DataFrame( |
|
2451
|
|
|
[ |
|
2452
|
|
|
individual_e_min_df[idxs].sum(axis=1) |
|
2453
|
|
|
for idxs in groups.values() |
|
2454
|
|
|
], |
|
2455
|
|
|
index=groups.keys(), |
|
2456
|
|
|
).T |
|
2457
|
|
|
|
|
2458
|
|
|
assert np.allclose(e_max_df, individual_e_max_df) |
|
2459
|
|
|
assert np.allclose(e_min_df, individual_e_min_df) |
|
2460
|
|
|
|
|
2461
|
|
|
|
|
2462
|
|
|
def etrago_timeseries_length(): |
|
2463
|
|
|
|
|
2464
|
|
|
for component in ["generator", "load", "link", "store", "storage"]: |
|
2465
|
|
|
|
|
2466
|
|
|
columns = db.select_dataframe( |
|
2467
|
|
|
f""" |
|
2468
|
|
|
SELECT * |
|
2469
|
|
|
FROM information_schema.columns |
|
2470
|
|
|
WHERE table_schema = 'grid' |
|
2471
|
|
|
AND table_name = 'egon_etrago_{component}_timeseries' |
|
2472
|
|
|
""" |
|
2473
|
|
|
) |
|
2474
|
|
|
columns = columns[columns.data_type == "ARRAY"].column_name.values |
|
2475
|
|
|
|
|
2476
|
|
|
for col in columns: |
|
2477
|
|
|
lengths = db.select_dataframe( |
|
2478
|
|
|
f""" |
|
2479
|
|
|
SELECT array_length({col}, 1) |
|
2480
|
|
|
FROM grid.egon_etrago_{component}_timeseries; |
|
2481
|
|
|
""" |
|
2482
|
|
|
)["array_length"] |
|
2483
|
|
|
|
|
2484
|
|
|
if not lengths.dropna().empty: |
|
2485
|
|
|
assert ( |
|
2486
|
|
|
lengths.dropna() == 8760 |
|
2487
|
|
|
).all(), ( |
|
2488
|
|
|
f"Timeseries with a length != 8760 for {component} {col}" |
|
2489
|
|
|
) |
|
2490
|
|
|
else: |
|
2491
|
|
|
print(f"Empty timeseries for {component} {col}") |
|
2492
|
|
|
|
|
2493
|
|
|
|
|
2494
|
|
|
def generators_links_storages_stores_100RE(scn="eGon100RE"): |
|
2495
|
|
|
# Generators |
|
2496
|
|
|
scn_capacities = db.select_dataframe( |
|
2497
|
|
|
f""" |
|
2498
|
|
|
SELECT * FROM supply.egon_scenario_capacities |
|
2499
|
|
|
WHERE scenario_name = '{scn}' |
|
2500
|
|
|
""", |
|
2501
|
|
|
index_col="index", |
|
2502
|
|
|
) |
|
2503
|
|
|
|
|
2504
|
|
|
map_carrier = { |
|
2505
|
|
|
"urban_central_solar_thermal_collector": "solar_thermal_collector", |
|
2506
|
|
|
"urban_central_geo_thermal": "geo_thermal", |
|
2507
|
|
|
"urban_central_gas_boiler": "central_gas_boiler", |
|
2508
|
|
|
"urban_central_heat_pump": "central_heat_pump", |
|
2509
|
|
|
"urban_central_resistive_heater": "central_resistive_heater", |
|
2510
|
|
|
"gas": "OCGT", |
|
2511
|
|
|
} |
|
2512
|
|
|
|
|
2513
|
|
|
scn_capacities["carrier"] = scn_capacities["carrier"].apply( |
|
2514
|
|
|
lambda x: map_carrier[x] if x in map_carrier.keys() else x |
|
2515
|
|
|
) |
|
2516
|
|
|
|
|
2517
|
|
|
carriers_gen_from_supply = [ |
|
2518
|
|
|
"oil", |
|
2519
|
|
|
"solar", |
|
2520
|
|
|
"solar_rooftop", |
|
2521
|
|
|
"wind_onshore", |
|
2522
|
|
|
"lignite", |
|
2523
|
|
|
"coal", |
|
2524
|
|
|
"wind_offshore", |
|
2525
|
|
|
"solar_thermal_collector", |
|
2526
|
|
|
"geo_thermal", |
|
2527
|
|
|
"run_of_river", |
|
2528
|
|
|
"rural_solar_thermal", |
|
2529
|
|
|
"urban_central_gas_CHP", |
|
2530
|
|
|
"urban_central_solid_biomass_CHP", |
|
2531
|
|
|
] |
|
2532
|
|
|
|
|
2533
|
|
|
gen_etrago = db.select_dataframe( |
|
2534
|
|
|
f""" |
|
2535
|
|
|
SELECT * FROM grid.egon_etrago_generator |
|
2536
|
|
|
WHERE scn_name = '{scn}' |
|
2537
|
|
|
AND bus IN (SELECT bus_id from grid.egon_etrago_bus |
|
2538
|
|
|
WHERE scn_name = '{scn}' |
|
2539
|
|
|
AND country = 'DE') |
|
2540
|
|
|
""", |
|
2541
|
|
|
warning=False, |
|
2542
|
|
|
) |
|
2543
|
|
|
|
|
2544
|
|
|
carriers_gen = set(carriers_gen_from_supply + list(gen_etrago["carrier"])) |
|
2545
|
|
|
|
|
2546
|
|
|
gen_capacities = pd.DataFrame( |
|
2547
|
|
|
index=list(carriers_gen), columns=["supply_table", scn] |
|
2548
|
|
|
) |
|
2549
|
|
|
gen_capacities[scn] = gen_etrago.groupby("carrier").p_nom.sum() |
|
2550
|
|
|
|
|
2551
|
|
|
gen_capacities["supply_table"] = scn_capacities.set_index("carrier")[ |
|
2552
|
|
|
"capacity" |
|
2553
|
|
|
] |
|
2554
|
|
|
|
|
2555
|
|
|
gen_capacities.dropna(how="all", inplace=True) |
|
2556
|
|
|
|
|
2557
|
|
|
print(f"\nMain results regarding generators for {scn}\n") |
|
2558
|
|
|
print(gen_capacities) |
|
2559
|
|
|
|
|
2560
|
|
|
########################################################################### |
|
2561
|
|
|
# Links |
|
2562
|
|
|
|
|
2563
|
|
|
carriers_links_from_supply = [ |
|
2564
|
|
|
"central_gas_boiler", |
|
2565
|
|
|
"central_heat_pump", |
|
2566
|
|
|
"central_resistive_heater", |
|
2567
|
|
|
"gas", |
|
2568
|
|
|
"rural_biomass_boiler", |
|
2569
|
|
|
"rural_gas_boiler", |
|
2570
|
|
|
"rural_heat_pump", |
|
2571
|
|
|
"rural_oil_boiler", |
|
2572
|
|
|
"rural_resistive_heater", |
|
2573
|
|
|
] |
|
2574
|
|
|
|
|
2575
|
|
|
link_etrago = db.select_dataframe( |
|
2576
|
|
|
f""" |
|
2577
|
|
|
SELECT * FROM grid.egon_etrago_link |
|
2578
|
|
|
WHERE scn_name = '{scn}' |
|
2579
|
|
|
AND (bus0 IN (SELECT bus_id from grid.egon_etrago_bus |
|
2580
|
|
|
WHERE scn_name = '{scn}' |
|
2581
|
|
|
AND country = 'DE') |
|
2582
|
|
|
OR |
|
2583
|
|
|
bus1 IN (SELECT bus_id from grid.egon_etrago_bus |
|
2584
|
|
|
WHERE scn_name = '{scn}' |
|
2585
|
|
|
AND country = 'DE') |
|
2586
|
|
|
) |
|
2587
|
|
|
""", |
|
2588
|
|
|
warning=False, |
|
2589
|
|
|
) |
|
2590
|
|
|
|
|
2591
|
|
|
carriers_link = set( |
|
2592
|
|
|
carriers_links_from_supply + list(link_etrago["carrier"]) |
|
2593
|
|
|
) |
|
2594
|
|
|
|
|
2595
|
|
|
link_capacities = pd.DataFrame( |
|
2596
|
|
|
index=list(carriers_link), columns=["supply_table", scn] |
|
2597
|
|
|
) |
|
2598
|
|
|
|
|
2599
|
|
|
link_capacities["eGon100RE"] = link_etrago.groupby("carrier").p_nom.sum() |
|
2600
|
|
|
|
|
2601
|
|
|
link_capacities["supply_table"] = scn_capacities.set_index("carrier")[ |
|
2602
|
|
|
"capacity" |
|
2603
|
|
|
] |
|
2604
|
|
|
|
|
2605
|
|
|
link_capacities.dropna(how="all", inplace=True) |
|
2606
|
|
|
|
|
2607
|
|
|
print(f"\nMain results regarding links for {scn}\n") |
|
2608
|
|
|
print(link_capacities) |
|
2609
|
|
|
########################################################################### |
|
2610
|
|
|
# storage |
|
2611
|
|
|
storage_etrago = db.select_dataframe( |
|
2612
|
|
|
f""" |
|
2613
|
|
|
SELECT * FROM grid.egon_etrago_storage |
|
2614
|
|
|
WHERE scn_name = '{scn}' |
|
2615
|
|
|
AND bus IN (SELECT bus_id from grid.egon_etrago_bus |
|
2616
|
|
|
WHERE scn_name = '{scn}' |
|
2617
|
|
|
AND country = 'DE') |
|
2618
|
|
|
""", |
|
2619
|
|
|
) |
|
2620
|
|
|
|
|
2621
|
|
|
carriers_storage_from_supply = ["pumped_hydro"] |
|
2622
|
|
|
|
|
2623
|
|
|
carriers_storage = set( |
|
2624
|
|
|
carriers_storage_from_supply + list(storage_etrago["carrier"]) |
|
2625
|
|
|
) |
|
2626
|
|
|
|
|
2627
|
|
|
storage_capacities = pd.DataFrame( |
|
2628
|
|
|
index=list(carriers_storage), columns=["supply_table", scn] |
|
2629
|
|
|
) |
|
2630
|
|
|
|
|
2631
|
|
|
storage_capacities[scn] = storage_etrago.groupby("carrier").p_nom.sum() |
|
2632
|
|
|
|
|
2633
|
|
|
storage_capacities["supply_table"] = scn_capacities.set_index("carrier")[ |
|
2634
|
|
|
"capacity" |
|
2635
|
|
|
] |
|
2636
|
|
|
|
|
2637
|
|
|
print(f"\nMain results regarding storage units for {scn}\n") |
|
2638
|
|
|
print(storage_capacities) |
|
2639
|
|
|
########################################################################### |
|
2640
|
|
|
# stores |
|
2641
|
|
|
stores_etrago = db.select_dataframe( |
|
2642
|
|
|
f""" |
|
2643
|
|
|
SELECT * FROM grid.egon_etrago_store |
|
2644
|
|
|
WHERE scn_name = '{scn}' |
|
2645
|
|
|
AND bus IN (SELECT bus_id from grid.egon_etrago_bus |
|
2646
|
|
|
WHERE scn_name = '{scn}' |
|
2647
|
|
|
AND country = 'DE') |
|
2648
|
|
|
""", |
|
2649
|
|
|
) |
|
2650
|
|
|
|
|
2651
|
|
|
carriers_stores_from_supply = [] |
|
2652
|
|
|
|
|
2653
|
|
|
carriers_stores = set( |
|
2654
|
|
|
carriers_stores_from_supply + list(stores_etrago["carrier"]) |
|
2655
|
|
|
) |
|
2656
|
|
|
|
|
2657
|
|
|
stores_capacities = pd.DataFrame( |
|
2658
|
|
|
index=list(carriers_stores), columns=["supply_table", scn] |
|
2659
|
|
|
) |
|
2660
|
|
|
|
|
2661
|
|
|
stores_capacities[scn] = stores_etrago.groupby("carrier").e_nom.sum() |
|
2662
|
|
|
|
|
2663
|
|
|
stores_capacities["supply_table"] = scn_capacities.set_index("carrier")[ |
|
2664
|
|
|
"capacity" |
|
2665
|
|
|
] |
|
2666
|
|
|
|
|
2667
|
|
|
print(f"\nMain results regarding stores for {scn}\n") |
|
2668
|
|
|
print(stores_capacities) |
|
2669
|
|
|
|
|
2670
|
|
|
return |
|
2671
|
|
|
|
|
2672
|
|
|
|
|
2673
|
|
|
def electrical_load_100RE(scn="eGon100RE"): |
|
2674
|
|
|
load_summary = pd.DataFrame( |
|
2675
|
|
|
index=[ |
|
2676
|
|
|
"residential", |
|
2677
|
|
|
"commercial", |
|
2678
|
|
|
"industrial", |
|
2679
|
|
|
"total", |
|
2680
|
|
|
], |
|
2681
|
|
|
columns=["objective", "eGon100RE"], |
|
2682
|
|
|
) |
|
2683
|
|
|
|
|
2684
|
|
|
# Sector Annual electricity demand in TWh |
|
2685
|
|
|
# https://github.com/openego/powerd-data/blob/56b8215928a8dc4fe953d266c563ce0ed98e93f9/src/egon/data/datasets/demandregio/__init__.py#L480 |
|
2686
|
|
|
load_summary.loc["residential", "objective"] = 90.4 |
|
2687
|
|
|
# https://github.com/openego/powerd-data/blob/56b8215928a8dc4fe953d266c563ce0ed98e93f9/src/egon/data/datasets/demandregio/__init__.py#L775 |
|
2688
|
|
|
load_summary.loc["commercial", "objective"] = 146.7 |
|
2689
|
|
|
# https://github.com/openego/powerd-data/blob/56b8215928a8dc4fe953d266c563ce0ed98e93f9/src/egon/data/datasets/demandregio/__init__.py#L775 |
|
2690
|
|
|
load_summary.loc["industrial", "objective"] = 382.9 |
|
2691
|
|
|
load_summary.loc["total", "objective"] = 620.0 |
|
2692
|
|
|
|
|
2693
|
|
|
print( |
|
2694
|
|
|
"For German electricity loads the following deviations between the" |
|
2695
|
|
|
" input and output can be observed:" |
|
2696
|
|
|
) |
|
2697
|
|
|
|
|
2698
|
|
|
load_summary.loc["total", "eGon100RE"] = db.select_dataframe( |
|
2699
|
|
|
"""SELECT a.scn_name, a.carrier, SUM((SELECT SUM(p) |
|
2700
|
|
|
FROM UNNEST(b.p_set) p))/1000000::numeric as load_twh |
|
2701
|
|
|
FROM grid.egon_etrago_load a |
|
2702
|
|
|
JOIN grid.egon_etrago_load_timeseries b |
|
2703
|
|
|
ON (a.load_id = b.load_id) |
|
2704
|
|
|
JOIN grid.egon_etrago_bus c |
|
2705
|
|
|
ON (a.bus=c.bus_id) |
|
2706
|
|
|
AND b.scn_name = 'eGon100RE' |
|
2707
|
|
|
AND a.scn_name = 'eGon100RE' |
|
2708
|
|
|
AND a.carrier = 'AC' |
|
2709
|
|
|
AND c.scn_name= 'eGon100RE' |
|
2710
|
|
|
AND c.country='DE' |
|
2711
|
|
|
GROUP BY (a.scn_name, a.carrier); |
|
2712
|
|
|
""", |
|
2713
|
|
|
warning=False, |
|
2714
|
|
|
)["load_twh"].values[0] |
|
2715
|
|
|
|
|
2716
|
|
|
sources = egon.data.config.datasets()["etrago_electricity"]["sources"] |
|
2717
|
|
|
cts_curves = db.select_dataframe( |
|
2718
|
|
|
f"""SELECT bus_id AS bus, p_set FROM |
|
2719
|
|
|
{sources['cts_curves']['schema']}. |
|
2720
|
|
|
{sources['cts_curves']['table']} |
|
2721
|
|
|
WHERE scn_name = '{scn}'""", |
|
2722
|
|
|
) |
|
2723
|
|
|
sum_cts_curves = ( |
|
2724
|
|
|
cts_curves.apply(lambda x: sum(x["p_set"]), axis=1).sum() / 1000000 |
|
2725
|
|
|
) |
|
2726
|
|
|
load_summary.loc["commercial", "eGon100RE"] = sum_cts_curves |
|
2727
|
|
|
|
|
2728
|
|
|
# Select data on industrial demands assigned to osm landuse areas |
|
2729
|
|
|
ind_curves_osm = db.select_dataframe( |
|
2730
|
|
|
f"""SELECT bus, p_set FROM |
|
2731
|
|
|
{sources['osm_curves']['schema']}. |
|
2732
|
|
|
{sources['osm_curves']['table']} |
|
2733
|
|
|
WHERE scn_name = '{scn}'""", |
|
2734
|
|
|
) |
|
2735
|
|
|
sum_ind_curves_osm = ( |
|
2736
|
|
|
ind_curves_osm.apply(lambda x: sum(x["p_set"]), axis=1).sum() / 1000000 |
|
2737
|
|
|
) |
|
2738
|
|
|
|
|
2739
|
|
|
# Select data on industrial demands assigned to industrial sites |
|
2740
|
|
|
|
|
2741
|
|
|
ind_curves_sites = db.select_dataframe( |
|
2742
|
|
|
f"""SELECT bus, p_set FROM |
|
2743
|
|
|
{sources['sites_curves']['schema']}. |
|
2744
|
|
|
{sources['sites_curves']['table']} |
|
2745
|
|
|
WHERE scn_name = '{scn}'""", |
|
2746
|
|
|
) |
|
2747
|
|
|
sum_ind_curves_sites = ( |
|
2748
|
|
|
ind_curves_sites.apply(lambda x: sum(x["p_set"]), axis=1).sum() |
|
2749
|
|
|
/ 1000000 |
|
2750
|
|
|
) |
|
2751
|
|
|
|
|
2752
|
|
|
load_summary.loc["industrial", "eGon100RE"] = ( |
|
2753
|
|
|
sum_ind_curves_osm + sum_ind_curves_sites |
|
2754
|
|
|
) |
|
2755
|
|
|
|
|
2756
|
|
|
# Select data on household electricity demands per bus |
|
2757
|
|
|
hh_curves = db.select_dataframe( |
|
2758
|
|
|
f"""SELECT bus_id AS bus, p_set FROM |
|
2759
|
|
|
{sources['household_curves']['schema']}. |
|
2760
|
|
|
{sources['household_curves']['table']} |
|
2761
|
|
|
WHERE scn_name = '{scn}'""", |
|
2762
|
|
|
) |
|
2763
|
|
|
sum_hh_curves = ( |
|
2764
|
|
|
hh_curves.apply(lambda x: sum(x["p_set"]), axis=1).sum() / 1000000 |
|
2765
|
|
|
) |
|
2766
|
|
|
load_summary.loc["residential", "eGon100RE"] = sum_hh_curves |
|
2767
|
|
|
|
|
2768
|
|
|
load_summary["diff"] = ( |
|
2769
|
|
|
load_summary["eGon100RE"] - load_summary["objective"] |
|
2770
|
|
|
) |
|
2771
|
|
|
load_summary["diff[%]"] = ( |
|
2772
|
|
|
load_summary["diff"] / load_summary["eGon100RE"] * 100 |
|
2773
|
|
|
) |
|
2774
|
|
|
|
|
2775
|
|
|
print(load_summary) |
|
2776
|
|
|
|
|
2777
|
|
|
assert ( |
|
2778
|
|
|
load_summary["diff[%]"] < 1 |
|
2779
|
|
|
).all(), "electrical loads differ from objective values" |
|
2780
|
|
|
|
|
2781
|
|
|
return () |
|
2782
|
|
|
|
|
2783
|
|
|
|
|
2784
|
|
|
def heat_gas_load_egon100RE(scn="eGon100RE"): |
|
2785
|
|
|
|
|
2786
|
|
|
# dictionary for matching pypsa_eur carrier with egon-data carriers |
|
2787
|
|
|
load_carrier_dict = { |
|
2788
|
|
|
"DE0 0 land transport EV": "land transport EV", |
|
2789
|
|
|
"DE0 0 rural heat": "rural_heat", |
|
2790
|
|
|
"DE0 0 urban central heat": "central_heat", |
|
2791
|
|
|
"DE0 0 urban decentral heat": "rural_heat", |
|
2792
|
|
|
"rural heat": "rural_heat", |
|
2793
|
|
|
"H2 for industry": "H2_for_industry", |
|
2794
|
|
|
"gas for industry": "CH4_for_industry", |
|
2795
|
|
|
"urban central heat": "central_heat", |
|
2796
|
|
|
"urban decentral heat": "rural_heat", |
|
2797
|
|
|
"land transport EV": "land transport EV", |
|
2798
|
|
|
} |
|
2799
|
|
|
|
|
2800
|
|
|
# filter out NaN values central_heat timeseries |
|
2801
|
|
|
NaN_load_ids = db.select_dataframe( |
|
2802
|
|
|
""" |
|
2803
|
|
|
SELECT load_id from grid.egon_etrago_load_timeseries |
|
2804
|
|
|
WHERE load_id IN (Select load_id |
|
2805
|
|
|
FROM grid.egon_etrago_load |
|
2806
|
|
|
WHERE carrier = 'central_heat') AND (SELECT |
|
2807
|
|
|
bool_or(value::double precision::text = 'NaN') |
|
2808
|
|
|
FROM unnest(p_set) AS value |
|
2809
|
|
|
) |
|
2810
|
|
|
""" |
|
2811
|
|
|
) |
|
2812
|
|
|
nan_load_list = tuple(NaN_load_ids["load_id"].tolist()) |
|
2813
|
|
|
nan_load_str = ",".join(map(str, nan_load_list)) |
|
2814
|
|
|
|
|
2815
|
|
|
#####loads for eGon100RE |
|
2816
|
|
|
loads_etrago_timeseries = db.select_dataframe( |
|
2817
|
|
|
f""" |
|
2818
|
|
|
SELECT |
|
2819
|
|
|
l.carrier, |
|
2820
|
|
|
SUM( |
|
2821
|
|
|
(SELECT SUM(p) |
|
2822
|
|
|
FROM UNNEST(t.p_set) p) |
|
2823
|
|
|
) AS total_p_set_timeseries |
|
2824
|
|
|
FROM |
|
2825
|
|
|
grid.egon_etrago_load l |
|
2826
|
|
|
LEFT JOIN |
|
2827
|
|
|
grid.egon_etrago_load_timeseries t ON l.load_id = t.load_id |
|
2828
|
|
|
WHERE |
|
2829
|
|
|
l.scn_name = '{scn}' |
|
2830
|
|
|
AND l.carrier != 'AC' |
|
2831
|
|
|
AND l.bus IN ( |
|
2832
|
|
|
SELECT bus_id |
|
2833
|
|
|
FROM grid.egon_etrago_bus |
|
2834
|
|
|
WHERE scn_name = '{scn}' |
|
2835
|
|
|
AND country = 'DE' |
|
2836
|
|
|
) |
|
2837
|
|
|
AND l.load_id NOT IN ({nan_load_str}) |
|
2838
|
|
|
|
|
2839
|
|
|
GROUP BY |
|
2840
|
|
|
l.carrier |
|
2841
|
|
|
""" |
|
2842
|
|
|
) |
|
2843
|
|
|
|
|
2844
|
|
|
#####loads for pypsa_eur_network |
|
2845
|
|
|
n = read_network() |
|
2846
|
|
|
|
|
2847
|
|
|
# aggregate loads with values in timeseries dataframe |
|
2848
|
|
|
df_load_timeseries = n.loads_t.p_set |
|
2849
|
|
|
filtered_columns = [ |
|
2850
|
|
|
col |
|
2851
|
|
|
for col in df_load_timeseries.columns |
|
2852
|
|
|
if col.startswith("DE") and "electricity" not in col |
|
2853
|
|
|
] |
|
2854
|
|
|
german_loads_timeseries = df_load_timeseries[filtered_columns] |
|
2855
|
|
|
german_loads_timeseries = german_loads_timeseries.drop(columns=["DE0 0"]) |
|
2856
|
|
|
german_loads_timeseries = german_loads_timeseries.mul( |
|
2857
|
|
|
n.snapshot_weightings.generators, axis=0 |
|
2858
|
|
|
).sum() |
|
2859
|
|
|
german_loads_timeseries = german_loads_timeseries.rename( |
|
2860
|
|
|
index=load_carrier_dict |
|
2861
|
|
|
) |
|
2862
|
|
|
|
|
2863
|
|
|
# sum loads with fixed p_set in loads dataframe |
|
2864
|
|
|
german_load_static_p_set = n.loads[ |
|
2865
|
|
|
n.loads.index.str.startswith("DE") |
|
2866
|
|
|
& ~n.loads.carrier.str.contains("electricity") |
|
2867
|
|
|
] |
|
2868
|
|
|
german_load_static_p_set = ( |
|
2869
|
|
|
german_load_static_p_set.groupby("carrier").p_set.sum() * 8760 |
|
2870
|
|
|
) |
|
2871
|
|
|
german_load_static_p_set = german_load_static_p_set.rename( |
|
2872
|
|
|
index=load_carrier_dict |
|
2873
|
|
|
) |
|
2874
|
|
|
german_load_static_p_set["H2_for_industry"] = ( |
|
2875
|
|
|
german_load_static_p_set["H2_for_industry"] |
|
2876
|
|
|
+ +n.links_t.p0[ |
|
2877
|
|
|
n.links.loc[ |
|
2878
|
|
|
n.links.index.str.contains("DE0 0 Fischer-Tropsch") |
|
2879
|
|
|
].index |
|
2880
|
|
|
] |
|
2881
|
|
|
.mul(n.snapshot_weightings.generators, axis=0) |
|
2882
|
|
|
.sum() |
|
2883
|
|
|
.sum() |
|
2884
|
|
|
+ n.links_t.p0[ |
|
2885
|
|
|
n.links.loc[ |
|
2886
|
|
|
n.links.index.str.contains("DE0 0 methanolisation") |
|
2887
|
|
|
].index |
|
2888
|
|
|
] |
|
2889
|
|
|
.mul(n.snapshot_weightings.generators, axis=0) |
|
2890
|
|
|
.sum() |
|
2891
|
|
|
.sum() |
|
2892
|
|
|
) |
|
2893
|
|
|
|
|
2894
|
|
|
# combine p_set and timeseries dataframes from pypsa eur |
|
2895
|
|
|
german_loads_timeseries_df = german_loads_timeseries.to_frame() |
|
2896
|
|
|
german_loads_timeseries_df["carrier"] = german_loads_timeseries_df.index |
|
2897
|
|
|
german_loads_timeseries_df.set_index("carrier", inplace=True) |
|
2898
|
|
|
|
|
2899
|
|
|
german_load_static_p_set_df = german_load_static_p_set.to_frame() |
|
2900
|
|
|
german_load_static_p_set_df = german_load_static_p_set_df.groupby( |
|
2901
|
|
|
"carrier", as_index=True |
|
2902
|
|
|
).sum() |
|
2903
|
|
|
german_loads_timeseries_df = german_loads_timeseries_df.groupby( |
|
2904
|
|
|
"carrier", as_index=True |
|
2905
|
|
|
).sum() |
|
2906
|
|
|
combined = pd.merge( |
|
2907
|
|
|
german_load_static_p_set_df, |
|
2908
|
|
|
german_loads_timeseries_df, |
|
2909
|
|
|
on="carrier", |
|
2910
|
|
|
how="left", |
|
2911
|
|
|
) |
|
2912
|
|
|
|
|
2913
|
|
|
combined["p_set"] = np.where( |
|
2914
|
|
|
combined["p_set"] == 0, combined[0], combined["p_set"] |
|
2915
|
|
|
) |
|
2916
|
|
|
combined = combined.drop(columns=[0]) |
|
2917
|
|
|
|
|
2918
|
|
|
# carriers_for_comparison |
|
2919
|
|
|
carriers_loads = set( |
|
2920
|
|
|
german_load_static_p_set.index.union( |
|
2921
|
|
|
german_loads_timeseries.index |
|
2922
|
|
|
).union(loads_etrago_timeseries["carrier"]) |
|
2923
|
|
|
) |
|
2924
|
|
|
|
|
2925
|
|
|
# create dataframe for comparison |
|
2926
|
|
|
loads_capacities = pd.DataFrame( |
|
2927
|
|
|
index=list(carriers_loads), columns=["pypsa_eur", scn] |
|
2928
|
|
|
) |
|
2929
|
|
|
loads_capacities[scn] = loads_etrago_timeseries.groupby( |
|
2930
|
|
|
"carrier" |
|
2931
|
|
|
).total_p_set_timeseries.sum() |
|
2932
|
|
|
loads_capacities["pypsa_eur"] = combined["p_set"] |
|
2933
|
|
|
loads_capacities["diff [%]"] = ( |
|
2934
|
|
|
(loads_capacities[scn] - loads_capacities["pypsa_eur"]) |
|
2935
|
|
|
/ loads_capacities["pypsa_eur"].replace(0, np.nan) |
|
2936
|
|
|
) * 100 |
|
2937
|
|
|
|
|
2938
|
|
|
print("=" * 50) |
|
2939
|
|
|
print( |
|
2940
|
|
|
"Comparison of Gas and Heat Loads with PyPSA-Eur Data".center(50, "=") |
|
2941
|
|
|
) |
|
2942
|
|
|
print("=" * 50) |
|
2943
|
|
|
print(loads_capacities) |
|
2944
|
|
|
|
|
2945
|
|
|
|
|
2946
|
|
|
tasks = () |
|
2947
|
|
|
|
|
2948
|
|
|
if "eGon2035" in SCENARIOS: |
|
2949
|
|
|
tasks = tasks + ( |
|
2950
|
|
|
etrago_eGon2035_electricity, |
|
2951
|
|
|
etrago_eGon2035_heat, |
|
2952
|
|
|
residential_electricity_annual_sum, |
|
2953
|
|
|
residential_electricity_hh_refinement, |
|
2954
|
|
|
cts_electricity_demand_share, |
|
2955
|
|
|
cts_heat_demand_share, |
|
2956
|
|
|
sanitycheck_emobility_mit, |
|
2957
|
|
|
sanitycheck_pv_rooftop_buildings, |
|
2958
|
|
|
sanitycheck_home_batteries, |
|
2959
|
|
|
etrago_eGon2035_gas_DE, |
|
2960
|
|
|
etrago_eGon2035_gas_abroad, |
|
2961
|
|
|
sanitycheck_dsm, |
|
2962
|
|
|
) |
|
2963
|
|
|
|
|
2964
|
|
|
if "eGon100RE" in SCENARIOS: |
|
2965
|
|
|
tasks = tasks + ( |
|
2966
|
|
|
electrical_load_100RE, |
|
2967
|
|
|
generators_links_storages_stores_100RE, |
|
2968
|
|
|
etrago_timeseries_length, |
|
2969
|
|
|
heat_gas_load_egon100RE, |
|
2970
|
|
|
) |
|
2971
|
|
|
|
|
2972
|
|
|
|
|
2973
|
|
|
class SanityChecks(Dataset): |
|
2974
|
|
|
#: |
|
2975
|
|
|
name: str = "SanityChecks" |
|
2976
|
|
|
#: |
|
2977
|
|
|
version: str = "0.0.8" |
|
2978
|
|
|
|
|
2979
|
|
|
def __init__(self, dependencies): |
|
2980
|
|
|
super().__init__( |
|
2981
|
|
|
name=self.name, |
|
2982
|
|
|
version=self.version, |
|
2983
|
|
|
dependencies=dependencies, |
|
2984
|
|
|
tasks=tasks, |
|
2985
|
|
|
) |
|
2986
|
|
|
|