1
|
|
|
""" |
2
|
|
|
Currently, there are differences in the aggregated and individual DSM time |
3
|
|
|
series. These are caused by the truncation of the values at zero. |
4
|
|
|
|
5
|
|
|
The sum of the individual time series is a more accurate value than the |
6
|
|
|
aggregated time series used so far and should replace it in the future. Since |
7
|
|
|
the deviations are relatively small, a tolerance is currently accepted in the |
8
|
|
|
sanity checks. See `#1120 <https://github.com/openego/eGon-data/issues/1120>`_ |
9
|
|
|
for updates. |
10
|
|
|
""" |
11
|
|
|
import datetime |
12
|
|
|
import json |
13
|
|
|
|
14
|
|
|
from omi.dialects import get_dialect |
15
|
|
|
from sqlalchemy import ARRAY, Column, Float, Integer, String |
16
|
|
|
from sqlalchemy.ext.declarative import declarative_base |
17
|
|
|
import geopandas as gpd |
18
|
|
|
import numpy as np |
19
|
|
|
import pandas as pd |
20
|
|
|
|
21
|
|
|
from egon.data import config, db |
22
|
|
|
from egon.data.datasets import Dataset |
23
|
|
|
from egon.data.datasets.electricity_demand.temporal import calc_load_curve |
24
|
|
|
from egon.data.datasets.industry.temporal import identify_bus |
25
|
|
|
from egon.data.metadata import ( |
26
|
|
|
context, |
27
|
|
|
contributors, |
28
|
|
|
generate_resource_fields_from_db_table, |
29
|
|
|
license_odbl, |
30
|
|
|
meta_metadata, |
31
|
|
|
meta_metadata, |
32
|
|
|
sources, |
33
|
|
|
) |
34
|
|
|
|
35
|
|
|
# CONSTANTS |
36
|
|
|
# TODO: move to datasets.yml |
37
|
|
|
CON = db.engine() |
38
|
|
|
|
39
|
|
|
# CTS |
40
|
|
|
CTS_COOL_VENT_AC_SHARE = 0.22 |
41
|
|
|
|
42
|
|
|
S_FLEX_CTS = 0.5 |
43
|
|
|
S_UTIL_CTS = 0.67 |
44
|
|
|
S_INC_CTS = 1 |
45
|
|
|
S_DEC_CTS = 0 |
46
|
|
|
DELTA_T_CTS = 1 |
47
|
|
|
|
48
|
|
|
# industry |
49
|
|
|
IND_VENT_COOL_SHARE = 0.039 |
50
|
|
|
IND_VENT_SHARE = 0.017 |
51
|
|
|
|
52
|
|
|
# OSM |
53
|
|
|
S_FLEX_OSM = 0.5 |
54
|
|
|
S_UTIL_OSM = 0.73 |
55
|
|
|
S_INC_OSM = 0.9 |
56
|
|
|
S_DEC_OSM = 0.5 |
57
|
|
|
DELTA_T_OSM = 1 |
58
|
|
|
|
59
|
|
|
# paper |
60
|
|
|
S_FLEX_PAPER = 0.15 |
61
|
|
|
S_UTIL_PAPER = 0.86 |
62
|
|
|
S_INC_PAPER = 0.95 |
63
|
|
|
S_DEC_PAPER = 0 |
64
|
|
|
DELTA_T_PAPER = 3 |
65
|
|
|
|
66
|
|
|
# recycled paper |
67
|
|
|
S_FLEX_RECYCLED_PAPER = 0.7 |
68
|
|
|
S_UTIL_RECYCLED_PAPER = 0.85 |
69
|
|
|
S_INC_RECYCLED_PAPER = 0.95 |
70
|
|
|
S_DEC_RECYCLED_PAPER = 0 |
71
|
|
|
DELTA_T_RECYCLED_PAPER = 3 |
72
|
|
|
|
73
|
|
|
# pulp |
74
|
|
|
S_FLEX_PULP = 0.7 |
75
|
|
|
S_UTIL_PULP = 0.83 |
76
|
|
|
S_INC_PULP = 0.95 |
77
|
|
|
S_DEC_PULP = 0 |
78
|
|
|
DELTA_T_PULP = 2 |
79
|
|
|
|
80
|
|
|
# cement |
81
|
|
|
S_FLEX_CEMENT = 0.61 |
82
|
|
|
S_UTIL_CEMENT = 0.65 |
83
|
|
|
S_INC_CEMENT = 0.95 |
84
|
|
|
S_DEC_CEMENT = 0 |
85
|
|
|
DELTA_T_CEMENT = 4 |
86
|
|
|
|
87
|
|
|
# wz 23 |
88
|
|
|
WZ = 23 |
89
|
|
|
|
90
|
|
|
S_FLEX_WZ = 0.5 |
91
|
|
|
S_UTIL_WZ = 0.8 |
92
|
|
|
S_INC_WZ = 1 |
93
|
|
|
S_DEC_WZ = 0.5 |
94
|
|
|
DELTA_T_WZ = 1 |
95
|
|
|
|
96
|
|
|
Base = declarative_base() |
97
|
|
|
|
98
|
|
|
|
99
|
|
|
class DsmPotential(Dataset): |
100
|
|
|
""" |
101
|
|
|
Calculate Demand-Side Management potentials and transfer to charactersitics of DSM components |
102
|
|
|
|
103
|
|
|
DSM within this work includes the shifting of loads within the sectors of |
104
|
|
|
industry and CTS. Therefore, the corresponding formerly prepared demand |
105
|
|
|
time sereies are used. Shiftable potentials are calculated using the |
106
|
|
|
parametrization elaborated in Heitkoetter et. al (doi:https://doi.org/10.1016/j.adapen.2020.100001). |
107
|
|
|
DSM is modelled as storage-equivalent operation using the methods by Kleinhans (doi:10.48550/ARXIV.1401.4121). |
108
|
|
|
The potentials are transferred to characterisitcs of DSM links (minimal and |
109
|
|
|
maximal shiftable power per time step) and DSM stores (minimum and maximum |
110
|
|
|
capacity per time step). DSM buses are created to connect DSM components with |
111
|
|
|
the electrical network. All DSM components are added to the corresponding |
112
|
|
|
tables for the transmission grid level. For the distribution grids, the |
113
|
|
|
respective time series are exported to the corresponding tables (for the |
114
|
|
|
required higher spatial resolution). |
115
|
|
|
|
116
|
|
|
*Dependencies* |
117
|
|
|
* :py:class:`CtsElectricityDemand <egon.data.datasets.electricity_demand>` |
118
|
|
|
* :py:class:`IndustrialDemandCurves <from egon.data.datasets.industry>` |
119
|
|
|
* :py:class:`Osmtgmod <egon.data.datasets.osmtgmod>` |
120
|
|
|
|
121
|
|
|
*Resulting tables* |
122
|
|
|
* :py:class:`grid.egon_etrago_bus <egon.data.datasets.etrago_setup.EgonPfHvBus>` is extended |
123
|
|
|
* :py:class:`grid.egon_etrago_link <egon.data.datasets.etrago_setup.EgonPfHvLink>` is extended |
124
|
|
|
* :py:class:`grid.egon_etrago_link_timeseries <egon.data.datasets.etrago_setup.EgonPfHvLinkTimeseries>` is extended |
125
|
|
|
* :py:class:`grid.egon_etrago_store <egon.data.datasets.etrago_setup.EgonPfHvStore>` is extended |
126
|
|
|
* :py:class:`grid.egon_etrago_store_timeseries <egon.data.datasets.etrago_setup.EgonPfHvStoreTimeseries>` is extended |
127
|
|
|
* :py:class:`demand.egon_etrago_electricity_cts_dsm_timeseries <egon.data.datasets.DsmPotential.EgonEtragoElectricityCtsDsmTimeseries>` is created and filled # noqa: E501 |
128
|
|
|
* :py:class:`demand.egon_osm_ind_load_curves_individual_dsm_timeseries <egon.data.datasets.DsmPotential.EgonOsmIndLoadCurvesIndividualDsmTimeseries>` is created and filled # noqa: E501 |
129
|
|
|
* :py:class:`demand.egon_demandregio_sites_ind_electricity_dsm_timeseries <egon.data.datasets.DsmPotential.EgonDemandregioSitesIndElectricityDsmTimeseries>` is created and filled # noqa: E501 |
130
|
|
|
* :py:class:`demand.egon_sites_ind_load_curves_individual_dsm_timeseries <egon.data.datasets.DsmPotential.EgonSitesIndLoadCurvesIndividualDsmTimeseries>` is created and filled # noqa: E501 |
131
|
|
|
|
132
|
|
|
""" |
133
|
|
|
|
134
|
|
|
#: |
135
|
|
|
name: str = "DsmPotential" |
136
|
|
|
#: |
137
|
|
|
version: str = "0.0.7" |
138
|
|
|
|
139
|
|
|
def __init__(self, dependencies): |
140
|
|
|
super().__init__( |
141
|
|
|
name=self.name, |
142
|
|
|
version=self.version, |
143
|
|
|
dependencies=dependencies, |
144
|
|
|
tasks=(dsm_cts_ind_processing,), |
145
|
|
|
) |
146
|
|
|
|
147
|
|
|
|
148
|
|
|
# Datasets |
149
|
|
View Code Duplication |
class EgonEtragoElectricityCtsDsmTimeseries(Base): |
|
|
|
|
150
|
|
|
target = config.datasets()["DSM_CTS_industry"]["targets"][ |
151
|
|
|
"cts_loadcurves_dsm" |
152
|
|
|
] |
153
|
|
|
|
154
|
|
|
__tablename__ = target["table"] |
155
|
|
|
__table_args__ = {"schema": target["schema"]} |
156
|
|
|
|
157
|
|
|
bus = Column(Integer, primary_key=True, index=True) |
158
|
|
|
scn_name = Column(String, primary_key=True, index=True) |
159
|
|
|
p_set = Column(ARRAY(Float)) |
160
|
|
|
p_max = Column(ARRAY(Float)) |
161
|
|
|
p_min = Column(ARRAY(Float)) |
162
|
|
|
e_max = Column(ARRAY(Float)) |
163
|
|
|
e_min = Column(ARRAY(Float)) |
164
|
|
|
|
165
|
|
|
|
166
|
|
View Code Duplication |
class EgonOsmIndLoadCurvesIndividualDsmTimeseries(Base): |
|
|
|
|
167
|
|
|
target = config.datasets()["DSM_CTS_industry"]["targets"][ |
168
|
|
|
"ind_osm_loadcurves_individual_dsm" |
169
|
|
|
] |
170
|
|
|
|
171
|
|
|
__tablename__ = target["table"] |
172
|
|
|
__table_args__ = {"schema": target["schema"]} |
173
|
|
|
|
174
|
|
|
osm_id = Column(Integer, primary_key=True, index=True) |
175
|
|
|
scn_name = Column(String, primary_key=True, index=True) |
176
|
|
|
bus = Column(Integer) |
177
|
|
|
p_set = Column(ARRAY(Float)) |
178
|
|
|
p_max = Column(ARRAY(Float)) |
179
|
|
|
p_min = Column(ARRAY(Float)) |
180
|
|
|
e_max = Column(ARRAY(Float)) |
181
|
|
|
e_min = Column(ARRAY(Float)) |
182
|
|
|
|
183
|
|
|
|
184
|
|
View Code Duplication |
class EgonDemandregioSitesIndElectricityDsmTimeseries(Base): |
|
|
|
|
185
|
|
|
target = config.datasets()["DSM_CTS_industry"]["targets"][ |
186
|
|
|
"demandregio_ind_sites_dsm" |
187
|
|
|
] |
188
|
|
|
|
189
|
|
|
__tablename__ = target["table"] |
190
|
|
|
__table_args__ = {"schema": target["schema"]} |
191
|
|
|
|
192
|
|
|
industrial_sites_id = Column(Integer, primary_key=True, index=True) |
193
|
|
|
scn_name = Column(String, primary_key=True, index=True) |
194
|
|
|
bus = Column(Integer) |
195
|
|
|
application = Column(String) |
196
|
|
|
p_set = Column(ARRAY(Float)) |
197
|
|
|
p_max = Column(ARRAY(Float)) |
198
|
|
|
p_min = Column(ARRAY(Float)) |
199
|
|
|
e_max = Column(ARRAY(Float)) |
200
|
|
|
e_min = Column(ARRAY(Float)) |
201
|
|
|
|
202
|
|
|
|
203
|
|
View Code Duplication |
class EgonSitesIndLoadCurvesIndividualDsmTimeseries(Base): |
|
|
|
|
204
|
|
|
target = config.datasets()["DSM_CTS_industry"]["targets"][ |
205
|
|
|
"ind_sites_loadcurves_individual" |
206
|
|
|
] |
207
|
|
|
|
208
|
|
|
__tablename__ = target["table"] |
209
|
|
|
__table_args__ = {"schema": target["schema"]} |
210
|
|
|
|
211
|
|
|
site_id = Column(Integer, primary_key=True, index=True) |
212
|
|
|
scn_name = Column(String, primary_key=True, index=True) |
213
|
|
|
bus = Column(Integer) |
214
|
|
|
p_set = Column(ARRAY(Float)) |
215
|
|
|
p_max = Column(ARRAY(Float)) |
216
|
|
|
p_min = Column(ARRAY(Float)) |
217
|
|
|
e_max = Column(ARRAY(Float)) |
218
|
|
|
e_min = Column(ARRAY(Float)) |
219
|
|
|
|
220
|
|
|
|
221
|
|
|
def add_metadata_individual(): |
222
|
|
|
targets = config.datasets()["DSM_CTS_industry"]["targets"] |
223
|
|
|
|
224
|
|
|
targets = { |
225
|
|
|
k: v for k, v in targets.items() if "dsm_timeseries" in v["table"] |
226
|
|
|
} |
227
|
|
|
|
228
|
|
|
title_dict = { |
229
|
|
|
"egon_etrago_electricity_cts_dsm_timeseries": ( |
230
|
|
|
"DSM flexibility band time series for CTS" |
231
|
|
|
), |
232
|
|
|
"egon_osm_ind_load_curves_individual_dsm_timeseries": ( |
233
|
|
|
"DSM flexibility band time series for OSM industry sites" |
234
|
|
|
), |
235
|
|
|
"egon_demandregio_sites_ind_electricity_dsm_timeseries": ( |
236
|
|
|
"DSM flexibility band time series for demandregio industry sites" |
237
|
|
|
), |
238
|
|
|
"egon_sites_ind_load_curves_individual_dsm_timeseries": ( |
239
|
|
|
"DSM flexibility band time series for other industry sites" |
240
|
|
|
), |
241
|
|
|
} |
242
|
|
|
|
243
|
|
|
description_dict = { |
244
|
|
|
"egon_etrago_electricity_cts_dsm_timeseries": ( |
245
|
|
|
"DSM flexibility band time series for CTS in 1 h resolution " |
246
|
|
|
"including available store capacity and power potential" |
247
|
|
|
), |
248
|
|
|
"egon_osm_ind_load_curves_individual_dsm_timeseries": ( |
249
|
|
|
"DSM flexibility band time series for OSM industry sites in 1 h " |
250
|
|
|
"resolution including available store capacity and power potential" |
251
|
|
|
), |
252
|
|
|
"egon_demandregio_sites_ind_electricity_dsm_timeseries": ( |
253
|
|
|
"DSM flexibility band time series for demandregio industry sites " |
254
|
|
|
"in 1 h resolution including available store capacity and power " |
255
|
|
|
"potential" |
256
|
|
|
), |
257
|
|
|
"egon_sites_ind_load_curves_individual_dsm_timeseries": ( |
258
|
|
|
"DSM flexibility band time series for other industry sites in 1 h " |
259
|
|
|
"resolution including available store capacity and power potential" |
260
|
|
|
), |
261
|
|
|
} |
262
|
|
|
|
263
|
|
|
keywords_dict = { |
264
|
|
|
"egon_etrago_electricity_cts_dsm_timeseries": ["cts"], |
265
|
|
|
"egon_osm_ind_load_curves_individual_dsm_timeseries": [ |
266
|
|
|
"osm", |
267
|
|
|
"industry", |
268
|
|
|
], |
269
|
|
|
"egon_demandregio_sites_ind_electricity_dsm_timeseries": [ |
270
|
|
|
"demandregio", |
271
|
|
|
"industry", |
272
|
|
|
], |
273
|
|
|
"egon_sites_ind_load_curves_individual_dsm_timeseries": ["industry"], |
274
|
|
|
} |
275
|
|
|
|
276
|
|
|
primaryKey_dict = { |
277
|
|
|
"egon_etrago_electricity_cts_dsm_timeseries": ["bus"], |
278
|
|
|
"egon_osm_ind_load_curves_individual_dsm_timeseries": ["osm_id"], |
279
|
|
|
"egon_demandregio_sites_ind_electricity_dsm_timeseries": [ |
280
|
|
|
"industrial_sites_id", |
281
|
|
|
], |
282
|
|
|
"egon_sites_ind_load_curves_individual_dsm_timeseries": ["site_id"], |
283
|
|
|
} |
284
|
|
|
|
285
|
|
|
sources_dict = { |
286
|
|
|
"egon_etrago_electricity_cts_dsm_timeseries": [ |
287
|
|
|
sources()["nep2021"], |
288
|
|
|
sources()["zensus"], |
289
|
|
|
], |
290
|
|
|
"egon_osm_ind_load_curves_individual_dsm_timeseries": [ |
291
|
|
|
sources()["hotmaps_industrial_sites"], |
292
|
|
|
sources()["schmidt"], |
293
|
|
|
sources()["seenergies"], |
294
|
|
|
], |
295
|
|
|
"egon_demandregio_sites_ind_electricity_dsm_timeseries": [ |
296
|
|
|
sources()["openstreetmap"], |
297
|
|
|
], |
298
|
|
|
"egon_sites_ind_load_curves_individual_dsm_timeseries": [ |
299
|
|
|
sources()["hotmaps_industrial_sites"], |
300
|
|
|
sources()["openstreetmap"], |
301
|
|
|
sources()["schmidt"], |
302
|
|
|
sources()["seenergies"], |
303
|
|
|
], |
304
|
|
|
} |
305
|
|
|
|
306
|
|
|
contris = contributors(["kh", "kh"]) |
307
|
|
|
|
308
|
|
|
contris[0]["date"] = "2023-03-17" |
309
|
|
|
|
310
|
|
|
contris[0]["object"] = "metadata" |
311
|
|
|
contris[1]["object"] = "dataset" |
312
|
|
|
|
313
|
|
|
contris[0]["comment"] = "Add metadata to dataset." |
314
|
|
|
contris[1]["comment"] = "Add workflow to generate dataset." |
315
|
|
|
|
316
|
|
|
for t_dict in targets.values(): |
317
|
|
|
schema = t_dict["schema"] |
318
|
|
|
table = t_dict["table"] |
319
|
|
|
name = f"{schema}.{table}" |
320
|
|
|
|
321
|
|
|
meta = { |
322
|
|
|
"name": name, |
323
|
|
|
"title": title_dict[table], |
324
|
|
|
"id": "WILL_BE_SET_AT_PUBLICATION", |
325
|
|
|
"description": description_dict[table], |
326
|
|
|
"language": "en-US", |
327
|
|
|
"keywords": ["dsm", "timeseries"] + keywords_dict[table], |
328
|
|
|
"publicationDate": datetime.date.today().isoformat(), |
329
|
|
|
"context": context(), |
330
|
|
|
"spatial": { |
331
|
|
|
"location": "none", |
332
|
|
|
"extent": "Germany", |
333
|
|
|
"resolution": "none", |
334
|
|
|
}, |
335
|
|
|
"temporal": { |
336
|
|
|
"referenceDate": "2011-01-01", |
337
|
|
|
"timeseries": { |
338
|
|
|
"start": "2011-01-01", |
339
|
|
|
"end": "2011-12-31", |
340
|
|
|
"resolution": "1 h", |
341
|
|
|
"alignment": "left", |
342
|
|
|
"aggregationType": "average", |
343
|
|
|
}, |
344
|
|
|
}, |
345
|
|
|
"sources": [ |
346
|
|
|
sources()["egon-data"], |
347
|
|
|
sources()["vg250"], |
348
|
|
|
sources()["demandregio"], |
349
|
|
|
] |
350
|
|
|
+ sources_dict[table], |
351
|
|
|
"licenses": [license_odbl("© eGon development team")], |
352
|
|
|
"contributors": contris, |
353
|
|
|
"resources": [ |
354
|
|
|
{ |
355
|
|
|
"profile": "tabular-data-resource", |
356
|
|
|
"name": name, |
357
|
|
|
"path": "None", |
358
|
|
|
"format": "PostgreSQL", |
359
|
|
|
"encoding": "UTF-8", |
360
|
|
|
"schema": { |
361
|
|
|
"fields": generate_resource_fields_from_db_table( |
362
|
|
|
schema, |
363
|
|
|
table, |
364
|
|
|
), |
365
|
|
|
"primaryKey": ["scn_name"] + primaryKey_dict[table], |
366
|
|
|
}, |
367
|
|
|
"dialect": {"delimiter": "", "decimalSeparator": ""}, |
368
|
|
|
} |
369
|
|
|
], |
370
|
|
|
"review": {"path": "", "badge": ""}, |
371
|
|
|
"metaMetadata": meta_metadata(), |
372
|
|
|
"_comment": { |
373
|
|
|
"metadata": ( |
374
|
|
|
"Metadata documentation and explanation (https://" |
375
|
|
|
"github.com/OpenEnergyPlatform/oemetadata/blob/master/" |
376
|
|
|
"metadata/v141/metadata_key_description.md)" |
377
|
|
|
), |
378
|
|
|
"dates": ( |
379
|
|
|
"Dates and time must follow the ISO8601 including time " |
380
|
|
|
"zone (YYYY-MM-DD or YYYY-MM-DDThh:mm:ss±hh)" |
381
|
|
|
), |
382
|
|
|
"units": "Use a space between numbers and units (100 m)", |
383
|
|
|
"languages": ( |
384
|
|
|
"Languages must follow the IETF (BCP47) format (en-GB, " |
385
|
|
|
"en-US, de-DE)" |
386
|
|
|
), |
387
|
|
|
"licenses": ( |
388
|
|
|
"License name must follow the SPDX License List " |
389
|
|
|
"(https://spdx.org/licenses/)" |
390
|
|
|
), |
391
|
|
|
"review": ( |
392
|
|
|
"Following the OEP Data Review (https://github.com/" |
393
|
|
|
"OpenEnergyPlatform/data-preprocessing/wiki)" |
394
|
|
|
), |
395
|
|
|
"none": "If not applicable use (none)", |
396
|
|
|
}, |
397
|
|
|
} |
398
|
|
|
|
399
|
|
|
dialect = get_dialect(f"oep-v{meta_metadata()['metadataVersion'][4:7]}")() |
400
|
|
|
|
401
|
|
|
meta = dialect.compile_and_render(dialect.parse(json.dumps(meta))) |
402
|
|
|
|
403
|
|
|
db.submit_comment( |
404
|
|
|
f"'{json.dumps(meta)}'", |
405
|
|
|
schema, |
406
|
|
|
table, |
407
|
|
|
) |
408
|
|
|
|
409
|
|
|
|
410
|
|
|
# Code |
411
|
|
|
def cts_data_import(cts_cool_vent_ac_share): |
412
|
|
|
""" |
413
|
|
|
Import CTS data necessary to identify DSM-potential. |
414
|
|
|
|
415
|
|
|
Parameters |
416
|
|
|
---------- |
417
|
|
|
cts_share: float |
418
|
|
|
Share of cooling, ventilation and AC in CTS demand |
419
|
|
|
""" |
420
|
|
|
|
421
|
|
|
# import load data |
422
|
|
|
|
423
|
|
|
sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
424
|
|
|
"cts_loadcurves" |
425
|
|
|
] |
426
|
|
|
|
427
|
|
|
ts = db.select_dataframe( |
428
|
|
|
f"""SELECT bus_id, scn_name, p_set FROM |
429
|
|
|
{sources['schema']}.{sources['table']}""" |
430
|
|
|
) |
431
|
|
|
|
432
|
|
|
# identify relevant columns and prepare df to be returned |
433
|
|
|
|
434
|
|
|
dsm = pd.DataFrame(index=ts.index) |
435
|
|
|
|
436
|
|
|
dsm["bus"] = ts["bus_id"].copy() |
437
|
|
|
dsm["scn_name"] = ts["scn_name"].copy() |
438
|
|
|
dsm["p_set"] = ts["p_set"].copy() |
439
|
|
|
|
440
|
|
|
# calculate share of timeseries for air conditioning, cooling and |
441
|
|
|
# ventilation out of CTS-data |
442
|
|
|
|
443
|
|
|
timeseries = dsm["p_set"].copy() |
444
|
|
|
|
445
|
|
|
for index, liste in timeseries.items(): |
446
|
|
|
share = [float(item) * cts_cool_vent_ac_share for item in liste] |
447
|
|
|
timeseries.loc[index] = share |
448
|
|
|
|
449
|
|
|
dsm["p_set"] = timeseries.copy() |
450
|
|
|
|
451
|
|
|
return dsm |
452
|
|
|
|
453
|
|
|
|
454
|
|
View Code Duplication |
def ind_osm_data_import(ind_vent_cool_share): |
|
|
|
|
455
|
|
|
""" |
456
|
|
|
Import industry data per osm-area necessary to identify DSM-potential. |
457
|
|
|
|
458
|
|
|
Parameters |
459
|
|
|
---------- |
460
|
|
|
ind_share: float |
461
|
|
|
Share of considered application in industry demand |
462
|
|
|
""" |
463
|
|
|
|
464
|
|
|
# import load data |
465
|
|
|
|
466
|
|
|
sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
467
|
|
|
"ind_osm_loadcurves" |
468
|
|
|
] |
469
|
|
|
|
470
|
|
|
dsm = db.select_dataframe( |
471
|
|
|
f""" |
472
|
|
|
SELECT bus, scn_name, p_set FROM |
473
|
|
|
{sources['schema']}.{sources['table']} |
474
|
|
|
""" |
475
|
|
|
) |
476
|
|
|
|
477
|
|
|
# calculate share of timeseries for cooling and ventilation out of |
478
|
|
|
# industry-data |
479
|
|
|
|
480
|
|
|
timeseries = dsm["p_set"].copy() |
481
|
|
|
|
482
|
|
|
for index, liste in timeseries.items(): |
483
|
|
|
share = [float(item) * ind_vent_cool_share for item in liste] |
484
|
|
|
|
485
|
|
|
timeseries.loc[index] = share |
486
|
|
|
|
487
|
|
|
dsm["p_set"] = timeseries.copy() |
488
|
|
|
|
489
|
|
|
return dsm |
490
|
|
|
|
491
|
|
|
|
492
|
|
View Code Duplication |
def ind_osm_data_import_individual(ind_vent_cool_share): |
|
|
|
|
493
|
|
|
""" |
494
|
|
|
Import industry data per osm-area necessary to identify DSM-potential. |
495
|
|
|
|
496
|
|
|
Parameters |
497
|
|
|
---------- |
498
|
|
|
ind_share: float |
499
|
|
|
Share of considered application in industry demand |
500
|
|
|
""" |
501
|
|
|
|
502
|
|
|
# import load data |
503
|
|
|
|
504
|
|
|
sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
505
|
|
|
"ind_osm_loadcurves_individual" |
506
|
|
|
] |
507
|
|
|
|
508
|
|
|
dsm = db.select_dataframe( |
509
|
|
|
f""" |
510
|
|
|
SELECT osm_id, bus_id as bus, scn_name, p_set FROM |
511
|
|
|
{sources['schema']}.{sources['table']} |
512
|
|
|
""" |
513
|
|
|
) |
514
|
|
|
|
515
|
|
|
# calculate share of timeseries for cooling and ventilation out of |
516
|
|
|
# industry-data |
517
|
|
|
|
518
|
|
|
timeseries = dsm["p_set"].copy() |
519
|
|
|
|
520
|
|
|
for index, liste in timeseries.items(): |
521
|
|
|
share = [float(item) * ind_vent_cool_share for item in liste] |
522
|
|
|
|
523
|
|
|
timeseries.loc[index] = share |
524
|
|
|
|
525
|
|
|
dsm["p_set"] = timeseries.copy() |
526
|
|
|
|
527
|
|
|
return dsm |
528
|
|
|
|
529
|
|
|
|
530
|
|
View Code Duplication |
def ind_sites_vent_data_import(ind_vent_share, wz): |
|
|
|
|
531
|
|
|
""" |
532
|
|
|
Import industry sites necessary to identify DSM-potential. |
533
|
|
|
|
534
|
|
|
Parameters |
535
|
|
|
---------- |
536
|
|
|
ind_vent_share: float |
537
|
|
|
Share of considered application in industry demand |
538
|
|
|
wz: int |
539
|
|
|
Wirtschaftszweig to be considered within industry sites |
540
|
|
|
""" |
541
|
|
|
|
542
|
|
|
# import load data |
543
|
|
|
|
544
|
|
|
sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
545
|
|
|
"ind_sites_loadcurves" |
546
|
|
|
] |
547
|
|
|
|
548
|
|
|
dsm = db.select_dataframe( |
549
|
|
|
f""" |
550
|
|
|
SELECT bus, scn_name, p_set FROM |
551
|
|
|
{sources['schema']}.{sources['table']} |
552
|
|
|
WHERE wz = {wz} |
553
|
|
|
""" |
554
|
|
|
) |
555
|
|
|
|
556
|
|
|
# calculate share of timeseries for ventilation |
557
|
|
|
|
558
|
|
|
timeseries = dsm["p_set"].copy() |
559
|
|
|
|
560
|
|
|
for index, liste in timeseries.items(): |
561
|
|
|
share = [float(item) * ind_vent_share for item in liste] |
562
|
|
|
timeseries.loc[index] = share |
563
|
|
|
|
564
|
|
|
dsm["p_set"] = timeseries.copy() |
565
|
|
|
|
566
|
|
|
return dsm |
567
|
|
|
|
568
|
|
|
|
569
|
|
View Code Duplication |
def ind_sites_vent_data_import_individual(ind_vent_share, wz): |
|
|
|
|
570
|
|
|
""" |
571
|
|
|
Import industry sites necessary to identify DSM-potential. |
572
|
|
|
|
573
|
|
|
Parameters |
574
|
|
|
---------- |
575
|
|
|
ind_vent_share: float |
576
|
|
|
Share of considered application in industry demand |
577
|
|
|
wz: int |
578
|
|
|
Wirtschaftszweig to be considered within industry sites |
579
|
|
|
""" |
580
|
|
|
|
581
|
|
|
# import load data |
582
|
|
|
|
583
|
|
|
sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
584
|
|
|
"ind_sites_loadcurves_individual" |
585
|
|
|
] |
586
|
|
|
|
587
|
|
|
dsm = db.select_dataframe( |
588
|
|
|
f""" |
589
|
|
|
SELECT site_id, bus_id as bus, scn_name, p_set FROM |
590
|
|
|
{sources['schema']}.{sources['table']} |
591
|
|
|
WHERE wz = {wz} |
592
|
|
|
""" |
593
|
|
|
) |
594
|
|
|
|
595
|
|
|
# calculate share of timeseries for ventilation |
596
|
|
|
|
597
|
|
|
timeseries = dsm["p_set"].copy() |
598
|
|
|
|
599
|
|
|
for index, liste in timeseries.items(): |
600
|
|
|
share = [float(item) * ind_vent_share for item in liste] |
601
|
|
|
timeseries.loc[index] = share |
602
|
|
|
|
603
|
|
|
dsm["p_set"] = timeseries.copy() |
604
|
|
|
|
605
|
|
|
return dsm |
606
|
|
|
|
607
|
|
|
|
608
|
|
|
def calc_ind_site_timeseries(scenario): |
609
|
|
|
# calculate timeseries per site |
610
|
|
|
# -> using code from egon.data.datasets.industry.temporal: |
611
|
|
|
# calc_load_curves_ind_sites |
612
|
|
|
|
613
|
|
|
# select demands per industrial site including the subsector information |
614
|
|
|
source1 = config.datasets()["DSM_CTS_industry"]["sources"][ |
615
|
|
|
"demandregio_ind_sites" |
616
|
|
|
] |
617
|
|
|
|
618
|
|
|
demands_ind_sites = db.select_dataframe( |
619
|
|
|
f"""SELECT industrial_sites_id, wz, demand |
620
|
|
|
FROM {source1['schema']}.{source1['table']} |
621
|
|
|
WHERE scenario = '{scenario}' |
622
|
|
|
AND demand > 0 |
623
|
|
|
""" |
624
|
|
|
).set_index(["industrial_sites_id"]) |
625
|
|
|
|
626
|
|
|
# select industrial sites as demand_areas from database |
627
|
|
|
source2 = config.datasets()["DSM_CTS_industry"]["sources"]["ind_sites"] |
628
|
|
|
|
629
|
|
|
demand_area = db.select_geodataframe( |
630
|
|
|
f"""SELECT id, geom, subsector FROM |
631
|
|
|
{source2['schema']}.{source2['table']}""", |
632
|
|
|
index_col="id", |
633
|
|
|
geom_col="geom", |
634
|
|
|
epsg=3035, |
635
|
|
|
) |
636
|
|
|
|
637
|
|
|
# replace entries to bring it in line with demandregio's subsector |
638
|
|
|
# definitions |
639
|
|
|
demands_ind_sites.replace(1718, 17, inplace=True) |
640
|
|
|
share_wz_sites = demands_ind_sites.copy() |
641
|
|
|
|
642
|
|
|
# create additional df on wz_share per industrial site, which is always set |
643
|
|
|
# to one as the industrial demand per site is subsector specific |
644
|
|
|
share_wz_sites.demand = 1 |
645
|
|
|
share_wz_sites.reset_index(inplace=True) |
646
|
|
|
|
647
|
|
|
share_transpose = pd.DataFrame( |
648
|
|
|
index=share_wz_sites.industrial_sites_id.unique(), |
649
|
|
|
columns=share_wz_sites.wz.unique(), |
650
|
|
|
) |
651
|
|
|
share_transpose.index.rename("industrial_sites_id", inplace=True) |
652
|
|
|
for wz in share_transpose.columns: |
653
|
|
|
share_transpose[wz] = ( |
654
|
|
|
share_wz_sites[share_wz_sites.wz == wz] |
655
|
|
|
.set_index("industrial_sites_id") |
656
|
|
|
.demand |
657
|
|
|
) |
658
|
|
|
|
659
|
|
|
# calculate load curves |
660
|
|
|
load_curves = calc_load_curve( |
661
|
|
|
share_transpose, scenario, demands_ind_sites["demand"] |
662
|
|
|
) |
663
|
|
|
|
664
|
|
|
# identify bus per industrial site |
665
|
|
|
curves_bus = identify_bus(load_curves, demand_area) |
666
|
|
|
curves_bus.index = curves_bus["id"].astype(int) |
667
|
|
|
|
668
|
|
|
# initialize dataframe to be returned |
669
|
|
|
|
670
|
|
|
ts = pd.DataFrame( |
671
|
|
|
data=curves_bus["bus_id"], index=curves_bus["id"].astype(int) |
672
|
|
|
) |
673
|
|
|
ts["scenario_name"] = scenario |
674
|
|
|
curves_bus.drop({"id", "bus_id", "geom"}, axis=1, inplace=True) |
675
|
|
|
ts["p_set"] = curves_bus.values.tolist() |
676
|
|
|
|
677
|
|
|
# add subsector to relate to Schmidt's tables afterwards |
678
|
|
|
ts["application"] = demand_area["subsector"] |
679
|
|
|
|
680
|
|
|
return ts |
681
|
|
|
|
682
|
|
|
|
683
|
|
|
def relate_to_schmidt_sites(dsm): |
684
|
|
|
# import industrial sites by Schmidt |
685
|
|
|
|
686
|
|
|
source = config.datasets()["DSM_CTS_industry"]["sources"][ |
687
|
|
|
"ind_sites_schmidt" |
688
|
|
|
] |
689
|
|
|
|
690
|
|
|
schmidt = db.select_dataframe( |
691
|
|
|
f"""SELECT application, geom FROM |
692
|
|
|
{source['schema']}.{source['table']}""" |
693
|
|
|
) |
694
|
|
|
|
695
|
|
|
# relate calculated timeseries (dsm) to Schmidt's industrial sites |
696
|
|
|
|
697
|
|
|
applications = np.unique(schmidt["application"]) |
698
|
|
|
dsm = pd.DataFrame(dsm[dsm["application"].isin(applications)]) |
699
|
|
|
|
700
|
|
|
# initialize dataframe to be returned |
701
|
|
|
|
702
|
|
|
dsm.rename( |
703
|
|
|
columns={"scenario_name": "scn_name", "bus_id": "bus"}, |
704
|
|
|
inplace=True, |
705
|
|
|
) |
706
|
|
|
|
707
|
|
|
return dsm |
708
|
|
|
|
709
|
|
|
|
710
|
|
|
def ind_sites_data_import(): |
711
|
|
|
""" |
712
|
|
|
Import industry sites data necessary to identify DSM-potential. |
713
|
|
|
""" |
714
|
|
|
# calculate timeseries per site |
715
|
|
|
scenarios = config.settings()["egon-data"]["--scenarios"] |
716
|
|
|
|
717
|
|
|
dsm = pd.DataFrame( |
718
|
|
|
columns=["bus_id", "scenario_name", "p_set", "application", "id"] |
719
|
|
|
) |
720
|
|
|
|
721
|
|
|
# scenario eGon2035 |
722
|
|
|
if "eGon2035" in scenarios: |
723
|
|
|
dsm_2035 = calc_ind_site_timeseries("eGon2035").reset_index() |
724
|
|
|
dsm = pd.concat([dsm, dsm_2035], ignore_index=True) |
725
|
|
|
# scenario eGon100RE |
726
|
|
|
if "eGon100RE" in scenarios: |
727
|
|
|
dsm_100 = calc_ind_site_timeseries("eGon100RE").reset_index() |
728
|
|
|
dsm = pd.concat([dsm, dsm_100], ignore_index=True) |
729
|
|
|
|
730
|
|
|
dsm.index = range(len(dsm)) |
731
|
|
|
# relate calculated timeseries to Schmidt's industrial sites |
732
|
|
|
|
733
|
|
|
dsm = relate_to_schmidt_sites(dsm) |
734
|
|
|
|
735
|
|
|
return dsm[["application", "id", "bus", "scn_name", "p_set"]] |
736
|
|
|
|
737
|
|
|
|
738
|
|
|
def calculate_potentials(s_flex, s_util, s_inc, s_dec, delta_t, dsm): |
739
|
|
|
""" |
740
|
|
|
Calculate DSM-potential per bus using the methods by Heitkoetter et. al.: |
741
|
|
|
https://doi.org/10.1016/j.adapen.2020.100001 |
742
|
|
|
|
743
|
|
|
Parameters |
744
|
|
|
---------- |
745
|
|
|
s_flex: float |
746
|
|
|
Feasability factor to account for socio-technical restrictions |
747
|
|
|
s_util: float |
748
|
|
|
Average annual utilisation rate |
749
|
|
|
s_inc: float |
750
|
|
|
Shiftable share of installed capacity up to which load can be |
751
|
|
|
increased considering technical limitations |
752
|
|
|
s_dec: float |
753
|
|
|
Shiftable share of installed capacity up to which load can be |
754
|
|
|
decreased considering technical limitations |
755
|
|
|
delta_t: int |
756
|
|
|
Maximum shift duration in hours |
757
|
|
|
dsm: DataFrame |
758
|
|
|
List of existing buses with DSM-potential including timeseries of |
759
|
|
|
loads |
760
|
|
|
""" |
761
|
|
|
|
762
|
|
|
# copy relevant timeseries |
763
|
|
|
timeseries = dsm["p_set"].copy() |
764
|
|
|
|
765
|
|
|
# calculate scheduled load L(t) |
766
|
|
|
|
767
|
|
|
scheduled_load = timeseries.copy() |
768
|
|
|
|
769
|
|
|
for index, liste in scheduled_load.items(): |
770
|
|
|
share = [item * s_flex for item in liste] |
771
|
|
|
scheduled_load.loc[index] = share |
772
|
|
|
|
773
|
|
|
# calculate maximum capacity Lambda |
774
|
|
|
|
775
|
|
|
# calculate energy annual requirement |
776
|
|
|
energy_annual = pd.Series(index=timeseries.index, dtype=float) |
777
|
|
|
for index, liste in timeseries.items(): |
778
|
|
|
energy_annual.loc[index] = sum(liste) |
779
|
|
|
|
780
|
|
|
# calculate Lambda |
781
|
|
|
lam = (energy_annual * s_flex) / (8760 * s_util) |
782
|
|
|
|
783
|
|
|
# calculation of P_max and P_min |
784
|
|
|
|
785
|
|
|
# P_max |
786
|
|
|
p_max = scheduled_load.copy() |
787
|
|
|
for index, liste in scheduled_load.items(): |
788
|
|
|
lamb = lam.loc[index] |
789
|
|
|
p_max.loc[index] = [max(0, lamb * s_inc - item) for item in liste] |
790
|
|
|
|
791
|
|
|
# P_min |
792
|
|
|
p_min = scheduled_load.copy() |
793
|
|
|
for index, liste in scheduled_load.items(): |
794
|
|
|
lamb = lam.loc[index] |
795
|
|
|
p_min.loc[index] = [min(0, -(item - lamb * s_dec)) for item in liste] |
796
|
|
|
|
797
|
|
|
# calculation of E_max and E_min |
798
|
|
|
|
799
|
|
|
e_max = scheduled_load.copy() |
800
|
|
|
e_min = scheduled_load.copy() |
801
|
|
|
|
802
|
|
|
for index, liste in scheduled_load.items(): |
803
|
|
|
emin = [] |
804
|
|
|
emax = [] |
805
|
|
|
for i in range(len(liste)): |
806
|
|
|
if i + delta_t > len(liste): |
807
|
|
|
emax.append( |
808
|
|
|
(sum(liste[i:]) + sum(liste[: delta_t - (len(liste) - i)])) |
809
|
|
|
) |
810
|
|
|
else: |
811
|
|
|
emax.append(sum(liste[i : i + delta_t])) |
812
|
|
|
if i - delta_t < 0: |
813
|
|
|
emin.append( |
814
|
|
|
( |
815
|
|
|
-1 |
816
|
|
|
* ( |
817
|
|
|
( |
818
|
|
|
sum(liste[:i]) |
819
|
|
|
+ sum(liste[len(liste) - delta_t + i :]) |
820
|
|
|
) |
821
|
|
|
) |
822
|
|
|
) |
823
|
|
|
) |
824
|
|
|
else: |
825
|
|
|
emin.append(-1 * sum(liste[i - delta_t : i])) |
826
|
|
|
e_max.loc[index] = emax |
827
|
|
|
e_min.loc[index] = emin |
828
|
|
|
|
829
|
|
|
return p_max, p_min, e_max, e_min |
830
|
|
|
|
831
|
|
|
|
832
|
|
|
def create_dsm_components( |
833
|
|
|
con, p_max, p_min, e_max, e_min, dsm, export_aggregated=True |
834
|
|
|
): |
835
|
|
|
""" |
836
|
|
|
Create components representing DSM. |
837
|
|
|
|
838
|
|
|
Parameters |
839
|
|
|
---------- |
840
|
|
|
con : |
841
|
|
|
Connection to database |
842
|
|
|
p_max: DataFrame |
843
|
|
|
Timeseries identifying maximum load increase |
844
|
|
|
p_min: DataFrame |
845
|
|
|
Timeseries identifying maximum load decrease |
846
|
|
|
e_max: DataFrame |
847
|
|
|
Timeseries identifying maximum energy amount to be preponed |
848
|
|
|
e_min: DataFrame |
849
|
|
|
Timeseries identifying maximum energy amount to be postponed |
850
|
|
|
dsm: DataFrame |
851
|
|
|
List of existing buses with DSM-potential including timeseries of loads |
852
|
|
|
""" |
853
|
|
|
if not export_aggregated: |
854
|
|
|
# calculate P_nom and P per unit |
855
|
|
|
p_nom = pd.Series(index=p_max.index, dtype=float) |
856
|
|
|
for index, row in p_max.items(): |
857
|
|
|
nom = max(max(row), abs(min(p_min.loc[index]))) |
858
|
|
|
p_nom.loc[index] = nom |
859
|
|
|
new = [element / nom for element in row] |
860
|
|
|
p_max.loc[index] = new |
861
|
|
|
new = [element / nom for element in p_min.loc[index]] |
862
|
|
|
p_min.loc[index] = new |
863
|
|
|
|
864
|
|
|
# calculate E_nom and E per unit |
865
|
|
|
e_nom = pd.Series(index=p_min.index, dtype=float) |
866
|
|
|
for index, row in e_max.items(): |
867
|
|
|
nom = max(max(row), abs(min(e_min.loc[index]))) |
868
|
|
|
e_nom.loc[index] = nom |
869
|
|
|
new = [element / nom for element in row] |
870
|
|
|
e_max.loc[index] = new |
871
|
|
|
new = [element / nom for element in e_min.loc[index]] |
872
|
|
|
e_min.loc[index] = new |
873
|
|
|
|
874
|
|
|
# add DSM-buses to "original" buses |
875
|
|
|
dsm_buses = gpd.GeoDataFrame(index=dsm.index) |
876
|
|
|
dsm_buses["original_bus"] = dsm["bus"].copy() |
877
|
|
|
dsm_buses["scn_name"] = dsm["scn_name"].copy() |
878
|
|
|
|
879
|
|
|
# get original buses and add copy of relevant information |
880
|
|
|
target1 = config.datasets()["DSM_CTS_industry"]["targets"]["bus"] |
881
|
|
|
original_buses = db.select_geodataframe( |
882
|
|
|
f"""SELECT bus_id, v_nom, scn_name, x, y, geom FROM |
883
|
|
|
{target1['schema']}.{target1['table']}""", |
884
|
|
|
geom_col="geom", |
885
|
|
|
epsg=4326, |
886
|
|
|
) |
887
|
|
|
|
888
|
|
|
# copy relevant information from original buses to DSM-buses |
889
|
|
|
dsm_buses["index"] = dsm_buses.index |
890
|
|
|
originals = original_buses[ |
891
|
|
|
original_buses["bus_id"].isin(np.unique(dsm_buses["original_bus"])) |
892
|
|
|
] |
893
|
|
|
dsm_buses = originals.merge( |
894
|
|
|
dsm_buses, |
895
|
|
|
left_on=["bus_id", "scn_name"], |
896
|
|
|
right_on=["original_bus", "scn_name"], |
897
|
|
|
) |
898
|
|
|
dsm_buses.index = dsm_buses["index"] |
899
|
|
|
dsm_buses.drop(["bus_id", "index"], axis=1, inplace=True) |
900
|
|
|
|
901
|
|
|
# new bus_ids for DSM-buses |
902
|
|
|
max_id = original_buses["bus_id"].max() |
903
|
|
|
if np.isnan(max_id): |
904
|
|
|
max_id = 0 |
905
|
|
|
dsm_id = max_id + 1 |
906
|
|
|
bus_id = pd.Series(index=dsm_buses.index, dtype=int) |
907
|
|
|
|
908
|
|
|
# Get number of DSM buses for both scenarios |
909
|
|
|
rows_per_scenario = ( |
910
|
|
|
dsm_buses.groupby("scn_name").count().original_bus.to_dict() |
911
|
|
|
) |
912
|
|
|
|
913
|
|
|
# Assignment of DSM ids |
914
|
|
|
bus_id.iloc[: rows_per_scenario.get("eGon2035", 0)] = range( |
915
|
|
|
dsm_id, dsm_id + rows_per_scenario.get("eGon2035", 0) |
916
|
|
|
) |
917
|
|
|
|
918
|
|
|
bus_id.iloc[ |
919
|
|
|
rows_per_scenario.get("eGon2035", 0) : rows_per_scenario.get( |
920
|
|
|
"eGon2035", 0 |
921
|
|
|
) |
922
|
|
|
+ rows_per_scenario.get("eGon100RE", 0) |
923
|
|
|
] = range(dsm_id, dsm_id + rows_per_scenario.get("eGon100RE", 0)) |
924
|
|
|
|
925
|
|
|
dsm_buses["bus_id"] = bus_id |
926
|
|
|
|
927
|
|
|
# add links from "orignal" buses to DSM-buses |
928
|
|
|
|
929
|
|
|
dsm_links = pd.DataFrame(index=dsm_buses.index) |
930
|
|
|
dsm_links["original_bus"] = dsm_buses["original_bus"].copy() |
931
|
|
|
dsm_links["dsm_bus"] = dsm_buses["bus_id"].copy() |
932
|
|
|
dsm_links["scn_name"] = dsm_buses["scn_name"].copy() |
933
|
|
|
|
934
|
|
|
# set link_id |
935
|
|
|
target2 = config.datasets()["DSM_CTS_industry"]["targets"]["link"] |
936
|
|
|
sql = f"""SELECT link_id FROM {target2['schema']}.{target2['table']}""" |
937
|
|
|
max_id = pd.read_sql_query(sql, con) |
938
|
|
|
max_id = max_id["link_id"].max() |
939
|
|
|
if np.isnan(max_id): |
940
|
|
|
max_id = 0 |
941
|
|
|
dsm_id = max_id + 1 |
942
|
|
|
link_id = pd.Series(index=dsm_buses.index, dtype=int) |
943
|
|
|
|
944
|
|
|
# Assignment of link ids |
945
|
|
|
link_id.iloc[: rows_per_scenario.get("eGon2035", 0)] = range( |
946
|
|
|
dsm_id, dsm_id + rows_per_scenario.get("eGon2035", 0) |
947
|
|
|
) |
948
|
|
|
|
949
|
|
|
link_id.iloc[ |
950
|
|
|
rows_per_scenario.get("eGon2035", 0) : rows_per_scenario.get( |
951
|
|
|
"eGon2035", 0 |
952
|
|
|
) |
953
|
|
|
+ rows_per_scenario.get("eGon100RE", 0) |
954
|
|
|
] = range(dsm_id, dsm_id + rows_per_scenario.get("eGon100RE", 0)) |
955
|
|
|
|
956
|
|
|
dsm_links["link_id"] = link_id |
957
|
|
|
|
958
|
|
|
# add calculated timeseries to df to be returned |
959
|
|
|
if not export_aggregated: |
960
|
|
|
dsm_links["p_nom"] = p_nom |
|
|
|
|
961
|
|
|
dsm_links["p_min"] = p_min |
962
|
|
|
dsm_links["p_max"] = p_max |
963
|
|
|
|
964
|
|
|
# add DSM-stores |
965
|
|
|
|
966
|
|
|
dsm_stores = pd.DataFrame(index=dsm_buses.index) |
967
|
|
|
dsm_stores["bus"] = dsm_buses["bus_id"].copy() |
968
|
|
|
dsm_stores["scn_name"] = dsm_buses["scn_name"].copy() |
969
|
|
|
dsm_stores["original_bus"] = dsm_buses["original_bus"].copy() |
970
|
|
|
|
971
|
|
|
# set store_id |
972
|
|
|
target3 = config.datasets()["DSM_CTS_industry"]["targets"]["store"] |
973
|
|
|
sql = f"""SELECT store_id FROM {target3['schema']}.{target3['table']}""" |
974
|
|
|
max_id = pd.read_sql_query(sql, con) |
975
|
|
|
max_id = max_id["store_id"].max() |
976
|
|
|
if np.isnan(max_id): |
977
|
|
|
max_id = 0 |
978
|
|
|
dsm_id = max_id + 1 |
979
|
|
|
store_id = pd.Series(index=dsm_buses.index, dtype=int) |
980
|
|
|
|
981
|
|
|
# Assignment of store ids |
982
|
|
|
store_id.iloc[: rows_per_scenario.get("eGon2035", 0)] = range( |
983
|
|
|
dsm_id, dsm_id + rows_per_scenario.get("eGon2035", 0) |
984
|
|
|
) |
985
|
|
|
|
986
|
|
|
store_id.iloc[ |
987
|
|
|
rows_per_scenario.get("eGon2035", 0) : rows_per_scenario.get( |
988
|
|
|
"eGon2035", 0 |
989
|
|
|
) |
990
|
|
|
+ rows_per_scenario.get("eGon100RE", 0) |
991
|
|
|
] = range(dsm_id, dsm_id + rows_per_scenario.get("eGon100RE", 0)) |
992
|
|
|
|
993
|
|
|
dsm_stores["store_id"] = store_id |
994
|
|
|
|
995
|
|
|
# add calculated timeseries to df to be returned |
996
|
|
|
if not export_aggregated: |
997
|
|
|
dsm_stores["e_nom"] = e_nom |
|
|
|
|
998
|
|
|
dsm_stores["e_min"] = e_min |
999
|
|
|
dsm_stores["e_max"] = e_max |
1000
|
|
|
|
1001
|
|
|
return dsm_buses, dsm_links, dsm_stores |
1002
|
|
|
|
1003
|
|
|
|
1004
|
|
|
def aggregate_components(df_dsm_buses, df_dsm_links, df_dsm_stores): |
1005
|
|
|
# aggregate buses |
1006
|
|
|
|
1007
|
|
|
grouper = [df_dsm_buses.original_bus, df_dsm_buses.scn_name] |
1008
|
|
|
|
1009
|
|
|
df_dsm_buses = df_dsm_buses.groupby(grouper).first() |
1010
|
|
|
|
1011
|
|
|
df_dsm_buses.reset_index(inplace=True) |
1012
|
|
|
df_dsm_buses.sort_values("scn_name", inplace=True) |
1013
|
|
|
|
1014
|
|
|
# aggregate links |
1015
|
|
|
|
1016
|
|
|
df_dsm_links["p_max"] = df_dsm_links["p_max"].apply(lambda x: np.array(x)) |
1017
|
|
|
df_dsm_links["p_min"] = df_dsm_links["p_min"].apply(lambda x: np.array(x)) |
1018
|
|
|
|
1019
|
|
|
grouper = [df_dsm_links.original_bus, df_dsm_links.scn_name] |
1020
|
|
|
|
1021
|
|
|
p_max = df_dsm_links.groupby(grouper)["p_max"].apply(np.sum) |
1022
|
|
|
p_min = df_dsm_links.groupby(grouper)["p_min"].apply(np.sum) |
1023
|
|
|
|
1024
|
|
|
df_dsm_links = df_dsm_links.groupby(grouper).first() |
1025
|
|
|
df_dsm_links.p_max = p_max |
1026
|
|
|
df_dsm_links.p_min = p_min |
1027
|
|
|
|
1028
|
|
|
df_dsm_links.reset_index(inplace=True) |
1029
|
|
|
df_dsm_links.sort_values("scn_name", inplace=True) |
1030
|
|
|
|
1031
|
|
|
# calculate P_nom and P per unit |
1032
|
|
|
for index, row in df_dsm_links.iterrows(): |
1033
|
|
|
nom = max(max(row.p_max), abs(min(row.p_min))) |
1034
|
|
|
df_dsm_links.at[index, "p_nom"] = nom |
1035
|
|
|
|
1036
|
|
|
df_dsm_links["p_max"] = df_dsm_links["p_max"] / df_dsm_links["p_nom"] |
1037
|
|
|
df_dsm_links["p_min"] = df_dsm_links["p_min"] / df_dsm_links["p_nom"] |
1038
|
|
|
|
1039
|
|
|
df_dsm_links["p_max"] = df_dsm_links["p_max"].apply(lambda x: list(x)) |
1040
|
|
|
df_dsm_links["p_min"] = df_dsm_links["p_min"].apply(lambda x: list(x)) |
1041
|
|
|
|
1042
|
|
|
# aggregate stores |
1043
|
|
|
df_dsm_stores["e_max"] = df_dsm_stores["e_max"].apply( |
1044
|
|
|
lambda x: np.array(x) |
1045
|
|
|
) |
1046
|
|
|
df_dsm_stores["e_min"] = df_dsm_stores["e_min"].apply( |
1047
|
|
|
lambda x: np.array(x) |
1048
|
|
|
) |
1049
|
|
|
|
1050
|
|
|
grouper = [df_dsm_stores.original_bus, df_dsm_stores.scn_name] |
1051
|
|
|
|
1052
|
|
|
e_max = df_dsm_stores.groupby(grouper)["e_max"].apply(np.sum) |
1053
|
|
|
e_min = df_dsm_stores.groupby(grouper)["e_min"].apply(np.sum) |
1054
|
|
|
|
1055
|
|
|
df_dsm_stores = df_dsm_stores.groupby(grouper).first() |
1056
|
|
|
df_dsm_stores.e_max = e_max |
1057
|
|
|
df_dsm_stores.e_min = e_min |
1058
|
|
|
|
1059
|
|
|
df_dsm_stores.reset_index(inplace=True) |
1060
|
|
|
df_dsm_stores.sort_values("scn_name", inplace=True) |
1061
|
|
|
|
1062
|
|
|
# calculate E_nom and E per unit |
1063
|
|
|
for index, row in df_dsm_stores.iterrows(): |
1064
|
|
|
nom = max(max(row.e_max), abs(min(row.e_min))) |
1065
|
|
|
df_dsm_stores.at[index, "e_nom"] = nom |
1066
|
|
|
|
1067
|
|
|
df_dsm_stores["e_max"] = df_dsm_stores["e_max"] / df_dsm_stores["e_nom"] |
1068
|
|
|
df_dsm_stores["e_min"] = df_dsm_stores["e_min"] / df_dsm_stores["e_nom"] |
1069
|
|
|
|
1070
|
|
|
df_dsm_stores["e_max"] = df_dsm_stores["e_max"].apply(lambda x: list(x)) |
1071
|
|
|
df_dsm_stores["e_min"] = df_dsm_stores["e_min"].apply(lambda x: list(x)) |
1072
|
|
|
|
1073
|
|
|
# select new bus_ids for aggregated buses and add to links and stores |
1074
|
|
|
bus_id = db.next_etrago_id("Bus") + df_dsm_buses.index |
1075
|
|
|
|
1076
|
|
|
df_dsm_buses["bus_id"] = bus_id |
1077
|
|
|
df_dsm_links["dsm_bus"] = bus_id |
1078
|
|
|
df_dsm_stores["bus"] = bus_id |
1079
|
|
|
|
1080
|
|
|
# select new link_ids for aggregated links |
1081
|
|
|
link_id = db.next_etrago_id("Link") + df_dsm_links.index |
1082
|
|
|
|
1083
|
|
|
df_dsm_links["link_id"] = link_id |
1084
|
|
|
|
1085
|
|
|
# select new store_ids to aggregated stores |
1086
|
|
|
|
1087
|
|
|
store_id = db.next_etrago_id("Store") + df_dsm_stores.index |
1088
|
|
|
|
1089
|
|
|
df_dsm_stores["store_id"] = store_id |
1090
|
|
|
|
1091
|
|
|
return df_dsm_buses, df_dsm_links, df_dsm_stores |
1092
|
|
|
|
1093
|
|
|
|
1094
|
|
|
def data_export(dsm_buses, dsm_links, dsm_stores, carrier): |
1095
|
|
|
""" |
1096
|
|
|
Export new components to database. |
1097
|
|
|
|
1098
|
|
|
Parameters |
1099
|
|
|
---------- |
1100
|
|
|
dsm_buses: DataFrame |
1101
|
|
|
Buses representing locations of DSM-potential |
1102
|
|
|
dsm_links: DataFrame |
1103
|
|
|
Links connecting DSM-buses and DSM-stores |
1104
|
|
|
dsm_stores: DataFrame |
1105
|
|
|
Stores representing DSM-potential |
1106
|
|
|
carrier: str |
1107
|
|
|
Remark to be filled in column 'carrier' identifying DSM-potential |
1108
|
|
|
""" |
1109
|
|
|
|
1110
|
|
|
targets = config.datasets()["DSM_CTS_industry"]["targets"] |
1111
|
|
|
|
1112
|
|
|
# dsm_buses |
1113
|
|
|
|
1114
|
|
|
insert_buses = gpd.GeoDataFrame( |
1115
|
|
|
index=dsm_buses.index, |
1116
|
|
|
data=dsm_buses["geom"], |
1117
|
|
|
geometry="geom", |
1118
|
|
|
crs="EPSG:4326", |
1119
|
|
|
) |
1120
|
|
|
insert_buses["scn_name"] = dsm_buses["scn_name"] |
1121
|
|
|
insert_buses["bus_id"] = dsm_buses["bus_id"] |
1122
|
|
|
insert_buses["v_nom"] = dsm_buses["v_nom"] |
1123
|
|
|
insert_buses["carrier"] = carrier |
1124
|
|
|
insert_buses["x"] = dsm_buses["x"] |
1125
|
|
|
insert_buses["y"] = dsm_buses["y"] |
1126
|
|
|
|
1127
|
|
|
# insert into database |
1128
|
|
|
insert_buses.to_postgis( |
1129
|
|
|
targets["bus"]["table"], |
1130
|
|
|
con=db.engine(), |
1131
|
|
|
schema=targets["bus"]["schema"], |
1132
|
|
|
if_exists="append", |
1133
|
|
|
index=False, |
1134
|
|
|
dtype={"geom": "geometry"}, |
1135
|
|
|
) |
1136
|
|
|
|
1137
|
|
|
# dsm_links |
1138
|
|
|
|
1139
|
|
|
insert_links = pd.DataFrame(index=dsm_links.index) |
1140
|
|
|
insert_links["scn_name"] = dsm_links["scn_name"] |
1141
|
|
|
insert_links["link_id"] = dsm_links["link_id"] |
1142
|
|
|
insert_links["bus0"] = dsm_links["original_bus"] |
1143
|
|
|
insert_links["bus1"] = dsm_links["dsm_bus"] |
1144
|
|
|
insert_links["carrier"] = carrier |
1145
|
|
|
insert_links["p_nom"] = dsm_links["p_nom"] |
1146
|
|
|
|
1147
|
|
|
# insert into database |
1148
|
|
|
insert_links.to_sql( |
1149
|
|
|
targets["link"]["table"], |
1150
|
|
|
con=db.engine(), |
1151
|
|
|
schema=targets["link"]["schema"], |
1152
|
|
|
if_exists="append", |
1153
|
|
|
index=False, |
1154
|
|
|
) |
1155
|
|
|
|
1156
|
|
|
insert_links_timeseries = pd.DataFrame(index=dsm_links.index) |
1157
|
|
|
insert_links_timeseries["scn_name"] = dsm_links["scn_name"] |
1158
|
|
|
insert_links_timeseries["link_id"] = dsm_links["link_id"] |
1159
|
|
|
insert_links_timeseries["p_min_pu"] = dsm_links["p_min"] |
1160
|
|
|
insert_links_timeseries["p_max_pu"] = dsm_links["p_max"] |
1161
|
|
|
insert_links_timeseries["temp_id"] = 1 |
1162
|
|
|
|
1163
|
|
|
# insert into database |
1164
|
|
|
insert_links_timeseries.to_sql( |
1165
|
|
|
targets["link_timeseries"]["table"], |
1166
|
|
|
con=db.engine(), |
1167
|
|
|
schema=targets["link_timeseries"]["schema"], |
1168
|
|
|
if_exists="append", |
1169
|
|
|
index=False, |
1170
|
|
|
) |
1171
|
|
|
|
1172
|
|
|
# dsm_stores |
1173
|
|
|
|
1174
|
|
|
insert_stores = pd.DataFrame(index=dsm_stores.index) |
1175
|
|
|
insert_stores["scn_name"] = dsm_stores["scn_name"] |
1176
|
|
|
insert_stores["store_id"] = dsm_stores["store_id"] |
1177
|
|
|
insert_stores["bus"] = dsm_stores["bus"] |
1178
|
|
|
insert_stores["carrier"] = carrier |
1179
|
|
|
insert_stores["e_nom"] = dsm_stores["e_nom"] |
1180
|
|
|
|
1181
|
|
|
# insert into database |
1182
|
|
|
insert_stores.to_sql( |
1183
|
|
|
targets["store"]["table"], |
1184
|
|
|
con=db.engine(), |
1185
|
|
|
schema=targets["store"]["schema"], |
1186
|
|
|
if_exists="append", |
1187
|
|
|
index=False, |
1188
|
|
|
) |
1189
|
|
|
|
1190
|
|
|
insert_stores_timeseries = pd.DataFrame(index=dsm_stores.index) |
1191
|
|
|
insert_stores_timeseries["scn_name"] = dsm_stores["scn_name"] |
1192
|
|
|
insert_stores_timeseries["store_id"] = dsm_stores["store_id"] |
1193
|
|
|
insert_stores_timeseries["e_min_pu"] = dsm_stores["e_min"] |
1194
|
|
|
insert_stores_timeseries["e_max_pu"] = dsm_stores["e_max"] |
1195
|
|
|
insert_stores_timeseries["temp_id"] = 1 |
1196
|
|
|
|
1197
|
|
|
# insert into database |
1198
|
|
|
insert_stores_timeseries.to_sql( |
1199
|
|
|
targets["store_timeseries"]["table"], |
1200
|
|
|
con=db.engine(), |
1201
|
|
|
schema=targets["store_timeseries"]["schema"], |
1202
|
|
|
if_exists="append", |
1203
|
|
|
index=False, |
1204
|
|
|
) |
1205
|
|
|
|
1206
|
|
|
|
1207
|
|
|
def delete_dsm_entries(carrier): |
1208
|
|
|
""" |
1209
|
|
|
Deletes DSM-components from database if they already exist before creating |
1210
|
|
|
new ones. |
1211
|
|
|
|
1212
|
|
|
Parameters |
1213
|
|
|
---------- |
1214
|
|
|
carrier: str |
1215
|
|
|
Remark in column 'carrier' identifying DSM-potential |
1216
|
|
|
""" |
1217
|
|
|
|
1218
|
|
|
targets = config.datasets()["DSM_CTS_industry"]["targets"] |
1219
|
|
|
|
1220
|
|
|
# buses |
1221
|
|
|
|
1222
|
|
|
sql = ( |
1223
|
|
|
f"DELETE FROM {targets['bus']['schema']}.{targets['bus']['table']} b " |
1224
|
|
|
f"WHERE (b.carrier LIKE '{carrier}');" |
1225
|
|
|
) |
1226
|
|
|
db.execute_sql(sql) |
1227
|
|
|
|
1228
|
|
|
# links |
1229
|
|
|
|
1230
|
|
|
sql = f""" |
1231
|
|
|
DELETE FROM {targets["link_timeseries"]["schema"]}. |
1232
|
|
|
{targets["link_timeseries"]["table"]} t |
1233
|
|
|
WHERE t.link_id IN |
1234
|
|
|
( |
1235
|
|
|
SELECT l.link_id FROM {targets["link"]["schema"]}. |
1236
|
|
|
{targets["link"]["table"]} l |
1237
|
|
|
WHERE l.carrier LIKE '{carrier}' |
1238
|
|
|
); |
1239
|
|
|
""" |
1240
|
|
|
|
1241
|
|
|
db.execute_sql(sql) |
1242
|
|
|
|
1243
|
|
|
sql = f""" |
1244
|
|
|
DELETE FROM {targets["link"]["schema"]}. |
1245
|
|
|
{targets["link"]["table"]} l |
1246
|
|
|
WHERE (l.carrier LIKE '{carrier}'); |
1247
|
|
|
""" |
1248
|
|
|
|
1249
|
|
|
db.execute_sql(sql) |
1250
|
|
|
|
1251
|
|
|
# stores |
1252
|
|
|
|
1253
|
|
|
sql = f""" |
1254
|
|
|
DELETE FROM {targets["store_timeseries"]["schema"]}. |
1255
|
|
|
{targets["store_timeseries"]["table"]} t |
1256
|
|
|
WHERE t.store_id IN |
1257
|
|
|
( |
1258
|
|
|
SELECT s.store_id FROM {targets["store"]["schema"]}. |
1259
|
|
|
{targets["store"]["table"]} s |
1260
|
|
|
WHERE s.carrier LIKE '{carrier}' |
1261
|
|
|
); |
1262
|
|
|
""" |
1263
|
|
|
|
1264
|
|
|
db.execute_sql(sql) |
1265
|
|
|
|
1266
|
|
|
sql = f""" |
1267
|
|
|
DELETE FROM {targets["store"]["schema"]}.{targets["store"]["table"]} s |
1268
|
|
|
WHERE (s.carrier LIKE '{carrier}'); |
1269
|
|
|
""" |
1270
|
|
|
|
1271
|
|
|
db.execute_sql(sql) |
1272
|
|
|
|
1273
|
|
|
|
1274
|
|
|
def dsm_cts_ind( |
1275
|
|
|
con=db.engine(), |
1276
|
|
|
cts_cool_vent_ac_share=0.22, |
1277
|
|
|
ind_vent_cool_share=0.039, |
1278
|
|
|
ind_vent_share=0.017, |
1279
|
|
|
): |
1280
|
|
|
""" |
1281
|
|
|
Execute methodology to create and implement components for DSM considering |
1282
|
|
|
|
1283
|
|
|
a) CTS per osm-area: combined potentials of cooling, ventilation and air |
1284
|
|
|
conditioning |
1285
|
|
|
b) Industry per osm-are: combined potentials of cooling and ventilation |
1286
|
|
|
c) Industrial Sites: potentials of ventilation in sites of |
1287
|
|
|
"Wirtschaftszweig" (WZ) 23 |
1288
|
|
|
d) Industrial Sites: potentials of sites specified by subsectors |
1289
|
|
|
identified by Schmidt (https://zenodo.org/record/3613767#.YTsGwVtCRhG): |
1290
|
|
|
Paper, Recycled Paper, Pulp, Cement |
1291
|
|
|
|
1292
|
|
|
Modelled using the methods by Heitkoetter et. al.: |
1293
|
|
|
https://doi.org/10.1016/j.adapen.2020.100001 |
1294
|
|
|
|
1295
|
|
|
Parameters |
1296
|
|
|
---------- |
1297
|
|
|
con : |
1298
|
|
|
Connection to database |
1299
|
|
|
cts_cool_vent_ac_share: float |
1300
|
|
|
Share of cooling, ventilation and AC in CTS demand |
1301
|
|
|
ind_vent_cool_share: float |
1302
|
|
|
Share of cooling and ventilation in industry demand |
1303
|
|
|
ind_vent_share: float |
1304
|
|
|
Share of ventilation in industry demand in sites of WZ 23 |
1305
|
|
|
|
1306
|
|
|
""" |
1307
|
|
|
|
1308
|
|
|
# CTS per osm-area: cooling, ventilation and air conditioning |
1309
|
|
|
|
1310
|
|
|
print(" ") |
1311
|
|
|
print("CTS per osm-area: cooling, ventilation and air conditioning") |
1312
|
|
|
print(" ") |
1313
|
|
|
|
1314
|
|
|
dsm = cts_data_import(cts_cool_vent_ac_share) |
1315
|
|
|
|
1316
|
|
|
# calculate combined potentials of cooling, ventilation and air |
1317
|
|
|
# conditioning in CTS using combined parameters by Heitkoetter et. al. |
1318
|
|
|
p_max, p_min, e_max, e_min = calculate_potentials( |
1319
|
|
|
s_flex=S_FLEX_CTS, |
1320
|
|
|
s_util=S_UTIL_CTS, |
1321
|
|
|
s_inc=S_INC_CTS, |
1322
|
|
|
s_dec=S_DEC_CTS, |
1323
|
|
|
delta_t=DELTA_T_CTS, |
1324
|
|
|
dsm=dsm, |
1325
|
|
|
) |
1326
|
|
|
|
1327
|
|
|
dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
1328
|
|
|
con, p_max, p_min, e_max, e_min, dsm |
1329
|
|
|
) |
1330
|
|
|
|
1331
|
|
|
df_dsm_buses = dsm_buses.copy() |
1332
|
|
|
df_dsm_links = dsm_links.copy() |
1333
|
|
|
df_dsm_stores = dsm_stores.copy() |
1334
|
|
|
|
1335
|
|
|
# industry per osm-area: cooling and ventilation |
1336
|
|
|
|
1337
|
|
|
print(" ") |
1338
|
|
|
print("industry per osm-area: cooling and ventilation") |
1339
|
|
|
print(" ") |
1340
|
|
|
|
1341
|
|
|
dsm = ind_osm_data_import(ind_vent_cool_share) |
1342
|
|
|
|
1343
|
|
|
# calculate combined potentials of cooling and ventilation in industrial |
1344
|
|
|
# sector using combined parameters by Heitkoetter et. al. |
1345
|
|
|
p_max, p_min, e_max, e_min = calculate_potentials( |
1346
|
|
|
s_flex=S_FLEX_OSM, |
1347
|
|
|
s_util=S_UTIL_OSM, |
1348
|
|
|
s_inc=S_INC_OSM, |
1349
|
|
|
s_dec=S_DEC_OSM, |
1350
|
|
|
delta_t=DELTA_T_OSM, |
1351
|
|
|
dsm=dsm, |
1352
|
|
|
) |
1353
|
|
|
|
1354
|
|
|
dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
1355
|
|
|
con, p_max, p_min, e_max, e_min, dsm |
1356
|
|
|
) |
1357
|
|
|
|
1358
|
|
|
df_dsm_buses = gpd.GeoDataFrame( |
1359
|
|
|
pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
1360
|
|
|
crs="EPSG:4326", |
1361
|
|
|
geometry="geom", |
1362
|
|
|
) |
1363
|
|
|
df_dsm_links = pd.DataFrame( |
1364
|
|
|
pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
1365
|
|
|
) |
1366
|
|
|
df_dsm_stores = pd.DataFrame( |
1367
|
|
|
pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
1368
|
|
|
) |
1369
|
|
|
|
1370
|
|
|
# industry sites |
1371
|
|
|
|
1372
|
|
|
# industry sites: different applications |
1373
|
|
|
|
1374
|
|
|
dsm = ind_sites_data_import() |
1375
|
|
|
|
1376
|
|
|
print(" ") |
1377
|
|
|
print("industry sites: paper") |
1378
|
|
|
print(" ") |
1379
|
|
|
|
1380
|
|
|
dsm_paper = gpd.GeoDataFrame( |
1381
|
|
|
dsm[ |
1382
|
|
|
dsm["application"].isin( |
1383
|
|
|
[ |
1384
|
|
|
"Graphic Paper", |
1385
|
|
|
"Packing Paper and Board", |
1386
|
|
|
"Hygiene Paper", |
1387
|
|
|
"Technical/Special Paper and Board", |
1388
|
|
|
] |
1389
|
|
|
) |
1390
|
|
|
] |
1391
|
|
|
) |
1392
|
|
|
|
1393
|
|
|
# calculate potentials of industrial sites with paper-applications |
1394
|
|
|
# using parameters by Heitkoetter et al. |
1395
|
|
|
p_max, p_min, e_max, e_min = calculate_potentials( |
1396
|
|
|
s_flex=S_FLEX_PAPER, |
1397
|
|
|
s_util=S_UTIL_PAPER, |
1398
|
|
|
s_inc=S_INC_PAPER, |
1399
|
|
|
s_dec=S_DEC_PAPER, |
1400
|
|
|
delta_t=DELTA_T_PAPER, |
1401
|
|
|
dsm=dsm_paper, |
1402
|
|
|
) |
1403
|
|
|
|
1404
|
|
|
dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
1405
|
|
|
con, p_max, p_min, e_max, e_min, dsm_paper |
1406
|
|
|
) |
1407
|
|
|
|
1408
|
|
|
df_dsm_buses = gpd.GeoDataFrame( |
1409
|
|
|
pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
1410
|
|
|
crs="EPSG:4326", |
1411
|
|
|
geometry="geom", |
1412
|
|
|
) |
1413
|
|
|
df_dsm_links = pd.DataFrame( |
1414
|
|
|
pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
1415
|
|
|
) |
1416
|
|
|
df_dsm_stores = pd.DataFrame( |
1417
|
|
|
pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
1418
|
|
|
) |
1419
|
|
|
|
1420
|
|
|
print(" ") |
1421
|
|
|
print("industry sites: recycled paper") |
1422
|
|
|
print(" ") |
1423
|
|
|
|
1424
|
|
|
# calculate potentials of industrial sites with recycled paper-applications |
1425
|
|
|
# using parameters by Heitkoetter et. al. |
1426
|
|
|
dsm_recycled_paper = gpd.GeoDataFrame( |
1427
|
|
|
dsm[dsm["application"] == "Recycled Paper"] |
1428
|
|
|
) |
1429
|
|
|
|
1430
|
|
|
p_max, p_min, e_max, e_min = calculate_potentials( |
1431
|
|
|
s_flex=S_FLEX_RECYCLED_PAPER, |
1432
|
|
|
s_util=S_UTIL_RECYCLED_PAPER, |
1433
|
|
|
s_inc=S_INC_RECYCLED_PAPER, |
1434
|
|
|
s_dec=S_DEC_RECYCLED_PAPER, |
1435
|
|
|
delta_t=DELTA_T_RECYCLED_PAPER, |
1436
|
|
|
dsm=dsm_recycled_paper, |
1437
|
|
|
) |
1438
|
|
|
|
1439
|
|
|
dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
1440
|
|
|
con, p_max, p_min, e_max, e_min, dsm_recycled_paper |
1441
|
|
|
) |
1442
|
|
|
|
1443
|
|
|
df_dsm_buses = gpd.GeoDataFrame( |
1444
|
|
|
pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
1445
|
|
|
crs="EPSG:4326", |
1446
|
|
|
geometry="geom", |
1447
|
|
|
) |
1448
|
|
|
df_dsm_links = pd.DataFrame( |
1449
|
|
|
pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
1450
|
|
|
) |
1451
|
|
|
df_dsm_stores = pd.DataFrame( |
1452
|
|
|
pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
1453
|
|
|
) |
1454
|
|
|
|
1455
|
|
|
print(" ") |
1456
|
|
|
print("industry sites: pulp") |
1457
|
|
|
print(" ") |
1458
|
|
|
|
1459
|
|
|
dsm_pulp = gpd.GeoDataFrame(dsm[dsm["application"] == "Mechanical Pulp"]) |
1460
|
|
|
|
1461
|
|
|
# calculate potentials of industrial sites with pulp-applications |
1462
|
|
|
# using parameters by Heitkoetter et al. |
1463
|
|
|
p_max, p_min, e_max, e_min = calculate_potentials( |
1464
|
|
|
s_flex=S_FLEX_PULP, |
1465
|
|
|
s_util=S_UTIL_PULP, |
1466
|
|
|
s_inc=S_INC_PULP, |
1467
|
|
|
s_dec=S_DEC_PULP, |
1468
|
|
|
delta_t=DELTA_T_PULP, |
1469
|
|
|
dsm=dsm_pulp, |
1470
|
|
|
) |
1471
|
|
|
|
1472
|
|
|
dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
1473
|
|
|
con, p_max, p_min, e_max, e_min, dsm_pulp |
1474
|
|
|
) |
1475
|
|
|
|
1476
|
|
|
df_dsm_buses = gpd.GeoDataFrame( |
1477
|
|
|
pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
1478
|
|
|
crs="EPSG:4326", |
1479
|
|
|
geometry="geom", |
1480
|
|
|
) |
1481
|
|
|
df_dsm_links = pd.DataFrame( |
1482
|
|
|
pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
1483
|
|
|
) |
1484
|
|
|
df_dsm_stores = pd.DataFrame( |
1485
|
|
|
pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
1486
|
|
|
) |
1487
|
|
|
|
1488
|
|
|
# industry sites: cement |
1489
|
|
|
|
1490
|
|
|
print(" ") |
1491
|
|
|
print("industry sites: cement") |
1492
|
|
|
print(" ") |
1493
|
|
|
|
1494
|
|
|
dsm_cement = gpd.GeoDataFrame(dsm[dsm["application"] == "Cement Mill"]) |
1495
|
|
|
|
1496
|
|
|
# calculate potentials of industrial sites with cement-applications |
1497
|
|
|
# using parameters by Heitkoetter et al. |
1498
|
|
|
p_max, p_min, e_max, e_min = calculate_potentials( |
1499
|
|
|
s_flex=S_FLEX_CEMENT, |
1500
|
|
|
s_util=S_UTIL_CEMENT, |
1501
|
|
|
s_inc=S_INC_CEMENT, |
1502
|
|
|
s_dec=S_DEC_CEMENT, |
1503
|
|
|
delta_t=DELTA_T_CEMENT, |
1504
|
|
|
dsm=dsm_cement, |
1505
|
|
|
) |
1506
|
|
|
|
1507
|
|
|
dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
1508
|
|
|
con, p_max, p_min, e_max, e_min, dsm_cement |
1509
|
|
|
) |
1510
|
|
|
|
1511
|
|
|
df_dsm_buses = gpd.GeoDataFrame( |
1512
|
|
|
pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
1513
|
|
|
crs="EPSG:4326", |
1514
|
|
|
geometry="geom", |
1515
|
|
|
) |
1516
|
|
|
df_dsm_links = pd.DataFrame( |
1517
|
|
|
pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
1518
|
|
|
) |
1519
|
|
|
df_dsm_stores = pd.DataFrame( |
1520
|
|
|
pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
1521
|
|
|
) |
1522
|
|
|
|
1523
|
|
|
# industry sites: ventilation in WZ23 |
1524
|
|
|
|
1525
|
|
|
print(" ") |
1526
|
|
|
print("industry sites: ventilation in WZ23") |
1527
|
|
|
print(" ") |
1528
|
|
|
|
1529
|
|
|
dsm = ind_sites_vent_data_import(ind_vent_share, wz=WZ) |
1530
|
|
|
|
1531
|
|
|
# drop entries of Cement Mills whose DSM-potentials have already been |
1532
|
|
|
# modelled |
1533
|
|
|
cement = np.unique(dsm_cement["bus"].values) |
1534
|
|
|
index_names = np.array(dsm[dsm["bus"].isin(cement)].index) |
1535
|
|
|
dsm.drop(index_names, inplace=True) |
1536
|
|
|
|
1537
|
|
|
# calculate potentials of ventialtion in industrial sites of WZ 23 |
1538
|
|
|
# using parameters by Heitkoetter et al. |
1539
|
|
|
p_max, p_min, e_max, e_min = calculate_potentials( |
1540
|
|
|
s_flex=S_FLEX_WZ, |
1541
|
|
|
s_util=S_UTIL_WZ, |
1542
|
|
|
s_inc=S_INC_WZ, |
1543
|
|
|
s_dec=S_DEC_WZ, |
1544
|
|
|
delta_t=DELTA_T_WZ, |
1545
|
|
|
dsm=dsm, |
1546
|
|
|
) |
1547
|
|
|
|
1548
|
|
|
dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
1549
|
|
|
con, p_max, p_min, e_max, e_min, dsm |
1550
|
|
|
) |
1551
|
|
|
|
1552
|
|
|
df_dsm_buses = gpd.GeoDataFrame( |
1553
|
|
|
pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
1554
|
|
|
crs="EPSG:4326", |
1555
|
|
|
geometry="geom", |
1556
|
|
|
) |
1557
|
|
|
df_dsm_links = pd.DataFrame( |
1558
|
|
|
pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
1559
|
|
|
) |
1560
|
|
|
df_dsm_stores = pd.DataFrame( |
1561
|
|
|
pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
1562
|
|
|
) |
1563
|
|
|
|
1564
|
|
|
# aggregate DSM components per substation |
1565
|
|
|
dsm_buses, dsm_links, dsm_stores = aggregate_components( |
1566
|
|
|
df_dsm_buses, df_dsm_links, df_dsm_stores |
1567
|
|
|
) |
1568
|
|
|
|
1569
|
|
|
# export aggregated DSM components to database |
1570
|
|
|
|
1571
|
|
|
delete_dsm_entries("dsm-cts") |
1572
|
|
|
delete_dsm_entries("dsm-ind-osm") |
1573
|
|
|
delete_dsm_entries("dsm-ind-sites") |
1574
|
|
|
delete_dsm_entries("dsm") |
1575
|
|
|
|
1576
|
|
|
data_export(dsm_buses, dsm_links, dsm_stores, carrier="dsm") |
1577
|
|
|
|
1578
|
|
|
|
1579
|
|
|
def create_table(df, table, engine=CON): |
1580
|
|
|
"""Create table""" |
1581
|
|
|
table.__table__.drop(bind=engine, checkfirst=True) |
1582
|
|
|
table.__table__.create(bind=engine, checkfirst=True) |
1583
|
|
|
|
1584
|
|
|
df.to_sql( |
1585
|
|
|
name=table.__table__.name, |
1586
|
|
|
schema=table.__table__.schema, |
1587
|
|
|
con=engine, |
1588
|
|
|
if_exists="append", |
1589
|
|
|
index=False, |
1590
|
|
|
) |
1591
|
|
|
|
1592
|
|
|
|
1593
|
|
|
def div_list(lst: list, div: float): |
1594
|
|
|
return [v / div for v in lst] |
1595
|
|
|
|
1596
|
|
|
|
1597
|
|
|
def dsm_cts_ind_individual( |
1598
|
|
|
cts_cool_vent_ac_share=CTS_COOL_VENT_AC_SHARE, |
1599
|
|
|
ind_vent_cool_share=IND_VENT_COOL_SHARE, |
1600
|
|
|
ind_vent_share=IND_VENT_SHARE, |
1601
|
|
|
): |
1602
|
|
|
""" |
1603
|
|
|
Execute methodology to create and implement components for DSM considering |
1604
|
|
|
|
1605
|
|
|
a) CTS per osm-area: combined potentials of cooling, ventilation and air |
1606
|
|
|
conditioning |
1607
|
|
|
b) Industry per osm-are: combined potentials of cooling and ventilation |
1608
|
|
|
c) Industrial Sites: potentials of ventilation in sites of |
1609
|
|
|
"Wirtschaftszweig" (WZ) 23 |
1610
|
|
|
d) Industrial Sites: potentials of sites specified by subsectors |
1611
|
|
|
identified by Schmidt (https://zenodo.org/record/3613767#.YTsGwVtCRhG): |
1612
|
|
|
Paper, Recycled Paper, Pulp, Cement |
1613
|
|
|
|
1614
|
|
|
Modelled using the methods by Heitkoetter et. al.: |
1615
|
|
|
https://doi.org/10.1016/j.adapen.2020.100001 |
1616
|
|
|
|
1617
|
|
|
Parameters |
1618
|
|
|
---------- |
1619
|
|
|
cts_cool_vent_ac_share: float |
1620
|
|
|
Share of cooling, ventilation and AC in CTS demand |
1621
|
|
|
ind_vent_cool_share: float |
1622
|
|
|
Share of cooling and ventilation in industry demand |
1623
|
|
|
ind_vent_share: float |
1624
|
|
|
Share of ventilation in industry demand in sites of WZ 23 |
1625
|
|
|
|
1626
|
|
|
""" |
1627
|
|
|
|
1628
|
|
|
# CTS per osm-area: cooling, ventilation and air conditioning |
1629
|
|
|
|
1630
|
|
|
print(" ") |
1631
|
|
|
print("CTS per osm-area: cooling, ventilation and air conditioning") |
1632
|
|
|
print(" ") |
1633
|
|
|
|
1634
|
|
|
dsm = cts_data_import(cts_cool_vent_ac_share) |
1635
|
|
|
|
1636
|
|
|
# calculate combined potentials of cooling, ventilation and air |
1637
|
|
|
# conditioning in CTS using combined parameters by Heitkoetter et. al. |
1638
|
|
|
vals = calculate_potentials( |
1639
|
|
|
s_flex=S_FLEX_CTS, |
1640
|
|
|
s_util=S_UTIL_CTS, |
1641
|
|
|
s_inc=S_INC_CTS, |
1642
|
|
|
s_dec=S_DEC_CTS, |
1643
|
|
|
delta_t=DELTA_T_CTS, |
1644
|
|
|
dsm=dsm, |
1645
|
|
|
) |
1646
|
|
|
|
1647
|
|
|
dsm = dsm.assign( |
1648
|
|
|
p_set=dsm.p_set.apply(div_list, div=cts_cool_vent_ac_share) |
1649
|
|
|
) |
1650
|
|
|
|
1651
|
|
|
base_columns = [ |
1652
|
|
|
"bus", |
1653
|
|
|
"scn_name", |
1654
|
|
|
"p_set", |
1655
|
|
|
"p_max", |
1656
|
|
|
"p_min", |
1657
|
|
|
"e_max", |
1658
|
|
|
"e_min", |
1659
|
|
|
] |
1660
|
|
|
|
1661
|
|
|
cts_df = pd.concat([dsm, *vals], axis=1, ignore_index=True) |
1662
|
|
|
cts_df.columns = base_columns |
1663
|
|
|
|
1664
|
|
|
print(" ") |
1665
|
|
|
print("industry per osm-area: cooling and ventilation") |
1666
|
|
|
print(" ") |
1667
|
|
|
|
1668
|
|
|
dsm = ind_osm_data_import_individual(ind_vent_cool_share) |
1669
|
|
|
|
1670
|
|
|
# calculate combined potentials of cooling and ventilation in industrial |
1671
|
|
|
# sector using combined parameters by Heitkoetter et al. |
1672
|
|
|
vals = calculate_potentials( |
1673
|
|
|
s_flex=S_FLEX_OSM, |
1674
|
|
|
s_util=S_UTIL_OSM, |
1675
|
|
|
s_inc=S_INC_OSM, |
1676
|
|
|
s_dec=S_DEC_OSM, |
1677
|
|
|
delta_t=DELTA_T_OSM, |
1678
|
|
|
dsm=dsm, |
1679
|
|
|
) |
1680
|
|
|
|
1681
|
|
|
dsm = dsm.assign(p_set=dsm.p_set.apply(div_list, div=ind_vent_cool_share)) |
1682
|
|
|
|
1683
|
|
|
columns = ["osm_id"] + base_columns |
1684
|
|
|
|
1685
|
|
|
osm_df = pd.concat([dsm, *vals], axis=1, ignore_index=True) |
1686
|
|
|
osm_df.columns = columns |
1687
|
|
|
|
1688
|
|
|
# industry sites |
1689
|
|
|
|
1690
|
|
|
# industry sites: different applications |
1691
|
|
|
|
1692
|
|
|
dsm = ind_sites_data_import() |
1693
|
|
|
|
1694
|
|
|
print(" ") |
1695
|
|
|
print("industry sites: paper") |
1696
|
|
|
print(" ") |
1697
|
|
|
|
1698
|
|
|
dsm_paper = gpd.GeoDataFrame( |
1699
|
|
|
dsm[ |
1700
|
|
|
dsm["application"].isin( |
1701
|
|
|
[ |
1702
|
|
|
"Graphic Paper", |
1703
|
|
|
"Packing Paper and Board", |
1704
|
|
|
"Hygiene Paper", |
1705
|
|
|
"Technical/Special Paper and Board", |
1706
|
|
|
] |
1707
|
|
|
) |
1708
|
|
|
] |
1709
|
|
|
) |
1710
|
|
|
|
1711
|
|
|
# calculate potentials of industrial sites with paper-applications |
1712
|
|
|
# using parameters by Heitkoetter et al. |
1713
|
|
|
vals = calculate_potentials( |
1714
|
|
|
s_flex=S_FLEX_PAPER, |
1715
|
|
|
s_util=S_UTIL_PAPER, |
1716
|
|
|
s_inc=S_INC_PAPER, |
1717
|
|
|
s_dec=S_DEC_PAPER, |
1718
|
|
|
delta_t=DELTA_T_PAPER, |
1719
|
|
|
dsm=dsm_paper, |
1720
|
|
|
) |
1721
|
|
|
|
1722
|
|
|
columns = ["application", "industrial_sites_id"] + base_columns |
1723
|
|
|
|
1724
|
|
|
paper_df = pd.concat([dsm_paper, *vals], axis=1, ignore_index=True) |
1725
|
|
|
paper_df.columns = columns |
1726
|
|
|
|
1727
|
|
|
print(" ") |
1728
|
|
|
print("industry sites: recycled paper") |
1729
|
|
|
print(" ") |
1730
|
|
|
|
1731
|
|
|
# calculate potentials of industrial sites with recycled paper-applications |
1732
|
|
|
# using parameters by Heitkoetter et. al. |
1733
|
|
|
dsm_recycled_paper = gpd.GeoDataFrame( |
1734
|
|
|
dsm[dsm["application"] == "Recycled Paper"] |
1735
|
|
|
) |
1736
|
|
|
|
1737
|
|
|
vals = calculate_potentials( |
1738
|
|
|
s_flex=S_FLEX_RECYCLED_PAPER, |
1739
|
|
|
s_util=S_UTIL_RECYCLED_PAPER, |
1740
|
|
|
s_inc=S_INC_RECYCLED_PAPER, |
1741
|
|
|
s_dec=S_DEC_RECYCLED_PAPER, |
1742
|
|
|
delta_t=DELTA_T_RECYCLED_PAPER, |
1743
|
|
|
dsm=dsm_recycled_paper, |
1744
|
|
|
) |
1745
|
|
|
|
1746
|
|
|
recycled_paper_df = pd.concat( |
1747
|
|
|
[dsm_recycled_paper, *vals], axis=1, ignore_index=True |
1748
|
|
|
) |
1749
|
|
|
recycled_paper_df.columns = columns |
1750
|
|
|
|
1751
|
|
|
print(" ") |
1752
|
|
|
print("industry sites: pulp") |
1753
|
|
|
print(" ") |
1754
|
|
|
|
1755
|
|
|
dsm_pulp = gpd.GeoDataFrame(dsm[dsm["application"] == "Mechanical Pulp"]) |
1756
|
|
|
|
1757
|
|
|
# calculate potentials of industrial sites with pulp-applications |
1758
|
|
|
# using parameters by Heitkoetter et al. |
1759
|
|
|
vals = calculate_potentials( |
1760
|
|
|
s_flex=S_FLEX_PULP, |
1761
|
|
|
s_util=S_UTIL_PULP, |
1762
|
|
|
s_inc=S_INC_PULP, |
1763
|
|
|
s_dec=S_DEC_PULP, |
1764
|
|
|
delta_t=DELTA_T_PULP, |
1765
|
|
|
dsm=dsm_pulp, |
1766
|
|
|
) |
1767
|
|
|
|
1768
|
|
|
pulp_df = pd.concat([dsm_pulp, *vals], axis=1, ignore_index=True) |
1769
|
|
|
pulp_df.columns = columns |
1770
|
|
|
|
1771
|
|
|
# industry sites: cement |
1772
|
|
|
|
1773
|
|
|
print(" ") |
1774
|
|
|
print("industry sites: cement") |
1775
|
|
|
print(" ") |
1776
|
|
|
|
1777
|
|
|
dsm_cement = gpd.GeoDataFrame(dsm[dsm["application"] == "Cement Mill"]) |
1778
|
|
|
|
1779
|
|
|
# calculate potentials of industrial sites with cement-applications |
1780
|
|
|
# using parameters by Heitkoetter et al. |
1781
|
|
|
vals = calculate_potentials( |
1782
|
|
|
s_flex=S_FLEX_CEMENT, |
1783
|
|
|
s_util=S_UTIL_CEMENT, |
1784
|
|
|
s_inc=S_INC_CEMENT, |
1785
|
|
|
s_dec=S_DEC_CEMENT, |
1786
|
|
|
delta_t=DELTA_T_CEMENT, |
1787
|
|
|
dsm=dsm_cement, |
1788
|
|
|
) |
1789
|
|
|
|
1790
|
|
|
cement_df = pd.concat([dsm_cement, *vals], axis=1, ignore_index=True) |
1791
|
|
|
cement_df.columns = columns |
1792
|
|
|
|
1793
|
|
|
ind_df = pd.concat( |
1794
|
|
|
[paper_df, recycled_paper_df, pulp_df, cement_df], ignore_index=True |
1795
|
|
|
) |
1796
|
|
|
|
1797
|
|
|
# industry sites: ventilation in WZ23 |
1798
|
|
|
|
1799
|
|
|
print(" ") |
1800
|
|
|
print("industry sites: ventilation in WZ23") |
1801
|
|
|
print(" ") |
1802
|
|
|
|
1803
|
|
|
dsm = ind_sites_vent_data_import_individual(ind_vent_share, wz=WZ) |
1804
|
|
|
|
1805
|
|
|
# drop entries of Cement Mills whose DSM-potentials have already been |
1806
|
|
|
# modelled |
1807
|
|
|
cement = np.unique(dsm_cement["bus"].values) |
1808
|
|
|
index_names = np.array(dsm[dsm["bus"].isin(cement)].index) |
1809
|
|
|
dsm.drop(index_names, inplace=True) |
1810
|
|
|
|
1811
|
|
|
# calculate potentials of ventialtion in industrial sites of WZ 23 |
1812
|
|
|
# using parameters by Heitkoetter et al. |
1813
|
|
|
vals = calculate_potentials( |
1814
|
|
|
s_flex=S_FLEX_WZ, |
1815
|
|
|
s_util=S_UTIL_WZ, |
1816
|
|
|
s_inc=S_INC_WZ, |
1817
|
|
|
s_dec=S_DEC_WZ, |
1818
|
|
|
delta_t=DELTA_T_WZ, |
1819
|
|
|
dsm=dsm, |
1820
|
|
|
) |
1821
|
|
|
|
1822
|
|
|
columns = ["site_id"] + base_columns |
1823
|
|
|
|
1824
|
|
|
ind_sites_df = pd.concat([dsm, *vals], axis=1, ignore_index=True) |
1825
|
|
|
ind_sites_df.columns = columns |
1826
|
|
|
|
1827
|
|
|
# create tables |
1828
|
|
|
create_table( |
1829
|
|
|
df=cts_df, table=EgonEtragoElectricityCtsDsmTimeseries, engine=CON |
1830
|
|
|
) |
1831
|
|
|
create_table( |
1832
|
|
|
df=osm_df, |
1833
|
|
|
table=EgonOsmIndLoadCurvesIndividualDsmTimeseries, |
1834
|
|
|
engine=CON, |
1835
|
|
|
) |
1836
|
|
|
create_table( |
1837
|
|
|
df=ind_df, |
1838
|
|
|
table=EgonDemandregioSitesIndElectricityDsmTimeseries, |
1839
|
|
|
engine=CON, |
1840
|
|
|
) |
1841
|
|
|
create_table( |
1842
|
|
|
df=ind_sites_df, |
1843
|
|
|
table=EgonSitesIndLoadCurvesIndividualDsmTimeseries, |
1844
|
|
|
engine=CON, |
1845
|
|
|
) |
1846
|
|
|
|
1847
|
|
|
|
1848
|
|
|
def dsm_cts_ind_processing(): |
1849
|
|
|
dsm_cts_ind() |
1850
|
|
|
|
1851
|
|
|
dsm_cts_ind_individual() |
1852
|
|
|
|
1853
|
|
|
add_metadata_individual() |
1854
|
|
|
|