@@ 492-526 (lines=35) @@ | ||
489 | return dsm |
|
490 | ||
491 | ||
492 | def ind_osm_data_import_individual(ind_vent_cool_share): |
|
493 | """ |
|
494 | Import industry data per osm-area necessary to identify DSM-potential. |
|
495 | ||
496 | Parameters |
|
497 | ---------- |
|
498 | ind_share: float |
|
499 | Share of considered application in industry demand |
|
500 | """ |
|
501 | ||
502 | # import load data |
|
503 | ||
504 | sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
|
505 | "ind_osm_loadcurves_individual" |
|
506 | ] |
|
507 | ||
508 | dsm = db.select_dataframe( |
|
509 | f""" |
|
510 | SELECT osm_id, bus_id as bus, scn_name, p_set FROM |
|
511 | {sources['schema']}.{sources['table']} |
|
512 | """ |
|
513 | ) |
|
514 | ||
515 | # calculate share of timeseries for cooling and ventilation out of |
|
516 | # industry-data |
|
517 | ||
518 | timeseries = dsm["p_set"].copy() |
|
519 | ||
520 | for index, liste in timeseries.items(): |
|
521 | share = [float(item) * ind_vent_cool_share for item in liste] |
|
522 | ||
523 | timeseries.loc[index] = share |
|
524 | ||
525 | dsm["p_set"] = timeseries.copy() |
|
526 | ||
527 | return dsm |
|
528 | ||
529 | ||
@@ 454-485 (lines=32) @@ | ||
451 | return dsm |
|
452 | ||
453 | ||
454 | def ind_osm_data_import(ind_vent_cool_share): |
|
455 | """ |
|
456 | Import industry data per osm-area necessary to identify DSM-potential. |
|
457 | ||
458 | Parameters |
|
459 | ---------- |
|
460 | ind_share: float |
|
461 | Share of considered application in industry demand |
|
462 | """ |
|
463 | ||
464 | # import load data |
|
465 | ||
466 | sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
|
467 | "ind_osm_loadcurves" |
|
468 | ] |
|
469 | ||
470 | dsm = db.select_dataframe( |
|
471 | f""" |
|
472 | SELECT bus, scn_name, p_set FROM |
|
473 | {sources['schema']}.{sources['table']} |
|
474 | """ |
|
475 | ) |
|
476 | ||
477 | # calculate share of timeseries for cooling and ventilation out of |
|
478 | # industry-data |
|
479 | ||
480 | timeseries = dsm["p_set"].copy() |
|
481 | ||
482 | for index, liste in timeseries.items(): |
|
483 | share = [float(item) * ind_vent_cool_share for item in liste] |
|
484 | ||
485 | timeseries.loc[index] = share |
|
486 | ||
487 | dsm["p_set"] = timeseries.copy() |
|
488 |