Total Complexity | 106 |
Total Lines | 1780 |
Duplicated Lines | 9.44 % |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like solph.components._generic_storage often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | # -*- coding: utf-8 - |
||
2 | |||
3 | """ |
||
4 | GenericStorage and associated individual constraints (blocks) and groupings. |
||
5 | |||
6 | SPDX-FileCopyrightText: Uwe Krien <[email protected]> |
||
7 | SPDX-FileCopyrightText: Simon Hilpert |
||
8 | SPDX-FileCopyrightText: Cord Kaldemeyer |
||
9 | SPDX-FileCopyrightText: Patrik Schönfeldt |
||
10 | SPDX-FileCopyrightText: FranziPl |
||
11 | SPDX-FileCopyrightText: jnnr |
||
12 | SPDX-FileCopyrightText: Stephan Günther |
||
13 | SPDX-FileCopyrightText: FabianTU |
||
14 | SPDX-FileCopyrightText: Johannes Röder |
||
15 | SPDX-FileCopyrightText: Ekaterina Zolotarevskaia |
||
16 | SPDX-FileCopyrightText: Johannes Kochems |
||
17 | SPDX-FileCopyrightText: Johannes Giehl |
||
18 | SPDX-FileCopyrightText: Raul Ciria Aylagas |
||
19 | |||
20 | SPDX-License-Identifier: MIT |
||
21 | |||
22 | """ |
||
23 | import math |
||
24 | import numbers |
||
25 | from warnings import warn |
||
26 | |||
27 | from oemof.network import Node |
||
28 | from pyomo.core.base.block import ScalarBlock |
||
29 | from pyomo.environ import Binary |
||
30 | from pyomo.environ import BuildAction |
||
31 | from pyomo.environ import Constraint |
||
32 | from pyomo.environ import Expression |
||
33 | from pyomo.environ import NonNegativeReals |
||
34 | from pyomo.environ import Set |
||
35 | from pyomo.environ import Var |
||
36 | |||
37 | from oemof.solph._helpers import check_node_object_for_missing_attribute |
||
38 | from oemof.solph._options import Investment |
||
39 | from oemof.solph._plumbing import sequence |
||
40 | from oemof.solph._plumbing import valid_sequence |
||
41 | |||
42 | |||
43 | class GenericStorage(Node): |
||
44 | r""" |
||
45 | Component `GenericStorage` to model with basic characteristics of storages. |
||
46 | |||
47 | The GenericStorage is designed for one input and one output. |
||
48 | |||
49 | Parameters |
||
50 | ---------- |
||
51 | nominal_capacity : numeric, :math:`E_{nom}` or |
||
52 | :class:`oemof.solph.options.Investment` object |
||
53 | Absolute nominal capacity of the storage, fixed value or |
||
54 | object describing parameter of investment optimisations. |
||
55 | invest_relation_input_capacity : numeric (iterable or scalar) or None, :math:`r_{cap,in}` |
||
56 | Ratio between the investment variable of the input Flow and the |
||
57 | investment variable of the storage: |
||
58 | :math:`\dot{E}_{in,invest} = E_{invest} \cdot r_{cap,in}` |
||
59 | invest_relation_output_capacity : numeric (iterable or scalar) or None, :math:`r_{cap,out}` |
||
60 | Ratio between the investment variable of the output Flow and the |
||
61 | investment variable of the storage: |
||
62 | :math:`\dot{E}_{out,invest} = E_{invest} \cdot r_{cap,out}` |
||
63 | invest_relation_input_output : numeric (iterable or scalar) or None, :math:`r_{in,out}` |
||
64 | Ratio between the investment variable of the output Flow and the |
||
65 | investment variable of the input flow. This ratio used to fix the |
||
66 | flow investments to each other. |
||
67 | Values < 1 set the input flow lower than the output and > 1 will |
||
68 | set the input flow higher than the output flow. If None no relation |
||
69 | will be set: |
||
70 | :math:`\dot{E}_{in,invest} = \dot{E}_{out,invest} \cdot r_{in,out}` |
||
71 | initial_storage_level : numeric, :math:`c(-1)` |
||
72 | The relative storage content in the timestep before the first |
||
73 | time step of optimization (between 0 and 1). |
||
74 | |||
75 | Note: When investment mode is used in a multi-period model, |
||
76 | `initial_storage_level` is not supported. |
||
77 | Storage output is forced to zero until the storage unit is invested in. |
||
78 | balanced : boolean |
||
79 | Couple storage level of first and last time step. |
||
80 | (Total inflow and total outflow are balanced.) |
||
81 | loss_rate : numeric (iterable or scalar) |
||
82 | The relative loss of the storage content per hour. |
||
83 | fixed_losses_relative : numeric (iterable or scalar), :math:`\gamma(t)` |
||
84 | Losses per hour that are independent of the storage content but |
||
85 | proportional to nominal storage capacity. |
||
86 | |||
87 | Note: Fixed losses are not supported in investment mode. |
||
88 | fixed_losses_absolute : numeric (iterable or scalar), :math:`\delta(t)` |
||
89 | Losses per hour that are independent of storage content and independent |
||
90 | of nominal storage capacity. |
||
91 | |||
92 | Note: Fixed losses are not supported in investment mode. |
||
93 | inflow_conversion_factor : numeric (iterable or scalar), :math:`\eta_i(t)` |
||
94 | The relative conversion factor, i.e. efficiency associated with the |
||
95 | inflow of the storage. |
||
96 | outflow_conversion_factor : numeric (iterable or scalar), :math:`\eta_o(t)` |
||
97 | see: inflow_conversion_factor |
||
98 | min_storage_level : numeric (iterable or scalar), :math:`c_{min}(t)` |
||
99 | The normed minimum storage content as fraction of the |
||
100 | nominal storage capacity or the capacity that has been invested into |
||
101 | (between 0 and 1). |
||
102 | To set different values in every time step use a sequence. |
||
103 | max_storage_level : numeric (iterable or scalar), :math:`c_{max}(t)` |
||
104 | see: min_storage_level |
||
105 | storage_costs : numeric (iterable or scalar), :math:`c_{storage}(t)` |
||
106 | Cost (per energy) for having energy in the storage, starting from |
||
107 | time point :math:`t_{1}`. (:math:`t_{0}` is left out to avoid counting |
||
108 | it twice if balanced=True.) |
||
109 | lifetime_inflow : int, :math:`n_{in}` |
||
110 | Determine the lifetime of an inflow; only applicable for multi-period |
||
111 | models which can invest in storage capacity and have an |
||
112 | invest_relation_input_capacity defined |
||
113 | lifetime_outflow : int, :math:`n_{in}` |
||
114 | Determine the lifetime of an outflow; only applicable for multi-period |
||
115 | models which can invest in storage capacity and have an |
||
116 | invest_relation_output_capacity defined |
||
117 | |||
118 | Notes |
||
119 | ----- |
||
120 | The following sets, variables, constraints and objective parts are created |
||
121 | * :py:class:`~oemof.solph.components._generic_storage.GenericStorageBlock` |
||
122 | (if no Investment object present) |
||
123 | * :py:class:`~oemof.solph.components._generic_storage.GenericInvestmentStorageBlock` |
||
124 | (if Investment object present) |
||
125 | |||
126 | Examples |
||
127 | -------- |
||
128 | Basic usage examples of the GenericStorage with a random selection of |
||
129 | attributes. See the Flow class for all Flow attributes. |
||
130 | |||
131 | >>> from oemof import solph |
||
132 | |||
133 | >>> my_bus = solph.buses.Bus('my_bus') |
||
134 | |||
135 | >>> my_storage = solph.components.GenericStorage( |
||
136 | ... label='storage', |
||
137 | ... nominal_capacity=1000, |
||
138 | ... inputs={my_bus: solph.flows.Flow(nominal_capacity=200, variable_costs=10)}, |
||
139 | ... outputs={my_bus: solph.flows.Flow(nominal_capacity=200)}, |
||
140 | ... loss_rate=0.01, |
||
141 | ... initial_storage_level=0, |
||
142 | ... max_storage_level = 0.9, |
||
143 | ... inflow_conversion_factor=0.9, |
||
144 | ... outflow_conversion_factor=0.93) |
||
145 | |||
146 | >>> my_investment_storage = solph.components.GenericStorage( |
||
147 | ... label='storage', |
||
148 | ... nominal_capacity=solph.Investment(ep_costs=50), |
||
149 | ... inputs={my_bus: solph.flows.Flow()}, |
||
150 | ... outputs={my_bus: solph.flows.Flow()}, |
||
151 | ... loss_rate=0.02, |
||
152 | ... initial_storage_level=None, |
||
153 | ... invest_relation_input_capacity=1/6, |
||
154 | ... invest_relation_output_capacity=1/6, |
||
155 | ... inflow_conversion_factor=1, |
||
156 | ... outflow_conversion_factor=0.8) |
||
157 | """ # noqa: E501 |
||
158 | |||
159 | def __init__( |
||
160 | self, |
||
161 | label=None, |
||
162 | inputs=None, |
||
163 | outputs=None, |
||
164 | nominal_capacity=None, |
||
165 | nominal_storage_capacity=None, # Can be removed for versions >= v0.7 |
||
166 | initial_storage_level=None, |
||
167 | invest_relation_input_output=None, |
||
168 | invest_relation_input_capacity=None, |
||
169 | invest_relation_output_capacity=None, |
||
170 | min_storage_level=0, |
||
171 | max_storage_level=1, |
||
172 | balanced=True, |
||
173 | loss_rate=0, |
||
174 | fixed_losses_relative=0, |
||
175 | fixed_losses_absolute=0, |
||
176 | inflow_conversion_factor=1, |
||
177 | outflow_conversion_factor=1, |
||
178 | storage_costs=None, |
||
179 | lifetime_inflow=None, |
||
180 | lifetime_outflow=None, |
||
181 | custom_attributes=None, |
||
182 | ): |
||
183 | if inputs is None: |
||
184 | inputs = {} |
||
185 | if outputs is None: |
||
186 | outputs = {} |
||
187 | if custom_attributes is None: |
||
188 | custom_attributes = {} |
||
189 | super().__init__( |
||
190 | label, |
||
191 | inputs=inputs, |
||
192 | outputs=outputs, |
||
193 | custom_properties=custom_attributes, |
||
194 | ) |
||
195 | # --- BEGIN: The following code can be removed for versions >= v0.7 --- |
||
196 | if nominal_storage_capacity is not None: |
||
197 | msg = ( |
||
198 | "For backward compatibility," |
||
199 | + " the option nominal_storage_capacity overwrites the option" |
||
200 | + " nominal_capacity." |
||
201 | + " Both options cannot be set at the same time." |
||
202 | ) |
||
203 | if nominal_capacity is not None: |
||
204 | raise AttributeError(msg) |
||
205 | else: |
||
206 | warn(msg, FutureWarning) |
||
207 | nominal_capacity = nominal_storage_capacity |
||
208 | # --- END --- |
||
209 | |||
210 | self.nominal_storage_capacity = None |
||
211 | self.investment = None |
||
212 | self._invest_group = False |
||
213 | if isinstance(nominal_capacity, numbers.Real): |
||
214 | self.nominal_storage_capacity = nominal_capacity |
||
215 | elif isinstance(nominal_capacity, Investment): |
||
216 | self.investment = nominal_capacity |
||
217 | self._invest_group = True |
||
218 | |||
219 | self.initial_storage_level = initial_storage_level |
||
220 | self.balanced = balanced |
||
221 | self.loss_rate = sequence(loss_rate) |
||
222 | self.fixed_losses_relative = sequence(fixed_losses_relative) |
||
223 | self.fixed_losses_absolute = sequence(fixed_losses_absolute) |
||
224 | self.inflow_conversion_factor = sequence(inflow_conversion_factor) |
||
225 | self.outflow_conversion_factor = sequence(outflow_conversion_factor) |
||
226 | self.max_storage_level = sequence(max_storage_level) |
||
227 | self.min_storage_level = sequence(min_storage_level) |
||
228 | self.storage_costs = sequence(storage_costs) |
||
229 | self.invest_relation_input_output = sequence( |
||
230 | invest_relation_input_output |
||
231 | ) |
||
232 | self.invest_relation_input_capacity = sequence( |
||
233 | invest_relation_input_capacity |
||
234 | ) |
||
235 | self.invest_relation_output_capacity = sequence( |
||
236 | invest_relation_output_capacity |
||
237 | ) |
||
238 | self.lifetime_inflow = lifetime_inflow |
||
239 | self.lifetime_outflow = lifetime_outflow |
||
240 | |||
241 | # Check number of flows. |
||
242 | self._check_number_of_flows() |
||
243 | # Check for infeasible parameter combinations |
||
244 | self._check_infeasible_parameter_combinations() |
||
245 | |||
246 | if self._invest_group: |
||
247 | self._check_invest_attributes() |
||
248 | |||
249 | def _set_flows(self): |
||
250 | """Define inflow / outflow as investment flows when they are |
||
251 | coupled with storage capacity via invest relations |
||
252 | """ |
||
253 | for flow in self.inputs.values(): |
||
254 | if self.invest_relation_input_capacity[ |
||
255 | 0 |
||
256 | ] is not None and not isinstance(flow.investment, Investment): |
||
257 | flow.investment = Investment() |
||
258 | for flow in self.outputs.values(): |
||
259 | if self.invest_relation_output_capacity[ |
||
260 | 0 |
||
261 | ] is not None and not isinstance(flow.investment, Investment): |
||
262 | flow.investment = Investment() |
||
263 | |||
264 | def _check_invest_attributes(self): |
||
265 | """Raise errors for infeasible investment attribute combinations""" |
||
266 | if ( |
||
267 | self.invest_relation_input_output[0] is not None |
||
268 | and self.invest_relation_output_capacity[0] is not None |
||
269 | and self.invest_relation_input_capacity[0] is not None |
||
270 | ): |
||
271 | e2 = ( |
||
272 | "Overdetermined. Three investment object will be coupled" |
||
273 | "with three constraints. Set one invest relation to 'None'." |
||
274 | ) |
||
275 | raise AttributeError(e2) |
||
276 | if ( |
||
277 | self.investment |
||
278 | and self.fixed_losses_absolute.max() != 0 |
||
279 | and self.investment.existing == 0 |
||
280 | and self.investment.minimum.min() == 0 |
||
281 | ): |
||
282 | e3 = ( |
||
283 | "With fixed_losses_absolute > 0, either investment.existing " |
||
284 | "or investment.minimum has to be non-zero." |
||
285 | ) |
||
286 | raise AttributeError(e3) |
||
287 | |||
288 | self._set_flows() |
||
289 | |||
290 | def _check_number_of_flows(self): |
||
291 | """Ensure that there is only one inflow and outflow to the storage""" |
||
292 | msg = "Only one {0} flow allowed in the GenericStorage {1}." |
||
293 | check_node_object_for_missing_attribute(self, "inputs") |
||
294 | check_node_object_for_missing_attribute(self, "outputs") |
||
295 | if len(self.inputs) > 1: |
||
296 | raise AttributeError(msg.format("input", self.label)) |
||
297 | if len(self.outputs) > 1: |
||
298 | raise AttributeError(msg.format("output", self.label)) |
||
299 | |||
300 | def _check_infeasible_parameter_combinations(self): |
||
301 | """Check for infeasible parameter combinations and raise error""" |
||
302 | msg = ( |
||
303 | "initial_storage_level must be greater or equal to " |
||
304 | "min_storage_level and smaller or equal to " |
||
305 | "max_storage_level." |
||
306 | ) |
||
307 | if self.initial_storage_level is not None: |
||
308 | if ( |
||
309 | self.initial_storage_level < self.min_storage_level[0] |
||
310 | or self.initial_storage_level > self.max_storage_level[0] |
||
311 | ): |
||
312 | raise ValueError(msg) |
||
313 | |||
314 | def constraint_group(self): |
||
315 | if self._invest_group is True: |
||
316 | return GenericInvestmentStorageBlock |
||
317 | else: |
||
318 | return GenericStorageBlock |
||
319 | |||
320 | |||
321 | class GenericStorageBlock(ScalarBlock): |
||
322 | r"""Storage without an :class:`.Investment` object. |
||
323 | |||
324 | **The following sets are created:** (-> see basic sets at |
||
325 | :class:`.Model` ) |
||
326 | |||
327 | STORAGES |
||
328 | A set with all :py:class:`~.GenericStorage` objects, which do not have an |
||
329 | :attr:`investment` of type :class:`.Investment`. |
||
330 | |||
331 | STORAGES_BALANCED |
||
332 | A set of all :py:class:`~.GenericStorage` objects, with 'balanced' attribute set |
||
333 | to True. |
||
334 | |||
335 | STORAGES_WITH_INVEST_FLOW_REL |
||
336 | A set with all :py:class:`~.GenericStorage` objects with two investment |
||
337 | flows coupled with the 'invest_relation_input_output' attribute. |
||
338 | |||
339 | **The following variables are created:** |
||
340 | |||
341 | storage_content |
||
342 | Storage content for every storage and timestep. The value for the |
||
343 | storage content at the beginning is set by the parameter |
||
344 | `initial_storage_level` or not set if `initial_storage_level` is None. |
||
345 | The variable of storage s and timestep t can be accessed by: |
||
346 | `om.GenericStorageBlock.storage_content[s, t]` |
||
347 | |||
348 | intra_storage_delta |
||
349 | Storage content for every storage and timestep of typical periods |
||
350 | (only used in TSAM-mode). The variable of storage s and timestep t can |
||
351 | be accessed by: `om.GenericStorageBlock.intra_storage_delta[s, k, t]` |
||
352 | |||
353 | **The following constraints are created:** |
||
354 | |||
355 | Set storage_content of last time step to one at t=0 if balanced == True |
||
356 | .. math:: |
||
357 | E(t_{last}) = E(-1) |
||
358 | |||
359 | Storage losses :attr:`om.Storage.losses[n, t]` |
||
360 | .. math:: E_{loss}(t) = &E(t-1) \cdot |
||
361 | 1 - (1 - \beta(t))^{\tau(t)/(t_u)} \\ |
||
362 | &- \gamma(t)\cdot E_{nom} \cdot {\tau(t)/(t_u)}\\ |
||
363 | &- \delta(t) \cdot {\tau(t)/(t_u)} |
||
364 | |||
365 | Storage balance :attr:`om.Storage.balance[n, t]` |
||
366 | .. math:: E(t) = &E(t-1) - E_{loss}(t)\\ |
||
367 | &- \frac{\dot{E}_o(p, t)}{\eta_o(t)} \cdot \tau(t)\\ |
||
368 | &+ \dot{E}_i(p, t) \cdot \eta_i(t) \cdot \tau(t) |
||
369 | |||
370 | Connect the invest variables of the input and the output flow. |
||
371 | .. math:: |
||
372 | InvestmentFlowBlock.invest(source(n), n, p) + existing = \\ |
||
373 | (InvestmentFlowBlock.invest(n, target(n), p) + existing) \\ |
||
374 | * invest\_relation\_input\_output(n) \\ |
||
375 | \forall n \in \textrm{INVEST\_REL\_IN\_OUT} \\ |
||
376 | \forall p \in \textrm{CAPACITY_PERIODS} |
||
377 | |||
378 | |||
379 | |||
380 | =========================== ======================= ========= |
||
381 | symbol explanation attribute |
||
382 | =========================== ======================= ========= |
||
383 | :math:`E(t)` energy currently stored `storage_content` |
||
384 | :math:`E_{nom}` nominal capacity of `nominal_storage_capacity` |
||
385 | the energy storage |
||
386 | :math:`c(-1)` state before `initial_storage_level` |
||
387 | initial time step |
||
388 | :math:`c_{min}(t)` minimum allowed storage `min_storage_level[t]` |
||
389 | :math:`c_{max}(t)` maximum allowed storage `max_storage_level[t]` |
||
390 | :math:`\beta(t)` fraction of lost energy `loss_rate[t]` |
||
391 | as share of |
||
392 | :math:`E(t)` per hour |
||
393 | :math:`\gamma(t)` fixed loss of energy `fixed_losses_relative[t]` |
||
394 | per hour relative to |
||
395 | :math:`E_{nom}` |
||
396 | :math:`\delta(t)` absolute fixed loss `fixed_losses_absolute[t]` |
||
397 | of energy per hour |
||
398 | :math:`\dot{E}_i(t)` energy flowing in `inputs` |
||
399 | :math:`\dot{E}_o(t)` energy flowing out `outputs` |
||
400 | :math:`\eta_i(t)` conversion factor `inflow_conversion_factor[t]` |
||
401 | (i.e. efficiency) |
||
402 | when storing energy |
||
403 | :math:`\eta_o(t)` conversion factor when `outflow_conversion_factor[t]` |
||
404 | (i.e. efficiency) |
||
405 | taking stored energy |
||
406 | :math:`\tau(t)` duration of time step |
||
407 | :math:`t_u` time unit of losses |
||
408 | :math:`\beta(t)`, |
||
409 | :math:`\gamma(t)` |
||
410 | :math:`\delta(t)` and |
||
411 | timeincrement |
||
412 | :math:`\tau(t)` |
||
413 | :math:`c_{storage}(t)` costs of having `storage_costs` |
||
414 | energy stored |
||
415 | =========================== ======================= ========= |
||
416 | |||
417 | **The following parts of the objective function are created:** |
||
418 | |||
419 | * :attr: `storage_costs` not 0 |
||
420 | |||
421 | .. math:: |
||
422 | \sum_{t \in \textrm{TIMEPOINTS} > 0} c_{storage}(t) \cdot E(t) |
||
423 | |||
424 | """ # noqa: E501 |
||
425 | |||
426 | CONSTRAINT_GROUP = True |
||
427 | |||
428 | def __init__(self, *args, **kwargs): |
||
429 | super().__init__(*args, **kwargs) |
||
430 | |||
431 | def _create(self, group=None): |
||
432 | """ |
||
433 | Parameters |
||
434 | ---------- |
||
435 | group : list |
||
436 | List containing storage objects. |
||
437 | e.g. groups=[storage1, storage2,..] |
||
438 | """ |
||
439 | m = self.parent_block() |
||
440 | |||
441 | if group is None: |
||
442 | return None |
||
443 | |||
444 | i = {n: [i for i in n.inputs][0] for n in group} |
||
445 | o = {n: [o for o in n.outputs][0] for n in group} |
||
446 | |||
447 | # ************* SETS ********************************* |
||
448 | |||
449 | self.STORAGES = Set(initialize=[n for n in group]) |
||
450 | |||
451 | self.STORAGES_BALANCED = Set( |
||
452 | initialize=[n for n in group if n.balanced is True] |
||
453 | ) |
||
454 | |||
455 | self.STORAGES_INITITAL_LEVEL = Set( |
||
456 | initialize=[ |
||
457 | n for n in group if n.initial_storage_level is not None |
||
458 | ] |
||
459 | ) |
||
460 | |||
461 | self.STORAGES_WITH_INVEST_FLOW_REL = Set( |
||
462 | initialize=[ |
||
463 | n |
||
464 | for n in group |
||
465 | if n.invest_relation_input_output[0] is not None |
||
466 | ] |
||
467 | ) |
||
468 | |||
469 | # ************* VARIABLES ***************************** |
||
470 | |||
471 | def _storage_content_bound_rule(block, n, t): |
||
472 | """ |
||
473 | Rule definition for bounds of storage_content variable of |
||
474 | storage n in timestep t. |
||
475 | """ |
||
476 | bounds = ( |
||
477 | n.nominal_storage_capacity * n.min_storage_level[t], |
||
478 | n.nominal_storage_capacity * n.max_storage_level[t], |
||
479 | ) |
||
480 | return bounds |
||
481 | |||
482 | if not m.TSAM_MODE: |
||
483 | self.storage_content = Var( |
||
484 | self.STORAGES, m.TIMEPOINTS, bounds=_storage_content_bound_rule |
||
485 | ) |
||
486 | |||
487 | self.storage_losses = Var(self.STORAGES, m.TIMESTEPS) |
||
488 | |||
489 | # set the initial storage content |
||
490 | # ToDo: More elegant code possible? |
||
491 | for n in group: |
||
492 | if n.initial_storage_level is not None: |
||
493 | self.storage_content[n, 0] = ( |
||
494 | n.initial_storage_level * n.nominal_storage_capacity |
||
495 | ) |
||
496 | self.storage_content[n, 0].fix() |
||
497 | else: |
||
498 | # called "inter" in https://doi.org/10.1016/j.apenergy.2018.01.023 |
||
499 | self.inter_storage_content = Var( |
||
500 | self.STORAGES, m.CLUSTERS_OFFSET, within=NonNegativeReals |
||
501 | ) |
||
502 | # called "intra" in https://doi.org/10.1016/j.apenergy.2018.01.023 |
||
503 | self.intra_storage_delta = Var( |
||
504 | self.STORAGES, m.TIMEINDEX_TYPICAL_CLUSTER_OFFSET |
||
505 | ) |
||
506 | # set the initial intra storage content |
||
507 | # first timestep in intra storage is always zero |
||
508 | for n in group: |
||
509 | for p, k in m.TYPICAL_CLUSTERS: |
||
510 | self.intra_storage_delta[n, p, k, 0] = 0 |
||
511 | self.intra_storage_delta[n, p, k, 0].fix() |
||
512 | if n.initial_storage_level is not None: |
||
513 | self.inter_storage_content[n, 0] = ( |
||
514 | n.initial_storage_level * n.nominal_storage_capacity |
||
515 | ) |
||
516 | self.inter_storage_content[n, 0].fix() |
||
517 | # ************* Constraints *************************** |
||
518 | |||
519 | View Code Duplication | def _storage_inter_minimum_level_rule(block): |
|
|
|||
520 | # See FINE implementation at |
||
521 | # https://github.com/FZJ-IEK3-VSA/FINE/blob/ |
||
522 | # 57ec32561fb95e746c505760bd0d61c97d2fd2fb/FINE/storage.py#L1329 |
||
523 | for n in self.STORAGES: |
||
524 | for p, i, g in m.TIMEINDEX_CLUSTER: |
||
525 | t = m.get_timestep_from_tsam_timestep(p, i, g) |
||
526 | lhs = n.nominal_storage_capacity * n.min_storage_level[t] |
||
527 | k = m.es.tsa_parameters[p]["order"][i] |
||
528 | tk = m.get_timestep_from_tsam_timestep(p, k, g) |
||
529 | inter_i = ( |
||
530 | sum( |
||
531 | len(m.es.tsa_parameters[ip]["order"]) |
||
532 | for ip in range(p) |
||
533 | ) |
||
534 | + i |
||
535 | ) |
||
536 | rhs = ( |
||
537 | self.inter_storage_content[n, inter_i] |
||
538 | * (1 - n.loss_rate[t]) ** (g * m.timeincrement[tk]) |
||
539 | + self.intra_storage_delta[n, p, k, g] |
||
540 | ) |
||
541 | self.storage_inter_minimum_level.add( |
||
542 | (n, p, i, g), lhs <= rhs |
||
543 | ) |
||
544 | |||
545 | if m.TSAM_MODE: |
||
546 | self.storage_inter_minimum_level = Constraint( |
||
547 | self.STORAGES, m.TIMEINDEX_CLUSTER, noruleinit=True |
||
548 | ) |
||
549 | |||
550 | self.storage_inter_minimum_level_build = BuildAction( |
||
551 | rule=_storage_inter_minimum_level_rule |
||
552 | ) |
||
553 | |||
554 | View Code Duplication | def _storage_inter_maximum_level_rule(block): |
|
555 | for n in self.STORAGES: |
||
556 | for p, i, g in m.TIMEINDEX_CLUSTER: |
||
557 | t = m.get_timestep_from_tsam_timestep(p, i, g) |
||
558 | k = m.es.tsa_parameters[p]["order"][i] |
||
559 | tk = m.get_timestep_from_tsam_timestep(p, k, g) |
||
560 | inter_i = ( |
||
561 | sum( |
||
562 | len(m.es.tsa_parameters[ip]["order"]) |
||
563 | for ip in range(p) |
||
564 | ) |
||
565 | + i |
||
566 | ) |
||
567 | lhs = ( |
||
568 | self.inter_storage_content[n, inter_i] |
||
569 | * (1 - n.loss_rate[t]) ** (g * m.timeincrement[tk]) |
||
570 | + self.intra_storage_delta[n, p, k, g] |
||
571 | ) |
||
572 | rhs = n.nominal_storage_capacity * n.max_storage_level[t] |
||
573 | self.storage_inter_maximum_level.add( |
||
574 | (n, p, i, g), lhs <= rhs |
||
575 | ) |
||
576 | |||
577 | if m.TSAM_MODE: |
||
578 | self.storage_inter_maximum_level = Constraint( |
||
579 | self.STORAGES, m.TIMEINDEX_CLUSTER, noruleinit=True |
||
580 | ) |
||
581 | |||
582 | self.storage_inter_maximum_level_build = BuildAction( |
||
583 | rule=_storage_inter_maximum_level_rule |
||
584 | ) |
||
585 | |||
586 | def _storage_losses_rule(block, n, t): |
||
587 | expr = block.storage_content[n, t] * ( |
||
588 | 1 - (1 - n.loss_rate[t]) ** m.timeincrement[t] |
||
589 | ) |
||
590 | expr += ( |
||
591 | n.fixed_losses_relative[t] |
||
592 | * n.nominal_storage_capacity |
||
593 | * m.timeincrement[t] |
||
594 | ) |
||
595 | expr += n.fixed_losses_absolute[t] * m.timeincrement[t] |
||
596 | |||
597 | return expr == block.storage_losses[n, t] |
||
598 | |||
599 | if not m.TSAM_MODE: |
||
600 | self.losses = Constraint( |
||
601 | self.STORAGES, m.TIMESTEPS, rule=_storage_losses_rule |
||
602 | ) |
||
603 | |||
604 | def _storage_balance_rule(block, n, t): |
||
605 | """ |
||
606 | Rule definition for the storage balance of every storage n and |
||
607 | every timestep. |
||
608 | """ |
||
609 | expr = block.storage_content[n, t] |
||
610 | expr -= block.storage_losses[n, t] |
||
611 | expr += ( |
||
612 | m.flow[i[n], n, t] * n.inflow_conversion_factor[t] |
||
613 | ) * m.timeincrement[t] |
||
614 | expr -= ( |
||
615 | m.flow[n, o[n], t] / n.outflow_conversion_factor[t] |
||
616 | ) * m.timeincrement[t] |
||
617 | return expr == block.storage_content[n, t + 1] |
||
618 | |||
619 | View Code Duplication | def _intra_storage_balance_rule(block, n, p, k, g): |
|
620 | """ |
||
621 | Rule definition for the storage balance of every storage n and |
||
622 | every timestep. |
||
623 | """ |
||
624 | t = m.get_timestep_from_tsam_timestep(p, k, g) |
||
625 | expr = 0 |
||
626 | expr += block.intra_storage_delta[n, p, k, g + 1] |
||
627 | expr += ( |
||
628 | -block.intra_storage_delta[n, p, k, g] |
||
629 | * (1 - n.loss_rate[t]) ** m.timeincrement[t] |
||
630 | ) |
||
631 | expr += ( |
||
632 | n.fixed_losses_relative[t] |
||
633 | * n.nominal_storage_capacity |
||
634 | * m.timeincrement[t] |
||
635 | ) |
||
636 | expr += n.fixed_losses_absolute[t] * m.timeincrement[t] |
||
637 | expr += ( |
||
638 | -m.flow[i[n], n, t] * n.inflow_conversion_factor[t] |
||
639 | ) * m.timeincrement[t] |
||
640 | expr += ( |
||
641 | m.flow[n, o[n], t] / n.outflow_conversion_factor[t] |
||
642 | ) * m.timeincrement[t] |
||
643 | return expr == 0 |
||
644 | |||
645 | if not m.TSAM_MODE: |
||
646 | self.balance = Constraint( |
||
647 | self.STORAGES, m.TIMESTEPS, rule=_storage_balance_rule |
||
648 | ) |
||
649 | else: |
||
650 | self.intra_balance = Constraint( |
||
651 | self.STORAGES, |
||
652 | m.TIMEINDEX_TYPICAL_CLUSTER, |
||
653 | rule=_intra_storage_balance_rule, |
||
654 | ) |
||
655 | |||
656 | def _inter_storage_balance_rule(block, n, i): |
||
657 | """ |
||
658 | Rule definition for the storage balance of every storage n and |
||
659 | every timestep. |
||
660 | """ |
||
661 | ii = 0 |
||
662 | for p in m.CAPACITY_PERIODS: |
||
663 | ii += len(m.es.tsa_parameters[p]["order"]) |
||
664 | if ii > i: |
||
665 | ii -= len(m.es.tsa_parameters[p]["order"]) |
||
666 | ii = i - ii |
||
667 | break |
||
668 | |||
669 | k = m.es.tsa_parameters[p]["order"][ii] |
||
670 | |||
671 | # Calculate inter losses over whole typical period |
||
672 | t0 = m.get_timestep_from_tsam_timestep(p, k, 0) |
||
673 | losses = math.prod( |
||
674 | ( |
||
675 | (1 - n.loss_rate[t0 + s]) |
||
676 | ** m.es.tsa_parameters[p]["segments"][(k, s)] |
||
677 | if "segments" in m.es.tsa_parameters[p] |
||
678 | else 1 - n.loss_rate[t0 + s] |
||
679 | ) |
||
680 | for s in range(m.es.tsa_parameters[p]["timesteps"]) |
||
681 | ) |
||
682 | |||
683 | expr = 0 |
||
684 | expr += block.inter_storage_content[n, i + 1] |
||
685 | expr += -block.inter_storage_content[n, i] * losses |
||
686 | expr += -self.intra_storage_delta[ |
||
687 | n, p, k, m.es.tsa_parameters[p]["timesteps"] |
||
688 | ] |
||
689 | return expr == 0 |
||
690 | |||
691 | if m.TSAM_MODE: |
||
692 | self.inter_balance = Constraint( |
||
693 | self.STORAGES, |
||
694 | m.CLUSTERS, |
||
695 | rule=_inter_storage_balance_rule, |
||
696 | ) |
||
697 | |||
698 | def _balanced_storage_rule(block, n): |
||
699 | """ |
||
700 | Storage content of last time step == initial storage content |
||
701 | if balanced. |
||
702 | """ |
||
703 | return ( |
||
704 | block.storage_content[n, m.TIMEPOINTS.at(-1)] |
||
705 | == block.storage_content[n, m.TIMEPOINTS.at(1)] |
||
706 | ) |
||
707 | |||
708 | def _balanced_inter_storage_rule(block, n): |
||
709 | """ |
||
710 | Storage content of last time step == initial storage content |
||
711 | if balanced. |
||
712 | """ |
||
713 | return ( |
||
714 | block.inter_storage_content[n, m.CLUSTERS_OFFSET.at(-1)] |
||
715 | == block.inter_storage_content[n, m.CLUSTERS_OFFSET.at(1)] |
||
716 | ) |
||
717 | |||
718 | if not m.TSAM_MODE: |
||
719 | self.balanced_cstr = Constraint( |
||
720 | self.STORAGES_BALANCED, rule=_balanced_storage_rule |
||
721 | ) |
||
722 | else: |
||
723 | self.balanced_cstr = Constraint( |
||
724 | self.STORAGES_BALANCED, rule=_balanced_inter_storage_rule |
||
725 | ) |
||
726 | |||
727 | def _power_coupled(_): |
||
728 | """ |
||
729 | Rule definition for constraint to connect the input power |
||
730 | and output power |
||
731 | """ |
||
732 | for n in self.STORAGES_WITH_INVEST_FLOW_REL: |
||
733 | for p in m.CAPACITY_PERIODS: |
||
734 | expr = ( |
||
735 | m.InvestmentFlowBlock.total[n, o[n], p] |
||
736 | ) * n.invest_relation_input_output[p] == ( |
||
737 | m.InvestmentFlowBlock.total[i[n], n, p] |
||
738 | ) |
||
739 | self.power_coupled.add((n, p), expr) |
||
740 | |||
741 | self.power_coupled = Constraint( |
||
742 | self.STORAGES_WITH_INVEST_FLOW_REL, |
||
743 | m.CAPACITY_PERIODS, |
||
744 | noruleinit=True, |
||
745 | ) |
||
746 | |||
747 | self.power_coupled_build = BuildAction(rule=_power_coupled) |
||
748 | |||
749 | def _objective_expression(self): |
||
750 | r""" |
||
751 | Objective expression for storages with no investment. |
||
752 | |||
753 | * Fixed costs (will not have an impact on the actual optimisation). |
||
754 | * Variable costs for storage content. |
||
755 | """ |
||
756 | m = self.parent_block() |
||
757 | |||
758 | storage_costs = 0 |
||
759 | |||
760 | for n in self.STORAGES: |
||
761 | View Code Duplication | if valid_sequence(n.storage_costs, len(m.TIMESTEPS)): |
|
762 | # We actually want to iterate over all TIMEPOINTS except the |
||
763 | # 0th. As integers are used for the index, this is equicalent |
||
764 | # to iterating over the TIMESTEPS with one offset. |
||
765 | if not m.TSAM_MODE: |
||
766 | for t in m.TIMESTEPS: |
||
767 | storage_costs += ( |
||
768 | self.storage_content[n, t + 1] * n.storage_costs[t] |
||
769 | ) |
||
770 | else: |
||
771 | for t in m.TIMESTEPS_ORIGINAL: |
||
772 | storage_costs += ( |
||
773 | self.storage_content[n, t + 1] |
||
774 | * n.storage_costs[t + 1] |
||
775 | ) |
||
776 | |||
777 | self.storage_costs = Expression(expr=storage_costs) |
||
778 | self.costs = Expression(expr=storage_costs) |
||
779 | |||
780 | return self.costs |
||
781 | |||
782 | |||
783 | class GenericInvestmentStorageBlock(ScalarBlock): |
||
784 | r""" |
||
785 | Block for all storages with :attr:`Investment` being not None. |
||
786 | See :class:`.Investment` for all parameters of the |
||
787 | Investment class. |
||
788 | |||
789 | **Variables** |
||
790 | |||
791 | All Storages are indexed by :math:`n` (denoting the respective storage |
||
792 | unit), which is omitted in the following for the sake of convenience. |
||
793 | The following variables are created as attributes of |
||
794 | :attr:`om.GenericInvestmentStorageBlock`: |
||
795 | |||
796 | * :math:`P_i(p, t)` |
||
797 | |||
798 | Inflow of the storage |
||
799 | (created in :class:`oemof.solph.models.Model`). |
||
800 | |||
801 | * :math:`P_o(p, t)` |
||
802 | |||
803 | Outflow of the storage |
||
804 | (created in :class:`oemof.solph.models.Model`). |
||
805 | |||
806 | * :math:`E(t)` |
||
807 | |||
808 | Current storage content (Absolute level of stored energy). |
||
809 | |||
810 | * :math:`E_{invest}(p)` |
||
811 | |||
812 | Invested (nominal) capacity of the storage in period p. |
||
813 | |||
814 | * :math:`E_{total}(p)` |
||
815 | |||
816 | Total installed (nominal) capacity of the storage in period p. |
||
817 | |||
818 | * :math:`E_{old}(p)` |
||
819 | |||
820 | Old (nominal) capacity of the storage to be decommissioned in period p. |
||
821 | |||
822 | * :math:`E_{old,exo}(p)` |
||
823 | |||
824 | Exogenous old (nominal) capacity of the storage to be decommissioned |
||
825 | in period p; existing capacity reaching its lifetime. |
||
826 | |||
827 | * :math:`E_{old,endo}(p)` |
||
828 | |||
829 | Endogenous old (nominal) capacity of the storage to be decommissioned |
||
830 | in period p; endgenous investments reaching their lifetime. |
||
831 | |||
832 | * :math:`E(-1)` |
||
833 | |||
834 | Initial storage content (before timestep 0). |
||
835 | Not applicable for a multi-period model. |
||
836 | |||
837 | * :math:`b_{invest}(p)` |
||
838 | |||
839 | Binary variable for the status of the investment, if |
||
840 | :attr:`nonconvex` is `True`. |
||
841 | |||
842 | **Constraints** |
||
843 | |||
844 | The following constraints are created for all investment storages: |
||
845 | |||
846 | Storage balance (Same as for :class:`.GenericStorageBlock`) |
||
847 | |||
848 | .. math:: E(t) = &E(t-1) \cdot |
||
849 | (1 - \beta(t)) ^{\tau(t)/(t_u)} \\ |
||
850 | &- \gamma(t)\cdot (E_{total}(p)) \cdot {\tau(t)/(t_u)}\\ |
||
851 | &- \delta(t) \cdot {\tau(t)/(t_u)}\\ |
||
852 | &- \frac{\dot{E}_o(p, t))}{\eta_o(t)} \cdot \tau(t) |
||
853 | + \dot{E}_i(p, t) \cdot \eta_i(t) \cdot \tau(t) |
||
854 | |||
855 | Total storage capacity (p > 0 for multi-period model only) |
||
856 | |||
857 | .. math:: |
||
858 | & |
||
859 | if \quad p=0:\\ |
||
860 | & |
||
861 | E_{total}(p) = E_{exist} + E_{invest}(p)\\ |
||
862 | &\\ |
||
863 | & |
||
864 | else:\\ |
||
865 | & |
||
866 | E_{total}(p) = E_{total}(p-1) + E_{invest}(p) - E_{old}(p)\\ |
||
867 | &\\ |
||
868 | & |
||
869 | \forall p \in \textrm{CAPACITY_PERIODS} |
||
870 | |||
871 | Old storage capacity (p > 0 for multi-period model only) |
||
872 | |||
873 | .. math:: |
||
874 | & |
||
875 | E_{old}(p) = E_{old,exo}(p) + E_{old,end}(p)\\ |
||
876 | &\\ |
||
877 | & |
||
878 | if \quad p=0:\\ |
||
879 | & |
||
880 | E_{old,end}(p) = 0\\ |
||
881 | &\\ |
||
882 | & |
||
883 | else \quad if \quad l \leq year(p):\\ |
||
884 | & |
||
885 | E_{old,end}(p) = E_{invest}(p_{comm})\\ |
||
886 | &\\ |
||
887 | & |
||
888 | else:\\ |
||
889 | & |
||
890 | E_{old,end}(p)\\ |
||
891 | &\\ |
||
892 | & |
||
893 | if \quad p=0:\\ |
||
894 | & |
||
895 | E_{old,exo}(p) = 0\\ |
||
896 | &\\ |
||
897 | & |
||
898 | else \quad if \quad l - a \leq year(p):\\ |
||
899 | & |
||
900 | E_{old,exo}(p) = E_{exist} (*)\\ |
||
901 | &\\ |
||
902 | & |
||
903 | else:\\ |
||
904 | & |
||
905 | E_{old,exo}(p) = 0\\ |
||
906 | &\\ |
||
907 | & |
||
908 | \forall p \in \textrm{CAPACITY_PERIODS} |
||
909 | |||
910 | where: |
||
911 | |||
912 | * (*) is only performed for the first period the condition is True. |
||
913 | A decommissioning flag is then set to True to prevent having falsely |
||
914 | added old capacity in future periods. |
||
915 | * :math:`year(p)` is the year corresponding to period p |
||
916 | * :math:`p_{comm}` is the commissioning period of the storage |
||
917 | |||
918 | Depending on the attribute :attr:`nonconvex`, the constraints for the |
||
919 | bounds of the decision variable :math:`E_{invest}(p)` are different:\ |
||
920 | |||
921 | * :attr:`nonconvex = False` |
||
922 | |||
923 | .. math:: |
||
924 | & |
||
925 | E_{invest, min}(p) \le E_{invest}(p) \le E_{invest, max}(p) \\ |
||
926 | & |
||
927 | \forall p \in \textrm{CAPACITY_PERIODS} |
||
928 | |||
929 | * :attr:`nonconvex = True` |
||
930 | |||
931 | .. math:: |
||
932 | & |
||
933 | E_{invest, min}(p) \cdot b_{invest}(p) \le E_{invest}(p)\\ |
||
934 | & |
||
935 | E_{invest}(p) \le E_{invest, max}(p) \cdot b_{invest}(p)\\ |
||
936 | & |
||
937 | \forall p \in \textrm{CAPACITY_PERIODS} |
||
938 | |||
939 | The following constraints are created depending on the attributes of |
||
940 | the :class:`.GenericStorage`: |
||
941 | |||
942 | * :attr:`initial_storage_level is None`; |
||
943 | not applicable for multi-period model |
||
944 | |||
945 | Constraint for a variable initial storage content: |
||
946 | |||
947 | .. math:: |
||
948 | E(-1) \le E_{exist} + E_{invest}(0) |
||
949 | |||
950 | * :attr:`initial_storage_level is not None`; |
||
951 | not applicable for multi-period model |
||
952 | |||
953 | An initial value for the storage content is given: |
||
954 | |||
955 | .. math:: |
||
956 | E(-1) = (E_{invest}(0) + E_{exist}) \cdot c(-1) |
||
957 | |||
958 | * :attr:`balanced=True`; |
||
959 | not applicable for multi-period model |
||
960 | |||
961 | The energy content of storage of the first and the last timestep |
||
962 | are set equal: |
||
963 | |||
964 | .. math:: |
||
965 | E(-1) = E(t_{last}) |
||
966 | |||
967 | * :attr:`invest_relation_input_capacity is not None` |
||
968 | |||
969 | Connect the invest variables of the storage and the input flow: |
||
970 | |||
971 | .. math:: |
||
972 | & |
||
973 | P_{i,total}(p) = |
||
974 | E_{total}(p) \cdot r_{cap,in} \\ |
||
975 | & |
||
976 | \forall p \in \textrm{CAPACITY_PERIODS} |
||
977 | |||
978 | * :attr:`invest_relation_output_capacity is not None` |
||
979 | |||
980 | Connect the invest variables of the storage and the output flow: |
||
981 | |||
982 | .. math:: |
||
983 | & |
||
984 | P_{o,total}(p) = |
||
985 | E_{total}(p) \cdot r_{cap,out}\\ |
||
986 | & |
||
987 | \forall p \in \textrm{CAPACITY_PERIODS} |
||
988 | |||
989 | * :attr:`invest_relation_input_output is not None` |
||
990 | |||
991 | Connect the invest variables of the input and the output flow: |
||
992 | |||
993 | .. math:: |
||
994 | & |
||
995 | P_{i,total}(p) = |
||
996 | P_{o,total}(p) \cdot r_{in,out}\\ |
||
997 | & |
||
998 | \forall p \in \textrm{CAPACITY_PERIODS} |
||
999 | |||
1000 | * :attr:`max_storage_level` |
||
1001 | |||
1002 | Rule for upper bound constraint for the storage content: |
||
1003 | |||
1004 | .. math:: |
||
1005 | & |
||
1006 | E(t) \leq E_{total}(p) \cdot c_{max}(t)\\ |
||
1007 | & |
||
1008 | \forall p, t \in \textrm{TIMEINDEX} |
||
1009 | |||
1010 | * :attr:`min_storage_level` |
||
1011 | |||
1012 | Rule for lower bound constraint for the storage content: |
||
1013 | |||
1014 | .. math:: |
||
1015 | & |
||
1016 | E(t) \geq E_{total}(p) \cdot c_{min}(t)\\ |
||
1017 | & |
||
1018 | \forall p, t \in \textrm{TIMEINDEX} |
||
1019 | |||
1020 | |||
1021 | **Objective function** |
||
1022 | |||
1023 | Objective terms for a standard model and a multi-period model differ |
||
1024 | quite strongly. Besides, the part of the objective function added by the |
||
1025 | investment storages also depends on whether a convex or nonconvex |
||
1026 | investment option is selected. The following parts of the objective |
||
1027 | function are created: |
||
1028 | |||
1029 | *Standard model* |
||
1030 | |||
1031 | * :attr:`nonconvex = False` |
||
1032 | |||
1033 | .. math:: |
||
1034 | E_{invest}(0) \cdot c_{invest,var}(0) |
||
1035 | |||
1036 | * :attr:`nonconvex = True` |
||
1037 | |||
1038 | .. math:: |
||
1039 | E_{invest}(0) \cdot c_{invest,var}(0) |
||
1040 | + c_{invest,fix}(0) \cdot b_{invest}(0)\\ |
||
1041 | |||
1042 | Where 0 denotes the 0th (investment) period since |
||
1043 | in a standard model, there is only this one period. |
||
1044 | |||
1045 | *Multi-period model* |
||
1046 | |||
1047 | * :attr:`nonconvex = False` |
||
1048 | |||
1049 | .. math:: |
||
1050 | & |
||
1051 | E_{invest}(p) \cdot A(c_{invest,var}(p), l, ir) |
||
1052 | \cdot \frac {1}{ANF(d, ir)} \cdot DF^{-p}\\ |
||
1053 | & |
||
1054 | \forall p \in \textrm{CAPACITY_PERIODS} |
||
1055 | |||
1056 | In case, the remaining lifetime of a storage is greater than 0 and |
||
1057 | attribute `use_remaining_value` of the energy system is True, |
||
1058 | the difference in value for the investment period compared to the |
||
1059 | last period of the optimization horizon is accounted for |
||
1060 | as an adder to the investment costs: |
||
1061 | |||
1062 | .. math:: |
||
1063 | & |
||
1064 | E_{invest}(p) \cdot (A(c_{invest,var}(p), l_{r}, ir) - |
||
1065 | A(c_{invest,var}(|P|), l_{r}, ir)\\ |
||
1066 | & \cdot \frac {1}{ANF(l_{r}, ir)} \cdot DF^{-|P|}\\ |
||
1067 | &\\ |
||
1068 | & |
||
1069 | \forall p \in \textrm{CAPACITY_PERIODS} |
||
1070 | |||
1071 | * :attr:`nonconvex = True` |
||
1072 | |||
1073 | .. math:: |
||
1074 | & |
||
1075 | (E_{invest}(p) \cdot A(c_{invest,var}(p), l, ir) |
||
1076 | \cdot \frac {1}{ANF(d, ir)}\\ |
||
1077 | & |
||
1078 | + c_{invest,fix}(p) \cdot b_{invest}(p)) \cdot DF^{-p} \\ |
||
1079 | & |
||
1080 | \forall p \in \textrm{CAPACITY_PERIODS} |
||
1081 | |||
1082 | In case, the remaining lifetime of a storage is greater than 0 and |
||
1083 | attribute `use_remaining_value` of the energy system is True, |
||
1084 | the difference in value for the investment period compared to the |
||
1085 | last period of the optimization horizon is accounted for |
||
1086 | as an adder to the investment costs: |
||
1087 | |||
1088 | .. math:: |
||
1089 | & |
||
1090 | (E_{invest}(p) \cdot (A(c_{invest,var}(p), l_{r}, ir) - |
||
1091 | A(c_{invest,var}(|P|), l_{r}, ir)\\ |
||
1092 | & \cdot \frac {1}{ANF(l_{r}, ir)} \cdot DF^{-|P|}\\ |
||
1093 | & |
||
1094 | + (c_{invest,fix}(p) - c_{invest,fix}(|P|)) |
||
1095 | \cdot b_{invest}(p)) \cdot DF^{-p}\\ |
||
1096 | &\\ |
||
1097 | & |
||
1098 | \forall p \in \textrm{CAPACITY_PERIODS} |
||
1099 | |||
1100 | .. csv-table:: List of Variables |
||
1101 | :header: "symbol", "attribute", "explanation" |
||
1102 | :widths: 1, 1, 1 |
||
1103 | |||
1104 | ":math:`P_i(p, t)`", ":attr:`flow[i[n], n, p, t]`", "Inflow |
||
1105 | of the storage" |
||
1106 | ":math:`P_o(p, t)`", ":attr:`flow[n, o[n], p, t]`", "Outflow |
||
1107 | of the storage" |
||
1108 | ":math:`E(t)`", ":attr:`storage_content[n, t]`", "Current storage |
||
1109 | content (current absolute stored energy)" |
||
1110 | ":math:`E_{loss}(t)`", ":attr:`storage_losses[n, t]`", "Current storage |
||
1111 | losses (absolute losses per time step)" |
||
1112 | ":math:`E_{invest}(p)`", ":attr:`invest[n, p]`", "Invested (nominal) |
||
1113 | capacity of the storage" |
||
1114 | ":math:`E_{old}(p)`", ":attr:`old[n, p]`", " |
||
1115 | | Old (nominal) capacity of the storage |
||
1116 | | to be decommissioned in period p" |
||
1117 | ":math:`E_{old,exo}(p)`", ":attr:`old_exo[n, p]`", " |
||
1118 | | Old (nominal) capacity of the storage |
||
1119 | | to be decommissioned in period p |
||
1120 | | which was exogenously given by :math:`E_{exist}`" |
||
1121 | ":math:`E_{old,end}(p)`", ":attr:`old_end[n, p]`", " |
||
1122 | | Old (nominal) capacity of the storage |
||
1123 | | to be decommissioned in period p |
||
1124 | | which was endogenously determined by :math:`E_{invest}(p_{comm})` |
||
1125 | | where :math:`p_{comm}` is the commissioning period" |
||
1126 | ":math:`E(-1)`", ":attr:`init_cap[n]`", "Initial storage capacity |
||
1127 | (before timestep 0)" |
||
1128 | ":math:`b_{invest}(p)`", ":attr:`invest_status[i, o, p]`", "Binary |
||
1129 | variable for the status of investment" |
||
1130 | ":math:`P_{i,invest}(p)`", " |
||
1131 | :attr:`InvestmentFlowBlock.invest[i[n], n, p]`", " |
||
1132 | Invested (nominal) inflow (InvestmentFlowBlock)" |
||
1133 | ":math:`P_{o,invest}`", " |
||
1134 | :attr:`InvestmentFlowBlock.invest[n, o[n]]`", " |
||
1135 | Invested (nominal) outflow (InvestmentFlowBlock)" |
||
1136 | |||
1137 | .. csv-table:: List of Parameters |
||
1138 | :header: "symbol", "attribute", "explanation" |
||
1139 | :widths: 1, 1, 1 |
||
1140 | |||
1141 | ":math:`E_{exist}`", "`flows[i, o].investment.existing`", " |
||
1142 | Existing storage capacity" |
||
1143 | ":math:`E_{invest,min}`", "`flows[i, o].investment.minimum`", " |
||
1144 | Minimum investment value" |
||
1145 | ":math:`E_{invest,max}`", "`flows[i, o].investment.maximum`", " |
||
1146 | Maximum investment value" |
||
1147 | ":math:`P_{i,exist}`", "`flows[i[n], n].investment.existing` |
||
1148 | ", "Existing inflow capacity" |
||
1149 | ":math:`P_{o,exist}`", "`flows[n, o[n]].investment.existing` |
||
1150 | ", "Existing outflow capacity" |
||
1151 | ":math:`c_{invest,var}`", "`flows[i, o].investment.ep_costs` |
||
1152 | ", "Variable investment costs" |
||
1153 | ":math:`c_{invest,fix}`", "`flows[i, o].investment.offset`", " |
||
1154 | Fix investment costs" |
||
1155 | ":math:`r_{cap,in}`", ":attr:`invest_relation_input_capacity`", " |
||
1156 | Relation of storage capacity and nominal inflow" |
||
1157 | ":math:`r_{cap,out}`", ":attr:`invest_relation_output_capacity`", " |
||
1158 | Relation of storage capacity and nominal outflow" |
||
1159 | ":math:`r_{in,out}`", ":attr:`invest_relation_input_output`", " |
||
1160 | Relation of nominal in- and outflow" |
||
1161 | ":math:`\beta(t)`", "`loss_rate[t]`", "Fraction of lost energy |
||
1162 | as share of :math:`E(t)` per hour" |
||
1163 | ":math:`\gamma(t)`", "`fixed_losses_relative[t]`", "Fixed loss |
||
1164 | of energy relative to :math:`E_{invest} + E_{exist}` per hour" |
||
1165 | ":math:`\delta(t)`", "`fixed_losses_absolute[t]`", "Absolute |
||
1166 | fixed loss of energy per hour" |
||
1167 | ":math:`\eta_i(t)`", "`inflow_conversion_factor[t]`", " |
||
1168 | Conversion factor (i.e. efficiency) when storing energy" |
||
1169 | ":math:`\eta_o(t)`", "`outflow_conversion_factor[t]`", " |
||
1170 | Conversion factor when (i.e. efficiency) taking stored energy" |
||
1171 | ":math:`c(-1)`", "`initial_storage_level`", "Initial relative |
||
1172 | storage content (before timestep 0)" |
||
1173 | ":math:`c_{max}`", "`flows[i, o].max[t]`", "Normed maximum |
||
1174 | value of storage content" |
||
1175 | ":math:`c_{min}`", "`flows[i, o].min[t]`", "Normed minimum |
||
1176 | value of storage content" |
||
1177 | ":math:`l`", "`flows[i, o].investment.lifetime`", " |
||
1178 | Lifetime for investments in storage capacity" |
||
1179 | ":math:`a`", "`flows[i, o].investment.age`", " |
||
1180 | Initial age of existing capacity / energy" |
||
1181 | ":math:`\tau(t)`", "", "Duration of time step" |
||
1182 | ":math:`t_u`", "", "Time unit of losses :math:`\beta(t)`, |
||
1183 | :math:`\gamma(t)`, :math:`\delta(t)` and timeincrement :math:`\tau(t)`" |
||
1184 | |||
1185 | """ |
||
1186 | |||
1187 | CONSTRAINT_GROUP = True |
||
1188 | |||
1189 | def __init__(self, *args, **kwargs): |
||
1190 | super().__init__(*args, **kwargs) |
||
1191 | |||
1192 | def _create(self, group): |
||
1193 | """Create a storage block for investment modeling""" |
||
1194 | m = self.parent_block() |
||
1195 | |||
1196 | # ########################## SETS ##################################### |
||
1197 | |||
1198 | self.INVESTSTORAGES = Set(initialize=[n for n in group]) |
||
1199 | |||
1200 | self.CONVEX_INVESTSTORAGES = Set( |
||
1201 | initialize=[n for n in group if n.investment.nonconvex is False] |
||
1202 | ) |
||
1203 | |||
1204 | self.NON_CONVEX_INVESTSTORAGES = Set( |
||
1205 | initialize=[n for n in group if n.investment.nonconvex is True] |
||
1206 | ) |
||
1207 | |||
1208 | self.INVESTSTORAGES_BALANCED = Set( |
||
1209 | initialize=[n for n in group if n.balanced is True] |
||
1210 | ) |
||
1211 | |||
1212 | self.INVESTSTORAGES_NO_INIT_CONTENT = Set( |
||
1213 | initialize=[n for n in group if n.initial_storage_level is None] |
||
1214 | ) |
||
1215 | |||
1216 | self.INVESTSTORAGES_INIT_CONTENT = Set( |
||
1217 | initialize=[ |
||
1218 | n for n in group if n.initial_storage_level is not None |
||
1219 | ] |
||
1220 | ) |
||
1221 | |||
1222 | self.INVEST_REL_CAP_IN = Set( |
||
1223 | initialize=[ |
||
1224 | n |
||
1225 | for n in group |
||
1226 | if n.invest_relation_input_capacity[0] is not None |
||
1227 | ] |
||
1228 | ) |
||
1229 | |||
1230 | self.INVEST_REL_CAP_OUT = Set( |
||
1231 | initialize=[ |
||
1232 | n |
||
1233 | for n in group |
||
1234 | if n.invest_relation_output_capacity[0] is not None |
||
1235 | ] |
||
1236 | ) |
||
1237 | |||
1238 | self.INVEST_REL_IN_OUT = Set( |
||
1239 | initialize=[ |
||
1240 | n |
||
1241 | for n in group |
||
1242 | if n.invest_relation_input_output[0] is not None |
||
1243 | ] |
||
1244 | ) |
||
1245 | |||
1246 | # The storage content is a non-negative variable, therefore it makes no |
||
1247 | # sense to create an additional constraint if the lower bound is zero |
||
1248 | # for all time steps. |
||
1249 | self.MIN_INVESTSTORAGES = Set( |
||
1250 | initialize=[ |
||
1251 | n |
||
1252 | for n in group |
||
1253 | if sum([n.min_storage_level[t] for t in m.TIMESTEPS]) > 0 |
||
1254 | ] |
||
1255 | ) |
||
1256 | |||
1257 | self.OVERALL_MAXIMUM_INVESTSTORAGES = Set( |
||
1258 | initialize=[ |
||
1259 | n for n in group if n.investment.overall_maximum is not None |
||
1260 | ] |
||
1261 | ) |
||
1262 | |||
1263 | self.OVERALL_MINIMUM_INVESTSTORAGES = Set( |
||
1264 | initialize=[ |
||
1265 | n for n in group if n.investment.overall_minimum is not None |
||
1266 | ] |
||
1267 | ) |
||
1268 | |||
1269 | self.EXISTING_INVESTSTORAGES = Set( |
||
1270 | initialize=[n for n in group if n.investment.existing is not None] |
||
1271 | ) |
||
1272 | |||
1273 | # ######################### Variables ################################ |
||
1274 | if not m.TSAM_MODE: |
||
1275 | self.storage_content = Var( |
||
1276 | self.INVESTSTORAGES, m.TIMEPOINTS, within=NonNegativeReals |
||
1277 | ) |
||
1278 | else: |
||
1279 | self.inter_storage_content = Var( |
||
1280 | self.INVESTSTORAGES, m.CLUSTERS_OFFSET, within=NonNegativeReals |
||
1281 | ) |
||
1282 | self.intra_storage_delta = Var( |
||
1283 | self.INVESTSTORAGES, m.TIMEINDEX_TYPICAL_CLUSTER_OFFSET |
||
1284 | ) |
||
1285 | # set the initial intra storage content |
||
1286 | # first timestep in intra storage is always zero |
||
1287 | for n in group: |
||
1288 | for p, k in m.TYPICAL_CLUSTERS: |
||
1289 | self.intra_storage_delta[n, p, k, 0] = 0 |
||
1290 | self.intra_storage_delta[n, p, k, 0].fix() |
||
1291 | |||
1292 | def _storage_investvar_bound_rule(_, n, p): |
||
1293 | """ |
||
1294 | Rule definition to bound the invested storage capacity `invest`. |
||
1295 | """ |
||
1296 | if n in self.CONVEX_INVESTSTORAGES: |
||
1297 | return n.investment.minimum[p], n.investment.maximum[p] |
||
1298 | else: # n in self.NON_CONVEX_INVESTSTORAGES |
||
1299 | return 0, n.investment.maximum[p] |
||
1300 | |||
1301 | self.invest = Var( |
||
1302 | self.INVESTSTORAGES, |
||
1303 | m.CAPACITY_PERIODS, |
||
1304 | within=NonNegativeReals, |
||
1305 | bounds=_storage_investvar_bound_rule, |
||
1306 | ) |
||
1307 | |||
1308 | # Total capacity |
||
1309 | self.total = Var( |
||
1310 | self.INVESTSTORAGES, |
||
1311 | m.CAPACITY_PERIODS, |
||
1312 | within=NonNegativeReals, |
||
1313 | initialize=0, |
||
1314 | ) |
||
1315 | |||
1316 | # create status variable for a non-convex investment storage |
||
1317 | self.invest_status = Var( |
||
1318 | self.NON_CONVEX_INVESTSTORAGES, m.CAPACITY_PERIODS, within=Binary |
||
1319 | ) |
||
1320 | |||
1321 | # ######################### CONSTRAINTS ############################### |
||
1322 | i = {n: [i for i in n.inputs][0] for n in group} |
||
1323 | o = {n: [o for o in n.outputs][0] for n in group} |
||
1324 | |||
1325 | def _total_storage_capacity_rule(block): |
||
1326 | """Rule definition for determining total installed |
||
1327 | capacity (taking decommissioning into account) |
||
1328 | """ |
||
1329 | for n in self.INVESTSTORAGES: |
||
1330 | for p in m.CAPACITY_PERIODS: |
||
1331 | if p == 0: |
||
1332 | expr = ( |
||
1333 | self.total[n, p] |
||
1334 | == self.invest[n, p] + n.investment.existing |
||
1335 | ) |
||
1336 | self.total_storage_rule.add((n, p), expr) |
||
1337 | else: |
||
1338 | expr = ( |
||
1339 | self.total[n, p] |
||
1340 | == self.invest[n, p] + self.total[n, p - 1] |
||
1341 | ) |
||
1342 | self.total_storage_rule.add((n, p), expr) |
||
1343 | |||
1344 | self.total_storage_rule = Constraint( |
||
1345 | self.INVESTSTORAGES, m.CAPACITY_PERIODS, noruleinit=True |
||
1346 | ) |
||
1347 | |||
1348 | self.total_storage_rule_build = BuildAction( |
||
1349 | rule=_total_storage_capacity_rule |
||
1350 | ) |
||
1351 | |||
1352 | def _inv_storage_init_content_max_rule(block, n): |
||
1353 | """Constraint for a variable initial storage capacity.""" |
||
1354 | if not m.TSAM_MODE: |
||
1355 | lhs = block.storage_content[n, 0] |
||
1356 | else: |
||
1357 | lhs = block.intra_storage_delta[n, 0, 0, 0] |
||
1358 | return lhs <= n.investment.existing + block.invest[n, 0] |
||
1359 | |||
1360 | self.init_content_limit = Constraint( |
||
1361 | self.INVESTSTORAGES_NO_INIT_CONTENT, |
||
1362 | rule=_inv_storage_init_content_max_rule, |
||
1363 | ) |
||
1364 | |||
1365 | def _inv_storage_init_content_fix_rule(block, n): |
||
1366 | """Constraint for a fixed initial storage capacity.""" |
||
1367 | if not m.TSAM_MODE: |
||
1368 | lhs = block.storage_content[n, 0] |
||
1369 | else: |
||
1370 | lhs = block.intra_storage_delta[n, 0, 0, 0] |
||
1371 | return lhs == n.initial_storage_level * ( |
||
1372 | n.investment.existing + block.invest[n, 0] |
||
1373 | ) |
||
1374 | |||
1375 | self.init_content_fix = Constraint( |
||
1376 | self.INVESTSTORAGES_INIT_CONTENT, |
||
1377 | rule=_inv_storage_init_content_fix_rule, |
||
1378 | ) |
||
1379 | |||
1380 | def _storage_balance_rule(block, n, p, t): |
||
1381 | """ |
||
1382 | Rule definition for the storage balance of every storage n and |
||
1383 | every timestep. |
||
1384 | """ |
||
1385 | expr = 0 |
||
1386 | expr += block.storage_content[n, t + 1] |
||
1387 | expr += ( |
||
1388 | -block.storage_content[n, t] |
||
1389 | * (1 - n.loss_rate[t]) ** m.timeincrement[t] |
||
1390 | ) |
||
1391 | expr += ( |
||
1392 | n.fixed_losses_relative[t] |
||
1393 | * self.total[n, p] |
||
1394 | * m.timeincrement[t] |
||
1395 | ) |
||
1396 | expr += n.fixed_losses_absolute[t] * m.timeincrement[t] |
||
1397 | expr += ( |
||
1398 | -m.flow[i[n], n, t] * n.inflow_conversion_factor[t] |
||
1399 | ) * m.timeincrement[t] |
||
1400 | expr += ( |
||
1401 | m.flow[n, o[n], t] / n.outflow_conversion_factor[t] |
||
1402 | ) * m.timeincrement[t] |
||
1403 | return expr == 0 |
||
1404 | |||
1405 | View Code Duplication | def _intra_storage_balance_rule(block, n, p, k, g): |
|
1406 | """ |
||
1407 | Rule definition for the storage balance of every storage n and |
||
1408 | every timestep. |
||
1409 | """ |
||
1410 | t = m.get_timestep_from_tsam_timestep(p, k, g) |
||
1411 | expr = 0 |
||
1412 | expr += block.intra_storage_delta[n, p, k, g + 1] |
||
1413 | expr += ( |
||
1414 | -block.intra_storage_delta[n, p, k, g] |
||
1415 | * (1 - n.loss_rate[t]) ** m.timeincrement[t] |
||
1416 | ) |
||
1417 | expr += ( |
||
1418 | n.fixed_losses_relative[t] |
||
1419 | * self.total[n, p] |
||
1420 | * m.timeincrement[t] |
||
1421 | ) |
||
1422 | expr += n.fixed_losses_absolute[t] * m.timeincrement[t] |
||
1423 | expr += ( |
||
1424 | -m.flow[i[n], n, t] * n.inflow_conversion_factor[t] |
||
1425 | ) * m.timeincrement[t] |
||
1426 | expr += ( |
||
1427 | m.flow[n, o[n], t] / n.outflow_conversion_factor[t] |
||
1428 | ) * m.timeincrement[t] |
||
1429 | return expr == 0 |
||
1430 | |||
1431 | if not m.TSAM_MODE: |
||
1432 | self.balance = Constraint( |
||
1433 | self.INVESTSTORAGES, |
||
1434 | m.TIMEINDEX, |
||
1435 | rule=_storage_balance_rule, |
||
1436 | ) |
||
1437 | else: |
||
1438 | self.intra_balance = Constraint( |
||
1439 | self.INVESTSTORAGES, |
||
1440 | m.TIMEINDEX_TYPICAL_CLUSTER, |
||
1441 | rule=_intra_storage_balance_rule, |
||
1442 | ) |
||
1443 | |||
1444 | def _inter_storage_balance_rule(block, n, i): |
||
1445 | """ |
||
1446 | Rule definition for the storage balance of every storage n and |
||
1447 | every timestep. |
||
1448 | """ |
||
1449 | ii = 0 |
||
1450 | for p in m.CAPACITY_PERIODS: |
||
1451 | ii += len(m.es.tsa_parameters[p]["order"]) |
||
1452 | if ii > i: |
||
1453 | ii -= len(m.es.tsa_parameters[p]["order"]) |
||
1454 | ii = i - ii |
||
1455 | break |
||
1456 | |||
1457 | k = m.es.tsa_parameters[p]["order"][ii] |
||
1458 | t = m.get_timestep_from_tsam_timestep( |
||
1459 | p, k, m.es.tsa_parameters[p]["timesteps"] - 1 |
||
1460 | ) |
||
1461 | expr = 0 |
||
1462 | expr += block.inter_storage_content[n, i + 1] |
||
1463 | expr += -block.inter_storage_content[n, i] * ( |
||
1464 | 1 - n.loss_rate[t] |
||
1465 | ) ** (m.timeincrement[t] * m.es.tsa_parameters[p]["timesteps"]) |
||
1466 | expr += -self.intra_storage_delta[ |
||
1467 | n, p, k, m.es.tsa_parameters[p]["timesteps"] |
||
1468 | ] |
||
1469 | return expr == 0 |
||
1470 | |||
1471 | if m.TSAM_MODE: |
||
1472 | self.inter_balance = Constraint( |
||
1473 | self.INVESTSTORAGES, |
||
1474 | m.CLUSTERS, |
||
1475 | rule=_inter_storage_balance_rule, |
||
1476 | ) |
||
1477 | |||
1478 | if m.es.investment_times is None and not m.TSAM_MODE: |
||
1479 | |||
1480 | def _balanced_storage_rule(block, n): |
||
1481 | return ( |
||
1482 | block.storage_content[n, m.TIMEPOINTS.at(-1)] |
||
1483 | == block.storage_content[n, m.TIMEPOINTS.at(1)] |
||
1484 | ) |
||
1485 | |||
1486 | self.balanced_cstr = Constraint( |
||
1487 | self.INVESTSTORAGES_BALANCED, rule=_balanced_storage_rule |
||
1488 | ) |
||
1489 | |||
1490 | def _power_coupled(block): |
||
1491 | """ |
||
1492 | Rule definition for constraint to connect the input power |
||
1493 | and output power |
||
1494 | """ |
||
1495 | for n in self.INVEST_REL_IN_OUT: |
||
1496 | for p in m.CAPACITY_PERIODS: |
||
1497 | expr = ( |
||
1498 | m.InvestmentFlowBlock.total[n, o[n], p] |
||
1499 | ) * n.invest_relation_input_output[p] == ( |
||
1500 | m.InvestmentFlowBlock.total[i[n], n, p] |
||
1501 | ) |
||
1502 | self.power_coupled.add((n, p), expr) |
||
1503 | |||
1504 | self.power_coupled = Constraint( |
||
1505 | self.INVEST_REL_IN_OUT, m.CAPACITY_PERIODS, noruleinit=True |
||
1506 | ) |
||
1507 | |||
1508 | self.power_coupled_build = BuildAction(rule=_power_coupled) |
||
1509 | |||
1510 | def _storage_capacity_inflow_invest_rule(block): |
||
1511 | """ |
||
1512 | Rule definition of constraint connecting the inflow |
||
1513 | `InvestmentFlowBlock.invest of storage with invested capacity |
||
1514 | `invest` by nominal_storage_capacity__inflow_ratio |
||
1515 | """ |
||
1516 | for n in self.INVEST_REL_CAP_IN: |
||
1517 | for p in m.CAPACITY_PERIODS: |
||
1518 | expr = ( |
||
1519 | m.InvestmentFlowBlock.total[i[n], n, p] |
||
1520 | == self.total[n, p] |
||
1521 | * n.invest_relation_input_capacity[p] |
||
1522 | ) |
||
1523 | self.storage_capacity_inflow.add((n, p), expr) |
||
1524 | |||
1525 | self.storage_capacity_inflow = Constraint( |
||
1526 | self.INVEST_REL_CAP_IN, m.CAPACITY_PERIODS, noruleinit=True |
||
1527 | ) |
||
1528 | |||
1529 | self.storage_capacity_inflow_build = BuildAction( |
||
1530 | rule=_storage_capacity_inflow_invest_rule |
||
1531 | ) |
||
1532 | |||
1533 | def _storage_capacity_outflow_invest_rule(block): |
||
1534 | """ |
||
1535 | Rule definition of constraint connecting outflow |
||
1536 | `InvestmentFlowBlock.invest` of storage and invested capacity |
||
1537 | `invest` by nominal_storage_capacity__outflow_ratio |
||
1538 | """ |
||
1539 | for n in self.INVEST_REL_CAP_OUT: |
||
1540 | for p in m.CAPACITY_PERIODS: |
||
1541 | expr = ( |
||
1542 | m.InvestmentFlowBlock.total[n, o[n], p] |
||
1543 | == self.total[n, p] |
||
1544 | * n.invest_relation_output_capacity[p] |
||
1545 | ) |
||
1546 | self.storage_capacity_outflow.add((n, p), expr) |
||
1547 | |||
1548 | self.storage_capacity_outflow = Constraint( |
||
1549 | self.INVEST_REL_CAP_OUT, m.CAPACITY_PERIODS, noruleinit=True |
||
1550 | ) |
||
1551 | |||
1552 | self.storage_capacity_outflow_build = BuildAction( |
||
1553 | rule=_storage_capacity_outflow_invest_rule |
||
1554 | ) |
||
1555 | |||
1556 | self._add_storage_limit_constraints() |
||
1557 | |||
1558 | def maximum_invest_limit(block, n, p): |
||
1559 | """ |
||
1560 | Constraint for the maximal investment in non convex investment |
||
1561 | storage. |
||
1562 | """ |
||
1563 | return ( |
||
1564 | n.investment.maximum[p] * self.invest_status[n, p] |
||
1565 | - self.invest[n, p] |
||
1566 | ) >= 0 |
||
1567 | |||
1568 | self.limit_max = Constraint( |
||
1569 | self.NON_CONVEX_INVESTSTORAGES, |
||
1570 | m.CAPACITY_PERIODS, |
||
1571 | rule=maximum_invest_limit, |
||
1572 | ) |
||
1573 | |||
1574 | def smallest_invest(block, n, p): |
||
1575 | """ |
||
1576 | Constraint for the minimal investment in non convex investment |
||
1577 | storage if the invest is greater than 0. So the invest variable |
||
1578 | can be either 0 or greater than the minimum. |
||
1579 | """ |
||
1580 | return ( |
||
1581 | self.invest[n, p] |
||
1582 | - n.investment.minimum[p] * self.invest_status[n, p] |
||
1583 | >= 0 |
||
1584 | ) |
||
1585 | |||
1586 | self.limit_min = Constraint( |
||
1587 | self.NON_CONVEX_INVESTSTORAGES, |
||
1588 | m.CAPACITY_PERIODS, |
||
1589 | rule=smallest_invest, |
||
1590 | ) |
||
1591 | |||
1592 | if m.es.investment_times is not None: |
||
1593 | |||
1594 | def _overall_storage_maximum_investflow_rule(block): |
||
1595 | """Rule definition for maximum overall investment |
||
1596 | in investment case. |
||
1597 | """ |
||
1598 | for n in self.OVERALL_MAXIMUM_INVESTSTORAGES: |
||
1599 | for p in m.CAPACITY_PERIODS: |
||
1600 | expr = self.total[n, p] <= n.investment.overall_maximum |
||
1601 | self.overall_storage_maximum.add((n, p), expr) |
||
1602 | |||
1603 | self.overall_storage_maximum = Constraint( |
||
1604 | self.OVERALL_MAXIMUM_INVESTSTORAGES, |
||
1605 | m.CAPACITY_PERIODS, |
||
1606 | noruleinit=True, |
||
1607 | ) |
||
1608 | |||
1609 | self.overall_maximum_build = BuildAction( |
||
1610 | rule=_overall_storage_maximum_investflow_rule |
||
1611 | ) |
||
1612 | |||
1613 | def _overall_minimum_investflow_rule(block): |
||
1614 | """Rule definition for minimum overall investment |
||
1615 | in investment case. |
||
1616 | |||
1617 | Note: This is only applicable for the last period |
||
1618 | """ |
||
1619 | for n in self.OVERALL_MINIMUM_INVESTSTORAGES: |
||
1620 | expr = ( |
||
1621 | n.investment.overall_minimum |
||
1622 | <= self.total[n, m.CAPACITY_PERIODS[-1]] |
||
1623 | ) |
||
1624 | self.overall_minimum.add(n, expr) |
||
1625 | |||
1626 | self.overall_minimum = Constraint( |
||
1627 | self.OVERALL_MINIMUM_INVESTSTORAGES, noruleinit=True |
||
1628 | ) |
||
1629 | |||
1630 | self.overall_minimum_build = BuildAction( |
||
1631 | rule=_overall_minimum_investflow_rule |
||
1632 | ) |
||
1633 | |||
1634 | def _add_storage_limit_constraints(self): |
||
1635 | m = self.parent_block() |
||
1636 | if not m.TSAM_MODE: |
||
1637 | |||
1638 | def _max_storage_content_invest_rule(_, n, t): |
||
1639 | """ |
||
1640 | Rule definition for upper bound constraint for the |
||
1641 | storage content. |
||
1642 | """ |
||
1643 | expr = ( |
||
1644 | self.storage_content[n, t] |
||
1645 | <= self.total[n, 0] * n.max_storage_level[t] |
||
1646 | ) |
||
1647 | return expr |
||
1648 | |||
1649 | self.max_storage_content = Constraint( |
||
1650 | self.INVESTSTORAGES, |
||
1651 | m.TIMEPOINTS, |
||
1652 | rule=_max_storage_content_invest_rule, |
||
1653 | ) |
||
1654 | |||
1655 | def _min_storage_content_invest_rule(_, n, t): |
||
1656 | """ |
||
1657 | Rule definition of lower bound constraint for the |
||
1658 | storage content. |
||
1659 | """ |
||
1660 | expr = ( |
||
1661 | self.storage_content[n, t] |
||
1662 | >= self.total[n, 0] * n.min_storage_level[t] |
||
1663 | ) |
||
1664 | return expr |
||
1665 | |||
1666 | self.min_storage_content = Constraint( |
||
1667 | self.MIN_INVESTSTORAGES, |
||
1668 | m.TIMEPOINTS, |
||
1669 | rule=_min_storage_content_invest_rule, |
||
1670 | ) |
||
1671 | else: |
||
1672 | |||
1673 | View Code Duplication | def _storage_inter_maximum_level_rule(block): |
|
1674 | for n in self.INVESTSTORAGES: |
||
1675 | for p, i, g in m.TIMEINDEX_CLUSTER: |
||
1676 | t = m.get_timestep_from_tsam_timestep(p, i, g) |
||
1677 | k = m.es.tsa_parameters[p]["order"][i] |
||
1678 | tk = m.get_timestep_from_tsam_timestep(p, k, g) |
||
1679 | inter_i = ( |
||
1680 | sum( |
||
1681 | len(m.es.tsa_parameters[ip]["order"]) |
||
1682 | for ip in range(p) |
||
1683 | ) |
||
1684 | + i |
||
1685 | ) |
||
1686 | lhs = ( |
||
1687 | self.inter_storage_content[n, inter_i] |
||
1688 | * (1 - n.loss_rate[t]) ** (g * m.timeincrement[tk]) |
||
1689 | + self.intra_storage_delta[n, p, k, g] |
||
1690 | ) |
||
1691 | rhs = self.total[n, p] * n.max_storage_level[t] |
||
1692 | self.storage_inter_maximum_level.add( |
||
1693 | (n, p, i, g), lhs <= rhs |
||
1694 | ) |
||
1695 | |||
1696 | self.storage_inter_maximum_level = Constraint( |
||
1697 | self.INVESTSTORAGES, m.TIMEINDEX_CLUSTER, noruleinit=True |
||
1698 | ) |
||
1699 | |||
1700 | self.storage_inter_maximum_level_build = BuildAction( |
||
1701 | rule=_storage_inter_maximum_level_rule |
||
1702 | ) |
||
1703 | |||
1704 | View Code Duplication | def _storage_inter_minimum_level_rule(block): |
|
1705 | # See FINE implementation at |
||
1706 | # https://github.com/FZJ-IEK3-VSA/FINE/blob/ |
||
1707 | # 57ec32561fb95e746c505760bd0d61c97d2fd2fb/FINE/storage.py#L1329 |
||
1708 | for n in self.INVESTSTORAGES: |
||
1709 | for p, i, g in m.TIMEINDEX_CLUSTER: |
||
1710 | t = m.get_timestep_from_tsam_timestep(p, i, g) |
||
1711 | lhs = self.total[n, p] * n.min_storage_level[t] |
||
1712 | k = m.es.tsa_parameters[p]["order"][i] |
||
1713 | tk = m.get_timestep_from_tsam_timestep(p, k, g) |
||
1714 | inter_i = ( |
||
1715 | sum( |
||
1716 | len(m.es.tsa_parameters[ip]["order"]) |
||
1717 | for ip in range(p) |
||
1718 | ) |
||
1719 | + i |
||
1720 | ) |
||
1721 | rhs = ( |
||
1722 | self.inter_storage_content[n, inter_i] |
||
1723 | * (1 - n.loss_rate[t]) ** (g * m.timeincrement[tk]) |
||
1724 | + self.intra_storage_delta[n, p, k, g] |
||
1725 | ) |
||
1726 | self.storage_inter_minimum_level.add( |
||
1727 | (n, p, i, g), lhs <= rhs |
||
1728 | ) |
||
1729 | |||
1730 | self.storage_inter_minimum_level = Constraint( |
||
1731 | self.INVESTSTORAGES, m.TIMEINDEX_CLUSTER, noruleinit=True |
||
1732 | ) |
||
1733 | |||
1734 | self.storage_inter_minimum_level_build = BuildAction( |
||
1735 | rule=_storage_inter_minimum_level_rule |
||
1736 | ) |
||
1737 | |||
1738 | def _objective_expression(self): |
||
1739 | """Objective expression with fixed and investment costs.""" |
||
1740 | m = self.parent_block() |
||
1741 | |||
1742 | investment_costs = 0 |
||
1743 | storage_costs = 0 |
||
1744 | |||
1745 | for n in self.CONVEX_INVESTSTORAGES: |
||
1746 | for p in m.CAPACITY_PERIODS: |
||
1747 | investment_costs += ( |
||
1748 | self.invest[n, p] * n.investment.ep_costs[p] |
||
1749 | ) |
||
1750 | for n in self.NON_CONVEX_INVESTSTORAGES: |
||
1751 | for p in m.CAPACITY_PERIODS: |
||
1752 | investment_costs += ( |
||
1753 | self.invest[n, p] * n.investment.ep_costs[p] |
||
1754 | + self.invest_status[n, p] * n.investment.offset[p] |
||
1755 | ) |
||
1756 | |||
1757 | for n in self.INVESTSTORAGES: |
||
1758 | View Code Duplication | if valid_sequence(n.storage_costs, len(m.TIMESTEPS)): |
|
1759 | # We actually want to iterate over all TIMEPOINTS except the |
||
1760 | # 0th. As integers are used for the index, this is equicalent |
||
1761 | # to iterating over the TIMESTEPS with one offset. |
||
1762 | if not m.TSAM_MODE: |
||
1763 | for t in m.TIMESTEPS: |
||
1764 | storage_costs += ( |
||
1765 | self.storage_content[n, t + 1] * n.storage_costs[t] |
||
1766 | ) |
||
1767 | else: |
||
1768 | for t in m.TIMESTEPS_ORIGINAL: |
||
1769 | storage_costs += ( |
||
1770 | self.storage_content[n, t + 1] |
||
1771 | * n.storage_costs[t + 1] |
||
1772 | ) |
||
1773 | |||
1774 | self.storage_costs = Expression(expr=storage_costs) |
||
1775 | |||
1776 | self.investment_costs = Expression(expr=investment_costs) |
||
1777 | self.costs = Expression(expr=investment_costs + storage_costs) |
||
1778 | |||
1779 | return self.costs |
||
1780 |