1
|
|
|
# -*- coding: utf-8 - |
2
|
|
|
|
3
|
|
|
""" |
4
|
|
|
GenericStorage and associated individual constraints (blocks) and groupings. |
5
|
|
|
|
6
|
|
|
SPDX-FileCopyrightText: Uwe Krien <[email protected]> |
7
|
|
|
SPDX-FileCopyrightText: Simon Hilpert |
8
|
|
|
SPDX-FileCopyrightText: Cord Kaldemeyer |
9
|
|
|
SPDX-FileCopyrightText: Patrik Schönfeldt |
10
|
|
|
SPDX-FileCopyrightText: FranziPl |
11
|
|
|
SPDX-FileCopyrightText: jnnr |
12
|
|
|
SPDX-FileCopyrightText: Stephan Günther |
13
|
|
|
SPDX-FileCopyrightText: FabianTU |
14
|
|
|
SPDX-FileCopyrightText: Johannes Röder |
15
|
|
|
SPDX-FileCopyrightText: Ekaterina Zolotarevskaia |
16
|
|
|
SPDX-FileCopyrightText: Johannes Kochems |
17
|
|
|
SPDX-FileCopyrightText: Johannes Giehl |
18
|
|
|
SPDX-FileCopyrightText: Raul Ciria Aylagas |
19
|
|
|
|
20
|
|
|
SPDX-License-Identifier: MIT |
21
|
|
|
|
22
|
|
|
""" |
23
|
|
|
import math |
24
|
|
|
import numbers |
25
|
|
|
from warnings import warn |
26
|
|
|
|
27
|
|
|
from oemof.network import Node |
28
|
|
|
from pyomo.core.base.block import ScalarBlock |
29
|
|
|
from pyomo.environ import Binary |
30
|
|
|
from pyomo.environ import BuildAction |
31
|
|
|
from pyomo.environ import Constraint |
32
|
|
|
from pyomo.environ import Expression |
33
|
|
|
from pyomo.environ import NonNegativeReals |
34
|
|
|
from pyomo.environ import Set |
35
|
|
|
from pyomo.environ import Var |
36
|
|
|
|
37
|
|
|
from oemof.solph._helpers import check_node_object_for_missing_attribute |
38
|
|
|
from oemof.solph._options import Investment |
39
|
|
|
from oemof.solph._plumbing import sequence |
40
|
|
|
from oemof.solph._plumbing import valid_sequence |
41
|
|
|
|
42
|
|
|
|
43
|
|
|
class GenericStorage(Node): |
44
|
|
|
r""" |
45
|
|
|
Component `GenericStorage` to model with basic characteristics of storages. |
46
|
|
|
|
47
|
|
|
The GenericStorage is designed for one input and one output. |
48
|
|
|
|
49
|
|
|
Parameters |
50
|
|
|
---------- |
51
|
|
|
nominal_capacity : numeric, :math:`E_{nom}` or |
52
|
|
|
:class:`oemof.solph.options.Investment` object |
53
|
|
|
Absolute nominal capacity of the storage, fixed value or |
54
|
|
|
object describing parameter of investment optimisations. |
55
|
|
|
invest_relation_input_capacity : numeric (iterable or scalar) or None, :math:`r_{cap,in}` |
56
|
|
|
Ratio between the investment variable of the input Flow and the |
57
|
|
|
investment variable of the storage: |
58
|
|
|
:math:`\dot{E}_{in,invest} = E_{invest} \cdot r_{cap,in}` |
59
|
|
|
invest_relation_output_capacity : numeric (iterable or scalar) or None, :math:`r_{cap,out}` |
60
|
|
|
Ratio between the investment variable of the output Flow and the |
61
|
|
|
investment variable of the storage: |
62
|
|
|
:math:`\dot{E}_{out,invest} = E_{invest} \cdot r_{cap,out}` |
63
|
|
|
invest_relation_input_output : numeric (iterable or scalar) or None, :math:`r_{in,out}` |
64
|
|
|
Ratio between the investment variable of the output Flow and the |
65
|
|
|
investment variable of the input flow. This ratio used to fix the |
66
|
|
|
flow investments to each other. |
67
|
|
|
Values < 1 set the input flow lower than the output and > 1 will |
68
|
|
|
set the input flow higher than the output flow. If None no relation |
69
|
|
|
will be set: |
70
|
|
|
:math:`\dot{E}_{in,invest} = \dot{E}_{out,invest} \cdot r_{in,out}` |
71
|
|
|
initial_storage_level : numeric, :math:`c(-1)` |
72
|
|
|
The relative storage content in the timestep before the first |
73
|
|
|
time step of optimization (between 0 and 1). |
74
|
|
|
|
75
|
|
|
Note: When investment mode is used in a multi-period model, |
76
|
|
|
`initial_storage_level` is not supported. |
77
|
|
|
Storage output is forced to zero until the storage unit is invested in. |
78
|
|
|
balanced : boolean |
79
|
|
|
Couple storage level of first and last time step. |
80
|
|
|
(Total inflow and total outflow are balanced.) |
81
|
|
|
loss_rate : numeric (iterable or scalar) |
82
|
|
|
The relative loss of the storage content per hour. |
83
|
|
|
fixed_losses_relative : numeric (iterable or scalar), :math:`\gamma(t)` |
84
|
|
|
Losses per hour that are independent of the storage content but |
85
|
|
|
proportional to nominal storage capacity. |
86
|
|
|
|
87
|
|
|
Note: Fixed losses are not supported in investment mode. |
88
|
|
|
fixed_losses_absolute : numeric (iterable or scalar), :math:`\delta(t)` |
89
|
|
|
Losses per hour that are independent of storage content and independent |
90
|
|
|
of nominal storage capacity. |
91
|
|
|
|
92
|
|
|
Note: Fixed losses are not supported in investment mode. |
93
|
|
|
inflow_conversion_factor : numeric (iterable or scalar), :math:`\eta_i(t)` |
94
|
|
|
The relative conversion factor, i.e. efficiency associated with the |
95
|
|
|
inflow of the storage. |
96
|
|
|
outflow_conversion_factor : numeric (iterable or scalar), :math:`\eta_o(t)` |
97
|
|
|
see: inflow_conversion_factor |
98
|
|
|
min_storage_level : numeric (iterable or scalar), :math:`c_{min}(t)` |
99
|
|
|
The normed minimum storage content as fraction of the |
100
|
|
|
nominal storage capacity or the capacity that has been invested into |
101
|
|
|
(between 0 and 1). |
102
|
|
|
To set different values in every time step use a sequence. |
103
|
|
|
max_storage_level : numeric (iterable or scalar), :math:`c_{max}(t)` |
104
|
|
|
see: min_storage_level |
105
|
|
|
storage_costs : numeric (iterable or scalar), :math:`c_{storage}(t)` |
106
|
|
|
Cost (per energy) for having energy in the storage, starting from |
107
|
|
|
time point :math:`t_{1}`. (:math:`t_{0}` is left out to avoid counting |
108
|
|
|
it twice if balanced=True.) |
109
|
|
|
lifetime_inflow : int, :math:`n_{in}` |
110
|
|
|
Determine the lifetime of an inflow; only applicable for multi-period |
111
|
|
|
models which can invest in storage capacity and have an |
112
|
|
|
invest_relation_input_capacity defined |
113
|
|
|
lifetime_outflow : int, :math:`n_{in}` |
114
|
|
|
Determine the lifetime of an outflow; only applicable for multi-period |
115
|
|
|
models which can invest in storage capacity and have an |
116
|
|
|
invest_relation_output_capacity defined |
117
|
|
|
|
118
|
|
|
Notes |
119
|
|
|
----- |
120
|
|
|
The following sets, variables, constraints and objective parts are created |
121
|
|
|
* :py:class:`~oemof.solph.components._generic_storage.GenericStorageBlock` |
122
|
|
|
(if no Investment object present) |
123
|
|
|
* :py:class:`~oemof.solph.components._generic_storage.GenericInvestmentStorageBlock` |
124
|
|
|
(if Investment object present) |
125
|
|
|
|
126
|
|
|
Examples |
127
|
|
|
-------- |
128
|
|
|
Basic usage examples of the GenericStorage with a random selection of |
129
|
|
|
attributes. See the Flow class for all Flow attributes. |
130
|
|
|
|
131
|
|
|
>>> from oemof import solph |
132
|
|
|
|
133
|
|
|
>>> my_bus = solph.buses.Bus('my_bus') |
134
|
|
|
|
135
|
|
|
>>> my_storage = solph.components.GenericStorage( |
136
|
|
|
... label='storage', |
137
|
|
|
... nominal_capacity=1000, |
138
|
|
|
... inputs={my_bus: solph.flows.Flow(nominal_capacity=200, variable_costs=10)}, |
139
|
|
|
... outputs={my_bus: solph.flows.Flow(nominal_capacity=200)}, |
140
|
|
|
... loss_rate=0.01, |
141
|
|
|
... initial_storage_level=0, |
142
|
|
|
... max_storage_level = 0.9, |
143
|
|
|
... inflow_conversion_factor=0.9, |
144
|
|
|
... outflow_conversion_factor=0.93) |
145
|
|
|
|
146
|
|
|
>>> my_investment_storage = solph.components.GenericStorage( |
147
|
|
|
... label='storage', |
148
|
|
|
... nominal_capacity=solph.Investment(ep_costs=50), |
149
|
|
|
... inputs={my_bus: solph.flows.Flow()}, |
150
|
|
|
... outputs={my_bus: solph.flows.Flow()}, |
151
|
|
|
... loss_rate=0.02, |
152
|
|
|
... initial_storage_level=None, |
153
|
|
|
... invest_relation_input_capacity=1/6, |
154
|
|
|
... invest_relation_output_capacity=1/6, |
155
|
|
|
... inflow_conversion_factor=1, |
156
|
|
|
... outflow_conversion_factor=0.8) |
157
|
|
|
""" # noqa: E501 |
158
|
|
|
|
159
|
|
|
def __init__( |
160
|
|
|
self, |
161
|
|
|
label=None, |
162
|
|
|
inputs=None, |
163
|
|
|
outputs=None, |
164
|
|
|
nominal_capacity=None, |
165
|
|
|
nominal_storage_capacity=None, # Can be removed for versions >= v0.7 |
166
|
|
|
initial_storage_level=None, |
167
|
|
|
invest_relation_input_output=None, |
168
|
|
|
invest_relation_input_capacity=None, |
169
|
|
|
invest_relation_output_capacity=None, |
170
|
|
|
min_storage_level=0, |
171
|
|
|
max_storage_level=1, |
172
|
|
|
balanced=True, |
173
|
|
|
loss_rate=0, |
174
|
|
|
fixed_losses_relative=0, |
175
|
|
|
fixed_losses_absolute=0, |
176
|
|
|
inflow_conversion_factor=1, |
177
|
|
|
outflow_conversion_factor=1, |
178
|
|
|
storage_costs=None, |
179
|
|
|
lifetime_inflow=None, |
180
|
|
|
lifetime_outflow=None, |
181
|
|
|
custom_attributes=None, |
182
|
|
|
): |
183
|
|
|
if inputs is None: |
184
|
|
|
inputs = {} |
185
|
|
|
if outputs is None: |
186
|
|
|
outputs = {} |
187
|
|
|
if custom_attributes is None: |
188
|
|
|
custom_attributes = {} |
189
|
|
|
super().__init__( |
190
|
|
|
label, |
191
|
|
|
inputs=inputs, |
192
|
|
|
outputs=outputs, |
193
|
|
|
custom_properties=custom_attributes, |
194
|
|
|
) |
195
|
|
|
# --- BEGIN: The following code can be removed for versions >= v0.7 --- |
196
|
|
|
if nominal_storage_capacity is not None: |
197
|
|
|
msg = ( |
198
|
|
|
"For backward compatibility," |
199
|
|
|
+ " the option nominal_storage_capacity overwrites the option" |
200
|
|
|
+ " nominal_capacity." |
201
|
|
|
+ " Both options cannot be set at the same time." |
202
|
|
|
) |
203
|
|
|
if nominal_capacity is not None: |
204
|
|
|
raise AttributeError(msg) |
205
|
|
|
else: |
206
|
|
|
warn(msg, FutureWarning) |
207
|
|
|
nominal_capacity = nominal_storage_capacity |
208
|
|
|
# --- END --- |
209
|
|
|
|
210
|
|
|
self.nominal_storage_capacity = None |
211
|
|
|
self.investment = None |
212
|
|
|
self._invest_group = False |
213
|
|
|
if isinstance(nominal_capacity, numbers.Real): |
214
|
|
|
self.nominal_storage_capacity = nominal_capacity |
215
|
|
|
elif isinstance(nominal_capacity, Investment): |
216
|
|
|
self.investment = nominal_capacity |
217
|
|
|
self._invest_group = True |
218
|
|
|
|
219
|
|
|
self.initial_storage_level = initial_storage_level |
220
|
|
|
self.balanced = balanced |
221
|
|
|
self.loss_rate = sequence(loss_rate) |
222
|
|
|
self.fixed_losses_relative = sequence(fixed_losses_relative) |
223
|
|
|
self.fixed_losses_absolute = sequence(fixed_losses_absolute) |
224
|
|
|
self.inflow_conversion_factor = sequence(inflow_conversion_factor) |
225
|
|
|
self.outflow_conversion_factor = sequence(outflow_conversion_factor) |
226
|
|
|
self.max_storage_level = sequence(max_storage_level) |
227
|
|
|
self.min_storage_level = sequence(min_storage_level) |
228
|
|
|
self.storage_costs = sequence(storage_costs) |
229
|
|
|
self.invest_relation_input_output = sequence( |
230
|
|
|
invest_relation_input_output |
231
|
|
|
) |
232
|
|
|
self.invest_relation_input_capacity = sequence( |
233
|
|
|
invest_relation_input_capacity |
234
|
|
|
) |
235
|
|
|
self.invest_relation_output_capacity = sequence( |
236
|
|
|
invest_relation_output_capacity |
237
|
|
|
) |
238
|
|
|
self.lifetime_inflow = lifetime_inflow |
239
|
|
|
self.lifetime_outflow = lifetime_outflow |
240
|
|
|
|
241
|
|
|
# Check number of flows. |
242
|
|
|
self._check_number_of_flows() |
243
|
|
|
# Check for infeasible parameter combinations |
244
|
|
|
self._check_infeasible_parameter_combinations() |
245
|
|
|
|
246
|
|
|
if self._invest_group: |
247
|
|
|
self._check_invest_attributes() |
248
|
|
|
|
249
|
|
|
def _set_flows(self): |
250
|
|
|
"""Define inflow / outflow as investment flows when they are |
251
|
|
|
coupled with storage capacity via invest relations |
252
|
|
|
""" |
253
|
|
|
for flow in self.inputs.values(): |
254
|
|
|
if self.invest_relation_input_capacity[ |
255
|
|
|
0 |
256
|
|
|
] is not None and not isinstance(flow.investment, Investment): |
257
|
|
|
flow.investment = Investment() |
258
|
|
|
for flow in self.outputs.values(): |
259
|
|
|
if self.invest_relation_output_capacity[ |
260
|
|
|
0 |
261
|
|
|
] is not None and not isinstance(flow.investment, Investment): |
262
|
|
|
flow.investment = Investment() |
263
|
|
|
|
264
|
|
|
def _check_invest_attributes(self): |
265
|
|
|
"""Raise errors for infeasible investment attribute combinations""" |
266
|
|
|
if ( |
267
|
|
|
self.invest_relation_input_output[0] is not None |
268
|
|
|
and self.invest_relation_output_capacity[0] is not None |
269
|
|
|
and self.invest_relation_input_capacity[0] is not None |
270
|
|
|
): |
271
|
|
|
e2 = ( |
272
|
|
|
"Overdetermined. Three investment object will be coupled" |
273
|
|
|
"with three constraints. Set one invest relation to 'None'." |
274
|
|
|
) |
275
|
|
|
raise AttributeError(e2) |
276
|
|
|
if ( |
277
|
|
|
self.investment |
278
|
|
|
and self.fixed_losses_absolute.max() != 0 |
279
|
|
|
and self.investment.existing == 0 |
280
|
|
|
and self.investment.minimum.min() == 0 |
281
|
|
|
): |
282
|
|
|
e3 = ( |
283
|
|
|
"With fixed_losses_absolute > 0, either investment.existing " |
284
|
|
|
"or investment.minimum has to be non-zero." |
285
|
|
|
) |
286
|
|
|
raise AttributeError(e3) |
287
|
|
|
|
288
|
|
|
self._set_flows() |
289
|
|
|
|
290
|
|
|
def _check_number_of_flows(self): |
291
|
|
|
"""Ensure that there is only one inflow and outflow to the storage""" |
292
|
|
|
msg = "Only one {0} flow allowed in the GenericStorage {1}." |
293
|
|
|
check_node_object_for_missing_attribute(self, "inputs") |
294
|
|
|
check_node_object_for_missing_attribute(self, "outputs") |
295
|
|
|
if len(self.inputs) > 1: |
296
|
|
|
raise AttributeError(msg.format("input", self.label)) |
297
|
|
|
if len(self.outputs) > 1: |
298
|
|
|
raise AttributeError(msg.format("output", self.label)) |
299
|
|
|
|
300
|
|
|
def _check_infeasible_parameter_combinations(self): |
301
|
|
|
"""Check for infeasible parameter combinations and raise error""" |
302
|
|
|
msg = ( |
303
|
|
|
"initial_storage_level must be greater or equal to " |
304
|
|
|
"min_storage_level and smaller or equal to " |
305
|
|
|
"max_storage_level." |
306
|
|
|
) |
307
|
|
|
if self.initial_storage_level is not None: |
308
|
|
|
if ( |
309
|
|
|
self.initial_storage_level < self.min_storage_level[0] |
310
|
|
|
or self.initial_storage_level > self.max_storage_level[0] |
311
|
|
|
): |
312
|
|
|
raise ValueError(msg) |
313
|
|
|
|
314
|
|
|
def constraint_group(self): |
315
|
|
|
if self._invest_group is True: |
316
|
|
|
return GenericInvestmentStorageBlock |
317
|
|
|
else: |
318
|
|
|
return GenericStorageBlock |
319
|
|
|
|
320
|
|
|
|
321
|
|
|
class GenericStorageBlock(ScalarBlock): |
322
|
|
|
r"""Storage without an :class:`.Investment` object. |
323
|
|
|
|
324
|
|
|
**The following sets are created:** (-> see basic sets at |
325
|
|
|
:class:`.Model` ) |
326
|
|
|
|
327
|
|
|
STORAGES |
328
|
|
|
A set with all :py:class:`~.GenericStorage` objects, which do not have an |
329
|
|
|
:attr:`investment` of type :class:`.Investment`. |
330
|
|
|
|
331
|
|
|
STORAGES_BALANCED |
332
|
|
|
A set of all :py:class:`~.GenericStorage` objects, with 'balanced' attribute set |
333
|
|
|
to True. |
334
|
|
|
|
335
|
|
|
STORAGES_WITH_INVEST_FLOW_REL |
336
|
|
|
A set with all :py:class:`~.GenericStorage` objects with two investment |
337
|
|
|
flows coupled with the 'invest_relation_input_output' attribute. |
338
|
|
|
|
339
|
|
|
**The following variables are created:** |
340
|
|
|
|
341
|
|
|
storage_content |
342
|
|
|
Storage content for every storage and timestep. The value for the |
343
|
|
|
storage content at the beginning is set by the parameter |
344
|
|
|
`initial_storage_level` or not set if `initial_storage_level` is None. |
345
|
|
|
The variable of storage s and timestep t can be accessed by: |
346
|
|
|
`om.GenericStorageBlock.storage_content[s, t]` |
347
|
|
|
|
348
|
|
|
intra_storage_delta |
349
|
|
|
Storage content for every storage and timestep of typical periods |
350
|
|
|
(only used in TSAM-mode). The variable of storage s and timestep t can |
351
|
|
|
be accessed by: `om.GenericStorageBlock.intra_storage_delta[s, k, t]` |
352
|
|
|
|
353
|
|
|
**The following constraints are created:** |
354
|
|
|
|
355
|
|
|
Set storage_content of last time step to one at t=0 if balanced == True |
356
|
|
|
.. math:: |
357
|
|
|
E(t_{last}) = E(-1) |
358
|
|
|
|
359
|
|
|
Storage losses :attr:`om.Storage.losses[n, t]` |
360
|
|
|
.. math:: E_{loss}(t) = &E(t-1) \cdot |
361
|
|
|
1 - (1 - \beta(t))^{\tau(t)/(t_u)} \\ |
362
|
|
|
&- \gamma(t)\cdot E_{nom} \cdot {\tau(t)/(t_u)}\\ |
363
|
|
|
&- \delta(t) \cdot {\tau(t)/(t_u)} |
364
|
|
|
|
365
|
|
|
Storage balance :attr:`om.Storage.balance[n, t]` |
366
|
|
|
.. math:: E(t) = &E(t-1) - E_{loss}(t)\\ |
367
|
|
|
&- \frac{\dot{E}_o(p, t)}{\eta_o(t)} \cdot \tau(t)\\ |
368
|
|
|
&+ \dot{E}_i(p, t) \cdot \eta_i(t) \cdot \tau(t) |
369
|
|
|
|
370
|
|
|
Connect the invest variables of the input and the output flow. |
371
|
|
|
.. math:: |
372
|
|
|
InvestmentFlowBlock.invest(source(n), n, p) + existing = \\ |
373
|
|
|
(InvestmentFlowBlock.invest(n, target(n), p) + existing) \\ |
374
|
|
|
* invest\_relation\_input\_output(n) \\ |
375
|
|
|
\forall n \in \textrm{INVEST\_REL\_IN\_OUT} \\ |
376
|
|
|
\forall p \in \textrm{CAPACITY_PERIODS} |
377
|
|
|
|
378
|
|
|
|
379
|
|
|
|
380
|
|
|
=========================== ======================= ========= |
381
|
|
|
symbol explanation attribute |
382
|
|
|
=========================== ======================= ========= |
383
|
|
|
:math:`E(t)` energy currently stored `storage_content` |
384
|
|
|
:math:`E_{nom}` nominal capacity of `nominal_storage_capacity` |
385
|
|
|
the energy storage |
386
|
|
|
:math:`c(-1)` state before `initial_storage_level` |
387
|
|
|
initial time step |
388
|
|
|
:math:`c_{min}(t)` minimum allowed storage `min_storage_level[t]` |
389
|
|
|
:math:`c_{max}(t)` maximum allowed storage `max_storage_level[t]` |
390
|
|
|
:math:`\beta(t)` fraction of lost energy `loss_rate[t]` |
391
|
|
|
as share of |
392
|
|
|
:math:`E(t)` per hour |
393
|
|
|
:math:`\gamma(t)` fixed loss of energy `fixed_losses_relative[t]` |
394
|
|
|
per hour relative to |
395
|
|
|
:math:`E_{nom}` |
396
|
|
|
:math:`\delta(t)` absolute fixed loss `fixed_losses_absolute[t]` |
397
|
|
|
of energy per hour |
398
|
|
|
:math:`\dot{E}_i(t)` energy flowing in `inputs` |
399
|
|
|
:math:`\dot{E}_o(t)` energy flowing out `outputs` |
400
|
|
|
:math:`\eta_i(t)` conversion factor `inflow_conversion_factor[t]` |
401
|
|
|
(i.e. efficiency) |
402
|
|
|
when storing energy |
403
|
|
|
:math:`\eta_o(t)` conversion factor when `outflow_conversion_factor[t]` |
404
|
|
|
(i.e. efficiency) |
405
|
|
|
taking stored energy |
406
|
|
|
:math:`\tau(t)` duration of time step |
407
|
|
|
:math:`t_u` time unit of losses |
408
|
|
|
:math:`\beta(t)`, |
409
|
|
|
:math:`\gamma(t)` |
410
|
|
|
:math:`\delta(t)` and |
411
|
|
|
timeincrement |
412
|
|
|
:math:`\tau(t)` |
413
|
|
|
:math:`c_{storage}(t)` costs of having `storage_costs` |
414
|
|
|
energy stored |
415
|
|
|
=========================== ======================= ========= |
416
|
|
|
|
417
|
|
|
**The following parts of the objective function are created:** |
418
|
|
|
|
419
|
|
|
* :attr: `storage_costs` not 0 |
420
|
|
|
|
421
|
|
|
.. math:: |
422
|
|
|
\sum_{t \in \textrm{TIMEPOINTS} > 0} c_{storage}(t) \cdot E(t) |
423
|
|
|
|
424
|
|
|
""" # noqa: E501 |
425
|
|
|
|
426
|
|
|
CONSTRAINT_GROUP = True |
427
|
|
|
|
428
|
|
|
def __init__(self, *args, **kwargs): |
429
|
|
|
super().__init__(*args, **kwargs) |
430
|
|
|
|
431
|
|
|
def _create(self, group=None): |
432
|
|
|
""" |
433
|
|
|
Parameters |
434
|
|
|
---------- |
435
|
|
|
group : list |
436
|
|
|
List containing storage objects. |
437
|
|
|
e.g. groups=[storage1, storage2,..] |
438
|
|
|
""" |
439
|
|
|
m = self.parent_block() |
440
|
|
|
|
441
|
|
|
if group is None: |
442
|
|
|
return None |
443
|
|
|
|
444
|
|
|
i = {n: [i for i in n.inputs][0] for n in group} |
445
|
|
|
o = {n: [o for o in n.outputs][0] for n in group} |
446
|
|
|
|
447
|
|
|
# ************* SETS ********************************* |
448
|
|
|
|
449
|
|
|
self.STORAGES = Set(initialize=[n for n in group]) |
450
|
|
|
|
451
|
|
|
self.STORAGES_BALANCED = Set( |
452
|
|
|
initialize=[n for n in group if n.balanced is True] |
453
|
|
|
) |
454
|
|
|
|
455
|
|
|
self.STORAGES_INITITAL_LEVEL = Set( |
456
|
|
|
initialize=[ |
457
|
|
|
n for n in group if n.initial_storage_level is not None |
458
|
|
|
] |
459
|
|
|
) |
460
|
|
|
|
461
|
|
|
self.STORAGES_WITH_INVEST_FLOW_REL = Set( |
462
|
|
|
initialize=[ |
463
|
|
|
n |
464
|
|
|
for n in group |
465
|
|
|
if n.invest_relation_input_output[0] is not None |
466
|
|
|
] |
467
|
|
|
) |
468
|
|
|
|
469
|
|
|
# ************* VARIABLES ***************************** |
470
|
|
|
|
471
|
|
|
def _storage_content_bound_rule(block, n, t): |
472
|
|
|
""" |
473
|
|
|
Rule definition for bounds of storage_content variable of |
474
|
|
|
storage n in timestep t. |
475
|
|
|
""" |
476
|
|
|
bounds = ( |
477
|
|
|
n.nominal_storage_capacity * n.min_storage_level[t], |
478
|
|
|
n.nominal_storage_capacity * n.max_storage_level[t], |
479
|
|
|
) |
480
|
|
|
return bounds |
481
|
|
|
|
482
|
|
|
if not m.TSAM_MODE: |
483
|
|
|
self.storage_content = Var( |
484
|
|
|
self.STORAGES, m.TIMEPOINTS, bounds=_storage_content_bound_rule |
485
|
|
|
) |
486
|
|
|
|
487
|
|
|
self.storage_losses = Var(self.STORAGES, m.TIMESTEPS) |
488
|
|
|
|
489
|
|
|
# set the initial storage content |
490
|
|
|
# ToDo: More elegant code possible? |
491
|
|
|
for n in group: |
492
|
|
|
if n.initial_storage_level is not None: |
493
|
|
|
self.storage_content[n, 0] = ( |
494
|
|
|
n.initial_storage_level * n.nominal_storage_capacity |
495
|
|
|
) |
496
|
|
|
self.storage_content[n, 0].fix() |
497
|
|
|
else: |
498
|
|
|
# called "inter" in https://doi.org/10.1016/j.apenergy.2018.01.023 |
499
|
|
|
self.inter_storage_content = Var( |
500
|
|
|
self.STORAGES, m.CLUSTERS_OFFSET, within=NonNegativeReals |
501
|
|
|
) |
502
|
|
|
# called "intra" in https://doi.org/10.1016/j.apenergy.2018.01.023 |
503
|
|
|
self.intra_storage_delta = Var( |
504
|
|
|
self.STORAGES, m.TIMEINDEX_TYPICAL_CLUSTER_OFFSET |
505
|
|
|
) |
506
|
|
|
# set the initial intra storage content |
507
|
|
|
# first timestep in intra storage is always zero |
508
|
|
|
for n in group: |
509
|
|
|
for p, k in m.TYPICAL_CLUSTERS: |
510
|
|
|
self.intra_storage_delta[n, p, k, 0] = 0 |
511
|
|
|
self.intra_storage_delta[n, p, k, 0].fix() |
512
|
|
|
if n.initial_storage_level is not None: |
513
|
|
|
self.inter_storage_content[n, 0] = ( |
514
|
|
|
n.initial_storage_level * n.nominal_storage_capacity |
515
|
|
|
) |
516
|
|
|
self.inter_storage_content[n, 0].fix() |
517
|
|
|
# ************* Constraints *************************** |
518
|
|
|
|
519
|
|
View Code Duplication |
def _storage_inter_minimum_level_rule(block): |
|
|
|
|
520
|
|
|
# See FINE implementation at |
521
|
|
|
# https://github.com/FZJ-IEK3-VSA/FINE/blob/ |
522
|
|
|
# 57ec32561fb95e746c505760bd0d61c97d2fd2fb/FINE/storage.py#L1329 |
523
|
|
|
for n in self.STORAGES: |
524
|
|
|
for p, i, g in m.TIMEINDEX_CLUSTER: |
525
|
|
|
t = m.get_timestep_from_tsam_timestep(p, i, g) |
526
|
|
|
lhs = n.nominal_storage_capacity * n.min_storage_level[t] |
527
|
|
|
k = m.es.tsa_parameters[p]["order"][i] |
528
|
|
|
tk = m.get_timestep_from_tsam_timestep(p, k, g) |
529
|
|
|
inter_i = ( |
530
|
|
|
sum( |
531
|
|
|
len(m.es.tsa_parameters[ip]["order"]) |
532
|
|
|
for ip in range(p) |
533
|
|
|
) |
534
|
|
|
+ i |
535
|
|
|
) |
536
|
|
|
rhs = ( |
537
|
|
|
self.inter_storage_content[n, inter_i] |
538
|
|
|
* (1 - n.loss_rate[t]) ** (g * m.timeincrement[tk]) |
539
|
|
|
+ self.intra_storage_delta[n, p, k, g] |
540
|
|
|
) |
541
|
|
|
self.storage_inter_minimum_level.add( |
542
|
|
|
(n, p, i, g), lhs <= rhs |
543
|
|
|
) |
544
|
|
|
|
545
|
|
|
if m.TSAM_MODE: |
546
|
|
|
self.storage_inter_minimum_level = Constraint( |
547
|
|
|
self.STORAGES, m.TIMEINDEX_CLUSTER, noruleinit=True |
548
|
|
|
) |
549
|
|
|
|
550
|
|
|
self.storage_inter_minimum_level_build = BuildAction( |
551
|
|
|
rule=_storage_inter_minimum_level_rule |
552
|
|
|
) |
553
|
|
|
|
554
|
|
View Code Duplication |
def _storage_inter_maximum_level_rule(block): |
|
|
|
|
555
|
|
|
for n in self.STORAGES: |
556
|
|
|
for p, i, g in m.TIMEINDEX_CLUSTER: |
557
|
|
|
t = m.get_timestep_from_tsam_timestep(p, i, g) |
558
|
|
|
k = m.es.tsa_parameters[p]["order"][i] |
559
|
|
|
tk = m.get_timestep_from_tsam_timestep(p, k, g) |
560
|
|
|
inter_i = ( |
561
|
|
|
sum( |
562
|
|
|
len(m.es.tsa_parameters[ip]["order"]) |
563
|
|
|
for ip in range(p) |
564
|
|
|
) |
565
|
|
|
+ i |
566
|
|
|
) |
567
|
|
|
lhs = ( |
568
|
|
|
self.inter_storage_content[n, inter_i] |
569
|
|
|
* (1 - n.loss_rate[t]) ** (g * m.timeincrement[tk]) |
570
|
|
|
+ self.intra_storage_delta[n, p, k, g] |
571
|
|
|
) |
572
|
|
|
rhs = n.nominal_storage_capacity * n.max_storage_level[t] |
573
|
|
|
self.storage_inter_maximum_level.add( |
574
|
|
|
(n, p, i, g), lhs <= rhs |
575
|
|
|
) |
576
|
|
|
|
577
|
|
|
if m.TSAM_MODE: |
578
|
|
|
self.storage_inter_maximum_level = Constraint( |
579
|
|
|
self.STORAGES, m.TIMEINDEX_CLUSTER, noruleinit=True |
580
|
|
|
) |
581
|
|
|
|
582
|
|
|
self.storage_inter_maximum_level_build = BuildAction( |
583
|
|
|
rule=_storage_inter_maximum_level_rule |
584
|
|
|
) |
585
|
|
|
|
586
|
|
|
def _storage_losses_rule(block, n, t): |
587
|
|
|
expr = block.storage_content[n, t] * ( |
588
|
|
|
1 - (1 - n.loss_rate[t]) ** m.timeincrement[t] |
589
|
|
|
) |
590
|
|
|
expr += ( |
591
|
|
|
n.fixed_losses_relative[t] |
592
|
|
|
* n.nominal_storage_capacity |
593
|
|
|
* m.timeincrement[t] |
594
|
|
|
) |
595
|
|
|
expr += n.fixed_losses_absolute[t] * m.timeincrement[t] |
596
|
|
|
|
597
|
|
|
return expr == block.storage_losses[n, t] |
598
|
|
|
|
599
|
|
|
if not m.TSAM_MODE: |
600
|
|
|
self.losses = Constraint( |
601
|
|
|
self.STORAGES, m.TIMESTEPS, rule=_storage_losses_rule |
602
|
|
|
) |
603
|
|
|
|
604
|
|
|
def _storage_balance_rule(block, n, t): |
605
|
|
|
""" |
606
|
|
|
Rule definition for the storage balance of every storage n and |
607
|
|
|
every timestep. |
608
|
|
|
""" |
609
|
|
|
expr = block.storage_content[n, t] |
610
|
|
|
expr -= block.storage_losses[n, t] |
611
|
|
|
expr += ( |
612
|
|
|
m.flow[i[n], n, t] * n.inflow_conversion_factor[t] |
|
|
|
|
613
|
|
|
) * m.timeincrement[t] |
614
|
|
|
expr -= ( |
615
|
|
|
m.flow[n, o[n], t] / n.outflow_conversion_factor[t] |
|
|
|
|
616
|
|
|
) * m.timeincrement[t] |
617
|
|
|
return expr == block.storage_content[n, t + 1] |
618
|
|
|
|
619
|
|
View Code Duplication |
def _intra_storage_balance_rule(block, n, p, k, g): |
|
|
|
|
620
|
|
|
""" |
621
|
|
|
Rule definition for the storage balance of every storage n and |
622
|
|
|
every timestep. |
623
|
|
|
""" |
624
|
|
|
t = m.get_timestep_from_tsam_timestep(p, k, g) |
625
|
|
|
expr = 0 |
626
|
|
|
expr += block.intra_storage_delta[n, p, k, g + 1] |
627
|
|
|
expr += ( |
628
|
|
|
-block.intra_storage_delta[n, p, k, g] |
629
|
|
|
* (1 - n.loss_rate[t]) ** m.timeincrement[t] |
630
|
|
|
) |
631
|
|
|
expr += ( |
632
|
|
|
n.fixed_losses_relative[t] |
633
|
|
|
* n.nominal_storage_capacity |
634
|
|
|
* m.timeincrement[t] |
635
|
|
|
) |
636
|
|
|
expr += n.fixed_losses_absolute[t] * m.timeincrement[t] |
637
|
|
|
expr += ( |
638
|
|
|
-m.flow[i[n], n, t] * n.inflow_conversion_factor[t] |
|
|
|
|
639
|
|
|
) * m.timeincrement[t] |
640
|
|
|
expr += ( |
641
|
|
|
m.flow[n, o[n], t] / n.outflow_conversion_factor[t] |
|
|
|
|
642
|
|
|
) * m.timeincrement[t] |
643
|
|
|
return expr == 0 |
644
|
|
|
|
645
|
|
|
if not m.TSAM_MODE: |
646
|
|
|
self.balance = Constraint( |
647
|
|
|
self.STORAGES, m.TIMESTEPS, rule=_storage_balance_rule |
648
|
|
|
) |
649
|
|
|
else: |
650
|
|
|
self.intra_balance = Constraint( |
651
|
|
|
self.STORAGES, |
652
|
|
|
m.TIMEINDEX_TYPICAL_CLUSTER, |
653
|
|
|
rule=_intra_storage_balance_rule, |
654
|
|
|
) |
655
|
|
|
|
656
|
|
|
def _inter_storage_balance_rule(block, n, i): |
657
|
|
|
""" |
658
|
|
|
Rule definition for the storage balance of every storage n and |
659
|
|
|
every timestep. |
660
|
|
|
""" |
661
|
|
|
ii = 0 |
662
|
|
|
for p in m.CAPACITY_PERIODS: |
663
|
|
|
ii += len(m.es.tsa_parameters[p]["order"]) |
664
|
|
|
if ii > i: |
665
|
|
|
ii -= len(m.es.tsa_parameters[p]["order"]) |
666
|
|
|
ii = i - ii |
667
|
|
|
break |
668
|
|
|
|
669
|
|
|
k = m.es.tsa_parameters[p]["order"][ii] |
|
|
|
|
670
|
|
|
|
671
|
|
|
# Calculate inter losses over whole typical period |
672
|
|
|
t0 = m.get_timestep_from_tsam_timestep(p, k, 0) |
673
|
|
|
losses = math.prod( |
674
|
|
|
( |
675
|
|
|
(1 - n.loss_rate[t0 + s]) |
676
|
|
|
** m.es.tsa_parameters[p]["segments"][(k, s)] |
677
|
|
|
if "segments" in m.es.tsa_parameters[p] |
678
|
|
|
else 1 - n.loss_rate[t0 + s] |
679
|
|
|
) |
680
|
|
|
for s in range(m.es.tsa_parameters[p]["timesteps"]) |
681
|
|
|
) |
682
|
|
|
|
683
|
|
|
expr = 0 |
684
|
|
|
expr += block.inter_storage_content[n, i + 1] |
685
|
|
|
expr += -block.inter_storage_content[n, i] * losses |
686
|
|
|
expr += -self.intra_storage_delta[ |
687
|
|
|
n, p, k, m.es.tsa_parameters[p]["timesteps"] |
688
|
|
|
] |
689
|
|
|
return expr == 0 |
690
|
|
|
|
691
|
|
|
if m.TSAM_MODE: |
692
|
|
|
self.inter_balance = Constraint( |
693
|
|
|
self.STORAGES, |
694
|
|
|
m.CLUSTERS, |
695
|
|
|
rule=_inter_storage_balance_rule, |
696
|
|
|
) |
697
|
|
|
|
698
|
|
|
def _balanced_storage_rule(block, n): |
699
|
|
|
""" |
700
|
|
|
Storage content of last time step == initial storage content |
701
|
|
|
if balanced. |
702
|
|
|
""" |
703
|
|
|
return ( |
704
|
|
|
block.storage_content[n, m.TIMEPOINTS.at(-1)] |
705
|
|
|
== block.storage_content[n, m.TIMEPOINTS.at(1)] |
706
|
|
|
) |
707
|
|
|
|
708
|
|
|
def _balanced_inter_storage_rule(block, n): |
709
|
|
|
""" |
710
|
|
|
Storage content of last time step == initial storage content |
711
|
|
|
if balanced. |
712
|
|
|
""" |
713
|
|
|
return ( |
714
|
|
|
block.inter_storage_content[n, m.CLUSTERS_OFFSET.at(-1)] |
715
|
|
|
== block.inter_storage_content[n, m.CLUSTERS_OFFSET.at(1)] |
716
|
|
|
) |
717
|
|
|
|
718
|
|
|
if not m.TSAM_MODE: |
719
|
|
|
self.balanced_cstr = Constraint( |
720
|
|
|
self.STORAGES_BALANCED, rule=_balanced_storage_rule |
721
|
|
|
) |
722
|
|
|
else: |
723
|
|
|
self.balanced_cstr = Constraint( |
724
|
|
|
self.STORAGES_BALANCED, rule=_balanced_inter_storage_rule |
725
|
|
|
) |
726
|
|
|
|
727
|
|
|
def _power_coupled(_): |
728
|
|
|
""" |
729
|
|
|
Rule definition for constraint to connect the input power |
730
|
|
|
and output power |
731
|
|
|
""" |
732
|
|
|
for n in self.STORAGES_WITH_INVEST_FLOW_REL: |
733
|
|
|
for p in m.CAPACITY_PERIODS: |
734
|
|
|
expr = ( |
735
|
|
|
m.InvestmentFlowBlock.total[n, o[n], p] |
|
|
|
|
736
|
|
|
) * n.invest_relation_input_output[p] == ( |
737
|
|
|
m.InvestmentFlowBlock.total[i[n], n, p] |
|
|
|
|
738
|
|
|
) |
739
|
|
|
self.power_coupled.add((n, p), expr) |
740
|
|
|
|
741
|
|
|
self.power_coupled = Constraint( |
742
|
|
|
self.STORAGES_WITH_INVEST_FLOW_REL, |
743
|
|
|
m.CAPACITY_PERIODS, |
744
|
|
|
noruleinit=True, |
745
|
|
|
) |
746
|
|
|
|
747
|
|
|
self.power_coupled_build = BuildAction(rule=_power_coupled) |
748
|
|
|
|
749
|
|
|
def _objective_expression(self): |
750
|
|
|
r""" |
751
|
|
|
Objective expression for storages with no investment. |
752
|
|
|
|
753
|
|
|
* Fixed costs (will not have an impact on the actual optimisation). |
754
|
|
|
* Variable costs for storage content. |
755
|
|
|
""" |
756
|
|
|
m = self.parent_block() |
757
|
|
|
|
758
|
|
|
storage_costs = 0 |
759
|
|
|
|
760
|
|
|
for n in self.STORAGES: |
761
|
|
View Code Duplication |
if valid_sequence(n.storage_costs, len(m.TIMESTEPS)): |
|
|
|
|
762
|
|
|
# We actually want to iterate over all TIMEPOINTS except the |
763
|
|
|
# 0th. As integers are used for the index, this is equicalent |
764
|
|
|
# to iterating over the TIMESTEPS with one offset. |
765
|
|
|
if not m.TSAM_MODE: |
766
|
|
|
for t in m.TIMESTEPS: |
767
|
|
|
storage_costs += ( |
768
|
|
|
self.storage_content[n, t + 1] * n.storage_costs[t] |
769
|
|
|
) |
770
|
|
|
else: |
771
|
|
|
for t in m.TIMESTEPS_ORIGINAL: |
772
|
|
|
storage_costs += ( |
773
|
|
|
self.storage_content[n, t + 1] |
774
|
|
|
* n.storage_costs[t + 1] |
775
|
|
|
) |
776
|
|
|
|
777
|
|
|
self.storage_costs = Expression(expr=storage_costs) |
778
|
|
|
self.costs = Expression(expr=storage_costs) |
779
|
|
|
|
780
|
|
|
return self.costs |
781
|
|
|
|
782
|
|
|
|
783
|
|
|
class GenericInvestmentStorageBlock(ScalarBlock): |
784
|
|
|
r""" |
785
|
|
|
Block for all storages with :attr:`Investment` being not None. |
786
|
|
|
See :class:`.Investment` for all parameters of the |
787
|
|
|
Investment class. |
788
|
|
|
|
789
|
|
|
**Variables** |
790
|
|
|
|
791
|
|
|
All Storages are indexed by :math:`n` (denoting the respective storage |
792
|
|
|
unit), which is omitted in the following for the sake of convenience. |
793
|
|
|
The following variables are created as attributes of |
794
|
|
|
:attr:`om.GenericInvestmentStorageBlock`: |
795
|
|
|
|
796
|
|
|
* :math:`P_i(p, t)` |
797
|
|
|
|
798
|
|
|
Inflow of the storage |
799
|
|
|
(created in :class:`oemof.solph.models.Model`). |
800
|
|
|
|
801
|
|
|
* :math:`P_o(p, t)` |
802
|
|
|
|
803
|
|
|
Outflow of the storage |
804
|
|
|
(created in :class:`oemof.solph.models.Model`). |
805
|
|
|
|
806
|
|
|
* :math:`E(t)` |
807
|
|
|
|
808
|
|
|
Current storage content (Absolute level of stored energy). |
809
|
|
|
|
810
|
|
|
* :math:`E_{invest}(p)` |
811
|
|
|
|
812
|
|
|
Invested (nominal) capacity of the storage in period p. |
813
|
|
|
|
814
|
|
|
* :math:`E_{total}(p)` |
815
|
|
|
|
816
|
|
|
Total installed (nominal) capacity of the storage in period p. |
817
|
|
|
|
818
|
|
|
* :math:`E_{old}(p)` |
819
|
|
|
|
820
|
|
|
Old (nominal) capacity of the storage to be decommissioned in period p. |
821
|
|
|
|
822
|
|
|
* :math:`E_{old,exo}(p)` |
823
|
|
|
|
824
|
|
|
Exogenous old (nominal) capacity of the storage to be decommissioned |
825
|
|
|
in period p; existing capacity reaching its lifetime. |
826
|
|
|
|
827
|
|
|
* :math:`E_{old,endo}(p)` |
828
|
|
|
|
829
|
|
|
Endogenous old (nominal) capacity of the storage to be decommissioned |
830
|
|
|
in period p; endgenous investments reaching their lifetime. |
831
|
|
|
|
832
|
|
|
* :math:`E(-1)` |
833
|
|
|
|
834
|
|
|
Initial storage content (before timestep 0). |
835
|
|
|
Not applicable for a multi-period model. |
836
|
|
|
|
837
|
|
|
* :math:`b_{invest}(p)` |
838
|
|
|
|
839
|
|
|
Binary variable for the status of the investment, if |
840
|
|
|
:attr:`nonconvex` is `True`. |
841
|
|
|
|
842
|
|
|
**Constraints** |
843
|
|
|
|
844
|
|
|
The following constraints are created for all investment storages: |
845
|
|
|
|
846
|
|
|
Storage balance (Same as for :class:`.GenericStorageBlock`) |
847
|
|
|
|
848
|
|
|
.. math:: E(t) = &E(t-1) \cdot |
849
|
|
|
(1 - \beta(t)) ^{\tau(t)/(t_u)} \\ |
850
|
|
|
&- \gamma(t)\cdot (E_{total}(p)) \cdot {\tau(t)/(t_u)}\\ |
851
|
|
|
&- \delta(t) \cdot {\tau(t)/(t_u)}\\ |
852
|
|
|
&- \frac{\dot{E}_o(p, t))}{\eta_o(t)} \cdot \tau(t) |
853
|
|
|
+ \dot{E}_i(p, t) \cdot \eta_i(t) \cdot \tau(t) |
854
|
|
|
|
855
|
|
|
Total storage capacity (p > 0 for multi-period model only) |
856
|
|
|
|
857
|
|
|
.. math:: |
858
|
|
|
& |
859
|
|
|
if \quad p=0:\\ |
860
|
|
|
& |
861
|
|
|
E_{total}(p) = E_{exist} + E_{invest}(p)\\ |
862
|
|
|
&\\ |
863
|
|
|
& |
864
|
|
|
else:\\ |
865
|
|
|
& |
866
|
|
|
E_{total}(p) = E_{total}(p-1) + E_{invest}(p) - E_{old}(p)\\ |
867
|
|
|
&\\ |
868
|
|
|
& |
869
|
|
|
\forall p \in \textrm{CAPACITY_PERIODS} |
870
|
|
|
|
871
|
|
|
Old storage capacity (p > 0 for multi-period model only) |
872
|
|
|
|
873
|
|
|
.. math:: |
874
|
|
|
& |
875
|
|
|
E_{old}(p) = E_{old,exo}(p) + E_{old,end}(p)\\ |
876
|
|
|
&\\ |
877
|
|
|
& |
878
|
|
|
if \quad p=0:\\ |
879
|
|
|
& |
880
|
|
|
E_{old,end}(p) = 0\\ |
881
|
|
|
&\\ |
882
|
|
|
& |
883
|
|
|
else \quad if \quad l \leq year(p):\\ |
884
|
|
|
& |
885
|
|
|
E_{old,end}(p) = E_{invest}(p_{comm})\\ |
886
|
|
|
&\\ |
887
|
|
|
& |
888
|
|
|
else:\\ |
889
|
|
|
& |
890
|
|
|
E_{old,end}(p)\\ |
891
|
|
|
&\\ |
892
|
|
|
& |
893
|
|
|
if \quad p=0:\\ |
894
|
|
|
& |
895
|
|
|
E_{old,exo}(p) = 0\\ |
896
|
|
|
&\\ |
897
|
|
|
& |
898
|
|
|
else \quad if \quad l - a \leq year(p):\\ |
899
|
|
|
& |
900
|
|
|
E_{old,exo}(p) = E_{exist} (*)\\ |
901
|
|
|
&\\ |
902
|
|
|
& |
903
|
|
|
else:\\ |
904
|
|
|
& |
905
|
|
|
E_{old,exo}(p) = 0\\ |
906
|
|
|
&\\ |
907
|
|
|
& |
908
|
|
|
\forall p \in \textrm{CAPACITY_PERIODS} |
909
|
|
|
|
910
|
|
|
where: |
911
|
|
|
|
912
|
|
|
* (*) is only performed for the first period the condition is True. |
913
|
|
|
A decommissioning flag is then set to True to prevent having falsely |
914
|
|
|
added old capacity in future periods. |
915
|
|
|
* :math:`year(p)` is the year corresponding to period p |
916
|
|
|
* :math:`p_{comm}` is the commissioning period of the storage |
917
|
|
|
|
918
|
|
|
Depending on the attribute :attr:`nonconvex`, the constraints for the |
919
|
|
|
bounds of the decision variable :math:`E_{invest}(p)` are different:\ |
920
|
|
|
|
921
|
|
|
* :attr:`nonconvex = False` |
922
|
|
|
|
923
|
|
|
.. math:: |
924
|
|
|
& |
925
|
|
|
E_{invest, min}(p) \le E_{invest}(p) \le E_{invest, max}(p) \\ |
926
|
|
|
& |
927
|
|
|
\forall p \in \textrm{CAPACITY_PERIODS} |
928
|
|
|
|
929
|
|
|
* :attr:`nonconvex = True` |
930
|
|
|
|
931
|
|
|
.. math:: |
932
|
|
|
& |
933
|
|
|
E_{invest, min}(p) \cdot b_{invest}(p) \le E_{invest}(p)\\ |
934
|
|
|
& |
935
|
|
|
E_{invest}(p) \le E_{invest, max}(p) \cdot b_{invest}(p)\\ |
936
|
|
|
& |
937
|
|
|
\forall p \in \textrm{CAPACITY_PERIODS} |
938
|
|
|
|
939
|
|
|
The following constraints are created depending on the attributes of |
940
|
|
|
the :class:`.GenericStorage`: |
941
|
|
|
|
942
|
|
|
* :attr:`initial_storage_level is None`; |
943
|
|
|
not applicable for multi-period model |
944
|
|
|
|
945
|
|
|
Constraint for a variable initial storage content: |
946
|
|
|
|
947
|
|
|
.. math:: |
948
|
|
|
E(-1) \le E_{exist} + E_{invest}(0) |
949
|
|
|
|
950
|
|
|
* :attr:`initial_storage_level is not None`; |
951
|
|
|
not applicable for multi-period model |
952
|
|
|
|
953
|
|
|
An initial value for the storage content is given: |
954
|
|
|
|
955
|
|
|
.. math:: |
956
|
|
|
E(-1) = (E_{invest}(0) + E_{exist}) \cdot c(-1) |
957
|
|
|
|
958
|
|
|
* :attr:`balanced=True`; |
959
|
|
|
not applicable for multi-period model |
960
|
|
|
|
961
|
|
|
The energy content of storage of the first and the last timestep |
962
|
|
|
are set equal: |
963
|
|
|
|
964
|
|
|
.. math:: |
965
|
|
|
E(-1) = E(t_{last}) |
966
|
|
|
|
967
|
|
|
* :attr:`invest_relation_input_capacity is not None` |
968
|
|
|
|
969
|
|
|
Connect the invest variables of the storage and the input flow: |
970
|
|
|
|
971
|
|
|
.. math:: |
972
|
|
|
& |
973
|
|
|
P_{i,total}(p) = |
974
|
|
|
E_{total}(p) \cdot r_{cap,in} \\ |
975
|
|
|
& |
976
|
|
|
\forall p \in \textrm{CAPACITY_PERIODS} |
977
|
|
|
|
978
|
|
|
* :attr:`invest_relation_output_capacity is not None` |
979
|
|
|
|
980
|
|
|
Connect the invest variables of the storage and the output flow: |
981
|
|
|
|
982
|
|
|
.. math:: |
983
|
|
|
& |
984
|
|
|
P_{o,total}(p) = |
985
|
|
|
E_{total}(p) \cdot r_{cap,out}\\ |
986
|
|
|
& |
987
|
|
|
\forall p \in \textrm{CAPACITY_PERIODS} |
988
|
|
|
|
989
|
|
|
* :attr:`invest_relation_input_output is not None` |
990
|
|
|
|
991
|
|
|
Connect the invest variables of the input and the output flow: |
992
|
|
|
|
993
|
|
|
.. math:: |
994
|
|
|
& |
995
|
|
|
P_{i,total}(p) = |
996
|
|
|
P_{o,total}(p) \cdot r_{in,out}\\ |
997
|
|
|
& |
998
|
|
|
\forall p \in \textrm{CAPACITY_PERIODS} |
999
|
|
|
|
1000
|
|
|
* :attr:`max_storage_level` |
1001
|
|
|
|
1002
|
|
|
Rule for upper bound constraint for the storage content: |
1003
|
|
|
|
1004
|
|
|
.. math:: |
1005
|
|
|
& |
1006
|
|
|
E(t) \leq E_{total}(p) \cdot c_{max}(t)\\ |
1007
|
|
|
& |
1008
|
|
|
\forall p, t \in \textrm{TIMEINDEX} |
1009
|
|
|
|
1010
|
|
|
* :attr:`min_storage_level` |
1011
|
|
|
|
1012
|
|
|
Rule for lower bound constraint for the storage content: |
1013
|
|
|
|
1014
|
|
|
.. math:: |
1015
|
|
|
& |
1016
|
|
|
E(t) \geq E_{total}(p) \cdot c_{min}(t)\\ |
1017
|
|
|
& |
1018
|
|
|
\forall p, t \in \textrm{TIMEINDEX} |
1019
|
|
|
|
1020
|
|
|
|
1021
|
|
|
**Objective function** |
1022
|
|
|
|
1023
|
|
|
Objective terms for a standard model and a multi-period model differ |
1024
|
|
|
quite strongly. Besides, the part of the objective function added by the |
1025
|
|
|
investment storages also depends on whether a convex or nonconvex |
1026
|
|
|
investment option is selected. The following parts of the objective |
1027
|
|
|
function are created: |
1028
|
|
|
|
1029
|
|
|
*Standard model* |
1030
|
|
|
|
1031
|
|
|
* :attr:`nonconvex = False` |
1032
|
|
|
|
1033
|
|
|
.. math:: |
1034
|
|
|
E_{invest}(0) \cdot c_{invest,var}(0) |
1035
|
|
|
|
1036
|
|
|
* :attr:`nonconvex = True` |
1037
|
|
|
|
1038
|
|
|
.. math:: |
1039
|
|
|
E_{invest}(0) \cdot c_{invest,var}(0) |
1040
|
|
|
+ c_{invest,fix}(0) \cdot b_{invest}(0)\\ |
1041
|
|
|
|
1042
|
|
|
Where 0 denotes the 0th (investment) period since |
1043
|
|
|
in a standard model, there is only this one period. |
1044
|
|
|
|
1045
|
|
|
*Multi-period model* |
1046
|
|
|
|
1047
|
|
|
* :attr:`nonconvex = False` |
1048
|
|
|
|
1049
|
|
|
.. math:: |
1050
|
|
|
& |
1051
|
|
|
E_{invest}(p) \cdot A(c_{invest,var}(p), l, ir) |
1052
|
|
|
\cdot \frac {1}{ANF(d, ir)} \cdot DF^{-p}\\ |
1053
|
|
|
& |
1054
|
|
|
\forall p \in \textrm{CAPACITY_PERIODS} |
1055
|
|
|
|
1056
|
|
|
In case, the remaining lifetime of a storage is greater than 0 and |
1057
|
|
|
attribute `use_remaining_value` of the energy system is True, |
1058
|
|
|
the difference in value for the investment period compared to the |
1059
|
|
|
last period of the optimization horizon is accounted for |
1060
|
|
|
as an adder to the investment costs: |
1061
|
|
|
|
1062
|
|
|
.. math:: |
1063
|
|
|
& |
1064
|
|
|
E_{invest}(p) \cdot (A(c_{invest,var}(p), l_{r}, ir) - |
1065
|
|
|
A(c_{invest,var}(|P|), l_{r}, ir)\\ |
1066
|
|
|
& \cdot \frac {1}{ANF(l_{r}, ir)} \cdot DF^{-|P|}\\ |
1067
|
|
|
&\\ |
1068
|
|
|
& |
1069
|
|
|
\forall p \in \textrm{CAPACITY_PERIODS} |
1070
|
|
|
|
1071
|
|
|
* :attr:`nonconvex = True` |
1072
|
|
|
|
1073
|
|
|
.. math:: |
1074
|
|
|
& |
1075
|
|
|
(E_{invest}(p) \cdot A(c_{invest,var}(p), l, ir) |
1076
|
|
|
\cdot \frac {1}{ANF(d, ir)}\\ |
1077
|
|
|
& |
1078
|
|
|
+ c_{invest,fix}(p) \cdot b_{invest}(p)) \cdot DF^{-p} \\ |
1079
|
|
|
& |
1080
|
|
|
\forall p \in \textrm{CAPACITY_PERIODS} |
1081
|
|
|
|
1082
|
|
|
In case, the remaining lifetime of a storage is greater than 0 and |
1083
|
|
|
attribute `use_remaining_value` of the energy system is True, |
1084
|
|
|
the difference in value for the investment period compared to the |
1085
|
|
|
last period of the optimization horizon is accounted for |
1086
|
|
|
as an adder to the investment costs: |
1087
|
|
|
|
1088
|
|
|
.. math:: |
1089
|
|
|
& |
1090
|
|
|
(E_{invest}(p) \cdot (A(c_{invest,var}(p), l_{r}, ir) - |
1091
|
|
|
A(c_{invest,var}(|P|), l_{r}, ir)\\ |
1092
|
|
|
& \cdot \frac {1}{ANF(l_{r}, ir)} \cdot DF^{-|P|}\\ |
1093
|
|
|
& |
1094
|
|
|
+ (c_{invest,fix}(p) - c_{invest,fix}(|P|)) |
1095
|
|
|
\cdot b_{invest}(p)) \cdot DF^{-p}\\ |
1096
|
|
|
&\\ |
1097
|
|
|
& |
1098
|
|
|
\forall p \in \textrm{CAPACITY_PERIODS} |
1099
|
|
|
|
1100
|
|
|
.. csv-table:: List of Variables |
1101
|
|
|
:header: "symbol", "attribute", "explanation" |
1102
|
|
|
:widths: 1, 1, 1 |
1103
|
|
|
|
1104
|
|
|
":math:`P_i(p, t)`", ":attr:`flow[i[n], n, p, t]`", "Inflow |
1105
|
|
|
of the storage" |
1106
|
|
|
":math:`P_o(p, t)`", ":attr:`flow[n, o[n], p, t]`", "Outflow |
1107
|
|
|
of the storage" |
1108
|
|
|
":math:`E(t)`", ":attr:`storage_content[n, t]`", "Current storage |
1109
|
|
|
content (current absolute stored energy)" |
1110
|
|
|
":math:`E_{loss}(t)`", ":attr:`storage_losses[n, t]`", "Current storage |
1111
|
|
|
losses (absolute losses per time step)" |
1112
|
|
|
":math:`E_{invest}(p)`", ":attr:`invest[n, p]`", "Invested (nominal) |
1113
|
|
|
capacity of the storage" |
1114
|
|
|
":math:`E_{old}(p)`", ":attr:`old[n, p]`", " |
1115
|
|
|
| Old (nominal) capacity of the storage |
1116
|
|
|
| to be decommissioned in period p" |
1117
|
|
|
":math:`E_{old,exo}(p)`", ":attr:`old_exo[n, p]`", " |
1118
|
|
|
| Old (nominal) capacity of the storage |
1119
|
|
|
| to be decommissioned in period p |
1120
|
|
|
| which was exogenously given by :math:`E_{exist}`" |
1121
|
|
|
":math:`E_{old,end}(p)`", ":attr:`old_end[n, p]`", " |
1122
|
|
|
| Old (nominal) capacity of the storage |
1123
|
|
|
| to be decommissioned in period p |
1124
|
|
|
| which was endogenously determined by :math:`E_{invest}(p_{comm})` |
1125
|
|
|
| where :math:`p_{comm}` is the commissioning period" |
1126
|
|
|
":math:`E(-1)`", ":attr:`init_cap[n]`", "Initial storage capacity |
1127
|
|
|
(before timestep 0)" |
1128
|
|
|
":math:`b_{invest}(p)`", ":attr:`invest_status[i, o, p]`", "Binary |
1129
|
|
|
variable for the status of investment" |
1130
|
|
|
":math:`P_{i,invest}(p)`", " |
1131
|
|
|
:attr:`InvestmentFlowBlock.invest[i[n], n, p]`", " |
1132
|
|
|
Invested (nominal) inflow (InvestmentFlowBlock)" |
1133
|
|
|
":math:`P_{o,invest}`", " |
1134
|
|
|
:attr:`InvestmentFlowBlock.invest[n, o[n]]`", " |
1135
|
|
|
Invested (nominal) outflow (InvestmentFlowBlock)" |
1136
|
|
|
|
1137
|
|
|
.. csv-table:: List of Parameters |
1138
|
|
|
:header: "symbol", "attribute", "explanation" |
1139
|
|
|
:widths: 1, 1, 1 |
1140
|
|
|
|
1141
|
|
|
":math:`E_{exist}`", "`flows[i, o].investment.existing`", " |
1142
|
|
|
Existing storage capacity" |
1143
|
|
|
":math:`E_{invest,min}`", "`flows[i, o].investment.minimum`", " |
1144
|
|
|
Minimum investment value" |
1145
|
|
|
":math:`E_{invest,max}`", "`flows[i, o].investment.maximum`", " |
1146
|
|
|
Maximum investment value" |
1147
|
|
|
":math:`P_{i,exist}`", "`flows[i[n], n].investment.existing` |
1148
|
|
|
", "Existing inflow capacity" |
1149
|
|
|
":math:`P_{o,exist}`", "`flows[n, o[n]].investment.existing` |
1150
|
|
|
", "Existing outflow capacity" |
1151
|
|
|
":math:`c_{invest,var}`", "`flows[i, o].investment.ep_costs` |
1152
|
|
|
", "Variable investment costs" |
1153
|
|
|
":math:`c_{invest,fix}`", "`flows[i, o].investment.offset`", " |
1154
|
|
|
Fix investment costs" |
1155
|
|
|
":math:`r_{cap,in}`", ":attr:`invest_relation_input_capacity`", " |
1156
|
|
|
Relation of storage capacity and nominal inflow" |
1157
|
|
|
":math:`r_{cap,out}`", ":attr:`invest_relation_output_capacity`", " |
1158
|
|
|
Relation of storage capacity and nominal outflow" |
1159
|
|
|
":math:`r_{in,out}`", ":attr:`invest_relation_input_output`", " |
1160
|
|
|
Relation of nominal in- and outflow" |
1161
|
|
|
":math:`\beta(t)`", "`loss_rate[t]`", "Fraction of lost energy |
1162
|
|
|
as share of :math:`E(t)` per hour" |
1163
|
|
|
":math:`\gamma(t)`", "`fixed_losses_relative[t]`", "Fixed loss |
1164
|
|
|
of energy relative to :math:`E_{invest} + E_{exist}` per hour" |
1165
|
|
|
":math:`\delta(t)`", "`fixed_losses_absolute[t]`", "Absolute |
1166
|
|
|
fixed loss of energy per hour" |
1167
|
|
|
":math:`\eta_i(t)`", "`inflow_conversion_factor[t]`", " |
1168
|
|
|
Conversion factor (i.e. efficiency) when storing energy" |
1169
|
|
|
":math:`\eta_o(t)`", "`outflow_conversion_factor[t]`", " |
1170
|
|
|
Conversion factor when (i.e. efficiency) taking stored energy" |
1171
|
|
|
":math:`c(-1)`", "`initial_storage_level`", "Initial relative |
1172
|
|
|
storage content (before timestep 0)" |
1173
|
|
|
":math:`c_{max}`", "`flows[i, o].max[t]`", "Normed maximum |
1174
|
|
|
value of storage content" |
1175
|
|
|
":math:`c_{min}`", "`flows[i, o].min[t]`", "Normed minimum |
1176
|
|
|
value of storage content" |
1177
|
|
|
":math:`l`", "`flows[i, o].investment.lifetime`", " |
1178
|
|
|
Lifetime for investments in storage capacity" |
1179
|
|
|
":math:`a`", "`flows[i, o].investment.age`", " |
1180
|
|
|
Initial age of existing capacity / energy" |
1181
|
|
|
":math:`\tau(t)`", "", "Duration of time step" |
1182
|
|
|
":math:`t_u`", "", "Time unit of losses :math:`\beta(t)`, |
1183
|
|
|
:math:`\gamma(t)`, :math:`\delta(t)` and timeincrement :math:`\tau(t)`" |
1184
|
|
|
|
1185
|
|
|
""" |
1186
|
|
|
|
1187
|
|
|
CONSTRAINT_GROUP = True |
1188
|
|
|
|
1189
|
|
|
def __init__(self, *args, **kwargs): |
1190
|
|
|
super().__init__(*args, **kwargs) |
1191
|
|
|
|
1192
|
|
|
def _create(self, group): |
1193
|
|
|
"""Create a storage block for investment modeling""" |
1194
|
|
|
m = self.parent_block() |
1195
|
|
|
|
1196
|
|
|
# ########################## SETS ##################################### |
1197
|
|
|
|
1198
|
|
|
self.INVESTSTORAGES = Set(initialize=[n for n in group]) |
1199
|
|
|
|
1200
|
|
|
self.CONVEX_INVESTSTORAGES = Set( |
1201
|
|
|
initialize=[n for n in group if n.investment.nonconvex is False] |
1202
|
|
|
) |
1203
|
|
|
|
1204
|
|
|
self.NON_CONVEX_INVESTSTORAGES = Set( |
1205
|
|
|
initialize=[n for n in group if n.investment.nonconvex is True] |
1206
|
|
|
) |
1207
|
|
|
|
1208
|
|
|
self.INVESTSTORAGES_BALANCED = Set( |
1209
|
|
|
initialize=[n for n in group if n.balanced is True] |
1210
|
|
|
) |
1211
|
|
|
|
1212
|
|
|
self.INVESTSTORAGES_NO_INIT_CONTENT = Set( |
1213
|
|
|
initialize=[n for n in group if n.initial_storage_level is None] |
1214
|
|
|
) |
1215
|
|
|
|
1216
|
|
|
self.INVESTSTORAGES_INIT_CONTENT = Set( |
1217
|
|
|
initialize=[ |
1218
|
|
|
n for n in group if n.initial_storage_level is not None |
1219
|
|
|
] |
1220
|
|
|
) |
1221
|
|
|
|
1222
|
|
|
self.INVEST_REL_CAP_IN = Set( |
1223
|
|
|
initialize=[ |
1224
|
|
|
n |
1225
|
|
|
for n in group |
1226
|
|
|
if n.invest_relation_input_capacity[0] is not None |
1227
|
|
|
] |
1228
|
|
|
) |
1229
|
|
|
|
1230
|
|
|
self.INVEST_REL_CAP_OUT = Set( |
1231
|
|
|
initialize=[ |
1232
|
|
|
n |
1233
|
|
|
for n in group |
1234
|
|
|
if n.invest_relation_output_capacity[0] is not None |
1235
|
|
|
] |
1236
|
|
|
) |
1237
|
|
|
|
1238
|
|
|
self.INVEST_REL_IN_OUT = Set( |
1239
|
|
|
initialize=[ |
1240
|
|
|
n |
1241
|
|
|
for n in group |
1242
|
|
|
if n.invest_relation_input_output[0] is not None |
1243
|
|
|
] |
1244
|
|
|
) |
1245
|
|
|
|
1246
|
|
|
# The storage content is a non-negative variable, therefore it makes no |
1247
|
|
|
# sense to create an additional constraint if the lower bound is zero |
1248
|
|
|
# for all time steps. |
1249
|
|
|
self.MIN_INVESTSTORAGES = Set( |
1250
|
|
|
initialize=[ |
1251
|
|
|
n |
1252
|
|
|
for n in group |
1253
|
|
|
if sum([n.min_storage_level[t] for t in m.TIMESTEPS]) > 0 |
1254
|
|
|
] |
1255
|
|
|
) |
1256
|
|
|
|
1257
|
|
|
self.OVERALL_MAXIMUM_INVESTSTORAGES = Set( |
1258
|
|
|
initialize=[ |
1259
|
|
|
n for n in group if n.investment.overall_maximum is not None |
1260
|
|
|
] |
1261
|
|
|
) |
1262
|
|
|
|
1263
|
|
|
self.OVERALL_MINIMUM_INVESTSTORAGES = Set( |
1264
|
|
|
initialize=[ |
1265
|
|
|
n for n in group if n.investment.overall_minimum is not None |
1266
|
|
|
] |
1267
|
|
|
) |
1268
|
|
|
|
1269
|
|
|
self.EXISTING_INVESTSTORAGES = Set( |
1270
|
|
|
initialize=[n for n in group if n.investment.existing is not None] |
1271
|
|
|
) |
1272
|
|
|
|
1273
|
|
|
# ######################### Variables ################################ |
1274
|
|
|
if not m.TSAM_MODE: |
1275
|
|
|
self.storage_content = Var( |
1276
|
|
|
self.INVESTSTORAGES, m.TIMEPOINTS, within=NonNegativeReals |
1277
|
|
|
) |
1278
|
|
|
else: |
1279
|
|
|
self.inter_storage_content = Var( |
1280
|
|
|
self.INVESTSTORAGES, m.CLUSTERS_OFFSET, within=NonNegativeReals |
1281
|
|
|
) |
1282
|
|
|
self.intra_storage_delta = Var( |
1283
|
|
|
self.INVESTSTORAGES, m.TIMEINDEX_TYPICAL_CLUSTER_OFFSET |
1284
|
|
|
) |
1285
|
|
|
# set the initial intra storage content |
1286
|
|
|
# first timestep in intra storage is always zero |
1287
|
|
|
for n in group: |
1288
|
|
|
for p, k in m.TYPICAL_CLUSTERS: |
1289
|
|
|
self.intra_storage_delta[n, p, k, 0] = 0 |
1290
|
|
|
self.intra_storage_delta[n, p, k, 0].fix() |
1291
|
|
|
|
1292
|
|
|
def _storage_investvar_bound_rule(_, n, p): |
1293
|
|
|
""" |
1294
|
|
|
Rule definition to bound the invested storage capacity `invest`. |
1295
|
|
|
""" |
1296
|
|
|
if n in self.CONVEX_INVESTSTORAGES: |
1297
|
|
|
return n.investment.minimum[p], n.investment.maximum[p] |
1298
|
|
|
else: # n in self.NON_CONVEX_INVESTSTORAGES |
1299
|
|
|
return 0, n.investment.maximum[p] |
1300
|
|
|
|
1301
|
|
|
self.invest = Var( |
1302
|
|
|
self.INVESTSTORAGES, |
1303
|
|
|
m.CAPACITY_PERIODS, |
1304
|
|
|
within=NonNegativeReals, |
1305
|
|
|
bounds=_storage_investvar_bound_rule, |
1306
|
|
|
) |
1307
|
|
|
|
1308
|
|
|
# Total capacity |
1309
|
|
|
self.total = Var( |
1310
|
|
|
self.INVESTSTORAGES, |
1311
|
|
|
m.CAPACITY_PERIODS, |
1312
|
|
|
within=NonNegativeReals, |
1313
|
|
|
initialize=0, |
1314
|
|
|
) |
1315
|
|
|
|
1316
|
|
|
# create status variable for a non-convex investment storage |
1317
|
|
|
self.invest_status = Var( |
1318
|
|
|
self.NON_CONVEX_INVESTSTORAGES, m.CAPACITY_PERIODS, within=Binary |
1319
|
|
|
) |
1320
|
|
|
|
1321
|
|
|
# ######################### CONSTRAINTS ############################### |
1322
|
|
|
i = {n: [i for i in n.inputs][0] for n in group} |
1323
|
|
|
o = {n: [o for o in n.outputs][0] for n in group} |
1324
|
|
|
|
1325
|
|
|
def _total_storage_capacity_rule(block): |
1326
|
|
|
"""Rule definition for determining total installed |
1327
|
|
|
capacity (taking decommissioning into account) |
1328
|
|
|
""" |
1329
|
|
|
for n in self.INVESTSTORAGES: |
1330
|
|
|
for p in m.CAPACITY_PERIODS: |
1331
|
|
|
if p == 0: |
1332
|
|
|
expr = ( |
1333
|
|
|
self.total[n, p] |
1334
|
|
|
== self.invest[n, p] + n.investment.existing |
1335
|
|
|
) |
1336
|
|
|
self.total_storage_rule.add((n, p), expr) |
1337
|
|
|
else: |
1338
|
|
|
expr = ( |
1339
|
|
|
self.total[n, p] |
1340
|
|
|
== self.invest[n, p] + self.total[n, p - 1] |
1341
|
|
|
) |
1342
|
|
|
self.total_storage_rule.add((n, p), expr) |
1343
|
|
|
|
1344
|
|
|
self.total_storage_rule = Constraint( |
1345
|
|
|
self.INVESTSTORAGES, m.CAPACITY_PERIODS, noruleinit=True |
1346
|
|
|
) |
1347
|
|
|
|
1348
|
|
|
self.total_storage_rule_build = BuildAction( |
1349
|
|
|
rule=_total_storage_capacity_rule |
1350
|
|
|
) |
1351
|
|
|
|
1352
|
|
|
def _inv_storage_init_content_max_rule(block, n): |
1353
|
|
|
"""Constraint for a variable initial storage capacity.""" |
1354
|
|
|
if not m.TSAM_MODE: |
1355
|
|
|
lhs = block.storage_content[n, 0] |
1356
|
|
|
else: |
1357
|
|
|
lhs = block.intra_storage_delta[n, 0, 0, 0] |
1358
|
|
|
return lhs <= n.investment.existing + block.invest[n, 0] |
1359
|
|
|
|
1360
|
|
|
self.init_content_limit = Constraint( |
1361
|
|
|
self.INVESTSTORAGES_NO_INIT_CONTENT, |
1362
|
|
|
rule=_inv_storage_init_content_max_rule, |
1363
|
|
|
) |
1364
|
|
|
|
1365
|
|
|
def _inv_storage_init_content_fix_rule(block, n): |
1366
|
|
|
"""Constraint for a fixed initial storage capacity.""" |
1367
|
|
|
if not m.TSAM_MODE: |
1368
|
|
|
lhs = block.storage_content[n, 0] |
1369
|
|
|
else: |
1370
|
|
|
lhs = block.intra_storage_delta[n, 0, 0, 0] |
1371
|
|
|
return lhs == n.initial_storage_level * ( |
1372
|
|
|
n.investment.existing + block.invest[n, 0] |
1373
|
|
|
) |
1374
|
|
|
|
1375
|
|
|
self.init_content_fix = Constraint( |
1376
|
|
|
self.INVESTSTORAGES_INIT_CONTENT, |
1377
|
|
|
rule=_inv_storage_init_content_fix_rule, |
1378
|
|
|
) |
1379
|
|
|
|
1380
|
|
|
def _storage_balance_rule(block, n, p, t): |
1381
|
|
|
""" |
1382
|
|
|
Rule definition for the storage balance of every storage n and |
1383
|
|
|
every timestep. |
1384
|
|
|
""" |
1385
|
|
|
expr = 0 |
1386
|
|
|
expr += block.storage_content[n, t + 1] |
1387
|
|
|
expr += ( |
1388
|
|
|
-block.storage_content[n, t] |
1389
|
|
|
* (1 - n.loss_rate[t]) ** m.timeincrement[t] |
1390
|
|
|
) |
1391
|
|
|
expr += ( |
1392
|
|
|
n.fixed_losses_relative[t] |
1393
|
|
|
* self.total[n, p] |
1394
|
|
|
* m.timeincrement[t] |
1395
|
|
|
) |
1396
|
|
|
expr += n.fixed_losses_absolute[t] * m.timeincrement[t] |
1397
|
|
|
expr += ( |
1398
|
|
|
-m.flow[i[n], n, t] * n.inflow_conversion_factor[t] |
1399
|
|
|
) * m.timeincrement[t] |
1400
|
|
|
expr += ( |
1401
|
|
|
m.flow[n, o[n], t] / n.outflow_conversion_factor[t] |
1402
|
|
|
) * m.timeincrement[t] |
1403
|
|
|
return expr == 0 |
1404
|
|
|
|
1405
|
|
View Code Duplication |
def _intra_storage_balance_rule(block, n, p, k, g): |
|
|
|
|
1406
|
|
|
""" |
1407
|
|
|
Rule definition for the storage balance of every storage n and |
1408
|
|
|
every timestep. |
1409
|
|
|
""" |
1410
|
|
|
t = m.get_timestep_from_tsam_timestep(p, k, g) |
1411
|
|
|
expr = 0 |
1412
|
|
|
expr += block.intra_storage_delta[n, p, k, g + 1] |
1413
|
|
|
expr += ( |
1414
|
|
|
-block.intra_storage_delta[n, p, k, g] |
1415
|
|
|
* (1 - n.loss_rate[t]) ** m.timeincrement[t] |
1416
|
|
|
) |
1417
|
|
|
expr += ( |
1418
|
|
|
n.fixed_losses_relative[t] |
1419
|
|
|
* self.total[n, p] |
1420
|
|
|
* m.timeincrement[t] |
1421
|
|
|
) |
1422
|
|
|
expr += n.fixed_losses_absolute[t] * m.timeincrement[t] |
1423
|
|
|
expr += ( |
1424
|
|
|
-m.flow[i[n], n, t] * n.inflow_conversion_factor[t] |
1425
|
|
|
) * m.timeincrement[t] |
1426
|
|
|
expr += ( |
1427
|
|
|
m.flow[n, o[n], t] / n.outflow_conversion_factor[t] |
1428
|
|
|
) * m.timeincrement[t] |
1429
|
|
|
return expr == 0 |
1430
|
|
|
|
1431
|
|
|
if not m.TSAM_MODE: |
1432
|
|
|
self.balance = Constraint( |
1433
|
|
|
self.INVESTSTORAGES, |
1434
|
|
|
m.TIMEINDEX, |
1435
|
|
|
rule=_storage_balance_rule, |
1436
|
|
|
) |
1437
|
|
|
else: |
1438
|
|
|
self.intra_balance = Constraint( |
1439
|
|
|
self.INVESTSTORAGES, |
1440
|
|
|
m.TIMEINDEX_TYPICAL_CLUSTER, |
1441
|
|
|
rule=_intra_storage_balance_rule, |
1442
|
|
|
) |
1443
|
|
|
|
1444
|
|
|
def _inter_storage_balance_rule(block, n, i): |
1445
|
|
|
""" |
1446
|
|
|
Rule definition for the storage balance of every storage n and |
1447
|
|
|
every timestep. |
1448
|
|
|
""" |
1449
|
|
|
ii = 0 |
1450
|
|
|
for p in m.CAPACITY_PERIODS: |
1451
|
|
|
ii += len(m.es.tsa_parameters[p]["order"]) |
1452
|
|
|
if ii > i: |
1453
|
|
|
ii -= len(m.es.tsa_parameters[p]["order"]) |
1454
|
|
|
ii = i - ii |
1455
|
|
|
break |
1456
|
|
|
|
1457
|
|
|
k = m.es.tsa_parameters[p]["order"][ii] |
|
|
|
|
1458
|
|
|
t = m.get_timestep_from_tsam_timestep( |
1459
|
|
|
p, k, m.es.tsa_parameters[p]["timesteps"] - 1 |
1460
|
|
|
) |
1461
|
|
|
expr = 0 |
1462
|
|
|
expr += block.inter_storage_content[n, i + 1] |
1463
|
|
|
expr += -block.inter_storage_content[n, i] * ( |
1464
|
|
|
1 - n.loss_rate[t] |
1465
|
|
|
) ** (m.timeincrement[t] * m.es.tsa_parameters[p]["timesteps"]) |
1466
|
|
|
expr += -self.intra_storage_delta[ |
1467
|
|
|
n, p, k, m.es.tsa_parameters[p]["timesteps"] |
1468
|
|
|
] |
1469
|
|
|
return expr == 0 |
1470
|
|
|
|
1471
|
|
|
if m.TSAM_MODE: |
1472
|
|
|
self.inter_balance = Constraint( |
1473
|
|
|
self.INVESTSTORAGES, |
1474
|
|
|
m.CLUSTERS, |
1475
|
|
|
rule=_inter_storage_balance_rule, |
1476
|
|
|
) |
1477
|
|
|
|
1478
|
|
|
if m.es.investment_times is None and not m.TSAM_MODE: |
1479
|
|
|
|
1480
|
|
|
def _balanced_storage_rule(block, n): |
1481
|
|
|
return ( |
1482
|
|
|
block.storage_content[n, m.TIMEPOINTS.at(-1)] |
1483
|
|
|
== block.storage_content[n, m.TIMEPOINTS.at(1)] |
1484
|
|
|
) |
1485
|
|
|
|
1486
|
|
|
self.balanced_cstr = Constraint( |
1487
|
|
|
self.INVESTSTORAGES_BALANCED, rule=_balanced_storage_rule |
1488
|
|
|
) |
1489
|
|
|
|
1490
|
|
|
def _power_coupled(block): |
1491
|
|
|
""" |
1492
|
|
|
Rule definition for constraint to connect the input power |
1493
|
|
|
and output power |
1494
|
|
|
""" |
1495
|
|
|
for n in self.INVEST_REL_IN_OUT: |
1496
|
|
|
for p in m.CAPACITY_PERIODS: |
1497
|
|
|
expr = ( |
1498
|
|
|
m.InvestmentFlowBlock.total[n, o[n], p] |
1499
|
|
|
) * n.invest_relation_input_output[p] == ( |
1500
|
|
|
m.InvestmentFlowBlock.total[i[n], n, p] |
1501
|
|
|
) |
1502
|
|
|
self.power_coupled.add((n, p), expr) |
1503
|
|
|
|
1504
|
|
|
self.power_coupled = Constraint( |
1505
|
|
|
self.INVEST_REL_IN_OUT, m.CAPACITY_PERIODS, noruleinit=True |
1506
|
|
|
) |
1507
|
|
|
|
1508
|
|
|
self.power_coupled_build = BuildAction(rule=_power_coupled) |
1509
|
|
|
|
1510
|
|
|
def _storage_capacity_inflow_invest_rule(block): |
1511
|
|
|
""" |
1512
|
|
|
Rule definition of constraint connecting the inflow |
1513
|
|
|
`InvestmentFlowBlock.invest of storage with invested capacity |
1514
|
|
|
`invest` by nominal_storage_capacity__inflow_ratio |
1515
|
|
|
""" |
1516
|
|
|
for n in self.INVEST_REL_CAP_IN: |
1517
|
|
|
for p in m.CAPACITY_PERIODS: |
1518
|
|
|
expr = ( |
1519
|
|
|
m.InvestmentFlowBlock.total[i[n], n, p] |
1520
|
|
|
== self.total[n, p] |
1521
|
|
|
* n.invest_relation_input_capacity[p] |
1522
|
|
|
) |
1523
|
|
|
self.storage_capacity_inflow.add((n, p), expr) |
1524
|
|
|
|
1525
|
|
|
self.storage_capacity_inflow = Constraint( |
1526
|
|
|
self.INVEST_REL_CAP_IN, m.CAPACITY_PERIODS, noruleinit=True |
1527
|
|
|
) |
1528
|
|
|
|
1529
|
|
|
self.storage_capacity_inflow_build = BuildAction( |
1530
|
|
|
rule=_storage_capacity_inflow_invest_rule |
1531
|
|
|
) |
1532
|
|
|
|
1533
|
|
|
def _storage_capacity_outflow_invest_rule(block): |
1534
|
|
|
""" |
1535
|
|
|
Rule definition of constraint connecting outflow |
1536
|
|
|
`InvestmentFlowBlock.invest` of storage and invested capacity |
1537
|
|
|
`invest` by nominal_storage_capacity__outflow_ratio |
1538
|
|
|
""" |
1539
|
|
|
for n in self.INVEST_REL_CAP_OUT: |
1540
|
|
|
for p in m.CAPACITY_PERIODS: |
1541
|
|
|
expr = ( |
1542
|
|
|
m.InvestmentFlowBlock.total[n, o[n], p] |
1543
|
|
|
== self.total[n, p] |
1544
|
|
|
* n.invest_relation_output_capacity[p] |
1545
|
|
|
) |
1546
|
|
|
self.storage_capacity_outflow.add((n, p), expr) |
1547
|
|
|
|
1548
|
|
|
self.storage_capacity_outflow = Constraint( |
1549
|
|
|
self.INVEST_REL_CAP_OUT, m.CAPACITY_PERIODS, noruleinit=True |
1550
|
|
|
) |
1551
|
|
|
|
1552
|
|
|
self.storage_capacity_outflow_build = BuildAction( |
1553
|
|
|
rule=_storage_capacity_outflow_invest_rule |
1554
|
|
|
) |
1555
|
|
|
|
1556
|
|
|
self._add_storage_limit_constraints() |
1557
|
|
|
|
1558
|
|
|
def maximum_invest_limit(block, n, p): |
1559
|
|
|
""" |
1560
|
|
|
Constraint for the maximal investment in non convex investment |
1561
|
|
|
storage. |
1562
|
|
|
""" |
1563
|
|
|
return ( |
1564
|
|
|
n.investment.maximum[p] * self.invest_status[n, p] |
1565
|
|
|
- self.invest[n, p] |
1566
|
|
|
) >= 0 |
1567
|
|
|
|
1568
|
|
|
self.limit_max = Constraint( |
1569
|
|
|
self.NON_CONVEX_INVESTSTORAGES, |
1570
|
|
|
m.CAPACITY_PERIODS, |
1571
|
|
|
rule=maximum_invest_limit, |
1572
|
|
|
) |
1573
|
|
|
|
1574
|
|
|
def smallest_invest(block, n, p): |
1575
|
|
|
""" |
1576
|
|
|
Constraint for the minimal investment in non convex investment |
1577
|
|
|
storage if the invest is greater than 0. So the invest variable |
1578
|
|
|
can be either 0 or greater than the minimum. |
1579
|
|
|
""" |
1580
|
|
|
return ( |
1581
|
|
|
self.invest[n, p] |
1582
|
|
|
- n.investment.minimum[p] * self.invest_status[n, p] |
1583
|
|
|
>= 0 |
1584
|
|
|
) |
1585
|
|
|
|
1586
|
|
|
self.limit_min = Constraint( |
1587
|
|
|
self.NON_CONVEX_INVESTSTORAGES, |
1588
|
|
|
m.CAPACITY_PERIODS, |
1589
|
|
|
rule=smallest_invest, |
1590
|
|
|
) |
1591
|
|
|
|
1592
|
|
|
if m.es.investment_times is not None: |
1593
|
|
|
|
1594
|
|
|
def _overall_storage_maximum_investflow_rule(block): |
1595
|
|
|
"""Rule definition for maximum overall investment |
1596
|
|
|
in investment case. |
1597
|
|
|
""" |
1598
|
|
|
for n in self.OVERALL_MAXIMUM_INVESTSTORAGES: |
1599
|
|
|
for p in m.CAPACITY_PERIODS: |
1600
|
|
|
expr = self.total[n, p] <= n.investment.overall_maximum |
1601
|
|
|
self.overall_storage_maximum.add((n, p), expr) |
1602
|
|
|
|
1603
|
|
|
self.overall_storage_maximum = Constraint( |
1604
|
|
|
self.OVERALL_MAXIMUM_INVESTSTORAGES, |
1605
|
|
|
m.CAPACITY_PERIODS, |
1606
|
|
|
noruleinit=True, |
1607
|
|
|
) |
1608
|
|
|
|
1609
|
|
|
self.overall_maximum_build = BuildAction( |
1610
|
|
|
rule=_overall_storage_maximum_investflow_rule |
1611
|
|
|
) |
1612
|
|
|
|
1613
|
|
|
def _overall_minimum_investflow_rule(block): |
1614
|
|
|
"""Rule definition for minimum overall investment |
1615
|
|
|
in investment case. |
1616
|
|
|
|
1617
|
|
|
Note: This is only applicable for the last period |
1618
|
|
|
""" |
1619
|
|
|
for n in self.OVERALL_MINIMUM_INVESTSTORAGES: |
1620
|
|
|
expr = ( |
1621
|
|
|
n.investment.overall_minimum |
1622
|
|
|
<= self.total[n, m.CAPACITY_PERIODS[-1]] |
1623
|
|
|
) |
1624
|
|
|
self.overall_minimum.add(n, expr) |
1625
|
|
|
|
1626
|
|
|
self.overall_minimum = Constraint( |
1627
|
|
|
self.OVERALL_MINIMUM_INVESTSTORAGES, noruleinit=True |
1628
|
|
|
) |
1629
|
|
|
|
1630
|
|
|
self.overall_minimum_build = BuildAction( |
1631
|
|
|
rule=_overall_minimum_investflow_rule |
1632
|
|
|
) |
1633
|
|
|
|
1634
|
|
|
def _add_storage_limit_constraints(self): |
1635
|
|
|
m = self.parent_block() |
1636
|
|
|
if not m.TSAM_MODE: |
1637
|
|
|
|
1638
|
|
|
def _max_storage_content_invest_rule(_, n, t): |
1639
|
|
|
""" |
1640
|
|
|
Rule definition for upper bound constraint for the |
1641
|
|
|
storage content. |
1642
|
|
|
""" |
1643
|
|
|
expr = ( |
1644
|
|
|
self.storage_content[n, t] |
1645
|
|
|
<= self.total[n, 0] * n.max_storage_level[t] |
1646
|
|
|
) |
1647
|
|
|
return expr |
1648
|
|
|
|
1649
|
|
|
self.max_storage_content = Constraint( |
1650
|
|
|
self.INVESTSTORAGES, |
1651
|
|
|
m.TIMEPOINTS, |
1652
|
|
|
rule=_max_storage_content_invest_rule, |
1653
|
|
|
) |
1654
|
|
|
|
1655
|
|
|
def _min_storage_content_invest_rule(_, n, t): |
1656
|
|
|
""" |
1657
|
|
|
Rule definition of lower bound constraint for the |
1658
|
|
|
storage content. |
1659
|
|
|
""" |
1660
|
|
|
expr = ( |
1661
|
|
|
self.storage_content[n, t] |
1662
|
|
|
>= self.total[n, 0] * n.min_storage_level[t] |
1663
|
|
|
) |
1664
|
|
|
return expr |
1665
|
|
|
|
1666
|
|
|
self.min_storage_content = Constraint( |
1667
|
|
|
self.MIN_INVESTSTORAGES, |
1668
|
|
|
m.TIMEPOINTS, |
1669
|
|
|
rule=_min_storage_content_invest_rule, |
1670
|
|
|
) |
1671
|
|
|
else: |
1672
|
|
|
|
1673
|
|
View Code Duplication |
def _storage_inter_maximum_level_rule(block): |
|
|
|
|
1674
|
|
|
for n in self.INVESTSTORAGES: |
1675
|
|
|
for p, i, g in m.TIMEINDEX_CLUSTER: |
1676
|
|
|
t = m.get_timestep_from_tsam_timestep(p, i, g) |
1677
|
|
|
k = m.es.tsa_parameters[p]["order"][i] |
1678
|
|
|
tk = m.get_timestep_from_tsam_timestep(p, k, g) |
1679
|
|
|
inter_i = ( |
1680
|
|
|
sum( |
1681
|
|
|
len(m.es.tsa_parameters[ip]["order"]) |
1682
|
|
|
for ip in range(p) |
1683
|
|
|
) |
1684
|
|
|
+ i |
1685
|
|
|
) |
1686
|
|
|
lhs = ( |
1687
|
|
|
self.inter_storage_content[n, inter_i] |
1688
|
|
|
* (1 - n.loss_rate[t]) ** (g * m.timeincrement[tk]) |
1689
|
|
|
+ self.intra_storage_delta[n, p, k, g] |
1690
|
|
|
) |
1691
|
|
|
rhs = self.total[n, p] * n.max_storage_level[t] |
1692
|
|
|
self.storage_inter_maximum_level.add( |
1693
|
|
|
(n, p, i, g), lhs <= rhs |
1694
|
|
|
) |
1695
|
|
|
|
1696
|
|
|
self.storage_inter_maximum_level = Constraint( |
1697
|
|
|
self.INVESTSTORAGES, m.TIMEINDEX_CLUSTER, noruleinit=True |
1698
|
|
|
) |
1699
|
|
|
|
1700
|
|
|
self.storage_inter_maximum_level_build = BuildAction( |
1701
|
|
|
rule=_storage_inter_maximum_level_rule |
1702
|
|
|
) |
1703
|
|
|
|
1704
|
|
View Code Duplication |
def _storage_inter_minimum_level_rule(block): |
|
|
|
|
1705
|
|
|
# See FINE implementation at |
1706
|
|
|
# https://github.com/FZJ-IEK3-VSA/FINE/blob/ |
1707
|
|
|
# 57ec32561fb95e746c505760bd0d61c97d2fd2fb/FINE/storage.py#L1329 |
1708
|
|
|
for n in self.INVESTSTORAGES: |
1709
|
|
|
for p, i, g in m.TIMEINDEX_CLUSTER: |
1710
|
|
|
t = m.get_timestep_from_tsam_timestep(p, i, g) |
1711
|
|
|
lhs = self.total[n, p] * n.min_storage_level[t] |
1712
|
|
|
k = m.es.tsa_parameters[p]["order"][i] |
1713
|
|
|
tk = m.get_timestep_from_tsam_timestep(p, k, g) |
1714
|
|
|
inter_i = ( |
1715
|
|
|
sum( |
1716
|
|
|
len(m.es.tsa_parameters[ip]["order"]) |
1717
|
|
|
for ip in range(p) |
1718
|
|
|
) |
1719
|
|
|
+ i |
1720
|
|
|
) |
1721
|
|
|
rhs = ( |
1722
|
|
|
self.inter_storage_content[n, inter_i] |
1723
|
|
|
* (1 - n.loss_rate[t]) ** (g * m.timeincrement[tk]) |
1724
|
|
|
+ self.intra_storage_delta[n, p, k, g] |
1725
|
|
|
) |
1726
|
|
|
self.storage_inter_minimum_level.add( |
1727
|
|
|
(n, p, i, g), lhs <= rhs |
1728
|
|
|
) |
1729
|
|
|
|
1730
|
|
|
self.storage_inter_minimum_level = Constraint( |
1731
|
|
|
self.INVESTSTORAGES, m.TIMEINDEX_CLUSTER, noruleinit=True |
1732
|
|
|
) |
1733
|
|
|
|
1734
|
|
|
self.storage_inter_minimum_level_build = BuildAction( |
1735
|
|
|
rule=_storage_inter_minimum_level_rule |
1736
|
|
|
) |
1737
|
|
|
|
1738
|
|
|
def _objective_expression(self): |
1739
|
|
|
"""Objective expression with fixed and investment costs.""" |
1740
|
|
|
m = self.parent_block() |
1741
|
|
|
|
1742
|
|
|
investment_costs = 0 |
1743
|
|
|
storage_costs = 0 |
1744
|
|
|
|
1745
|
|
|
for n in self.CONVEX_INVESTSTORAGES: |
1746
|
|
|
for p in m.CAPACITY_PERIODS: |
1747
|
|
|
investment_costs += ( |
1748
|
|
|
self.invest[n, p] * n.investment.ep_costs[p] |
1749
|
|
|
) |
1750
|
|
|
for n in self.NON_CONVEX_INVESTSTORAGES: |
1751
|
|
|
for p in m.CAPACITY_PERIODS: |
1752
|
|
|
investment_costs += ( |
1753
|
|
|
self.invest[n, p] * n.investment.ep_costs[p] |
1754
|
|
|
+ self.invest_status[n, p] * n.investment.offset[p] |
1755
|
|
|
) |
1756
|
|
|
|
1757
|
|
|
for n in self.INVESTSTORAGES: |
1758
|
|
View Code Duplication |
if valid_sequence(n.storage_costs, len(m.TIMESTEPS)): |
|
|
|
|
1759
|
|
|
# We actually want to iterate over all TIMEPOINTS except the |
1760
|
|
|
# 0th. As integers are used for the index, this is equicalent |
1761
|
|
|
# to iterating over the TIMESTEPS with one offset. |
1762
|
|
|
if not m.TSAM_MODE: |
1763
|
|
|
for t in m.TIMESTEPS: |
1764
|
|
|
storage_costs += ( |
1765
|
|
|
self.storage_content[n, t + 1] * n.storage_costs[t] |
1766
|
|
|
) |
1767
|
|
|
else: |
1768
|
|
|
for t in m.TIMESTEPS_ORIGINAL: |
1769
|
|
|
storage_costs += ( |
1770
|
|
|
self.storage_content[n, t + 1] |
1771
|
|
|
* n.storage_costs[t + 1] |
1772
|
|
|
) |
1773
|
|
|
|
1774
|
|
|
self.storage_costs = Expression(expr=storage_costs) |
1775
|
|
|
|
1776
|
|
|
self.investment_costs = Expression(expr=investment_costs) |
1777
|
|
|
self.costs = Expression(expr=investment_costs + storage_costs) |
1778
|
|
|
|
1779
|
|
|
return self.costs |
1780
|
|
|
|