1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
|
3
|
|
|
""" |
4
|
|
|
General description |
5
|
|
|
------------------- |
6
|
|
|
|
7
|
|
|
A basic example to show how to model a simple energy system with oemof.solph. |
8
|
|
|
|
9
|
|
|
The following energy system is modeled: |
10
|
|
|
|
11
|
|
|
.. code-block:: text |
12
|
|
|
|
13
|
|
|
input/output bgas bel |
14
|
|
|
| | | |
15
|
|
|
| | | |
16
|
|
|
wind(FixedSource) |------------------>| |
17
|
|
|
| | | |
18
|
|
|
pv(FixedSource) |------------------>| |
19
|
|
|
| | | |
20
|
|
|
rgas(Commodity) |--------->| | |
21
|
|
|
| | | |
22
|
|
|
demand(Sink) |<------------------| |
23
|
|
|
| | | |
24
|
|
|
| | | |
25
|
|
|
pp_gas(Converter) |<---------| | |
26
|
|
|
|------------------>| |
27
|
|
|
| | | |
28
|
|
|
storage(Storage) |<------------------| |
29
|
|
|
|------------------>| |
30
|
|
|
|
31
|
|
|
Code |
32
|
|
|
---- |
33
|
|
|
Download source code: :download:`basic_example.py </../examples/basic_example/basic_example.py>` |
34
|
|
|
|
35
|
|
|
.. dropdown:: Click to display code |
36
|
|
|
|
37
|
|
|
.. literalinclude:: /../examples/basic_example/basic_example.py |
38
|
|
|
:language: python |
39
|
|
|
:lines: 61- |
40
|
|
|
|
41
|
|
|
Data |
42
|
|
|
---- |
43
|
|
|
Download data: :download:`basic_example.csv </../examples/basic_example/basic_example.csv>` |
44
|
|
|
|
45
|
|
|
Installation requirements |
46
|
|
|
------------------------- |
47
|
|
|
This example requires oemof.solph (v0.5.x), install by: |
48
|
|
|
|
49
|
|
|
.. code:: bash |
50
|
|
|
|
51
|
|
|
pip install oemof.solph[examples] |
52
|
|
|
|
53
|
|
|
License |
54
|
|
|
------- |
55
|
|
|
`MIT license <https://github.com/oemof/oemof-solph/blob/dev/LICENSE>`_ |
56
|
|
|
""" |
57
|
|
|
########################################################################### |
58
|
|
|
# imports |
59
|
|
|
########################################################################### |
60
|
|
|
|
61
|
|
|
import logging |
62
|
|
|
import os |
63
|
|
|
import pprint as pp |
64
|
|
|
from datetime import datetime |
65
|
|
|
|
66
|
|
|
import matplotlib.pyplot as plt |
67
|
|
|
import pandas as pd |
68
|
|
|
from oemof.tools import logger |
69
|
|
|
|
70
|
|
|
from oemof.solph import EnergySystem |
71
|
|
|
from oemof.solph import Model |
72
|
|
|
from oemof.solph import buses |
73
|
|
|
from oemof.solph import components |
74
|
|
|
from oemof.solph import create_time_index |
75
|
|
|
from oemof.solph import flows |
76
|
|
|
from oemof.solph import helpers |
77
|
|
|
from oemof.solph import processing |
78
|
|
|
from oemof.solph import views |
79
|
|
|
|
80
|
|
|
STORAGE_LABEL = "battery_storage" |
81
|
|
|
|
82
|
|
|
|
83
|
|
|
def get_data_from_file_path(file_path: str) -> pd.DataFrame: |
84
|
|
|
try: |
85
|
|
|
data = pd.read_csv(file_path) |
86
|
|
|
except FileNotFoundError: |
87
|
|
|
dir = os.path.dirname(os.path.abspath(__file__)) |
88
|
|
|
data = pd.read_csv(dir + "/" + file_path) |
89
|
|
|
return data |
90
|
|
|
|
91
|
|
|
|
92
|
|
|
def plot_figures_for(element: dict) -> None: |
93
|
|
|
figure, axes = plt.subplots(figsize=(10, 5)) |
94
|
|
|
element["sequences"].plot(ax=axes, kind="line", drawstyle="steps-post") |
95
|
|
|
plt.legend( |
96
|
|
|
loc="upper center", |
97
|
|
|
prop={"size": 8}, |
98
|
|
|
bbox_to_anchor=(0.5, 1.25), |
99
|
|
|
ncol=2, |
100
|
|
|
) |
101
|
|
|
figure.subplots_adjust(top=0.8) |
102
|
|
|
plt.show() |
103
|
|
|
|
104
|
|
|
|
105
|
|
|
def main(dump_and_restore=False, optimize=True): |
106
|
|
|
# For models that need a long time to optimise, saving and loading the |
107
|
|
|
# EnergySystem might be advised. By default, we do not do this here. Feel |
108
|
|
|
# free to experiment with this once you understood the rest of the code. |
109
|
|
|
dump_results = restore_results = dump_and_restore |
110
|
|
|
|
111
|
|
|
# ************************************************************************* |
112
|
|
|
# ********** PART 1 - Define and optimise the energy system *************** |
113
|
|
|
# ************************************************************************* |
114
|
|
|
|
115
|
|
|
# Read data file |
116
|
|
|
file_name = "basic_example.csv" |
117
|
|
|
data = get_data_from_file_path(file_name) |
118
|
|
|
|
119
|
|
|
solver = "cbc" # 'glpk', 'gurobi',.... |
120
|
|
|
debug = False # Set number_of_timesteps to 3 to get a readable lp-file. |
121
|
|
|
number_of_time_steps = len(data) |
122
|
|
|
solver_verbose = False # show/hide solver output |
123
|
|
|
|
124
|
|
|
# initiate the logger (see the API docs for more information) |
125
|
|
|
logger.define_logging( |
126
|
|
|
logfile="oemof_example.log", |
127
|
|
|
screen_level=logging.INFO, |
128
|
|
|
file_level=logging.INFO, |
129
|
|
|
) |
130
|
|
|
|
131
|
|
|
logging.info("Initialize the energy system") |
132
|
|
|
date_time_index = create_time_index(2012, number=number_of_time_steps) |
133
|
|
|
|
134
|
|
|
# create the energysystem and assign the time index |
135
|
|
|
energysystem = EnergySystem( |
136
|
|
|
timeindex=date_time_index, infer_last_interval=False |
137
|
|
|
) |
138
|
|
|
|
139
|
|
|
########################################################################## |
140
|
|
|
# Create oemof objects |
141
|
|
|
########################################################################## |
142
|
|
|
|
143
|
|
|
logging.info("Create oemof objects") |
144
|
|
|
|
145
|
|
|
# The bus objects were assigned to variables which makes it easier to |
146
|
|
|
# connect components to these buses (see below). |
147
|
|
|
|
148
|
|
|
# create natural gas bus |
149
|
|
|
bus_gas = buses.Bus(label="natural_gas") |
150
|
|
|
|
151
|
|
|
# create electricity bus |
152
|
|
|
bus_electricity = buses.Bus(label="electricity") |
153
|
|
|
|
154
|
|
|
# adding the buses to the energy system |
155
|
|
|
energysystem.add(bus_gas, bus_electricity) |
156
|
|
|
|
157
|
|
|
# create excess component for the electricity bus to allow overproduction |
158
|
|
|
energysystem.add( |
159
|
|
|
components.Sink( |
160
|
|
|
label="excess_bus_electricity", |
161
|
|
|
inputs={bus_electricity: flows.Flow()}, |
162
|
|
|
) |
163
|
|
|
) |
164
|
|
|
|
165
|
|
|
# create source object representing the gas commodity |
166
|
|
|
energysystem.add( |
167
|
|
|
components.Source( |
168
|
|
|
label="rgas", |
169
|
|
|
outputs={bus_gas: flows.Flow()}, |
170
|
|
|
) |
171
|
|
|
) |
172
|
|
|
|
173
|
|
|
# create fixed source object representing wind power plants |
174
|
|
|
energysystem.add( |
175
|
|
|
components.Source( |
176
|
|
|
label="wind", |
177
|
|
|
outputs={ |
178
|
|
|
bus_electricity: flows.Flow( |
179
|
|
|
fix=data["wind"], nominal_capacity=1000000 |
180
|
|
|
) |
181
|
|
|
}, |
182
|
|
|
) |
183
|
|
|
) |
184
|
|
|
|
185
|
|
|
# create fixed source object representing pv power plants |
186
|
|
|
energysystem.add( |
187
|
|
|
components.Source( |
188
|
|
|
label="pv", |
189
|
|
|
outputs={ |
190
|
|
|
bus_electricity: flows.Flow( |
191
|
|
|
fix=data["pv"], nominal_capacity=582000 |
192
|
|
|
) |
193
|
|
|
}, |
194
|
|
|
) |
195
|
|
|
) |
196
|
|
|
|
197
|
|
|
# create simple sink object representing the electrical demand |
198
|
|
|
# nominal_capacity is set to 1 because demand_el is not a normalised series |
199
|
|
|
energysystem.add( |
200
|
|
|
components.Sink( |
201
|
|
|
label="demand", |
202
|
|
|
inputs={ |
203
|
|
|
bus_electricity: flows.Flow( |
204
|
|
|
fix=data["demand_el"], nominal_capacity=1 |
205
|
|
|
) |
206
|
|
|
}, |
207
|
|
|
) |
208
|
|
|
) |
209
|
|
|
|
210
|
|
|
# create simple converter object representing a gas power plant |
211
|
|
|
energysystem.add( |
212
|
|
|
components.Converter( |
213
|
|
|
label="pp_gas", |
214
|
|
|
inputs={bus_gas: flows.Flow()}, |
215
|
|
|
outputs={ |
216
|
|
|
bus_electricity: flows.Flow( |
217
|
|
|
nominal_capacity=10e10, variable_costs=50 |
218
|
|
|
) |
219
|
|
|
}, |
220
|
|
|
conversion_factors={bus_electricity: 0.58}, |
221
|
|
|
) |
222
|
|
|
) |
223
|
|
|
|
224
|
|
|
# create storage object representing a battery |
225
|
|
|
nominal_capacity = 10077997 |
226
|
|
|
nominal_capacity = nominal_capacity / 6 |
227
|
|
|
|
228
|
|
|
battery_storage = components.GenericStorage( |
229
|
|
|
nominal_capacity=nominal_capacity, |
230
|
|
|
label=STORAGE_LABEL, |
231
|
|
|
inputs={ |
232
|
|
|
bus_electricity: flows.Flow(nominal_capacity=nominal_capacity) |
233
|
|
|
}, |
234
|
|
|
outputs={ |
235
|
|
|
bus_electricity: flows.Flow( |
236
|
|
|
nominal_capacity=nominal_capacity, variable_costs=0.001 |
237
|
|
|
) |
238
|
|
|
}, |
239
|
|
|
loss_rate=0.00, |
240
|
|
|
initial_storage_level=None, |
241
|
|
|
inflow_conversion_factor=1, |
242
|
|
|
outflow_conversion_factor=0.8, |
243
|
|
|
) |
244
|
|
|
|
245
|
|
|
energysystem.add(battery_storage) |
246
|
|
|
|
247
|
|
|
########################################################################## |
248
|
|
|
# Optimise the energy system and plot the results |
249
|
|
|
########################################################################## |
250
|
|
|
|
251
|
|
|
if optimize is False: |
252
|
|
|
return energysystem |
253
|
|
|
|
254
|
|
|
logging.info("Optimise the energy system") |
255
|
|
|
|
256
|
|
|
# initialise the operational model |
257
|
|
|
energysystem_model = Model(energysystem) |
258
|
|
|
|
259
|
|
|
# This is for debugging only. It is not(!) necessary to solve the problem |
260
|
|
|
# and should be set to False to save time and disc space in normal use. For |
261
|
|
|
# debugging the timesteps should be set to 3, to increase the readability |
262
|
|
|
# of the lp-file. |
263
|
|
|
if debug: |
264
|
|
|
file_path = os.path.join( |
265
|
|
|
helpers.extend_basic_path("lp_files"), "basic_example.lp" |
266
|
|
|
) |
267
|
|
|
logging.info(f"Store lp-file in {file_path}.") |
268
|
|
|
io_option = {"symbolic_solver_labels": True} |
269
|
|
|
energysystem_model.write(file_path, io_options=io_option) |
270
|
|
|
|
271
|
|
|
# if tee_switch is true solver messages will be displayed |
272
|
|
|
logging.info("Solve the optimization problem") |
273
|
|
|
energysystem_model.solve( |
274
|
|
|
solver=solver, solve_kwargs={"tee": solver_verbose} |
275
|
|
|
) |
276
|
|
|
|
277
|
|
|
logging.info("Store the energy system with the results.") |
278
|
|
|
|
279
|
|
|
# The processing module of the outputlib can be used to extract the results |
280
|
|
|
# from the model transfer them into a homogeneous structured dictionary. |
281
|
|
|
|
282
|
|
|
# add results to the energy system to make it possible to store them. |
283
|
|
|
energysystem.results["main"] = processing.results(energysystem_model) |
284
|
|
|
energysystem.results["meta"] = processing.meta_results(energysystem_model) |
285
|
|
|
|
286
|
|
|
# The default path is the '.oemof' folder in your $HOME directory. |
287
|
|
|
# The default filename is 'es_dump.oemof'. |
288
|
|
|
# You can omit the attributes (as None is the default value) for testing |
289
|
|
|
# cases. You should use unique names/folders for valuable results to avoid |
290
|
|
|
# overwriting. |
291
|
|
|
if dump_results: |
292
|
|
|
energysystem.dump(dpath=None, filename=None) |
293
|
|
|
|
294
|
|
|
# ************************************************************************* |
295
|
|
|
# ********** PART 2 - Processing the results ****************************** |
296
|
|
|
# ************************************************************************* |
297
|
|
|
|
298
|
|
|
# Saved data can be restored in a second script. So you can work on the |
299
|
|
|
# data analysis without re-running the optimisation every time. If you do |
300
|
|
|
# so, make sure that you really load the results you want. For example, |
301
|
|
|
# if dumping fails, you might exidentially load outdated results. |
302
|
|
|
if restore_results: |
303
|
|
|
logging.info("**** The script can be divided into two parts here.") |
304
|
|
|
logging.info("Restore the energy system and the results.") |
305
|
|
|
|
306
|
|
|
energysystem = EnergySystem() |
307
|
|
|
energysystem.restore(dpath=None, filename=None) |
308
|
|
|
|
309
|
|
|
# define an alias for shorter calls below (optional) |
310
|
|
|
results = energysystem.results["main"] |
311
|
|
|
storage = energysystem.groups[STORAGE_LABEL] |
312
|
|
|
|
313
|
|
|
# print a time slice of the state of charge |
314
|
|
|
start_time = datetime(2012, 2, 25, 8, 0, 0) |
315
|
|
|
end_time = datetime(2012, 2, 25, 17, 0, 0) |
316
|
|
|
|
317
|
|
|
print("\n********* State of Charge (slice) *********") |
318
|
|
|
print(f"{results[(storage, None)]['sequences'][start_time : end_time]}\n") |
319
|
|
|
|
320
|
|
|
# get all variables of a specific component/bus |
321
|
|
|
custom_storage = views.node(results, STORAGE_LABEL) |
322
|
|
|
electricity_bus = views.node(results, "electricity") |
323
|
|
|
|
324
|
|
|
# plot the time series (sequences) of a specific component/bus |
325
|
|
|
plot_figures_for(custom_storage) |
326
|
|
|
plot_figures_for(electricity_bus) |
327
|
|
|
|
328
|
|
|
# print the solver results |
329
|
|
|
print("********* Meta results *********") |
330
|
|
|
pp.pprint(f"{energysystem.results['meta']}\n") |
331
|
|
|
|
332
|
|
|
# print the sums of the flows around the electricity bus |
333
|
|
|
print("********* Main results *********") |
334
|
|
|
print(electricity_bus["sequences"].sum(axis=0)) |
335
|
|
|
|
336
|
|
|
|
337
|
|
|
if __name__ == "__main__": |
338
|
|
|
main() |
339
|
|
|
|