Conditions | 5 |
Total Lines | 230 |
Code Lines | 106 |
Lines | 0 |
Ratio | 0 % |
Changes | 0 |
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
1 | # -*- coding: utf-8 -*- |
||
105 | def main(dump_and_restore=False, optimize=True): |
||
106 | # For models that need a long time to optimise, saving and loading the |
||
107 | # EnergySystem might be advised. By default, we do not do this here. Feel |
||
108 | # free to experiment with this once you understood the rest of the code. |
||
109 | dump_results = restore_results = dump_and_restore |
||
110 | |||
111 | # ************************************************************************* |
||
112 | # ********** PART 1 - Define and optimise the energy system *************** |
||
113 | # ************************************************************************* |
||
114 | |||
115 | # Read data file |
||
116 | file_name = "basic_example.csv" |
||
117 | data = get_data_from_file_path(file_name) |
||
118 | |||
119 | solver = "cbc" # 'glpk', 'gurobi',.... |
||
120 | debug = False # Set number_of_timesteps to 3 to get a readable lp-file. |
||
121 | number_of_time_steps = len(data) |
||
122 | solver_verbose = False # show/hide solver output |
||
123 | |||
124 | # initiate the logger (see the API docs for more information) |
||
125 | logger.define_logging( |
||
126 | logfile="oemof_example.log", |
||
127 | screen_level=logging.INFO, |
||
128 | file_level=logging.INFO, |
||
129 | ) |
||
130 | |||
131 | logging.info("Initialize the energy system") |
||
132 | date_time_index = create_time_index(2012, number=number_of_time_steps) |
||
133 | |||
134 | # create the energysystem and assign the time index |
||
135 | energysystem = EnergySystem( |
||
136 | timeindex=date_time_index, infer_last_interval=False |
||
137 | ) |
||
138 | |||
139 | ########################################################################## |
||
140 | # Create oemof objects |
||
141 | ########################################################################## |
||
142 | |||
143 | logging.info("Create oemof objects") |
||
144 | |||
145 | # The bus objects were assigned to variables which makes it easier to |
||
146 | # connect components to these buses (see below). |
||
147 | |||
148 | # create natural gas bus |
||
149 | bus_gas = buses.Bus(label="natural_gas") |
||
150 | |||
151 | # create electricity bus |
||
152 | bus_electricity = buses.Bus(label="electricity") |
||
153 | |||
154 | # adding the buses to the energy system |
||
155 | energysystem.add(bus_gas, bus_electricity) |
||
156 | |||
157 | # create excess component for the electricity bus to allow overproduction |
||
158 | energysystem.add( |
||
159 | components.Sink( |
||
160 | label="excess_bus_electricity", |
||
161 | inputs={bus_electricity: flows.Flow()}, |
||
162 | ) |
||
163 | ) |
||
164 | |||
165 | # create source object representing the gas commodity |
||
166 | energysystem.add( |
||
167 | components.Source( |
||
168 | label="rgas", |
||
169 | outputs={bus_gas: flows.Flow()}, |
||
170 | ) |
||
171 | ) |
||
172 | |||
173 | # create fixed source object representing wind power plants |
||
174 | energysystem.add( |
||
175 | components.Source( |
||
176 | label="wind", |
||
177 | outputs={ |
||
178 | bus_electricity: flows.Flow( |
||
179 | fix=data["wind"], nominal_capacity=1000000 |
||
180 | ) |
||
181 | }, |
||
182 | ) |
||
183 | ) |
||
184 | |||
185 | # create fixed source object representing pv power plants |
||
186 | energysystem.add( |
||
187 | components.Source( |
||
188 | label="pv", |
||
189 | outputs={ |
||
190 | bus_electricity: flows.Flow( |
||
191 | fix=data["pv"], nominal_capacity=582000 |
||
192 | ) |
||
193 | }, |
||
194 | ) |
||
195 | ) |
||
196 | |||
197 | # create simple sink object representing the electrical demand |
||
198 | # nominal_capacity is set to 1 because demand_el is not a normalised series |
||
199 | energysystem.add( |
||
200 | components.Sink( |
||
201 | label="demand", |
||
202 | inputs={ |
||
203 | bus_electricity: flows.Flow( |
||
204 | fix=data["demand_el"], nominal_capacity=1 |
||
205 | ) |
||
206 | }, |
||
207 | ) |
||
208 | ) |
||
209 | |||
210 | # create simple converter object representing a gas power plant |
||
211 | energysystem.add( |
||
212 | components.Converter( |
||
213 | label="pp_gas", |
||
214 | inputs={bus_gas: flows.Flow()}, |
||
215 | outputs={ |
||
216 | bus_electricity: flows.Flow( |
||
217 | nominal_capacity=10e10, variable_costs=50 |
||
218 | ) |
||
219 | }, |
||
220 | conversion_factors={bus_electricity: 0.58}, |
||
221 | ) |
||
222 | ) |
||
223 | |||
224 | # create storage object representing a battery |
||
225 | nominal_capacity = 10077997 |
||
226 | nominal_capacity = nominal_capacity / 6 |
||
227 | |||
228 | battery_storage = components.GenericStorage( |
||
229 | nominal_capacity=nominal_capacity, |
||
230 | label=STORAGE_LABEL, |
||
231 | inputs={ |
||
232 | bus_electricity: flows.Flow(nominal_capacity=nominal_capacity) |
||
233 | }, |
||
234 | outputs={ |
||
235 | bus_electricity: flows.Flow( |
||
236 | nominal_capacity=nominal_capacity, variable_costs=0.001 |
||
237 | ) |
||
238 | }, |
||
239 | loss_rate=0.00, |
||
240 | initial_storage_level=None, |
||
241 | inflow_conversion_factor=1, |
||
242 | outflow_conversion_factor=0.8, |
||
243 | ) |
||
244 | |||
245 | energysystem.add(battery_storage) |
||
246 | |||
247 | ########################################################################## |
||
248 | # Optimise the energy system and plot the results |
||
249 | ########################################################################## |
||
250 | |||
251 | if optimize is False: |
||
252 | return energysystem |
||
253 | |||
254 | logging.info("Optimise the energy system") |
||
255 | |||
256 | # initialise the operational model |
||
257 | energysystem_model = Model(energysystem) |
||
258 | |||
259 | # This is for debugging only. It is not(!) necessary to solve the problem |
||
260 | # and should be set to False to save time and disc space in normal use. For |
||
261 | # debugging the timesteps should be set to 3, to increase the readability |
||
262 | # of the lp-file. |
||
263 | if debug: |
||
264 | file_path = os.path.join( |
||
265 | helpers.extend_basic_path("lp_files"), "basic_example.lp" |
||
266 | ) |
||
267 | logging.info(f"Store lp-file in {file_path}.") |
||
268 | io_option = {"symbolic_solver_labels": True} |
||
269 | energysystem_model.write(file_path, io_options=io_option) |
||
270 | |||
271 | # if tee_switch is true solver messages will be displayed |
||
272 | logging.info("Solve the optimization problem") |
||
273 | energysystem_model.solve( |
||
274 | solver=solver, solve_kwargs={"tee": solver_verbose} |
||
275 | ) |
||
276 | |||
277 | logging.info("Store the energy system with the results.") |
||
278 | |||
279 | # The processing module of the outputlib can be used to extract the results |
||
280 | # from the model transfer them into a homogeneous structured dictionary. |
||
281 | |||
282 | # add results to the energy system to make it possible to store them. |
||
283 | energysystem.results["main"] = processing.results(energysystem_model) |
||
284 | energysystem.results["meta"] = processing.meta_results(energysystem_model) |
||
285 | |||
286 | # The default path is the '.oemof' folder in your $HOME directory. |
||
287 | # The default filename is 'es_dump.oemof'. |
||
288 | # You can omit the attributes (as None is the default value) for testing |
||
289 | # cases. You should use unique names/folders for valuable results to avoid |
||
290 | # overwriting. |
||
291 | if dump_results: |
||
292 | energysystem.dump(dpath=None, filename=None) |
||
293 | |||
294 | # ************************************************************************* |
||
295 | # ********** PART 2 - Processing the results ****************************** |
||
296 | # ************************************************************************* |
||
297 | |||
298 | # Saved data can be restored in a second script. So you can work on the |
||
299 | # data analysis without re-running the optimisation every time. If you do |
||
300 | # so, make sure that you really load the results you want. For example, |
||
301 | # if dumping fails, you might exidentially load outdated results. |
||
302 | if restore_results: |
||
303 | logging.info("**** The script can be divided into two parts here.") |
||
304 | logging.info("Restore the energy system and the results.") |
||
305 | |||
306 | energysystem = EnergySystem() |
||
307 | energysystem.restore(dpath=None, filename=None) |
||
308 | |||
309 | # define an alias for shorter calls below (optional) |
||
310 | results = energysystem.results["main"] |
||
311 | storage = energysystem.groups[STORAGE_LABEL] |
||
312 | |||
313 | # print a time slice of the state of charge |
||
314 | start_time = datetime(2012, 2, 25, 8, 0, 0) |
||
315 | end_time = datetime(2012, 2, 25, 17, 0, 0) |
||
316 | |||
317 | print("\n********* State of Charge (slice) *********") |
||
318 | print(f"{results[(storage, None)]['sequences'][start_time : end_time]}\n") |
||
319 | |||
320 | # get all variables of a specific component/bus |
||
321 | custom_storage = views.node(results, STORAGE_LABEL) |
||
322 | electricity_bus = views.node(results, "electricity") |
||
323 | |||
324 | # plot the time series (sequences) of a specific component/bus |
||
325 | plot_figures_for(custom_storage) |
||
326 | plot_figures_for(electricity_bus) |
||
327 | |||
328 | # print the solver results |
||
329 | print("********* Meta results *********") |
||
330 | pp.pprint(f"{energysystem.results['meta']}\n") |
||
331 | |||
332 | # print the sums of the flows around the electricity bus |
||
333 | print("********* Main results *********") |
||
334 | print(electricity_bus["sequences"].sum(axis=0)) |
||
335 | |||
339 |