1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
|
3
|
|
|
"""This example shows how to create an energysystem with oemof objects and |
4
|
|
|
solve it with the solph module. |
5
|
|
|
|
6
|
|
|
Data: example_data.csv |
7
|
|
|
|
8
|
|
|
This file is part of project oemof (github.com/oemof/oemof). It's copyrighted |
9
|
|
|
by the contributors recorded in the version control history of the file, |
10
|
|
|
available from its original location |
11
|
|
|
oemof/tests/test_scripts/test_solph/test_simple_dispatch/test_simple_dispatch.py |
12
|
|
|
|
13
|
|
|
SPDX-License-Identifier: MIT |
14
|
|
|
""" |
15
|
|
|
|
16
|
|
|
import os |
17
|
|
|
|
18
|
|
|
import pandas as pd |
19
|
|
|
import pytest |
20
|
|
|
from oemof.tools import economics |
21
|
|
|
|
22
|
|
|
from oemof.solph import EnergySystem |
23
|
|
|
from oemof.solph import Investment |
24
|
|
|
from oemof.solph import Model |
25
|
|
|
from oemof.solph import processing |
26
|
|
|
from oemof.solph import views |
27
|
|
|
from oemof.solph.buses import Bus |
28
|
|
|
from oemof.solph.components import Converter |
29
|
|
|
from oemof.solph.components import Sink |
30
|
|
|
from oemof.solph.components import Source |
31
|
|
|
from oemof.solph.flows import Flow |
32
|
|
|
|
33
|
|
|
|
34
|
|
|
def test_dispatch_example(solver="cbc", periods=24 * 5): |
35
|
|
|
"""Create an energy system and optimize the dispatch at least costs.""" |
36
|
|
|
|
37
|
|
|
filename = os.path.join(os.path.dirname(__file__), "input_data.csv") |
38
|
|
|
data = pd.read_csv(filename, sep=",") |
39
|
|
|
|
40
|
|
|
# ######################### create energysystem components ################ |
41
|
|
|
|
42
|
|
|
# resource buses |
43
|
|
|
bcoal = Bus(label="coal", balanced=False) |
44
|
|
|
bgas = Bus(label="gas", balanced=False) |
45
|
|
|
boil = Bus(label="oil", balanced=False) |
46
|
|
|
blig = Bus(label="lignite", balanced=False) |
47
|
|
|
|
48
|
|
|
# electricity and heat |
49
|
|
|
bel = Bus(label="b_el") |
50
|
|
|
bth = Bus(label="b_th") |
51
|
|
|
|
52
|
|
|
# an excess and a shortage variable can help to avoid infeasible problems |
53
|
|
|
excess_el = Sink(label="excess_el", inputs={bel: Flow()}) |
54
|
|
|
# shortage_el = Source(label='shortage_el', |
55
|
|
|
# outputs={bel: Flow(variable_costs=200)}) |
56
|
|
|
|
57
|
|
|
# sources |
58
|
|
|
ep_wind = economics.annuity(capex=1000, n=20, wacc=0.05) |
59
|
|
|
wind = Source( |
60
|
|
|
label="wind", |
61
|
|
|
outputs={ |
62
|
|
|
bel: Flow( |
63
|
|
|
fix=data["wind"], |
64
|
|
|
nominal_capacity=Investment(ep_costs=ep_wind, existing=100), |
65
|
|
|
) |
66
|
|
|
}, |
67
|
|
|
) |
68
|
|
|
|
69
|
|
|
ep_pv = economics.annuity(capex=1500, n=20, wacc=0.05) |
70
|
|
|
pv = Source( |
71
|
|
|
label="pv", |
72
|
|
|
outputs={ |
73
|
|
|
bel: Flow( |
74
|
|
|
fix=data["pv"], |
75
|
|
|
nominal_capacity=Investment(ep_costs=ep_pv, existing=80), |
76
|
|
|
) |
77
|
|
|
}, |
78
|
|
|
) |
79
|
|
|
|
80
|
|
|
# demands (electricity/heat) |
81
|
|
|
demand_el = Sink( |
82
|
|
|
label="demand_elec", |
83
|
|
|
inputs={bel: Flow(nominal_capacity=85, fix=data["demand_el"])}, |
84
|
|
|
) |
85
|
|
|
|
86
|
|
|
demand_th = Sink( |
87
|
|
|
label="demand_therm", |
88
|
|
|
inputs={bth: Flow(nominal_capacity=40, fix=data["demand_th"])}, |
89
|
|
|
) |
90
|
|
|
|
91
|
|
|
# power plants |
92
|
|
|
pp_coal = Converter( |
93
|
|
|
label="pp_coal", |
94
|
|
|
inputs={bcoal: Flow()}, |
95
|
|
|
outputs={bel: Flow(nominal_capacity=20.2, variable_costs=25)}, |
96
|
|
|
conversion_factors={bel: 0.39}, |
97
|
|
|
) |
98
|
|
|
|
99
|
|
|
pp_lig = Converter( |
100
|
|
|
label="pp_lig", |
101
|
|
|
inputs={blig: Flow()}, |
102
|
|
|
outputs={bel: Flow(nominal_capacity=11.8, variable_costs=19)}, |
103
|
|
|
conversion_factors={bel: 0.41}, |
104
|
|
|
) |
105
|
|
|
|
106
|
|
|
pp_gas = Converter( |
107
|
|
|
label="pp_gas", |
108
|
|
|
inputs={bgas: Flow()}, |
109
|
|
|
outputs={bel: Flow(nominal_capacity=41, variable_costs=40)}, |
110
|
|
|
conversion_factors={bel: 0.50}, |
111
|
|
|
) |
112
|
|
|
|
113
|
|
|
pp_oil = Converter( |
114
|
|
|
label="pp_oil", |
115
|
|
|
inputs={boil: Flow()}, |
116
|
|
|
outputs={bel: Flow(nominal_capacity=5, variable_costs=50)}, |
117
|
|
|
conversion_factors={bel: 0.28}, |
118
|
|
|
) |
119
|
|
|
|
120
|
|
|
# combined heat and power plant (chp) |
121
|
|
|
pp_chp = Converter( |
122
|
|
|
label="pp_chp", |
123
|
|
|
inputs={bgas: Flow()}, |
124
|
|
|
outputs={ |
125
|
|
|
bel: Flow(nominal_capacity=30, variable_costs=42), |
126
|
|
|
bth: Flow(nominal_capacity=40), |
127
|
|
|
}, |
128
|
|
|
conversion_factors={bel: 0.3, bth: 0.4}, |
129
|
|
|
) |
130
|
|
|
|
131
|
|
|
# heatpump with a coefficient of performance (COP) of 3 |
132
|
|
|
b_heat_source = Bus(label="b_heat_source") |
133
|
|
|
|
134
|
|
|
heat_source = Source(label="heat_source", outputs={b_heat_source: Flow()}) |
135
|
|
|
|
136
|
|
|
cop = 3 |
137
|
|
|
heat_pump = Converter( |
138
|
|
|
label="el_heat_pump", |
139
|
|
|
inputs={bel: Flow(), b_heat_source: Flow()}, |
140
|
|
|
outputs={bth: Flow(nominal_capacity=10)}, |
141
|
|
|
conversion_factors={bel: 1 / 3, b_heat_source: (cop - 1) / cop}, |
142
|
|
|
) |
143
|
|
|
|
144
|
|
|
datetimeindex = pd.date_range("1/1/2012", periods=periods, freq="h") |
145
|
|
|
energysystem = EnergySystem( |
146
|
|
|
timeindex=datetimeindex, infer_last_interval=True |
147
|
|
|
) |
148
|
|
|
energysystem.add( |
149
|
|
|
bcoal, |
150
|
|
|
bgas, |
151
|
|
|
boil, |
152
|
|
|
bel, |
153
|
|
|
bth, |
154
|
|
|
blig, |
155
|
|
|
excess_el, |
156
|
|
|
wind, |
157
|
|
|
pv, |
158
|
|
|
demand_el, |
159
|
|
|
demand_th, |
160
|
|
|
pp_coal, |
161
|
|
|
pp_lig, |
162
|
|
|
pp_oil, |
163
|
|
|
pp_gas, |
164
|
|
|
pp_chp, |
165
|
|
|
b_heat_source, |
166
|
|
|
heat_source, |
167
|
|
|
heat_pump, |
168
|
|
|
) |
169
|
|
|
|
170
|
|
|
# ################################ optimization ########################### |
171
|
|
|
|
172
|
|
|
# create optimization model based on energy_system |
173
|
|
|
optimization_model = Model(energysystem=energysystem) |
174
|
|
|
|
175
|
|
|
# solve problem |
176
|
|
|
optimization_model.solve(solver=solver) |
177
|
|
|
|
178
|
|
|
# write back results from optimization object to energysystem |
179
|
|
|
optimization_model.results() |
180
|
|
|
|
181
|
|
|
# ################################ results ################################ |
182
|
|
|
|
183
|
|
|
# generic result object |
184
|
|
|
results = processing.results(model=optimization_model) |
185
|
|
|
|
186
|
|
|
# subset of results that includes all flows into and from electrical bus |
187
|
|
|
# sequences are stored within a pandas.DataFrames and scalars e.g. |
188
|
|
|
# investment values within a pandas.Series object. |
189
|
|
|
# in this case the entry data['scalars'] does not exist since no investment |
190
|
|
|
# variables are used |
191
|
|
|
data = views.node(results, "b_el") |
192
|
|
|
|
193
|
|
|
# generate results to be evaluated in tests |
194
|
|
|
comp_results = data["sequences"].sum(axis=0).to_dict() |
195
|
|
|
comp_results["pv_capacity"] = results[(pv, bel)]["scalars"].invest |
196
|
|
|
comp_results["wind_capacity"] = results[(wind, bel)]["scalars"].invest |
197
|
|
|
|
198
|
|
|
test_results = { |
199
|
|
|
(("wind", "b_el"), "flow"): 9239, |
200
|
|
|
(("pv", "b_el"), "flow"): 1147, |
201
|
|
|
(("b_el", "demand_elec"), "flow"): 7440, |
202
|
|
|
(("b_el", "excess_el"), "flow"): 6261, |
203
|
|
|
(("pp_chp", "b_el"), "flow"): 477, |
204
|
|
|
(("pp_lig", "b_el"), "flow"): 850, |
205
|
|
|
(("pp_gas", "b_el"), "flow"): 934, |
206
|
|
|
(("pp_coal", "b_el"), "flow"): 1256, |
207
|
|
|
(("pp_oil", "b_el"), "flow"): 0, |
208
|
|
|
(("b_el", "el_heat_pump"), "flow"): 202, |
209
|
|
|
"pv_capacity": 44, |
210
|
|
|
"wind_capacity": 246, |
211
|
|
|
} |
212
|
|
|
|
213
|
|
|
for key in test_results.keys(): |
214
|
|
|
assert comp_results[key] == pytest.approx(test_results[key], abs=0.5) |
215
|
|
|
|