| Conditions | 2 |
| Total Lines | 181 |
| Code Lines | 111 |
| Lines | 0 |
| Ratio | 0 % |
| Changes | 0 | ||
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
| 1 | # -*- coding: utf-8 -*- |
||
| 34 | def test_dispatch_example(solver="cbc", periods=24 * 5): |
||
| 35 | """Create an energy system and optimize the dispatch at least costs.""" |
||
| 36 | |||
| 37 | filename = os.path.join(os.path.dirname(__file__), "input_data.csv") |
||
| 38 | data = pd.read_csv(filename, sep=",") |
||
| 39 | |||
| 40 | # ######################### create energysystem components ################ |
||
| 41 | |||
| 42 | # resource buses |
||
| 43 | bcoal = Bus(label="coal", balanced=False) |
||
| 44 | bgas = Bus(label="gas", balanced=False) |
||
| 45 | boil = Bus(label="oil", balanced=False) |
||
| 46 | blig = Bus(label="lignite", balanced=False) |
||
| 47 | |||
| 48 | # electricity and heat |
||
| 49 | bel = Bus(label="b_el") |
||
| 50 | bth = Bus(label="b_th") |
||
| 51 | |||
| 52 | # an excess and a shortage variable can help to avoid infeasible problems |
||
| 53 | excess_el = Sink(label="excess_el", inputs={bel: Flow()}) |
||
| 54 | # shortage_el = Source(label='shortage_el', |
||
| 55 | # outputs={bel: Flow(variable_costs=200)}) |
||
| 56 | |||
| 57 | # sources |
||
| 58 | ep_wind = economics.annuity(capex=1000, n=20, wacc=0.05) |
||
| 59 | wind = Source( |
||
| 60 | label="wind", |
||
| 61 | outputs={ |
||
| 62 | bel: Flow( |
||
| 63 | fix=data["wind"], |
||
| 64 | nominal_capacity=Investment(ep_costs=ep_wind, existing=100), |
||
| 65 | ) |
||
| 66 | }, |
||
| 67 | ) |
||
| 68 | |||
| 69 | ep_pv = economics.annuity(capex=1500, n=20, wacc=0.05) |
||
| 70 | pv = Source( |
||
| 71 | label="pv", |
||
| 72 | outputs={ |
||
| 73 | bel: Flow( |
||
| 74 | fix=data["pv"], |
||
| 75 | nominal_capacity=Investment(ep_costs=ep_pv, existing=80), |
||
| 76 | ) |
||
| 77 | }, |
||
| 78 | ) |
||
| 79 | |||
| 80 | # demands (electricity/heat) |
||
| 81 | demand_el = Sink( |
||
| 82 | label="demand_elec", |
||
| 83 | inputs={bel: Flow(nominal_capacity=85, fix=data["demand_el"])}, |
||
| 84 | ) |
||
| 85 | |||
| 86 | demand_th = Sink( |
||
| 87 | label="demand_therm", |
||
| 88 | inputs={bth: Flow(nominal_capacity=40, fix=data["demand_th"])}, |
||
| 89 | ) |
||
| 90 | |||
| 91 | # power plants |
||
| 92 | pp_coal = Converter( |
||
| 93 | label="pp_coal", |
||
| 94 | inputs={bcoal: Flow()}, |
||
| 95 | outputs={bel: Flow(nominal_capacity=20.2, variable_costs=25)}, |
||
| 96 | conversion_factors={bel: 0.39}, |
||
| 97 | ) |
||
| 98 | |||
| 99 | pp_lig = Converter( |
||
| 100 | label="pp_lig", |
||
| 101 | inputs={blig: Flow()}, |
||
| 102 | outputs={bel: Flow(nominal_capacity=11.8, variable_costs=19)}, |
||
| 103 | conversion_factors={bel: 0.41}, |
||
| 104 | ) |
||
| 105 | |||
| 106 | pp_gas = Converter( |
||
| 107 | label="pp_gas", |
||
| 108 | inputs={bgas: Flow()}, |
||
| 109 | outputs={bel: Flow(nominal_capacity=41, variable_costs=40)}, |
||
| 110 | conversion_factors={bel: 0.50}, |
||
| 111 | ) |
||
| 112 | |||
| 113 | pp_oil = Converter( |
||
| 114 | label="pp_oil", |
||
| 115 | inputs={boil: Flow()}, |
||
| 116 | outputs={bel: Flow(nominal_capacity=5, variable_costs=50)}, |
||
| 117 | conversion_factors={bel: 0.28}, |
||
| 118 | ) |
||
| 119 | |||
| 120 | # combined heat and power plant (chp) |
||
| 121 | pp_chp = Converter( |
||
| 122 | label="pp_chp", |
||
| 123 | inputs={bgas: Flow()}, |
||
| 124 | outputs={ |
||
| 125 | bel: Flow(nominal_capacity=30, variable_costs=42), |
||
| 126 | bth: Flow(nominal_capacity=40), |
||
| 127 | }, |
||
| 128 | conversion_factors={bel: 0.3, bth: 0.4}, |
||
| 129 | ) |
||
| 130 | |||
| 131 | # heatpump with a coefficient of performance (COP) of 3 |
||
| 132 | b_heat_source = Bus(label="b_heat_source") |
||
| 133 | |||
| 134 | heat_source = Source(label="heat_source", outputs={b_heat_source: Flow()}) |
||
| 135 | |||
| 136 | cop = 3 |
||
| 137 | heat_pump = Converter( |
||
| 138 | label="el_heat_pump", |
||
| 139 | inputs={bel: Flow(), b_heat_source: Flow()}, |
||
| 140 | outputs={bth: Flow(nominal_capacity=10)}, |
||
| 141 | conversion_factors={bel: 1 / 3, b_heat_source: (cop - 1) / cop}, |
||
| 142 | ) |
||
| 143 | |||
| 144 | datetimeindex = pd.date_range("1/1/2012", periods=periods, freq="h") |
||
| 145 | energysystem = EnergySystem( |
||
| 146 | timeindex=datetimeindex, infer_last_interval=True |
||
| 147 | ) |
||
| 148 | energysystem.add( |
||
| 149 | bcoal, |
||
| 150 | bgas, |
||
| 151 | boil, |
||
| 152 | bel, |
||
| 153 | bth, |
||
| 154 | blig, |
||
| 155 | excess_el, |
||
| 156 | wind, |
||
| 157 | pv, |
||
| 158 | demand_el, |
||
| 159 | demand_th, |
||
| 160 | pp_coal, |
||
| 161 | pp_lig, |
||
| 162 | pp_oil, |
||
| 163 | pp_gas, |
||
| 164 | pp_chp, |
||
| 165 | b_heat_source, |
||
| 166 | heat_source, |
||
| 167 | heat_pump, |
||
| 168 | ) |
||
| 169 | |||
| 170 | # ################################ optimization ########################### |
||
| 171 | |||
| 172 | # create optimization model based on energy_system |
||
| 173 | optimization_model = Model(energysystem=energysystem) |
||
| 174 | |||
| 175 | # solve problem |
||
| 176 | optimization_model.solve(solver=solver) |
||
| 177 | |||
| 178 | # write back results from optimization object to energysystem |
||
| 179 | optimization_model.results() |
||
| 180 | |||
| 181 | # ################################ results ################################ |
||
| 182 | |||
| 183 | # generic result object |
||
| 184 | results = processing.results(model=optimization_model) |
||
| 185 | |||
| 186 | # subset of results that includes all flows into and from electrical bus |
||
| 187 | # sequences are stored within a pandas.DataFrames and scalars e.g. |
||
| 188 | # investment values within a pandas.Series object. |
||
| 189 | # in this case the entry data['scalars'] does not exist since no investment |
||
| 190 | # variables are used |
||
| 191 | data = views.node(results, "b_el") |
||
| 192 | |||
| 193 | # generate results to be evaluated in tests |
||
| 194 | comp_results = data["sequences"].sum(axis=0).to_dict() |
||
| 195 | comp_results["pv_capacity"] = results[(pv, bel)]["scalars"].invest |
||
| 196 | comp_results["wind_capacity"] = results[(wind, bel)]["scalars"].invest |
||
| 197 | |||
| 198 | test_results = { |
||
| 199 | (("wind", "b_el"), "flow"): 9239, |
||
| 200 | (("pv", "b_el"), "flow"): 1147, |
||
| 201 | (("b_el", "demand_elec"), "flow"): 7440, |
||
| 202 | (("b_el", "excess_el"), "flow"): 6261, |
||
| 203 | (("pp_chp", "b_el"), "flow"): 477, |
||
| 204 | (("pp_lig", "b_el"), "flow"): 850, |
||
| 205 | (("pp_gas", "b_el"), "flow"): 934, |
||
| 206 | (("pp_coal", "b_el"), "flow"): 1256, |
||
| 207 | (("pp_oil", "b_el"), "flow"): 0, |
||
| 208 | (("b_el", "el_heat_pump"), "flow"): 202, |
||
| 209 | "pv_capacity": 44, |
||
| 210 | "wind_capacity": 246, |
||
| 211 | } |
||
| 212 | |||
| 213 | for key in test_results.keys(): |
||
| 214 | assert comp_results[key] == pytest.approx(test_results[key], abs=0.5) |
||
| 215 |