1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
|
3
|
|
|
"""This example shows how to create an energysystem with oemof objects and |
4
|
|
|
solve it with the solph module. |
5
|
|
|
|
6
|
|
|
Data: example_data.csv |
7
|
|
|
|
8
|
|
|
This file is part of project oemof (github.com/oemof/oemof). It's copyrighted |
9
|
|
|
by the contributors recorded in the version control history of the file, |
10
|
|
|
available from its original location |
11
|
|
|
oemof/tests/test_scripts/test_solph/test_simple_dispatch/test_simple_dispatch.py |
12
|
|
|
|
13
|
|
|
SPDX-License-Identifier: MIT |
14
|
|
|
""" |
15
|
|
|
|
16
|
|
|
import os |
17
|
|
|
|
18
|
|
|
import pandas as pd |
19
|
|
|
import pytest |
20
|
|
|
|
21
|
|
|
from oemof.solph import EnergySystem |
22
|
|
|
from oemof.solph import Model |
23
|
|
|
from oemof.solph import processing |
24
|
|
|
from oemof.solph import views |
25
|
|
|
from oemof.solph.buses import Bus |
26
|
|
|
from oemof.solph.components import Converter |
27
|
|
|
from oemof.solph.components import Sink |
28
|
|
|
from oemof.solph.components import Source |
29
|
|
|
from oemof.solph.flows import Flow |
30
|
|
|
|
31
|
|
|
|
32
|
|
|
def test_dispatch_example(solver="cbc", periods=24 * 5): |
33
|
|
|
"""Create an energy system and optimize the dispatch at least costs.""" |
34
|
|
|
|
35
|
|
|
filename = os.path.join(os.path.dirname(__file__), "input_data.csv") |
36
|
|
|
data = pd.read_csv(filename, sep=",") |
37
|
|
|
|
38
|
|
|
# ######################### create energysystem components ################ |
39
|
|
|
|
40
|
|
|
# resource buses |
41
|
|
|
bcoal = Bus(label="coal", balanced=False) |
42
|
|
|
bgas = Bus(label="gas", balanced=False) |
43
|
|
|
boil = Bus(label="oil", balanced=False) |
44
|
|
|
blig = Bus(label="lignite", balanced=False) |
45
|
|
|
|
46
|
|
|
# electricity and heat |
47
|
|
|
bel = Bus(label="b_el") |
48
|
|
|
bth = Bus(label="b_th") |
49
|
|
|
|
50
|
|
|
# an excess and a shortage variable can help to avoid infeasible problems |
51
|
|
|
excess_el = Sink(label="excess_el", inputs={bel: Flow()}) |
52
|
|
|
# shortage_el = Source(label='shortage_el', |
53
|
|
|
# outputs={bel: Flow(variable_costs=200)}) |
54
|
|
|
|
55
|
|
|
# sources |
56
|
|
|
wind = Source( |
57
|
|
|
label="wind", |
58
|
|
|
outputs={bel: Flow(fix=data["wind"], nominal_capacity=66.3)}, |
59
|
|
|
) |
60
|
|
|
|
61
|
|
|
pv = Source( |
62
|
|
|
label="pv", outputs={bel: Flow(fix=data["pv"], nominal_capacity=65.3)} |
63
|
|
|
) |
64
|
|
|
|
65
|
|
|
# demands (electricity/heat) |
66
|
|
|
demand_el = Sink( |
67
|
|
|
label="demand_elec", |
68
|
|
|
inputs={bel: Flow(nominal_capacity=85, fix=data["demand_el"])}, |
69
|
|
|
) |
70
|
|
|
|
71
|
|
|
demand_th = Sink( |
72
|
|
|
label="demand_therm", |
73
|
|
|
inputs={bth: Flow(nominal_capacity=40, fix=data["demand_th"])}, |
74
|
|
|
) |
75
|
|
|
|
76
|
|
|
# power plants |
77
|
|
|
pp_coal = Converter( |
78
|
|
|
label="pp_coal", |
79
|
|
|
inputs={bcoal: Flow()}, |
80
|
|
|
outputs={bel: Flow(nominal_capacity=20.2, variable_costs=25)}, |
81
|
|
|
conversion_factors={bel: 0.39}, |
82
|
|
|
) |
83
|
|
|
|
84
|
|
|
pp_lig = Converter( |
85
|
|
|
label="pp_lig", |
86
|
|
|
inputs={blig: Flow()}, |
87
|
|
|
outputs={bel: Flow(nominal_capacity=11.8, variable_costs=19)}, |
88
|
|
|
conversion_factors={bel: 0.41}, |
89
|
|
|
) |
90
|
|
|
|
91
|
|
|
pp_gas = Converter( |
92
|
|
|
label="pp_gas", |
93
|
|
|
inputs={bgas: Flow()}, |
94
|
|
|
outputs={bel: Flow(nominal_capacity=41, variable_costs=40)}, |
95
|
|
|
conversion_factors={bel: 0.50}, |
96
|
|
|
) |
97
|
|
|
|
98
|
|
|
pp_oil = Converter( |
99
|
|
|
label="pp_oil", |
100
|
|
|
inputs={boil: Flow()}, |
101
|
|
|
outputs={bel: Flow(nominal_capacity=5, variable_costs=50)}, |
102
|
|
|
conversion_factors={bel: 0.28}, |
103
|
|
|
) |
104
|
|
|
|
105
|
|
|
# combined heat and power plant (chp) |
106
|
|
|
pp_chp = Converter( |
107
|
|
|
label="pp_chp", |
108
|
|
|
inputs={bgas: Flow()}, |
109
|
|
|
outputs={ |
110
|
|
|
bel: Flow(nominal_capacity=30, variable_costs=42), |
111
|
|
|
bth: Flow(nominal_capacity=40), |
112
|
|
|
}, |
113
|
|
|
conversion_factors={bel: 0.3, bth: 0.4}, |
114
|
|
|
) |
115
|
|
|
|
116
|
|
|
# heatpump with a coefficient of performance (COP) of 3 |
117
|
|
|
b_heat_source = Bus(label="b_heat_source") |
118
|
|
|
|
119
|
|
|
heat_source = Source(label="heat_source", outputs={b_heat_source: Flow()}) |
120
|
|
|
|
121
|
|
|
cop = 3 |
122
|
|
|
heat_pump = Converter( |
123
|
|
|
label="heat_pump", |
124
|
|
|
inputs={bel: Flow(), b_heat_source: Flow()}, |
125
|
|
|
outputs={bth: Flow(nominal_capacity=10)}, |
126
|
|
|
conversion_factors={bel: 1 / 3, b_heat_source: (cop - 1) / cop}, |
127
|
|
|
) |
128
|
|
|
|
129
|
|
|
datetimeindex = pd.date_range("1/1/2012", periods=periods, freq="h") |
130
|
|
|
energysystem = EnergySystem( |
131
|
|
|
timeindex=datetimeindex, infer_last_interval=True |
132
|
|
|
) |
133
|
|
|
energysystem.add( |
134
|
|
|
bcoal, |
135
|
|
|
bgas, |
136
|
|
|
boil, |
137
|
|
|
bel, |
138
|
|
|
bth, |
139
|
|
|
blig, |
140
|
|
|
excess_el, |
141
|
|
|
wind, |
142
|
|
|
pv, |
143
|
|
|
demand_el, |
144
|
|
|
demand_th, |
145
|
|
|
pp_coal, |
146
|
|
|
pp_lig, |
147
|
|
|
pp_oil, |
148
|
|
|
pp_gas, |
149
|
|
|
pp_chp, |
150
|
|
|
b_heat_source, |
151
|
|
|
heat_source, |
152
|
|
|
heat_pump, |
153
|
|
|
) |
154
|
|
|
|
155
|
|
|
# ################################ optimization ########################### |
156
|
|
|
|
157
|
|
|
# create optimization model based on energy_system |
158
|
|
|
optimization_model = Model(energysystem=energysystem) |
159
|
|
|
|
160
|
|
|
optimization_model.receive_duals() |
161
|
|
|
|
162
|
|
|
# solve problem |
163
|
|
|
optimization_model.solve(solver=solver) |
164
|
|
|
|
165
|
|
|
# write back results from optimization object to energysystem |
166
|
|
|
optimization_model.results() |
167
|
|
|
|
168
|
|
|
# ################################ results ################################ |
169
|
|
|
|
170
|
|
|
# generic result object |
171
|
|
|
results = processing.results(model=optimization_model) |
172
|
|
|
|
173
|
|
|
# subset of results that includes all flows into and from electrical bus |
174
|
|
|
# sequences are stored within a pandas.DataFrames and scalars e.g. |
175
|
|
|
# investment values within a pandas.Series object. |
176
|
|
|
# in this case the entry data['scalars'] does not exist since no investment |
177
|
|
|
# variables are used |
178
|
|
|
data = views.node(results, "b_el") |
179
|
|
|
|
180
|
|
|
# generate results to be evaluated in tests |
181
|
|
|
results = data["sequences"].sum(axis=0).to_dict() |
182
|
|
|
|
183
|
|
|
test_results = { |
184
|
|
|
(("wind", "b_el"), "flow"): 1773, |
185
|
|
|
(("pv", "b_el"), "flow"): 605, |
186
|
|
|
(("b_el", "demand_elec"), "flow"): 7440, |
187
|
|
|
(("b_el", "excess_el"), "flow"): 139, |
188
|
|
|
(("pp_chp", "b_el"), "flow"): 666, |
189
|
|
|
(("pp_lig", "b_el"), "flow"): 1210, |
190
|
|
|
(("pp_gas", "b_el"), "flow"): 1519, |
191
|
|
|
(("pp_coal", "b_el"), "flow"): 1925, |
192
|
|
|
(("pp_oil", "b_el"), "flow"): 0, |
193
|
|
|
(("b_el", "heat_pump"), "flow"): 118, |
194
|
|
|
} |
195
|
|
|
|
196
|
|
|
for key in test_results.keys(): |
197
|
|
|
assert results[key] == pytest.approx(test_results[key], abs=0.5) |
198
|
|
|
|