Conditions | 2 |
Total Lines | 166 |
Code Lines | 99 |
Lines | 0 |
Ratio | 0 % |
Changes | 0 |
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
1 | # -*- coding: utf-8 -*- |
||
32 | def test_dispatch_example(solver="cbc", periods=24 * 5): |
||
33 | """Create an energy system and optimize the dispatch at least costs.""" |
||
34 | |||
35 | filename = os.path.join(os.path.dirname(__file__), "input_data.csv") |
||
36 | data = pd.read_csv(filename, sep=",") |
||
37 | |||
38 | # ######################### create energysystem components ################ |
||
39 | |||
40 | # resource buses |
||
41 | bcoal = Bus(label="coal", balanced=False) |
||
42 | bgas = Bus(label="gas", balanced=False) |
||
43 | boil = Bus(label="oil", balanced=False) |
||
44 | blig = Bus(label="lignite", balanced=False) |
||
45 | |||
46 | # electricity and heat |
||
47 | bel = Bus(label="b_el") |
||
48 | bth = Bus(label="b_th") |
||
49 | |||
50 | # an excess and a shortage variable can help to avoid infeasible problems |
||
51 | excess_el = Sink(label="excess_el", inputs={bel: Flow()}) |
||
52 | # shortage_el = Source(label='shortage_el', |
||
53 | # outputs={bel: Flow(variable_costs=200)}) |
||
54 | |||
55 | # sources |
||
56 | wind = Source( |
||
57 | label="wind", |
||
58 | outputs={bel: Flow(fix=data["wind"], nominal_capacity=66.3)}, |
||
59 | ) |
||
60 | |||
61 | pv = Source( |
||
62 | label="pv", outputs={bel: Flow(fix=data["pv"], nominal_capacity=65.3)} |
||
63 | ) |
||
64 | |||
65 | # demands (electricity/heat) |
||
66 | demand_el = Sink( |
||
67 | label="demand_elec", |
||
68 | inputs={bel: Flow(nominal_capacity=85, fix=data["demand_el"])}, |
||
69 | ) |
||
70 | |||
71 | demand_th = Sink( |
||
72 | label="demand_therm", |
||
73 | inputs={bth: Flow(nominal_capacity=40, fix=data["demand_th"])}, |
||
74 | ) |
||
75 | |||
76 | # power plants |
||
77 | pp_coal = Converter( |
||
78 | label="pp_coal", |
||
79 | inputs={bcoal: Flow()}, |
||
80 | outputs={bel: Flow(nominal_capacity=20.2, variable_costs=25)}, |
||
81 | conversion_factors={bel: 0.39}, |
||
82 | ) |
||
83 | |||
84 | pp_lig = Converter( |
||
85 | label="pp_lig", |
||
86 | inputs={blig: Flow()}, |
||
87 | outputs={bel: Flow(nominal_capacity=11.8, variable_costs=19)}, |
||
88 | conversion_factors={bel: 0.41}, |
||
89 | ) |
||
90 | |||
91 | pp_gas = Converter( |
||
92 | label="pp_gas", |
||
93 | inputs={bgas: Flow()}, |
||
94 | outputs={bel: Flow(nominal_capacity=41, variable_costs=40)}, |
||
95 | conversion_factors={bel: 0.50}, |
||
96 | ) |
||
97 | |||
98 | pp_oil = Converter( |
||
99 | label="pp_oil", |
||
100 | inputs={boil: Flow()}, |
||
101 | outputs={bel: Flow(nominal_capacity=5, variable_costs=50)}, |
||
102 | conversion_factors={bel: 0.28}, |
||
103 | ) |
||
104 | |||
105 | # combined heat and power plant (chp) |
||
106 | pp_chp = Converter( |
||
107 | label="pp_chp", |
||
108 | inputs={bgas: Flow()}, |
||
109 | outputs={ |
||
110 | bel: Flow(nominal_capacity=30, variable_costs=42), |
||
111 | bth: Flow(nominal_capacity=40), |
||
112 | }, |
||
113 | conversion_factors={bel: 0.3, bth: 0.4}, |
||
114 | ) |
||
115 | |||
116 | # heatpump with a coefficient of performance (COP) of 3 |
||
117 | b_heat_source = Bus(label="b_heat_source") |
||
118 | |||
119 | heat_source = Source(label="heat_source", outputs={b_heat_source: Flow()}) |
||
120 | |||
121 | cop = 3 |
||
122 | heat_pump = Converter( |
||
123 | label="heat_pump", |
||
124 | inputs={bel: Flow(), b_heat_source: Flow()}, |
||
125 | outputs={bth: Flow(nominal_capacity=10)}, |
||
126 | conversion_factors={bel: 1 / 3, b_heat_source: (cop - 1) / cop}, |
||
127 | ) |
||
128 | |||
129 | datetimeindex = pd.date_range("1/1/2012", periods=periods, freq="h") |
||
130 | energysystem = EnergySystem( |
||
131 | timeindex=datetimeindex, infer_last_interval=True |
||
132 | ) |
||
133 | energysystem.add( |
||
134 | bcoal, |
||
135 | bgas, |
||
136 | boil, |
||
137 | bel, |
||
138 | bth, |
||
139 | blig, |
||
140 | excess_el, |
||
141 | wind, |
||
142 | pv, |
||
143 | demand_el, |
||
144 | demand_th, |
||
145 | pp_coal, |
||
146 | pp_lig, |
||
147 | pp_oil, |
||
148 | pp_gas, |
||
149 | pp_chp, |
||
150 | b_heat_source, |
||
151 | heat_source, |
||
152 | heat_pump, |
||
153 | ) |
||
154 | |||
155 | # ################################ optimization ########################### |
||
156 | |||
157 | # create optimization model based on energy_system |
||
158 | optimization_model = Model(energysystem=energysystem) |
||
159 | |||
160 | optimization_model.receive_duals() |
||
161 | |||
162 | # solve problem |
||
163 | optimization_model.solve(solver=solver) |
||
164 | |||
165 | # write back results from optimization object to energysystem |
||
166 | optimization_model.results() |
||
167 | |||
168 | # ################################ results ################################ |
||
169 | |||
170 | # generic result object |
||
171 | results = processing.results(model=optimization_model) |
||
172 | |||
173 | # subset of results that includes all flows into and from electrical bus |
||
174 | # sequences are stored within a pandas.DataFrames and scalars e.g. |
||
175 | # investment values within a pandas.Series object. |
||
176 | # in this case the entry data['scalars'] does not exist since no investment |
||
177 | # variables are used |
||
178 | data = views.node(results, "b_el") |
||
179 | |||
180 | # generate results to be evaluated in tests |
||
181 | results = data["sequences"].sum(axis=0).to_dict() |
||
182 | |||
183 | test_results = { |
||
184 | (("wind", "b_el"), "flow"): 1773, |
||
185 | (("pv", "b_el"), "flow"): 605, |
||
186 | (("b_el", "demand_elec"), "flow"): 7440, |
||
187 | (("b_el", "excess_el"), "flow"): 139, |
||
188 | (("pp_chp", "b_el"), "flow"): 666, |
||
189 | (("pp_lig", "b_el"), "flow"): 1210, |
||
190 | (("pp_gas", "b_el"), "flow"): 1519, |
||
191 | (("pp_coal", "b_el"), "flow"): 1925, |
||
192 | (("pp_oil", "b_el"), "flow"): 0, |
||
193 | (("b_el", "heat_pump"), "flow"): 118, |
||
194 | } |
||
195 | |||
196 | for key in test_results.keys(): |
||
197 | assert results[key] == pytest.approx(test_results[key], abs=0.5) |
||
198 |