Issues (382)

reports/storeload.py (2 issues)

1
import falcon
2
import simplejson as json
3
import mysql.connector
4
import config
5
from datetime import datetime, timedelta, timezone
6
from core import utilities
7
from decimal import Decimal
8
9
10 View Code Duplication
class Reporting:
0 ignored issues
show
This code seems to be duplicated in your project.
Loading history...
11
    @staticmethod
12
    def __init__():
13
        pass
14
15
    @staticmethod
16
    def on_options(req, resp):
17
        resp.status = falcon.HTTP_200
18
19
    ####################################################################################################################
20
    # PROCEDURES
21
    # Step 1: valid parameters
22
    # Step 2: query the store
23
    # Step 3: query energy categories
24
    # Step 4: query associated sensors
25
    # Step 5: query associated points
26
    # Step 6: query base period energy input
27
    # Step 7: query reporting period energy input
28
    # Step 8: query tariff data
29
    # Step 9: query associated sensors and points data
30
    # Step 10: construct the report
31
    ####################################################################################################################
32
    @staticmethod
33
    def on_get(req, resp):
34
        print(req.params)
35
        store_id = req.params.get('storeid')
36
        period_type = req.params.get('periodtype')
37
        base_start_datetime_local = req.params.get('baseperiodstartdatetime')
38
        base_end_datetime_local = req.params.get('baseperiodenddatetime')
39
        reporting_start_datetime_local = req.params.get('reportingperiodstartdatetime')
40
        reporting_end_datetime_local = req.params.get('reportingperiodenddatetime')
41
42
        ################################################################################################################
43
        # Step 1: valid parameters
44
        ################################################################################################################
45
        if store_id is None:
46
            raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_STORE_ID')
47
        else:
48
            store_id = str.strip(store_id)
49
            if not store_id.isdigit() or int(store_id) <= 0:
50
                raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_STORE_ID')
51
52
        if period_type is None:
53
            raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_PERIOD_TYPE')
54
        else:
55
            period_type = str.strip(period_type)
56
            if period_type not in ['hourly', 'daily', 'monthly', 'yearly']:
57
                raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_PERIOD_TYPE')
58
59
        timezone_offset = int(config.utc_offset[1:3]) * 60 + int(config.utc_offset[4:6])
60
        if config.utc_offset[0] == '-':
61
            timezone_offset = -timezone_offset
62
63
        base_start_datetime_utc = None
64
        if base_start_datetime_local is not None and len(str.strip(base_start_datetime_local)) > 0:
65
            base_start_datetime_local = str.strip(base_start_datetime_local)
66
            try:
67
                base_start_datetime_utc = datetime.strptime(base_start_datetime_local,
68
                                                            '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \
69
                    timedelta(minutes=timezone_offset)
70
            except ValueError:
71
                raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
72
                                       description="API.INVALID_BASE_PERIOD_START_DATETIME")
73
74
        base_end_datetime_utc = None
75
        if base_end_datetime_local is not None and len(str.strip(base_end_datetime_local)) > 0:
76
            base_end_datetime_local = str.strip(base_end_datetime_local)
77
            try:
78
                base_end_datetime_utc = datetime.strptime(base_end_datetime_local,
79
                                                          '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \
80
                    timedelta(minutes=timezone_offset)
81
            except ValueError:
82
                raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
83
                                       description="API.INVALID_BASE_PERIOD_END_DATETIME")
84
85
        if base_start_datetime_utc is not None and base_end_datetime_utc is not None and \
86
                base_start_datetime_utc >= base_end_datetime_utc:
87
            raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
88
                                   description='API.INVALID_BASE_PERIOD_END_DATETIME')
89
90
        if reporting_start_datetime_local is None:
91
            raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
92
                                   description="API.INVALID_REPORTING_PERIOD_START_DATETIME")
93
        else:
94
            reporting_start_datetime_local = str.strip(reporting_start_datetime_local)
95
            try:
96
                reporting_start_datetime_utc = datetime.strptime(reporting_start_datetime_local,
97
                                                                 '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \
98
                    timedelta(minutes=timezone_offset)
99
            except ValueError:
100
                raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
101
                                       description="API.INVALID_REPORTING_PERIOD_START_DATETIME")
102
103
        if reporting_end_datetime_local is None:
104
            raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
105
                                   description="API.INVALID_REPORTING_PERIOD_END_DATETIME")
106
        else:
107
            reporting_end_datetime_local = str.strip(reporting_end_datetime_local)
108
            try:
109
                reporting_end_datetime_utc = datetime.strptime(reporting_end_datetime_local,
110
                                                               '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \
111
                    timedelta(minutes=timezone_offset)
112
            except ValueError:
113
                raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
114
                                       description="API.INVALID_REPORTING_PERIOD_END_DATETIME")
115
116
        if reporting_start_datetime_utc >= reporting_end_datetime_utc:
117
            raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
118
                                   description='API.INVALID_REPORTING_PERIOD_END_DATETIME')
119
120
        ################################################################################################################
121
        # Step 2: query the store
122
        ################################################################################################################
123
        cnx_system = mysql.connector.connect(**config.myems_system_db)
124
        cursor_system = cnx_system.cursor()
125
126
        cnx_energy = mysql.connector.connect(**config.myems_energy_db)
127
        cursor_energy = cnx_energy.cursor()
128
129
        cnx_historical = mysql.connector.connect(**config.myems_historical_db)
130
        cursor_historical = cnx_historical.cursor()
131
132
        cursor_system.execute(" SELECT id, name, area, cost_center_id "
133
                              " FROM tbl_stores "
134
                              " WHERE id = %s ", (store_id,))
135
        row_store = cursor_system.fetchone()
136
        if row_store is None:
137
            if cursor_system:
138
                cursor_system.close()
139
            if cnx_system:
140
                cnx_system.disconnect()
141
142
            if cursor_energy:
143
                cursor_energy.close()
144
            if cnx_energy:
145
                cnx_energy.disconnect()
146
147
            if cnx_historical:
148
                cnx_historical.close()
149
            if cursor_historical:
150
                cursor_historical.disconnect()
151
            raise falcon.HTTPError(falcon.HTTP_404, title='API.NOT_FOUND', description='API.STORE_NOT_FOUND')
152
153
        store = dict()
154
        store['id'] = row_store[0]
155
        store['name'] = row_store[1]
156
        store['area'] = row_store[2]
157
        store['cost_center_id'] = row_store[3]
158
159
        ################################################################################################################
160
        # Step 3: query energy categories
161
        ################################################################################################################
162
        energy_category_set = set()
163
        # query energy categories in base period
164
        cursor_energy.execute(" SELECT DISTINCT(energy_category_id) "
165
                              " FROM tbl_store_input_category_hourly "
166
                              " WHERE store_id = %s "
167
                              "     AND start_datetime_utc >= %s "
168
                              "     AND start_datetime_utc < %s ",
169
                              (store['id'], base_start_datetime_utc, base_end_datetime_utc))
170
        rows_energy_categories = cursor_energy.fetchall()
171
        if rows_energy_categories is not None or len(rows_energy_categories) > 0:
172
            for row_energy_category in rows_energy_categories:
173
                energy_category_set.add(row_energy_category[0])
174
175
        # query energy categories in reporting period
176
        cursor_energy.execute(" SELECT DISTINCT(energy_category_id) "
177
                              " FROM tbl_store_input_category_hourly "
178
                              " WHERE store_id = %s "
179
                              "     AND start_datetime_utc >= %s "
180
                              "     AND start_datetime_utc < %s ",
181
                              (store['id'], reporting_start_datetime_utc, reporting_end_datetime_utc))
182
        rows_energy_categories = cursor_energy.fetchall()
183
        if rows_energy_categories is not None or len(rows_energy_categories) > 0:
184
            for row_energy_category in rows_energy_categories:
185
                energy_category_set.add(row_energy_category[0])
186
187
        # query all energy categories in base period and reporting period
188
        cursor_system.execute(" SELECT id, name, unit_of_measure, kgce, kgco2e "
189
                              " FROM tbl_energy_categories "
190
                              " ORDER BY id ", )
191
        rows_energy_categories = cursor_system.fetchall()
192
        if rows_energy_categories is None or len(rows_energy_categories) == 0:
193
            if cursor_system:
194
                cursor_system.close()
195
            if cnx_system:
196
                cnx_system.disconnect()
197
198
            if cursor_energy:
199
                cursor_energy.close()
200
            if cnx_energy:
201
                cnx_energy.disconnect()
202
203
            if cnx_historical:
204
                cnx_historical.close()
205
            if cursor_historical:
206
                cursor_historical.disconnect()
207
            raise falcon.HTTPError(falcon.HTTP_404,
208
                                   title='API.NOT_FOUND',
209
                                   description='API.ENERGY_CATEGORY_NOT_FOUND')
210
        energy_category_dict = dict()
211
        for row_energy_category in rows_energy_categories:
212
            if row_energy_category[0] in energy_category_set:
213
                energy_category_dict[row_energy_category[0]] = {"name": row_energy_category[1],
214
                                                                "unit_of_measure": row_energy_category[2],
215
                                                                "kgce": row_energy_category[3],
216
                                                                "kgco2e": row_energy_category[4]}
217
218
        ################################################################################################################
219
        # Step 4: query associated sensors
220
        ################################################################################################################
221
        point_list = list()
222
        cursor_system.execute(" SELECT p.id, p.name, p.units, p.object_type  "
223
                              " FROM tbl_stores st, tbl_sensors se, tbl_stores_sensors ss, "
224
                              "      tbl_points p, tbl_sensors_points sp "
225
                              " WHERE st.id = %s AND st.id = ss.store_id AND ss.sensor_id = se.id "
226
                              "       AND se.id = sp.sensor_id AND sp.point_id = p.id "
227
                              " ORDER BY p.id ", (store['id'],))
228
        rows_points = cursor_system.fetchall()
229
        if rows_points is not None and len(rows_points) > 0:
230
            for row in rows_points:
231
                point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]})
232
233
        ################################################################################################################
234
        # Step 5: query associated points
235
        ################################################################################################################
236
        cursor_system.execute(" SELECT p.id, p.name, p.units, p.object_type  "
237
                              " FROM tbl_stores s, tbl_stores_points sp, tbl_points p "
238
                              " WHERE s.id = %s AND s.id = sp.store_id AND sp.point_id = p.id "
239
                              " ORDER BY p.id ", (store['id'],))
240
        rows_points = cursor_system.fetchall()
241
        if rows_points is not None and len(rows_points) > 0:
242
            for row in rows_points:
243
                point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]})
244
245
        ################################################################################################################
246
        # Step 6: query base period energy input
247
        ################################################################################################################
248
        base = dict()
249
        if energy_category_set is not None and len(energy_category_set) > 0:
250
            for energy_category_id in energy_category_set:
251
                base[energy_category_id] = dict()
252
                base[energy_category_id]['timestamps'] = list()
253
                base[energy_category_id]['sub_averages'] = list()
254
                base[energy_category_id]['sub_maximums'] = list()
255
                base[energy_category_id]['average'] = None
256
                base[energy_category_id]['maximum'] = None
257
                base[energy_category_id]['factor'] = None
258
259
                cursor_energy.execute(" SELECT start_datetime_utc, actual_value "
260
                                      " FROM tbl_store_input_category_hourly "
261
                                      " WHERE store_id = %s "
262
                                      "     AND energy_category_id = %s "
263
                                      "     AND start_datetime_utc >= %s "
264
                                      "     AND start_datetime_utc < %s "
265
                                      " ORDER BY start_datetime_utc ",
266
                                      (store['id'],
267
                                       energy_category_id,
268
                                       base_start_datetime_utc,
269
                                       base_end_datetime_utc))
270
                rows_store_hourly = cursor_energy.fetchall()
271
272
                rows_store_periodically, \
273
                    base[energy_category_id]['average'], \
274
                    base[energy_category_id]['maximum'] = \
275
                    utilities.averaging_hourly_data_by_period(rows_store_hourly,
276
                                                              base_start_datetime_utc,
277
                                                              base_end_datetime_utc,
278
                                                              period_type)
279
                base[energy_category_id]['factor'] = \
280
                    (base[energy_category_id]['average'] / base[energy_category_id]['maximum']
281
                        if (base[energy_category_id]['average'] is not None and
282
                            base[energy_category_id]['maximum'] is not None and
283
                            base[energy_category_id]['maximum'] > Decimal(0.0))
284
                        else None)
285
286
                for row_store_periodically in rows_store_periodically:
287
                    current_datetime_local = row_store_periodically[0].replace(tzinfo=timezone.utc) + \
288
                                             timedelta(minutes=timezone_offset)
289
                    if period_type == 'hourly':
290
                        current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S')
291
                    elif period_type == 'daily':
292
                        current_datetime = current_datetime_local.strftime('%Y-%m-%d')
293
                    elif period_type == 'monthly':
294
                        current_datetime = current_datetime_local.strftime('%Y-%m')
295
                    elif period_type == 'yearly':
296
                        current_datetime = current_datetime_local.strftime('%Y')
297
298
                    base[energy_category_id]['timestamps'].append(current_datetime)
0 ignored issues
show
The variable current_datetime does not seem to be defined for all execution paths.
Loading history...
299
                    base[energy_category_id]['sub_averages'].append(row_store_periodically[1])
300
                    base[energy_category_id]['sub_maximums'].append(row_store_periodically[2])
301
302
        ################################################################################################################
303
        # Step 7: query reporting period energy input
304
        ################################################################################################################
305
        reporting = dict()
306
        if energy_category_set is not None and len(energy_category_set) > 0:
307
            for energy_category_id in energy_category_set:
308
                reporting[energy_category_id] = dict()
309
                reporting[energy_category_id]['timestamps'] = list()
310
                reporting[energy_category_id]['sub_averages'] = list()
311
                reporting[energy_category_id]['sub_maximums'] = list()
312
                reporting[energy_category_id]['average'] = None
313
                reporting[energy_category_id]['maximum'] = None
314
                reporting[energy_category_id]['factor'] = None
315
316
                cursor_energy.execute(" SELECT start_datetime_utc, actual_value "
317
                                      " FROM tbl_store_input_category_hourly "
318
                                      " WHERE store_id = %s "
319
                                      "     AND energy_category_id = %s "
320
                                      "     AND start_datetime_utc >= %s "
321
                                      "     AND start_datetime_utc < %s "
322
                                      " ORDER BY start_datetime_utc ",
323
                                      (store['id'],
324
                                       energy_category_id,
325
                                       reporting_start_datetime_utc,
326
                                       reporting_end_datetime_utc))
327
                rows_store_hourly = cursor_energy.fetchall()
328
329
                rows_store_periodically, \
330
                    reporting[energy_category_id]['average'], \
331
                    reporting[energy_category_id]['maximum'] = \
332
                    utilities.averaging_hourly_data_by_period(rows_store_hourly,
333
                                                              reporting_start_datetime_utc,
334
                                                              reporting_end_datetime_utc,
335
                                                              period_type)
336
                reporting[energy_category_id]['factor'] = \
337
                    (reporting[energy_category_id]['average'] / reporting[energy_category_id]['maximum']
338
                     if (reporting[energy_category_id]['average'] is not None and
339
                         reporting[energy_category_id]['maximum'] is not None and
340
                         reporting[energy_category_id]['maximum'] > Decimal(0.0))
341
                     else None)
342
343
                for row_store_periodically in rows_store_periodically:
344
                    current_datetime_local = row_store_periodically[0].replace(tzinfo=timezone.utc) + \
345
                                             timedelta(minutes=timezone_offset)
346
                    if period_type == 'hourly':
347
                        current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S')
348
                    elif period_type == 'daily':
349
                        current_datetime = current_datetime_local.strftime('%Y-%m-%d')
350
                    elif period_type == 'monthly':
351
                        current_datetime = current_datetime_local.strftime('%Y-%m')
352
                    elif period_type == 'yearly':
353
                        current_datetime = current_datetime_local.strftime('%Y')
354
355
                    reporting[energy_category_id]['timestamps'].append(current_datetime)
356
                    reporting[energy_category_id]['sub_averages'].append(row_store_periodically[1])
357
                    reporting[energy_category_id]['sub_maximums'].append(row_store_periodically[2])
358
359
        ################################################################################################################
360
        # Step 8: query tariff data
361
        ################################################################################################################
362
        parameters_data = dict()
363
        parameters_data['names'] = list()
364
        parameters_data['timestamps'] = list()
365
        parameters_data['values'] = list()
366
        if energy_category_set is not None and len(energy_category_set) > 0:
367
            for energy_category_id in energy_category_set:
368
                energy_category_tariff_dict = utilities.get_energy_category_tariffs(store['cost_center_id'],
369
                                                                                    energy_category_id,
370
                                                                                    reporting_start_datetime_utc,
371
                                                                                    reporting_end_datetime_utc)
372
                tariff_timestamp_list = list()
373
                tariff_value_list = list()
374
                for k, v in energy_category_tariff_dict.items():
375
                    # convert k from utc to local
376
                    k = k + timedelta(minutes=timezone_offset)
377
                    tariff_timestamp_list.append(k.isoformat()[0:19][0:19])
378
                    tariff_value_list.append(v)
379
380
                parameters_data['names'].append('TARIFF-' + energy_category_dict[energy_category_id]['name'])
381
                parameters_data['timestamps'].append(tariff_timestamp_list)
382
                parameters_data['values'].append(tariff_value_list)
383
384
        ################################################################################################################
385
        # Step 9: query associated sensors and points data
386
        ################################################################################################################
387
        for point in point_list:
388
            point_values = []
389
            point_timestamps = []
390
            if point['object_type'] == 'ANALOG_VALUE':
391
                query = (" SELECT utc_date_time, actual_value "
392
                         " FROM tbl_analog_value "
393
                         " WHERE point_id = %s "
394
                         "       AND utc_date_time BETWEEN %s AND %s "
395
                         " ORDER BY utc_date_time ")
396
                cursor_historical.execute(query, (point['id'],
397
                                                  reporting_start_datetime_utc,
398
                                                  reporting_end_datetime_utc))
399
                rows = cursor_historical.fetchall()
400
401
                if rows is not None and len(rows) > 0:
402
                    for row in rows:
403
                        current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \
404
                                                 timedelta(minutes=timezone_offset)
405
                        current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S')
406
                        point_timestamps.append(current_datetime)
407
                        point_values.append(row[1])
408
409
            elif point['object_type'] == 'ENERGY_VALUE':
410
                query = (" SELECT utc_date_time, actual_value "
411
                         " FROM tbl_energy_value "
412
                         " WHERE point_id = %s "
413
                         "       AND utc_date_time BETWEEN %s AND %s "
414
                         " ORDER BY utc_date_time ")
415
                cursor_historical.execute(query, (point['id'],
416
                                                  reporting_start_datetime_utc,
417
                                                  reporting_end_datetime_utc))
418
                rows = cursor_historical.fetchall()
419
420
                if rows is not None and len(rows) > 0:
421
                    for row in rows:
422
                        current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \
423
                                                 timedelta(minutes=timezone_offset)
424
                        current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S')
425
                        point_timestamps.append(current_datetime)
426
                        point_values.append(row[1])
427
            elif point['object_type'] == 'DIGITAL_VALUE':
428
                query = (" SELECT utc_date_time, actual_value "
429
                         " FROM tbl_digital_value "
430
                         " WHERE point_id = %s "
431
                         "       AND utc_date_time BETWEEN %s AND %s ")
432
                cursor_historical.execute(query, (point['id'],
433
                                                  reporting_start_datetime_utc,
434
                                                  reporting_end_datetime_utc))
435
                rows = cursor_historical.fetchall()
436
437
                if rows is not None and len(rows) > 0:
438
                    for row in rows:
439
                        current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \
440
                                                 timedelta(minutes=timezone_offset)
441
                        current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S')
442
                        point_timestamps.append(current_datetime)
443
                        point_values.append(row[1])
444
445
            parameters_data['names'].append(point['name'] + ' (' + point['units'] + ')')
446
            parameters_data['timestamps'].append(point_timestamps)
447
            parameters_data['values'].append(point_values)
448
449
        ################################################################################################################
450
        # Step 10: construct the report
451
        ################################################################################################################
452
        if cursor_system:
453
            cursor_system.close()
454
        if cnx_system:
455
            cnx_system.disconnect()
456
457
        if cursor_energy:
458
            cursor_energy.close()
459
        if cnx_energy:
460
            cnx_energy.disconnect()
461
462
        result = dict()
463
464
        result['store'] = dict()
465
        result['store']['name'] = store['name']
466
        result['store']['area'] = store['area']
467
468
        result['base_period'] = dict()
469
        result['base_period']['names'] = list()
470
        result['base_period']['units'] = list()
471
        result['base_period']['timestamps'] = list()
472
        result['base_period']['sub_averages'] = list()
473
        result['base_period']['sub_maximums'] = list()
474
        result['base_period']['averages'] = list()
475
        result['base_period']['maximums'] = list()
476
        result['base_period']['factors'] = list()
477
        if energy_category_set is not None and len(energy_category_set) > 0:
478
            for energy_category_id in energy_category_set:
479
                result['base_period']['names'].append(energy_category_dict[energy_category_id]['name'])
480
                result['base_period']['units'].append(energy_category_dict[energy_category_id]['unit_of_measure'])
481
                result['base_period']['timestamps'].append(base[energy_category_id]['timestamps'])
482
                result['base_period']['sub_averages'].append(base[energy_category_id]['sub_averages'])
483
                result['base_period']['sub_maximums'].append(base[energy_category_id]['sub_maximums'])
484
                result['base_period']['averages'].append(base[energy_category_id]['average'])
485
                result['base_period']['maximums'].append(base[energy_category_id]['maximum'])
486
                result['base_period']['factors'].append(base[energy_category_id]['factor'])
487
488
        result['reporting_period'] = dict()
489
        result['reporting_period']['names'] = list()
490
        result['reporting_period']['energy_category_ids'] = list()
491
        result['reporting_period']['units'] = list()
492
        result['reporting_period']['timestamps'] = list()
493
        result['reporting_period']['sub_averages'] = list()
494
        result['reporting_period']['sub_maximums'] = list()
495
        result['reporting_period']['averages'] = list()
496
        result['reporting_period']['averages_per_unit_area'] = list()
497
        result['reporting_period']['averages_increment_rate'] = list()
498
        result['reporting_period']['maximums'] = list()
499
        result['reporting_period']['maximums_per_unit_area'] = list()
500
        result['reporting_period']['maximums_increment_rate'] = list()
501
        result['reporting_period']['factors'] = list()
502
        result['reporting_period']['factors_increment_rate'] = list()
503
504
        if energy_category_set is not None and len(energy_category_set) > 0:
505
            for energy_category_id in energy_category_set:
506
                result['reporting_period']['names'].append(energy_category_dict[energy_category_id]['name'])
507
                result['reporting_period']['energy_category_ids'].append(energy_category_id)
508
                result['reporting_period']['units'].append(energy_category_dict[energy_category_id]['unit_of_measure'])
509
                result['reporting_period']['timestamps'].append(reporting[energy_category_id]['timestamps'])
510
                result['reporting_period']['sub_averages'].append(reporting[energy_category_id]['sub_averages'])
511
                result['reporting_period']['sub_maximums'].append(reporting[energy_category_id]['sub_maximums'])
512
                result['reporting_period']['averages'].append(reporting[energy_category_id]['average'])
513
                result['reporting_period']['averages_per_unit_area'].append(
514
                        reporting[energy_category_id]['average'] / store['area']
515
                        if reporting[energy_category_id]['average'] is not None and
516
                        store['area'] is not None and
517
                        store['area'] > Decimal(0.0)
518
                        else None)
519
                result['reporting_period']['averages_increment_rate'].append(
520
                    (reporting[energy_category_id]['average'] - base[energy_category_id]['average']) /
521
                    base[energy_category_id]['average'] if (base[energy_category_id]['average'] is not None and
522
                                                            base[energy_category_id]['average'] > Decimal(0.0))
523
                    else None)
524
                result['reporting_period']['maximums'].append(reporting[energy_category_id]['maximum'])
525
                result['reporting_period']['maximums_increment_rate'].append(
526
                    (reporting[energy_category_id]['maximum'] - base[energy_category_id]['maximum']) /
527
                    base[energy_category_id]['maximum'] if (base[energy_category_id]['maximum'] is not None and
528
                                                            base[energy_category_id]['maximum'] > Decimal(0.0))
529
                    else None)
530
                result['reporting_period']['maximums_per_unit_area'].append(
531
                    reporting[energy_category_id]['maximum'] / store['area']
532
                    if reporting[energy_category_id]['maximum'] is not None and
533
                    store['area'] is not None and
534
                    store['area'] > Decimal(0.0)
535
                    else None)
536
                result['reporting_period']['factors'].append(reporting[energy_category_id]['factor'])
537
                result['reporting_period']['factors_increment_rate'].append(
538
                    (reporting[energy_category_id]['factor'] - base[energy_category_id]['factor']) /
539
                    base[energy_category_id]['factor'] if (base[energy_category_id]['factor'] is not None and
540
                                                           base[energy_category_id]['factor'] > Decimal(0.0))
541
                    else None)
542
543
        result['parameters'] = {
544
            "names": parameters_data['names'],
545
            "timestamps": parameters_data['timestamps'],
546
            "values": parameters_data['values']
547
        }
548
549
        resp.body = json.dumps(result)
550