1 | import falcon |
||
2 | import simplejson as json |
||
3 | import mysql.connector |
||
4 | import config |
||
5 | from datetime import datetime, timedelta, timezone |
||
6 | from core import utilities |
||
7 | from decimal import Decimal |
||
8 | |||
9 | |||
10 | View Code Duplication | class Reporting: |
|
0 ignored issues
–
show
Duplication
introduced
by
![]() |
|||
11 | @staticmethod |
||
12 | def __init__(): |
||
13 | pass |
||
14 | |||
15 | @staticmethod |
||
16 | def on_options(req, resp): |
||
17 | resp.status = falcon.HTTP_200 |
||
18 | |||
19 | #################################################################################################################### |
||
20 | # PROCEDURES |
||
21 | # Step 1: valid parameters |
||
22 | # Step 2: query the store |
||
23 | # Step 3: query energy categories |
||
24 | # Step 4: query associated sensors |
||
25 | # Step 5: query associated points |
||
26 | # Step 6: query base period energy input |
||
27 | # Step 7: query reporting period energy input |
||
28 | # Step 8: query tariff data |
||
29 | # Step 9: query associated sensors and points data |
||
30 | # Step 10: construct the report |
||
31 | #################################################################################################################### |
||
32 | @staticmethod |
||
33 | def on_get(req, resp): |
||
34 | print(req.params) |
||
35 | store_id = req.params.get('storeid') |
||
36 | period_type = req.params.get('periodtype') |
||
37 | base_start_datetime_local = req.params.get('baseperiodstartdatetime') |
||
38 | base_end_datetime_local = req.params.get('baseperiodenddatetime') |
||
39 | reporting_start_datetime_local = req.params.get('reportingperiodstartdatetime') |
||
40 | reporting_end_datetime_local = req.params.get('reportingperiodenddatetime') |
||
41 | |||
42 | ################################################################################################################ |
||
43 | # Step 1: valid parameters |
||
44 | ################################################################################################################ |
||
45 | if store_id is None: |
||
46 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_STORE_ID') |
||
47 | else: |
||
48 | store_id = str.strip(store_id) |
||
49 | if not store_id.isdigit() or int(store_id) <= 0: |
||
50 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_STORE_ID') |
||
51 | |||
52 | if period_type is None: |
||
53 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_PERIOD_TYPE') |
||
54 | else: |
||
55 | period_type = str.strip(period_type) |
||
56 | if period_type not in ['hourly', 'daily', 'monthly', 'yearly']: |
||
57 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_PERIOD_TYPE') |
||
58 | |||
59 | timezone_offset = int(config.utc_offset[1:3]) * 60 + int(config.utc_offset[4:6]) |
||
60 | if config.utc_offset[0] == '-': |
||
61 | timezone_offset = -timezone_offset |
||
62 | |||
63 | base_start_datetime_utc = None |
||
64 | if base_start_datetime_local is not None and len(str.strip(base_start_datetime_local)) > 0: |
||
65 | base_start_datetime_local = str.strip(base_start_datetime_local) |
||
66 | try: |
||
67 | base_start_datetime_utc = datetime.strptime(base_start_datetime_local, |
||
68 | '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
||
69 | timedelta(minutes=timezone_offset) |
||
70 | except ValueError: |
||
71 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
||
72 | description="API.INVALID_BASE_PERIOD_START_DATETIME") |
||
73 | |||
74 | base_end_datetime_utc = None |
||
75 | if base_end_datetime_local is not None and len(str.strip(base_end_datetime_local)) > 0: |
||
76 | base_end_datetime_local = str.strip(base_end_datetime_local) |
||
77 | try: |
||
78 | base_end_datetime_utc = datetime.strptime(base_end_datetime_local, |
||
79 | '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
||
80 | timedelta(minutes=timezone_offset) |
||
81 | except ValueError: |
||
82 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
||
83 | description="API.INVALID_BASE_PERIOD_END_DATETIME") |
||
84 | |||
85 | if base_start_datetime_utc is not None and base_end_datetime_utc is not None and \ |
||
86 | base_start_datetime_utc >= base_end_datetime_utc: |
||
87 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
||
88 | description='API.INVALID_BASE_PERIOD_END_DATETIME') |
||
89 | |||
90 | if reporting_start_datetime_local is None: |
||
91 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
||
92 | description="API.INVALID_REPORTING_PERIOD_START_DATETIME") |
||
93 | else: |
||
94 | reporting_start_datetime_local = str.strip(reporting_start_datetime_local) |
||
95 | try: |
||
96 | reporting_start_datetime_utc = datetime.strptime(reporting_start_datetime_local, |
||
97 | '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
||
98 | timedelta(minutes=timezone_offset) |
||
99 | except ValueError: |
||
100 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
||
101 | description="API.INVALID_REPORTING_PERIOD_START_DATETIME") |
||
102 | |||
103 | if reporting_end_datetime_local is None: |
||
104 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
||
105 | description="API.INVALID_REPORTING_PERIOD_END_DATETIME") |
||
106 | else: |
||
107 | reporting_end_datetime_local = str.strip(reporting_end_datetime_local) |
||
108 | try: |
||
109 | reporting_end_datetime_utc = datetime.strptime(reporting_end_datetime_local, |
||
110 | '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
||
111 | timedelta(minutes=timezone_offset) |
||
112 | except ValueError: |
||
113 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
||
114 | description="API.INVALID_REPORTING_PERIOD_END_DATETIME") |
||
115 | |||
116 | if reporting_start_datetime_utc >= reporting_end_datetime_utc: |
||
117 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
||
118 | description='API.INVALID_REPORTING_PERIOD_END_DATETIME') |
||
119 | |||
120 | ################################################################################################################ |
||
121 | # Step 2: query the store |
||
122 | ################################################################################################################ |
||
123 | cnx_system = mysql.connector.connect(**config.myems_system_db) |
||
124 | cursor_system = cnx_system.cursor() |
||
125 | |||
126 | cnx_energy = mysql.connector.connect(**config.myems_energy_db) |
||
127 | cursor_energy = cnx_energy.cursor() |
||
128 | |||
129 | cnx_historical = mysql.connector.connect(**config.myems_historical_db) |
||
130 | cursor_historical = cnx_historical.cursor() |
||
131 | |||
132 | cursor_system.execute(" SELECT id, name, area, cost_center_id " |
||
133 | " FROM tbl_stores " |
||
134 | " WHERE id = %s ", (store_id,)) |
||
135 | row_store = cursor_system.fetchone() |
||
136 | if row_store is None: |
||
137 | if cursor_system: |
||
138 | cursor_system.close() |
||
139 | if cnx_system: |
||
140 | cnx_system.disconnect() |
||
141 | |||
142 | if cursor_energy: |
||
143 | cursor_energy.close() |
||
144 | if cnx_energy: |
||
145 | cnx_energy.disconnect() |
||
146 | |||
147 | if cnx_historical: |
||
148 | cnx_historical.close() |
||
149 | if cursor_historical: |
||
150 | cursor_historical.disconnect() |
||
151 | raise falcon.HTTPError(falcon.HTTP_404, title='API.NOT_FOUND', description='API.STORE_NOT_FOUND') |
||
152 | |||
153 | store = dict() |
||
154 | store['id'] = row_store[0] |
||
155 | store['name'] = row_store[1] |
||
156 | store['area'] = row_store[2] |
||
157 | store['cost_center_id'] = row_store[3] |
||
158 | |||
159 | ################################################################################################################ |
||
160 | # Step 3: query energy categories |
||
161 | ################################################################################################################ |
||
162 | energy_category_set = set() |
||
163 | # query energy categories in base period |
||
164 | cursor_energy.execute(" SELECT DISTINCT(energy_category_id) " |
||
165 | " FROM tbl_store_input_category_hourly " |
||
166 | " WHERE store_id = %s " |
||
167 | " AND start_datetime_utc >= %s " |
||
168 | " AND start_datetime_utc < %s ", |
||
169 | (store['id'], base_start_datetime_utc, base_end_datetime_utc)) |
||
170 | rows_energy_categories = cursor_energy.fetchall() |
||
171 | if rows_energy_categories is not None or len(rows_energy_categories) > 0: |
||
172 | for row_energy_category in rows_energy_categories: |
||
173 | energy_category_set.add(row_energy_category[0]) |
||
174 | |||
175 | # query energy categories in reporting period |
||
176 | cursor_energy.execute(" SELECT DISTINCT(energy_category_id) " |
||
177 | " FROM tbl_store_input_category_hourly " |
||
178 | " WHERE store_id = %s " |
||
179 | " AND start_datetime_utc >= %s " |
||
180 | " AND start_datetime_utc < %s ", |
||
181 | (store['id'], reporting_start_datetime_utc, reporting_end_datetime_utc)) |
||
182 | rows_energy_categories = cursor_energy.fetchall() |
||
183 | if rows_energy_categories is not None or len(rows_energy_categories) > 0: |
||
184 | for row_energy_category in rows_energy_categories: |
||
185 | energy_category_set.add(row_energy_category[0]) |
||
186 | |||
187 | # query all energy categories in base period and reporting period |
||
188 | cursor_system.execute(" SELECT id, name, unit_of_measure, kgce, kgco2e " |
||
189 | " FROM tbl_energy_categories " |
||
190 | " ORDER BY id ", ) |
||
191 | rows_energy_categories = cursor_system.fetchall() |
||
192 | if rows_energy_categories is None or len(rows_energy_categories) == 0: |
||
193 | if cursor_system: |
||
194 | cursor_system.close() |
||
195 | if cnx_system: |
||
196 | cnx_system.disconnect() |
||
197 | |||
198 | if cursor_energy: |
||
199 | cursor_energy.close() |
||
200 | if cnx_energy: |
||
201 | cnx_energy.disconnect() |
||
202 | |||
203 | if cnx_historical: |
||
204 | cnx_historical.close() |
||
205 | if cursor_historical: |
||
206 | cursor_historical.disconnect() |
||
207 | raise falcon.HTTPError(falcon.HTTP_404, |
||
208 | title='API.NOT_FOUND', |
||
209 | description='API.ENERGY_CATEGORY_NOT_FOUND') |
||
210 | energy_category_dict = dict() |
||
211 | for row_energy_category in rows_energy_categories: |
||
212 | if row_energy_category[0] in energy_category_set: |
||
213 | energy_category_dict[row_energy_category[0]] = {"name": row_energy_category[1], |
||
214 | "unit_of_measure": row_energy_category[2], |
||
215 | "kgce": row_energy_category[3], |
||
216 | "kgco2e": row_energy_category[4]} |
||
217 | |||
218 | ################################################################################################################ |
||
219 | # Step 4: query associated sensors |
||
220 | ################################################################################################################ |
||
221 | point_list = list() |
||
222 | cursor_system.execute(" SELECT p.id, p.name, p.units, p.object_type " |
||
223 | " FROM tbl_stores st, tbl_sensors se, tbl_stores_sensors ss, " |
||
224 | " tbl_points p, tbl_sensors_points sp " |
||
225 | " WHERE st.id = %s AND st.id = ss.store_id AND ss.sensor_id = se.id " |
||
226 | " AND se.id = sp.sensor_id AND sp.point_id = p.id " |
||
227 | " ORDER BY p.id ", (store['id'],)) |
||
228 | rows_points = cursor_system.fetchall() |
||
229 | if rows_points is not None and len(rows_points) > 0: |
||
230 | for row in rows_points: |
||
231 | point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]}) |
||
232 | |||
233 | ################################################################################################################ |
||
234 | # Step 5: query associated points |
||
235 | ################################################################################################################ |
||
236 | cursor_system.execute(" SELECT p.id, p.name, p.units, p.object_type " |
||
237 | " FROM tbl_stores s, tbl_stores_points sp, tbl_points p " |
||
238 | " WHERE s.id = %s AND s.id = sp.store_id AND sp.point_id = p.id " |
||
239 | " ORDER BY p.id ", (store['id'],)) |
||
240 | rows_points = cursor_system.fetchall() |
||
241 | if rows_points is not None and len(rows_points) > 0: |
||
242 | for row in rows_points: |
||
243 | point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]}) |
||
244 | |||
245 | ################################################################################################################ |
||
246 | # Step 6: query base period energy input |
||
247 | ################################################################################################################ |
||
248 | base = dict() |
||
249 | if energy_category_set is not None and len(energy_category_set) > 0: |
||
250 | for energy_category_id in energy_category_set: |
||
251 | base[energy_category_id] = dict() |
||
252 | base[energy_category_id]['timestamps'] = list() |
||
253 | base[energy_category_id]['sub_averages'] = list() |
||
254 | base[energy_category_id]['sub_maximums'] = list() |
||
255 | base[energy_category_id]['average'] = None |
||
256 | base[energy_category_id]['maximum'] = None |
||
257 | base[energy_category_id]['factor'] = None |
||
258 | |||
259 | cursor_energy.execute(" SELECT start_datetime_utc, actual_value " |
||
260 | " FROM tbl_store_input_category_hourly " |
||
261 | " WHERE store_id = %s " |
||
262 | " AND energy_category_id = %s " |
||
263 | " AND start_datetime_utc >= %s " |
||
264 | " AND start_datetime_utc < %s " |
||
265 | " ORDER BY start_datetime_utc ", |
||
266 | (store['id'], |
||
267 | energy_category_id, |
||
268 | base_start_datetime_utc, |
||
269 | base_end_datetime_utc)) |
||
270 | rows_store_hourly = cursor_energy.fetchall() |
||
271 | |||
272 | rows_store_periodically, \ |
||
273 | base[energy_category_id]['average'], \ |
||
274 | base[energy_category_id]['maximum'] = \ |
||
275 | utilities.averaging_hourly_data_by_period(rows_store_hourly, |
||
276 | base_start_datetime_utc, |
||
277 | base_end_datetime_utc, |
||
278 | period_type) |
||
279 | base[energy_category_id]['factor'] = \ |
||
280 | (base[energy_category_id]['average'] / base[energy_category_id]['maximum'] |
||
281 | if (base[energy_category_id]['average'] is not None and |
||
282 | base[energy_category_id]['maximum'] is not None and |
||
283 | base[energy_category_id]['maximum'] > Decimal(0.0)) |
||
284 | else None) |
||
285 | |||
286 | for row_store_periodically in rows_store_periodically: |
||
287 | current_datetime_local = row_store_periodically[0].replace(tzinfo=timezone.utc) + \ |
||
288 | timedelta(minutes=timezone_offset) |
||
289 | if period_type == 'hourly': |
||
290 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
||
291 | elif period_type == 'daily': |
||
292 | current_datetime = current_datetime_local.strftime('%Y-%m-%d') |
||
293 | elif period_type == 'monthly': |
||
294 | current_datetime = current_datetime_local.strftime('%Y-%m') |
||
295 | elif period_type == 'yearly': |
||
296 | current_datetime = current_datetime_local.strftime('%Y') |
||
297 | |||
298 | base[energy_category_id]['timestamps'].append(current_datetime) |
||
0 ignored issues
–
show
|
|||
299 | base[energy_category_id]['sub_averages'].append(row_store_periodically[1]) |
||
300 | base[energy_category_id]['sub_maximums'].append(row_store_periodically[2]) |
||
301 | |||
302 | ################################################################################################################ |
||
303 | # Step 7: query reporting period energy input |
||
304 | ################################################################################################################ |
||
305 | reporting = dict() |
||
306 | if energy_category_set is not None and len(energy_category_set) > 0: |
||
307 | for energy_category_id in energy_category_set: |
||
308 | reporting[energy_category_id] = dict() |
||
309 | reporting[energy_category_id]['timestamps'] = list() |
||
310 | reporting[energy_category_id]['sub_averages'] = list() |
||
311 | reporting[energy_category_id]['sub_maximums'] = list() |
||
312 | reporting[energy_category_id]['average'] = None |
||
313 | reporting[energy_category_id]['maximum'] = None |
||
314 | reporting[energy_category_id]['factor'] = None |
||
315 | |||
316 | cursor_energy.execute(" SELECT start_datetime_utc, actual_value " |
||
317 | " FROM tbl_store_input_category_hourly " |
||
318 | " WHERE store_id = %s " |
||
319 | " AND energy_category_id = %s " |
||
320 | " AND start_datetime_utc >= %s " |
||
321 | " AND start_datetime_utc < %s " |
||
322 | " ORDER BY start_datetime_utc ", |
||
323 | (store['id'], |
||
324 | energy_category_id, |
||
325 | reporting_start_datetime_utc, |
||
326 | reporting_end_datetime_utc)) |
||
327 | rows_store_hourly = cursor_energy.fetchall() |
||
328 | |||
329 | rows_store_periodically, \ |
||
330 | reporting[energy_category_id]['average'], \ |
||
331 | reporting[energy_category_id]['maximum'] = \ |
||
332 | utilities.averaging_hourly_data_by_period(rows_store_hourly, |
||
333 | reporting_start_datetime_utc, |
||
334 | reporting_end_datetime_utc, |
||
335 | period_type) |
||
336 | reporting[energy_category_id]['factor'] = \ |
||
337 | (reporting[energy_category_id]['average'] / reporting[energy_category_id]['maximum'] |
||
338 | if (reporting[energy_category_id]['average'] is not None and |
||
339 | reporting[energy_category_id]['maximum'] is not None and |
||
340 | reporting[energy_category_id]['maximum'] > Decimal(0.0)) |
||
341 | else None) |
||
342 | |||
343 | for row_store_periodically in rows_store_periodically: |
||
344 | current_datetime_local = row_store_periodically[0].replace(tzinfo=timezone.utc) + \ |
||
345 | timedelta(minutes=timezone_offset) |
||
346 | if period_type == 'hourly': |
||
347 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
||
348 | elif period_type == 'daily': |
||
349 | current_datetime = current_datetime_local.strftime('%Y-%m-%d') |
||
350 | elif period_type == 'monthly': |
||
351 | current_datetime = current_datetime_local.strftime('%Y-%m') |
||
352 | elif period_type == 'yearly': |
||
353 | current_datetime = current_datetime_local.strftime('%Y') |
||
354 | |||
355 | reporting[energy_category_id]['timestamps'].append(current_datetime) |
||
356 | reporting[energy_category_id]['sub_averages'].append(row_store_periodically[1]) |
||
357 | reporting[energy_category_id]['sub_maximums'].append(row_store_periodically[2]) |
||
358 | |||
359 | ################################################################################################################ |
||
360 | # Step 8: query tariff data |
||
361 | ################################################################################################################ |
||
362 | parameters_data = dict() |
||
363 | parameters_data['names'] = list() |
||
364 | parameters_data['timestamps'] = list() |
||
365 | parameters_data['values'] = list() |
||
366 | if energy_category_set is not None and len(energy_category_set) > 0: |
||
367 | for energy_category_id in energy_category_set: |
||
368 | energy_category_tariff_dict = utilities.get_energy_category_tariffs(store['cost_center_id'], |
||
369 | energy_category_id, |
||
370 | reporting_start_datetime_utc, |
||
371 | reporting_end_datetime_utc) |
||
372 | tariff_timestamp_list = list() |
||
373 | tariff_value_list = list() |
||
374 | for k, v in energy_category_tariff_dict.items(): |
||
375 | # convert k from utc to local |
||
376 | k = k + timedelta(minutes=timezone_offset) |
||
377 | tariff_timestamp_list.append(k.isoformat()[0:19][0:19]) |
||
378 | tariff_value_list.append(v) |
||
379 | |||
380 | parameters_data['names'].append('TARIFF-' + energy_category_dict[energy_category_id]['name']) |
||
381 | parameters_data['timestamps'].append(tariff_timestamp_list) |
||
382 | parameters_data['values'].append(tariff_value_list) |
||
383 | |||
384 | ################################################################################################################ |
||
385 | # Step 9: query associated sensors and points data |
||
386 | ################################################################################################################ |
||
387 | for point in point_list: |
||
388 | point_values = [] |
||
389 | point_timestamps = [] |
||
390 | if point['object_type'] == 'ANALOG_VALUE': |
||
391 | query = (" SELECT utc_date_time, actual_value " |
||
392 | " FROM tbl_analog_value " |
||
393 | " WHERE point_id = %s " |
||
394 | " AND utc_date_time BETWEEN %s AND %s " |
||
395 | " ORDER BY utc_date_time ") |
||
396 | cursor_historical.execute(query, (point['id'], |
||
397 | reporting_start_datetime_utc, |
||
398 | reporting_end_datetime_utc)) |
||
399 | rows = cursor_historical.fetchall() |
||
400 | |||
401 | if rows is not None and len(rows) > 0: |
||
402 | for row in rows: |
||
403 | current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
||
404 | timedelta(minutes=timezone_offset) |
||
405 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
||
406 | point_timestamps.append(current_datetime) |
||
407 | point_values.append(row[1]) |
||
408 | |||
409 | elif point['object_type'] == 'ENERGY_VALUE': |
||
410 | query = (" SELECT utc_date_time, actual_value " |
||
411 | " FROM tbl_energy_value " |
||
412 | " WHERE point_id = %s " |
||
413 | " AND utc_date_time BETWEEN %s AND %s " |
||
414 | " ORDER BY utc_date_time ") |
||
415 | cursor_historical.execute(query, (point['id'], |
||
416 | reporting_start_datetime_utc, |
||
417 | reporting_end_datetime_utc)) |
||
418 | rows = cursor_historical.fetchall() |
||
419 | |||
420 | if rows is not None and len(rows) > 0: |
||
421 | for row in rows: |
||
422 | current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
||
423 | timedelta(minutes=timezone_offset) |
||
424 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
||
425 | point_timestamps.append(current_datetime) |
||
426 | point_values.append(row[1]) |
||
427 | elif point['object_type'] == 'DIGITAL_VALUE': |
||
428 | query = (" SELECT utc_date_time, actual_value " |
||
429 | " FROM tbl_digital_value " |
||
430 | " WHERE point_id = %s " |
||
431 | " AND utc_date_time BETWEEN %s AND %s ") |
||
432 | cursor_historical.execute(query, (point['id'], |
||
433 | reporting_start_datetime_utc, |
||
434 | reporting_end_datetime_utc)) |
||
435 | rows = cursor_historical.fetchall() |
||
436 | |||
437 | if rows is not None and len(rows) > 0: |
||
438 | for row in rows: |
||
439 | current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
||
440 | timedelta(minutes=timezone_offset) |
||
441 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
||
442 | point_timestamps.append(current_datetime) |
||
443 | point_values.append(row[1]) |
||
444 | |||
445 | parameters_data['names'].append(point['name'] + ' (' + point['units'] + ')') |
||
446 | parameters_data['timestamps'].append(point_timestamps) |
||
447 | parameters_data['values'].append(point_values) |
||
448 | |||
449 | ################################################################################################################ |
||
450 | # Step 10: construct the report |
||
451 | ################################################################################################################ |
||
452 | if cursor_system: |
||
453 | cursor_system.close() |
||
454 | if cnx_system: |
||
455 | cnx_system.disconnect() |
||
456 | |||
457 | if cursor_energy: |
||
458 | cursor_energy.close() |
||
459 | if cnx_energy: |
||
460 | cnx_energy.disconnect() |
||
461 | |||
462 | result = dict() |
||
463 | |||
464 | result['store'] = dict() |
||
465 | result['store']['name'] = store['name'] |
||
466 | result['store']['area'] = store['area'] |
||
467 | |||
468 | result['base_period'] = dict() |
||
469 | result['base_period']['names'] = list() |
||
470 | result['base_period']['units'] = list() |
||
471 | result['base_period']['timestamps'] = list() |
||
472 | result['base_period']['sub_averages'] = list() |
||
473 | result['base_period']['sub_maximums'] = list() |
||
474 | result['base_period']['averages'] = list() |
||
475 | result['base_period']['maximums'] = list() |
||
476 | result['base_period']['factors'] = list() |
||
477 | if energy_category_set is not None and len(energy_category_set) > 0: |
||
478 | for energy_category_id in energy_category_set: |
||
479 | result['base_period']['names'].append(energy_category_dict[energy_category_id]['name']) |
||
480 | result['base_period']['units'].append(energy_category_dict[energy_category_id]['unit_of_measure']) |
||
481 | result['base_period']['timestamps'].append(base[energy_category_id]['timestamps']) |
||
482 | result['base_period']['sub_averages'].append(base[energy_category_id]['sub_averages']) |
||
483 | result['base_period']['sub_maximums'].append(base[energy_category_id]['sub_maximums']) |
||
484 | result['base_period']['averages'].append(base[energy_category_id]['average']) |
||
485 | result['base_period']['maximums'].append(base[energy_category_id]['maximum']) |
||
486 | result['base_period']['factors'].append(base[energy_category_id]['factor']) |
||
487 | |||
488 | result['reporting_period'] = dict() |
||
489 | result['reporting_period']['names'] = list() |
||
490 | result['reporting_period']['energy_category_ids'] = list() |
||
491 | result['reporting_period']['units'] = list() |
||
492 | result['reporting_period']['timestamps'] = list() |
||
493 | result['reporting_period']['sub_averages'] = list() |
||
494 | result['reporting_period']['sub_maximums'] = list() |
||
495 | result['reporting_period']['averages'] = list() |
||
496 | result['reporting_period']['averages_per_unit_area'] = list() |
||
497 | result['reporting_period']['averages_increment_rate'] = list() |
||
498 | result['reporting_period']['maximums'] = list() |
||
499 | result['reporting_period']['maximums_per_unit_area'] = list() |
||
500 | result['reporting_period']['maximums_increment_rate'] = list() |
||
501 | result['reporting_period']['factors'] = list() |
||
502 | result['reporting_period']['factors_increment_rate'] = list() |
||
503 | |||
504 | if energy_category_set is not None and len(energy_category_set) > 0: |
||
505 | for energy_category_id in energy_category_set: |
||
506 | result['reporting_period']['names'].append(energy_category_dict[energy_category_id]['name']) |
||
507 | result['reporting_period']['energy_category_ids'].append(energy_category_id) |
||
508 | result['reporting_period']['units'].append(energy_category_dict[energy_category_id]['unit_of_measure']) |
||
509 | result['reporting_period']['timestamps'].append(reporting[energy_category_id]['timestamps']) |
||
510 | result['reporting_period']['sub_averages'].append(reporting[energy_category_id]['sub_averages']) |
||
511 | result['reporting_period']['sub_maximums'].append(reporting[energy_category_id]['sub_maximums']) |
||
512 | result['reporting_period']['averages'].append(reporting[energy_category_id]['average']) |
||
513 | result['reporting_period']['averages_per_unit_area'].append( |
||
514 | reporting[energy_category_id]['average'] / store['area'] |
||
515 | if reporting[energy_category_id]['average'] is not None and |
||
516 | store['area'] is not None and |
||
517 | store['area'] > Decimal(0.0) |
||
518 | else None) |
||
519 | result['reporting_period']['averages_increment_rate'].append( |
||
520 | (reporting[energy_category_id]['average'] - base[energy_category_id]['average']) / |
||
521 | base[energy_category_id]['average'] if (base[energy_category_id]['average'] is not None and |
||
522 | base[energy_category_id]['average'] > Decimal(0.0)) |
||
523 | else None) |
||
524 | result['reporting_period']['maximums'].append(reporting[energy_category_id]['maximum']) |
||
525 | result['reporting_period']['maximums_increment_rate'].append( |
||
526 | (reporting[energy_category_id]['maximum'] - base[energy_category_id]['maximum']) / |
||
527 | base[energy_category_id]['maximum'] if (base[energy_category_id]['maximum'] is not None and |
||
528 | base[energy_category_id]['maximum'] > Decimal(0.0)) |
||
529 | else None) |
||
530 | result['reporting_period']['maximums_per_unit_area'].append( |
||
531 | reporting[energy_category_id]['maximum'] / store['area'] |
||
532 | if reporting[energy_category_id]['maximum'] is not None and |
||
533 | store['area'] is not None and |
||
534 | store['area'] > Decimal(0.0) |
||
535 | else None) |
||
536 | result['reporting_period']['factors'].append(reporting[energy_category_id]['factor']) |
||
537 | result['reporting_period']['factors_increment_rate'].append( |
||
538 | (reporting[energy_category_id]['factor'] - base[energy_category_id]['factor']) / |
||
539 | base[energy_category_id]['factor'] if (base[energy_category_id]['factor'] is not None and |
||
540 | base[energy_category_id]['factor'] > Decimal(0.0)) |
||
541 | else None) |
||
542 | |||
543 | result['parameters'] = { |
||
544 | "names": parameters_data['names'], |
||
545 | "timestamps": parameters_data['timestamps'], |
||
546 | "values": parameters_data['values'] |
||
547 | } |
||
548 | |||
549 | resp.body = json.dumps(result) |
||
550 |