1
|
|
|
import falcon |
2
|
|
|
import simplejson as json |
3
|
|
|
import mysql.connector |
4
|
|
|
import config |
5
|
|
|
from datetime import datetime, timedelta, timezone |
6
|
|
|
from core import utilities |
7
|
|
|
from decimal import Decimal |
8
|
|
|
|
9
|
|
|
|
10
|
|
View Code Duplication |
class Reporting: |
|
|
|
|
11
|
|
|
@staticmethod |
12
|
|
|
def __init__(): |
13
|
|
|
pass |
14
|
|
|
|
15
|
|
|
@staticmethod |
16
|
|
|
def on_options(req, resp): |
17
|
|
|
resp.status = falcon.HTTP_200 |
18
|
|
|
|
19
|
|
|
#################################################################################################################### |
20
|
|
|
# PROCEDURES |
21
|
|
|
# Step 1: valid parameters |
22
|
|
|
# Step 2: query the store |
23
|
|
|
# Step 3: query energy categories |
24
|
|
|
# Step 4: query associated sensors |
25
|
|
|
# Step 5: query associated points |
26
|
|
|
# Step 6: query base period energy input |
27
|
|
|
# Step 7: query reporting period energy input |
28
|
|
|
# Step 8: query tariff data |
29
|
|
|
# Step 9: query associated sensors and points data |
30
|
|
|
# Step 10: construct the report |
31
|
|
|
#################################################################################################################### |
32
|
|
|
@staticmethod |
33
|
|
|
def on_get(req, resp): |
34
|
|
|
print(req.params) |
35
|
|
|
store_id = req.params.get('storeid') |
36
|
|
|
period_type = req.params.get('periodtype') |
37
|
|
|
base_start_datetime_local = req.params.get('baseperiodstartdatetime') |
38
|
|
|
base_end_datetime_local = req.params.get('baseperiodenddatetime') |
39
|
|
|
reporting_start_datetime_local = req.params.get('reportingperiodstartdatetime') |
40
|
|
|
reporting_end_datetime_local = req.params.get('reportingperiodenddatetime') |
41
|
|
|
|
42
|
|
|
################################################################################################################ |
43
|
|
|
# Step 1: valid parameters |
44
|
|
|
################################################################################################################ |
45
|
|
|
if store_id is None: |
46
|
|
|
raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_STORE_ID') |
47
|
|
|
else: |
48
|
|
|
store_id = str.strip(store_id) |
49
|
|
|
if not store_id.isdigit() or int(store_id) <= 0: |
50
|
|
|
raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_STORE_ID') |
51
|
|
|
|
52
|
|
|
if period_type is None: |
53
|
|
|
raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_PERIOD_TYPE') |
54
|
|
|
else: |
55
|
|
|
period_type = str.strip(period_type) |
56
|
|
|
if period_type not in ['hourly', 'daily', 'monthly', 'yearly']: |
57
|
|
|
raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_PERIOD_TYPE') |
58
|
|
|
|
59
|
|
|
timezone_offset = int(config.utc_offset[1:3]) * 60 + int(config.utc_offset[4:6]) |
60
|
|
|
if config.utc_offset[0] == '-': |
61
|
|
|
timezone_offset = -timezone_offset |
62
|
|
|
|
63
|
|
|
base_start_datetime_utc = None |
64
|
|
|
if base_start_datetime_local is not None and len(str.strip(base_start_datetime_local)) > 0: |
65
|
|
|
base_start_datetime_local = str.strip(base_start_datetime_local) |
66
|
|
|
try: |
67
|
|
|
base_start_datetime_utc = datetime.strptime(base_start_datetime_local, |
68
|
|
|
'%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
69
|
|
|
timedelta(minutes=timezone_offset) |
70
|
|
|
except ValueError: |
71
|
|
|
raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
72
|
|
|
description="API.INVALID_BASE_PERIOD_START_DATETIME") |
73
|
|
|
|
74
|
|
|
base_end_datetime_utc = None |
75
|
|
|
if base_end_datetime_local is not None and len(str.strip(base_end_datetime_local)) > 0: |
76
|
|
|
base_end_datetime_local = str.strip(base_end_datetime_local) |
77
|
|
|
try: |
78
|
|
|
base_end_datetime_utc = datetime.strptime(base_end_datetime_local, |
79
|
|
|
'%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
80
|
|
|
timedelta(minutes=timezone_offset) |
81
|
|
|
except ValueError: |
82
|
|
|
raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
83
|
|
|
description="API.INVALID_BASE_PERIOD_END_DATETIME") |
84
|
|
|
|
85
|
|
|
if base_start_datetime_utc is not None and base_end_datetime_utc is not None and \ |
86
|
|
|
base_start_datetime_utc >= base_end_datetime_utc: |
87
|
|
|
raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
88
|
|
|
description='API.INVALID_BASE_PERIOD_END_DATETIME') |
89
|
|
|
|
90
|
|
|
if reporting_start_datetime_local is None: |
91
|
|
|
raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
92
|
|
|
description="API.INVALID_REPORTING_PERIOD_START_DATETIME") |
93
|
|
|
else: |
94
|
|
|
reporting_start_datetime_local = str.strip(reporting_start_datetime_local) |
95
|
|
|
try: |
96
|
|
|
reporting_start_datetime_utc = datetime.strptime(reporting_start_datetime_local, |
97
|
|
|
'%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
98
|
|
|
timedelta(minutes=timezone_offset) |
99
|
|
|
except ValueError: |
100
|
|
|
raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
101
|
|
|
description="API.INVALID_REPORTING_PERIOD_START_DATETIME") |
102
|
|
|
|
103
|
|
|
if reporting_end_datetime_local is None: |
104
|
|
|
raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
105
|
|
|
description="API.INVALID_REPORTING_PERIOD_END_DATETIME") |
106
|
|
|
else: |
107
|
|
|
reporting_end_datetime_local = str.strip(reporting_end_datetime_local) |
108
|
|
|
try: |
109
|
|
|
reporting_end_datetime_utc = datetime.strptime(reporting_end_datetime_local, |
110
|
|
|
'%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
111
|
|
|
timedelta(minutes=timezone_offset) |
112
|
|
|
except ValueError: |
113
|
|
|
raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
114
|
|
|
description="API.INVALID_REPORTING_PERIOD_END_DATETIME") |
115
|
|
|
|
116
|
|
|
if reporting_start_datetime_utc >= reporting_end_datetime_utc: |
117
|
|
|
raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
118
|
|
|
description='API.INVALID_REPORTING_PERIOD_END_DATETIME') |
119
|
|
|
|
120
|
|
|
################################################################################################################ |
121
|
|
|
# Step 2: query the store |
122
|
|
|
################################################################################################################ |
123
|
|
|
cnx_system = mysql.connector.connect(**config.myems_system_db) |
124
|
|
|
cursor_system = cnx_system.cursor() |
125
|
|
|
|
126
|
|
|
cnx_energy = mysql.connector.connect(**config.myems_energy_db) |
127
|
|
|
cursor_energy = cnx_energy.cursor() |
128
|
|
|
|
129
|
|
|
cnx_historical = mysql.connector.connect(**config.myems_historical_db) |
130
|
|
|
cursor_historical = cnx_historical.cursor() |
131
|
|
|
|
132
|
|
|
cursor_system.execute(" SELECT id, name, area, cost_center_id " |
133
|
|
|
" FROM tbl_stores " |
134
|
|
|
" WHERE id = %s ", (store_id,)) |
135
|
|
|
row_store = cursor_system.fetchone() |
136
|
|
|
if row_store is None: |
137
|
|
|
if cursor_system: |
138
|
|
|
cursor_system.close() |
139
|
|
|
if cnx_system: |
140
|
|
|
cnx_system.disconnect() |
141
|
|
|
|
142
|
|
|
if cursor_energy: |
143
|
|
|
cursor_energy.close() |
144
|
|
|
if cnx_energy: |
145
|
|
|
cnx_energy.disconnect() |
146
|
|
|
|
147
|
|
|
if cnx_historical: |
148
|
|
|
cnx_historical.close() |
149
|
|
|
if cursor_historical: |
150
|
|
|
cursor_historical.disconnect() |
151
|
|
|
raise falcon.HTTPError(falcon.HTTP_404, title='API.NOT_FOUND', description='API.STORE_NOT_FOUND') |
152
|
|
|
|
153
|
|
|
store = dict() |
154
|
|
|
store['id'] = row_store[0] |
155
|
|
|
store['name'] = row_store[1] |
156
|
|
|
store['area'] = row_store[2] |
157
|
|
|
store['cost_center_id'] = row_store[3] |
158
|
|
|
|
159
|
|
|
################################################################################################################ |
160
|
|
|
# Step 3: query energy categories |
161
|
|
|
################################################################################################################ |
162
|
|
|
energy_category_set = set() |
163
|
|
|
# query energy categories in base period |
164
|
|
|
cursor_energy.execute(" SELECT DISTINCT(energy_category_id) " |
165
|
|
|
" FROM tbl_store_input_category_hourly " |
166
|
|
|
" WHERE store_id = %s " |
167
|
|
|
" AND start_datetime_utc >= %s " |
168
|
|
|
" AND start_datetime_utc < %s ", |
169
|
|
|
(store['id'], base_start_datetime_utc, base_end_datetime_utc)) |
170
|
|
|
rows_energy_categories = cursor_energy.fetchall() |
171
|
|
|
if rows_energy_categories is not None or len(rows_energy_categories) > 0: |
172
|
|
|
for row_energy_category in rows_energy_categories: |
173
|
|
|
energy_category_set.add(row_energy_category[0]) |
174
|
|
|
|
175
|
|
|
# query energy categories in reporting period |
176
|
|
|
cursor_energy.execute(" SELECT DISTINCT(energy_category_id) " |
177
|
|
|
" FROM tbl_store_input_category_hourly " |
178
|
|
|
" WHERE store_id = %s " |
179
|
|
|
" AND start_datetime_utc >= %s " |
180
|
|
|
" AND start_datetime_utc < %s ", |
181
|
|
|
(store['id'], reporting_start_datetime_utc, reporting_end_datetime_utc)) |
182
|
|
|
rows_energy_categories = cursor_energy.fetchall() |
183
|
|
|
if rows_energy_categories is not None or len(rows_energy_categories) > 0: |
184
|
|
|
for row_energy_category in rows_energy_categories: |
185
|
|
|
energy_category_set.add(row_energy_category[0]) |
186
|
|
|
|
187
|
|
|
# query all energy categories in base period and reporting period |
188
|
|
|
cursor_system.execute(" SELECT id, name, unit_of_measure, kgce, kgco2e " |
189
|
|
|
" FROM tbl_energy_categories " |
190
|
|
|
" ORDER BY id ", ) |
191
|
|
|
rows_energy_categories = cursor_system.fetchall() |
192
|
|
|
if rows_energy_categories is None or len(rows_energy_categories) == 0: |
193
|
|
|
if cursor_system: |
194
|
|
|
cursor_system.close() |
195
|
|
|
if cnx_system: |
196
|
|
|
cnx_system.disconnect() |
197
|
|
|
|
198
|
|
|
if cursor_energy: |
199
|
|
|
cursor_energy.close() |
200
|
|
|
if cnx_energy: |
201
|
|
|
cnx_energy.disconnect() |
202
|
|
|
|
203
|
|
|
if cnx_historical: |
204
|
|
|
cnx_historical.close() |
205
|
|
|
if cursor_historical: |
206
|
|
|
cursor_historical.disconnect() |
207
|
|
|
raise falcon.HTTPError(falcon.HTTP_404, |
208
|
|
|
title='API.NOT_FOUND', |
209
|
|
|
description='API.ENERGY_CATEGORY_NOT_FOUND') |
210
|
|
|
energy_category_dict = dict() |
211
|
|
|
for row_energy_category in rows_energy_categories: |
212
|
|
|
if row_energy_category[0] in energy_category_set: |
213
|
|
|
energy_category_dict[row_energy_category[0]] = {"name": row_energy_category[1], |
214
|
|
|
"unit_of_measure": row_energy_category[2], |
215
|
|
|
"kgce": row_energy_category[3], |
216
|
|
|
"kgco2e": row_energy_category[4]} |
217
|
|
|
|
218
|
|
|
################################################################################################################ |
219
|
|
|
# Step 4: query associated sensors |
220
|
|
|
################################################################################################################ |
221
|
|
|
point_list = list() |
222
|
|
|
cursor_system.execute(" SELECT p.id, p.name, p.units, p.object_type " |
223
|
|
|
" FROM tbl_stores st, tbl_sensors se, tbl_stores_sensors ss, " |
224
|
|
|
" tbl_points p, tbl_sensors_points sp " |
225
|
|
|
" WHERE st.id = %s AND st.id = ss.store_id AND ss.sensor_id = se.id " |
226
|
|
|
" AND se.id = sp.sensor_id AND sp.point_id = p.id " |
227
|
|
|
" ORDER BY p.id ", (store['id'],)) |
228
|
|
|
rows_points = cursor_system.fetchall() |
229
|
|
|
if rows_points is not None and len(rows_points) > 0: |
230
|
|
|
for row in rows_points: |
231
|
|
|
point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]}) |
232
|
|
|
|
233
|
|
|
################################################################################################################ |
234
|
|
|
# Step 5: query associated points |
235
|
|
|
################################################################################################################ |
236
|
|
|
cursor_system.execute(" SELECT p.id, p.name, p.units, p.object_type " |
237
|
|
|
" FROM tbl_stores s, tbl_stores_points sp, tbl_points p " |
238
|
|
|
" WHERE s.id = %s AND s.id = sp.store_id AND sp.point_id = p.id " |
239
|
|
|
" ORDER BY p.id ", (store['id'],)) |
240
|
|
|
rows_points = cursor_system.fetchall() |
241
|
|
|
if rows_points is not None and len(rows_points) > 0: |
242
|
|
|
for row in rows_points: |
243
|
|
|
point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]}) |
244
|
|
|
|
245
|
|
|
################################################################################################################ |
246
|
|
|
# Step 6: query base period energy input |
247
|
|
|
################################################################################################################ |
248
|
|
|
base = dict() |
249
|
|
|
if energy_category_set is not None and len(energy_category_set) > 0: |
250
|
|
|
for energy_category_id in energy_category_set: |
251
|
|
|
base[energy_category_id] = dict() |
252
|
|
|
base[energy_category_id]['timestamps'] = list() |
253
|
|
|
base[energy_category_id]['sub_averages'] = list() |
254
|
|
|
base[energy_category_id]['sub_maximums'] = list() |
255
|
|
|
base[energy_category_id]['average'] = None |
256
|
|
|
base[energy_category_id]['maximum'] = None |
257
|
|
|
base[energy_category_id]['factor'] = None |
258
|
|
|
|
259
|
|
|
cursor_energy.execute(" SELECT start_datetime_utc, actual_value " |
260
|
|
|
" FROM tbl_store_input_category_hourly " |
261
|
|
|
" WHERE store_id = %s " |
262
|
|
|
" AND energy_category_id = %s " |
263
|
|
|
" AND start_datetime_utc >= %s " |
264
|
|
|
" AND start_datetime_utc < %s " |
265
|
|
|
" ORDER BY start_datetime_utc ", |
266
|
|
|
(store['id'], |
267
|
|
|
energy_category_id, |
268
|
|
|
base_start_datetime_utc, |
269
|
|
|
base_end_datetime_utc)) |
270
|
|
|
rows_store_hourly = cursor_energy.fetchall() |
271
|
|
|
|
272
|
|
|
rows_store_periodically, \ |
273
|
|
|
base[energy_category_id]['average'], \ |
274
|
|
|
base[energy_category_id]['maximum'] = \ |
275
|
|
|
utilities.averaging_hourly_data_by_period(rows_store_hourly, |
276
|
|
|
base_start_datetime_utc, |
277
|
|
|
base_end_datetime_utc, |
278
|
|
|
period_type) |
279
|
|
|
base[energy_category_id]['factor'] = \ |
280
|
|
|
(base[energy_category_id]['average'] / base[energy_category_id]['maximum'] |
281
|
|
|
if (base[energy_category_id]['average'] is not None and |
282
|
|
|
base[energy_category_id]['maximum'] is not None and |
283
|
|
|
base[energy_category_id]['maximum'] > Decimal(0.0)) |
284
|
|
|
else None) |
285
|
|
|
|
286
|
|
|
for row_store_periodically in rows_store_periodically: |
287
|
|
|
current_datetime_local = row_store_periodically[0].replace(tzinfo=timezone.utc) + \ |
288
|
|
|
timedelta(minutes=timezone_offset) |
289
|
|
|
if period_type == 'hourly': |
290
|
|
|
current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
291
|
|
|
elif period_type == 'daily': |
292
|
|
|
current_datetime = current_datetime_local.strftime('%Y-%m-%d') |
293
|
|
|
elif period_type == 'monthly': |
294
|
|
|
current_datetime = current_datetime_local.strftime('%Y-%m') |
295
|
|
|
elif period_type == 'yearly': |
296
|
|
|
current_datetime = current_datetime_local.strftime('%Y') |
297
|
|
|
|
298
|
|
|
base[energy_category_id]['timestamps'].append(current_datetime) |
|
|
|
|
299
|
|
|
base[energy_category_id]['sub_averages'].append(row_store_periodically[1]) |
300
|
|
|
base[energy_category_id]['sub_maximums'].append(row_store_periodically[2]) |
301
|
|
|
|
302
|
|
|
################################################################################################################ |
303
|
|
|
# Step 7: query reporting period energy input |
304
|
|
|
################################################################################################################ |
305
|
|
|
reporting = dict() |
306
|
|
|
if energy_category_set is not None and len(energy_category_set) > 0: |
307
|
|
|
for energy_category_id in energy_category_set: |
308
|
|
|
reporting[energy_category_id] = dict() |
309
|
|
|
reporting[energy_category_id]['timestamps'] = list() |
310
|
|
|
reporting[energy_category_id]['sub_averages'] = list() |
311
|
|
|
reporting[energy_category_id]['sub_maximums'] = list() |
312
|
|
|
reporting[energy_category_id]['average'] = None |
313
|
|
|
reporting[energy_category_id]['maximum'] = None |
314
|
|
|
reporting[energy_category_id]['factor'] = None |
315
|
|
|
|
316
|
|
|
cursor_energy.execute(" SELECT start_datetime_utc, actual_value " |
317
|
|
|
" FROM tbl_store_input_category_hourly " |
318
|
|
|
" WHERE store_id = %s " |
319
|
|
|
" AND energy_category_id = %s " |
320
|
|
|
" AND start_datetime_utc >= %s " |
321
|
|
|
" AND start_datetime_utc < %s " |
322
|
|
|
" ORDER BY start_datetime_utc ", |
323
|
|
|
(store['id'], |
324
|
|
|
energy_category_id, |
325
|
|
|
reporting_start_datetime_utc, |
326
|
|
|
reporting_end_datetime_utc)) |
327
|
|
|
rows_store_hourly = cursor_energy.fetchall() |
328
|
|
|
|
329
|
|
|
rows_store_periodically, \ |
330
|
|
|
reporting[energy_category_id]['average'], \ |
331
|
|
|
reporting[energy_category_id]['maximum'] = \ |
332
|
|
|
utilities.averaging_hourly_data_by_period(rows_store_hourly, |
333
|
|
|
reporting_start_datetime_utc, |
334
|
|
|
reporting_end_datetime_utc, |
335
|
|
|
period_type) |
336
|
|
|
reporting[energy_category_id]['factor'] = \ |
337
|
|
|
(reporting[energy_category_id]['average'] / reporting[energy_category_id]['maximum'] |
338
|
|
|
if (reporting[energy_category_id]['average'] is not None and |
339
|
|
|
reporting[energy_category_id]['maximum'] is not None and |
340
|
|
|
reporting[energy_category_id]['maximum'] > Decimal(0.0)) |
341
|
|
|
else None) |
342
|
|
|
|
343
|
|
|
for row_store_periodically in rows_store_periodically: |
344
|
|
|
current_datetime_local = row_store_periodically[0].replace(tzinfo=timezone.utc) + \ |
345
|
|
|
timedelta(minutes=timezone_offset) |
346
|
|
|
if period_type == 'hourly': |
347
|
|
|
current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
348
|
|
|
elif period_type == 'daily': |
349
|
|
|
current_datetime = current_datetime_local.strftime('%Y-%m-%d') |
350
|
|
|
elif period_type == 'monthly': |
351
|
|
|
current_datetime = current_datetime_local.strftime('%Y-%m') |
352
|
|
|
elif period_type == 'yearly': |
353
|
|
|
current_datetime = current_datetime_local.strftime('%Y') |
354
|
|
|
|
355
|
|
|
reporting[energy_category_id]['timestamps'].append(current_datetime) |
356
|
|
|
reporting[energy_category_id]['sub_averages'].append(row_store_periodically[1]) |
357
|
|
|
reporting[energy_category_id]['sub_maximums'].append(row_store_periodically[2]) |
358
|
|
|
|
359
|
|
|
################################################################################################################ |
360
|
|
|
# Step 8: query tariff data |
361
|
|
|
################################################################################################################ |
362
|
|
|
parameters_data = dict() |
363
|
|
|
parameters_data['names'] = list() |
364
|
|
|
parameters_data['timestamps'] = list() |
365
|
|
|
parameters_data['values'] = list() |
366
|
|
|
if energy_category_set is not None and len(energy_category_set) > 0: |
367
|
|
|
for energy_category_id in energy_category_set: |
368
|
|
|
energy_category_tariff_dict = utilities.get_energy_category_tariffs(store['cost_center_id'], |
369
|
|
|
energy_category_id, |
370
|
|
|
reporting_start_datetime_utc, |
371
|
|
|
reporting_end_datetime_utc) |
372
|
|
|
tariff_timestamp_list = list() |
373
|
|
|
tariff_value_list = list() |
374
|
|
|
for k, v in energy_category_tariff_dict.items(): |
375
|
|
|
# convert k from utc to local |
376
|
|
|
k = k + timedelta(minutes=timezone_offset) |
377
|
|
|
tariff_timestamp_list.append(k.isoformat()[0:19][0:19]) |
378
|
|
|
tariff_value_list.append(v) |
379
|
|
|
|
380
|
|
|
parameters_data['names'].append('TARIFF-' + energy_category_dict[energy_category_id]['name']) |
381
|
|
|
parameters_data['timestamps'].append(tariff_timestamp_list) |
382
|
|
|
parameters_data['values'].append(tariff_value_list) |
383
|
|
|
|
384
|
|
|
################################################################################################################ |
385
|
|
|
# Step 9: query associated sensors and points data |
386
|
|
|
################################################################################################################ |
387
|
|
|
for point in point_list: |
388
|
|
|
point_values = [] |
389
|
|
|
point_timestamps = [] |
390
|
|
|
if point['object_type'] == 'ANALOG_VALUE': |
391
|
|
|
query = (" SELECT utc_date_time, actual_value " |
392
|
|
|
" FROM tbl_analog_value " |
393
|
|
|
" WHERE point_id = %s " |
394
|
|
|
" AND utc_date_time BETWEEN %s AND %s " |
395
|
|
|
" ORDER BY utc_date_time ") |
396
|
|
|
cursor_historical.execute(query, (point['id'], |
397
|
|
|
reporting_start_datetime_utc, |
398
|
|
|
reporting_end_datetime_utc)) |
399
|
|
|
rows = cursor_historical.fetchall() |
400
|
|
|
|
401
|
|
|
if rows is not None and len(rows) > 0: |
402
|
|
|
for row in rows: |
403
|
|
|
current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
404
|
|
|
timedelta(minutes=timezone_offset) |
405
|
|
|
current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
406
|
|
|
point_timestamps.append(current_datetime) |
407
|
|
|
point_values.append(row[1]) |
408
|
|
|
|
409
|
|
|
elif point['object_type'] == 'ENERGY_VALUE': |
410
|
|
|
query = (" SELECT utc_date_time, actual_value " |
411
|
|
|
" FROM tbl_energy_value " |
412
|
|
|
" WHERE point_id = %s " |
413
|
|
|
" AND utc_date_time BETWEEN %s AND %s " |
414
|
|
|
" ORDER BY utc_date_time ") |
415
|
|
|
cursor_historical.execute(query, (point['id'], |
416
|
|
|
reporting_start_datetime_utc, |
417
|
|
|
reporting_end_datetime_utc)) |
418
|
|
|
rows = cursor_historical.fetchall() |
419
|
|
|
|
420
|
|
|
if rows is not None and len(rows) > 0: |
421
|
|
|
for row in rows: |
422
|
|
|
current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
423
|
|
|
timedelta(minutes=timezone_offset) |
424
|
|
|
current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
425
|
|
|
point_timestamps.append(current_datetime) |
426
|
|
|
point_values.append(row[1]) |
427
|
|
|
elif point['object_type'] == 'DIGITAL_VALUE': |
428
|
|
|
query = (" SELECT utc_date_time, actual_value " |
429
|
|
|
" FROM tbl_digital_value " |
430
|
|
|
" WHERE point_id = %s " |
431
|
|
|
" AND utc_date_time BETWEEN %s AND %s ") |
432
|
|
|
cursor_historical.execute(query, (point['id'], |
433
|
|
|
reporting_start_datetime_utc, |
434
|
|
|
reporting_end_datetime_utc)) |
435
|
|
|
rows = cursor_historical.fetchall() |
436
|
|
|
|
437
|
|
|
if rows is not None and len(rows) > 0: |
438
|
|
|
for row in rows: |
439
|
|
|
current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
440
|
|
|
timedelta(minutes=timezone_offset) |
441
|
|
|
current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
442
|
|
|
point_timestamps.append(current_datetime) |
443
|
|
|
point_values.append(row[1]) |
444
|
|
|
|
445
|
|
|
parameters_data['names'].append(point['name'] + ' (' + point['units'] + ')') |
446
|
|
|
parameters_data['timestamps'].append(point_timestamps) |
447
|
|
|
parameters_data['values'].append(point_values) |
448
|
|
|
|
449
|
|
|
################################################################################################################ |
450
|
|
|
# Step 10: construct the report |
451
|
|
|
################################################################################################################ |
452
|
|
|
if cursor_system: |
453
|
|
|
cursor_system.close() |
454
|
|
|
if cnx_system: |
455
|
|
|
cnx_system.disconnect() |
456
|
|
|
|
457
|
|
|
if cursor_energy: |
458
|
|
|
cursor_energy.close() |
459
|
|
|
if cnx_energy: |
460
|
|
|
cnx_energy.disconnect() |
461
|
|
|
|
462
|
|
|
result = dict() |
463
|
|
|
|
464
|
|
|
result['store'] = dict() |
465
|
|
|
result['store']['name'] = store['name'] |
466
|
|
|
result['store']['area'] = store['area'] |
467
|
|
|
|
468
|
|
|
result['base_period'] = dict() |
469
|
|
|
result['base_period']['names'] = list() |
470
|
|
|
result['base_period']['units'] = list() |
471
|
|
|
result['base_period']['timestamps'] = list() |
472
|
|
|
result['base_period']['sub_averages'] = list() |
473
|
|
|
result['base_period']['sub_maximums'] = list() |
474
|
|
|
result['base_period']['averages'] = list() |
475
|
|
|
result['base_period']['maximums'] = list() |
476
|
|
|
result['base_period']['factors'] = list() |
477
|
|
|
if energy_category_set is not None and len(energy_category_set) > 0: |
478
|
|
|
for energy_category_id in energy_category_set: |
479
|
|
|
result['base_period']['names'].append(energy_category_dict[energy_category_id]['name']) |
480
|
|
|
result['base_period']['units'].append(energy_category_dict[energy_category_id]['unit_of_measure']) |
481
|
|
|
result['base_period']['timestamps'].append(base[energy_category_id]['timestamps']) |
482
|
|
|
result['base_period']['sub_averages'].append(base[energy_category_id]['sub_averages']) |
483
|
|
|
result['base_period']['sub_maximums'].append(base[energy_category_id]['sub_maximums']) |
484
|
|
|
result['base_period']['averages'].append(base[energy_category_id]['average']) |
485
|
|
|
result['base_period']['maximums'].append(base[energy_category_id]['maximum']) |
486
|
|
|
result['base_period']['factors'].append(base[energy_category_id]['factor']) |
487
|
|
|
|
488
|
|
|
result['reporting_period'] = dict() |
489
|
|
|
result['reporting_period']['names'] = list() |
490
|
|
|
result['reporting_period']['energy_category_ids'] = list() |
491
|
|
|
result['reporting_period']['units'] = list() |
492
|
|
|
result['reporting_period']['timestamps'] = list() |
493
|
|
|
result['reporting_period']['sub_averages'] = list() |
494
|
|
|
result['reporting_period']['sub_maximums'] = list() |
495
|
|
|
result['reporting_period']['averages'] = list() |
496
|
|
|
result['reporting_period']['averages_per_unit_area'] = list() |
497
|
|
|
result['reporting_period']['averages_increment_rate'] = list() |
498
|
|
|
result['reporting_period']['maximums'] = list() |
499
|
|
|
result['reporting_period']['maximums_per_unit_area'] = list() |
500
|
|
|
result['reporting_period']['maximums_increment_rate'] = list() |
501
|
|
|
result['reporting_period']['factors'] = list() |
502
|
|
|
result['reporting_period']['factors_increment_rate'] = list() |
503
|
|
|
|
504
|
|
|
if energy_category_set is not None and len(energy_category_set) > 0: |
505
|
|
|
for energy_category_id in energy_category_set: |
506
|
|
|
result['reporting_period']['names'].append(energy_category_dict[energy_category_id]['name']) |
507
|
|
|
result['reporting_period']['energy_category_ids'].append(energy_category_id) |
508
|
|
|
result['reporting_period']['units'].append(energy_category_dict[energy_category_id]['unit_of_measure']) |
509
|
|
|
result['reporting_period']['timestamps'].append(reporting[energy_category_id]['timestamps']) |
510
|
|
|
result['reporting_period']['sub_averages'].append(reporting[energy_category_id]['sub_averages']) |
511
|
|
|
result['reporting_period']['sub_maximums'].append(reporting[energy_category_id]['sub_maximums']) |
512
|
|
|
result['reporting_period']['averages'].append(reporting[energy_category_id]['average']) |
513
|
|
|
result['reporting_period']['averages_per_unit_area'].append( |
514
|
|
|
reporting[energy_category_id]['average'] / store['area'] |
515
|
|
|
if reporting[energy_category_id]['average'] is not None and |
516
|
|
|
store['area'] is not None and |
517
|
|
|
store['area'] > Decimal(0.0) |
518
|
|
|
else None) |
519
|
|
|
result['reporting_period']['averages_increment_rate'].append( |
520
|
|
|
(reporting[energy_category_id]['average'] - base[energy_category_id]['average']) / |
521
|
|
|
base[energy_category_id]['average'] if (base[energy_category_id]['average'] is not None and |
522
|
|
|
base[energy_category_id]['average'] > Decimal(0.0)) |
523
|
|
|
else None) |
524
|
|
|
result['reporting_period']['maximums'].append(reporting[energy_category_id]['maximum']) |
525
|
|
|
result['reporting_period']['maximums_increment_rate'].append( |
526
|
|
|
(reporting[energy_category_id]['maximum'] - base[energy_category_id]['maximum']) / |
527
|
|
|
base[energy_category_id]['maximum'] if (base[energy_category_id]['maximum'] is not None and |
528
|
|
|
base[energy_category_id]['maximum'] > Decimal(0.0)) |
529
|
|
|
else None) |
530
|
|
|
result['reporting_period']['maximums_per_unit_area'].append( |
531
|
|
|
reporting[energy_category_id]['maximum'] / store['area'] |
532
|
|
|
if reporting[energy_category_id]['maximum'] is not None and |
533
|
|
|
store['area'] is not None and |
534
|
|
|
store['area'] > Decimal(0.0) |
535
|
|
|
else None) |
536
|
|
|
result['reporting_period']['factors'].append(reporting[energy_category_id]['factor']) |
537
|
|
|
result['reporting_period']['factors_increment_rate'].append( |
538
|
|
|
(reporting[energy_category_id]['factor'] - base[energy_category_id]['factor']) / |
539
|
|
|
base[energy_category_id]['factor'] if (base[energy_category_id]['factor'] is not None and |
540
|
|
|
base[energy_category_id]['factor'] > Decimal(0.0)) |
541
|
|
|
else None) |
542
|
|
|
|
543
|
|
|
result['parameters'] = { |
544
|
|
|
"names": parameters_data['names'], |
545
|
|
|
"timestamps": parameters_data['timestamps'], |
546
|
|
|
"values": parameters_data['values'] |
547
|
|
|
} |
548
|
|
|
|
549
|
|
|
resp.body = json.dumps(result) |
550
|
|
|
|