Total Complexity | 175 |
Total Lines | 878 |
Duplicated Lines | 53.08 % |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like core.utilities often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | from datetime import datetime, timedelta |
||
2 | import mysql.connector |
||
3 | import collections |
||
4 | from decimal import Decimal |
||
5 | import config |
||
6 | import statistics |
||
7 | |||
8 | |||
9 | ######################################################################################################################## |
||
10 | # Aggregate hourly data by period |
||
11 | # rows_hourly: list of (start_datetime_utc, actual_value), should belong to one energy_category_id |
||
12 | # start_datetime_utc: start datetime in utc |
||
13 | # end_datetime_utc: end datetime in utc |
||
14 | # period_type: one of the following period types, 'hourly', 'daily', 'monthly' and 'yearly' |
||
15 | # Note: this procedure doesn't work with multiple energy categories |
||
16 | ######################################################################################################################## |
||
17 | def aggregate_hourly_data_by_period(rows_hourly, start_datetime_utc, end_datetime_utc, period_type): |
||
18 | # todo: validate parameters |
||
19 | start_datetime_utc = start_datetime_utc.replace(tzinfo=None) |
||
20 | end_datetime_utc = end_datetime_utc.replace(tzinfo=None) |
||
21 | |||
22 | if period_type == "hourly": |
||
23 | result_rows_hourly = list() |
||
24 | # todo: add config.working_day_start_time_local |
||
25 | # todo: add config.minutes_to_count |
||
26 | current_datetime_utc = start_datetime_utc.replace(minute=0, second=0, microsecond=0, tzinfo=None) |
||
27 | while current_datetime_utc <= end_datetime_utc: |
||
28 | subtotal = Decimal(0.0) |
||
29 | for row in rows_hourly: |
||
30 | if current_datetime_utc <= row[0] < current_datetime_utc + \ |
||
31 | timedelta(minutes=config.minutes_to_count): |
||
32 | subtotal += row[1] |
||
33 | result_rows_hourly.append((current_datetime_utc, subtotal)) |
||
34 | current_datetime_utc += timedelta(minutes=config.minutes_to_count) |
||
35 | |||
36 | return result_rows_hourly |
||
37 | |||
38 | elif period_type == "daily": |
||
39 | result_rows_daily = list() |
||
40 | # todo: add config.working_day_start_time_local |
||
41 | # todo: add config.minutes_to_count |
||
42 | # calculate the start datetime in utc of the first day in local |
||
43 | start_datetime_local = start_datetime_utc + timedelta(hours=int(config.utc_offset[1:3])) |
||
44 | current_datetime_utc = start_datetime_local.replace(hour=0) - timedelta(hours=int(config.utc_offset[1:3])) |
||
45 | while current_datetime_utc <= end_datetime_utc: |
||
46 | subtotal = Decimal(0.0) |
||
47 | for row in rows_hourly: |
||
48 | if current_datetime_utc <= row[0] < current_datetime_utc + timedelta(days=1): |
||
49 | subtotal += row[1] |
||
50 | result_rows_daily.append((current_datetime_utc, subtotal)) |
||
51 | current_datetime_utc += timedelta(days=1) |
||
52 | |||
53 | return result_rows_daily |
||
54 | |||
55 | elif period_type == "monthly": |
||
56 | result_rows_monthly = list() |
||
57 | # todo: add config.working_day_start_time_local |
||
58 | # todo: add config.minutes_to_count |
||
59 | # calculate the start datetime in utc of the first day in the first month in local |
||
60 | start_datetime_local = start_datetime_utc + timedelta(hours=int(config.utc_offset[1:3])) |
||
61 | current_datetime_utc = \ |
||
62 | start_datetime_local.replace(day=1, hour=0) - timedelta(hours=int(config.utc_offset[1:3])) |
||
63 | |||
64 | while current_datetime_utc <= end_datetime_utc: |
||
65 | # calculate the next datetime in utc |
||
66 | View Code Duplication | if current_datetime_utc.month == 1: |
|
|
|||
67 | temp_day = 28 |
||
68 | ny = current_datetime_utc.year |
||
69 | if (ny % 100 != 0 and ny % 4 == 0) or (ny % 100 == 0 and ny % 400 == 0): |
||
70 | temp_day = 29 |
||
71 | |||
72 | next_datetime_utc = datetime(year=current_datetime_utc.year, |
||
73 | month=current_datetime_utc.month + 1, |
||
74 | day=temp_day, |
||
75 | hour=current_datetime_utc.hour, |
||
76 | minute=current_datetime_utc.minute, |
||
77 | second=0, |
||
78 | microsecond=0, |
||
79 | tzinfo=None) |
||
80 | elif current_datetime_utc.month == 2: |
||
81 | next_datetime_utc = datetime(year=current_datetime_utc.year, |
||
82 | month=current_datetime_utc.month + 1, |
||
83 | day=31, |
||
84 | hour=current_datetime_utc.hour, |
||
85 | minute=current_datetime_utc.minute, |
||
86 | second=0, |
||
87 | microsecond=0, |
||
88 | tzinfo=None) |
||
89 | elif current_datetime_utc.month in [3, 5, 8, 10]: |
||
90 | next_datetime_utc = datetime(year=current_datetime_utc.year, |
||
91 | month=current_datetime_utc.month + 1, |
||
92 | day=30, |
||
93 | hour=current_datetime_utc.hour, |
||
94 | minute=current_datetime_utc.minute, |
||
95 | second=0, |
||
96 | microsecond=0, |
||
97 | tzinfo=None) |
||
98 | elif current_datetime_utc.month == 7: |
||
99 | next_datetime_utc = datetime(year=current_datetime_utc.year, |
||
100 | month=current_datetime_utc.month + 1, |
||
101 | day=31, |
||
102 | hour=current_datetime_utc.hour, |
||
103 | minute=current_datetime_utc.minute, |
||
104 | second=0, |
||
105 | microsecond=0, |
||
106 | tzinfo=None) |
||
107 | elif current_datetime_utc.month in [4, 6, 9, 11]: |
||
108 | next_datetime_utc = datetime(year=current_datetime_utc.year, |
||
109 | month=current_datetime_utc.month + 1, |
||
110 | day=31, |
||
111 | hour=current_datetime_utc.hour, |
||
112 | minute=current_datetime_utc.minute, |
||
113 | second=0, |
||
114 | microsecond=0, |
||
115 | tzinfo=None) |
||
116 | elif current_datetime_utc.month == 12: |
||
117 | next_datetime_utc = datetime(year=current_datetime_utc.year + 1, |
||
118 | month=1, |
||
119 | day=31, |
||
120 | hour=current_datetime_utc.hour, |
||
121 | minute=current_datetime_utc.minute, |
||
122 | second=0, |
||
123 | microsecond=0, |
||
124 | tzinfo=None) |
||
125 | |||
126 | subtotal = Decimal(0.0) |
||
127 | for row in rows_hourly: |
||
128 | if current_datetime_utc <= row[0] < next_datetime_utc: |
||
129 | subtotal += row[1] |
||
130 | |||
131 | result_rows_monthly.append((current_datetime_utc, subtotal)) |
||
132 | current_datetime_utc = next_datetime_utc |
||
133 | |||
134 | return result_rows_monthly |
||
135 | |||
136 | elif period_type == "yearly": |
||
137 | result_rows_yearly = list() |
||
138 | # todo: add config.working_day_start_time_local |
||
139 | # todo: add config.minutes_to_count |
||
140 | # calculate the start datetime in utc of the first day in the first month in local |
||
141 | start_datetime_local = start_datetime_utc + timedelta(hours=int(config.utc_offset[1:3])) |
||
142 | current_datetime_utc = start_datetime_local.replace(month=1, day=1, hour=0) - timedelta( |
||
143 | hours=int(config.utc_offset[1:3])) |
||
144 | |||
145 | while current_datetime_utc <= end_datetime_utc: |
||
146 | # calculate the next datetime in utc |
||
147 | # todo: timedelta of year |
||
148 | next_datetime_utc = datetime(year=current_datetime_utc.year + 2, |
||
149 | month=1, |
||
150 | day=1, |
||
151 | hour=current_datetime_utc.hour, |
||
152 | minute=current_datetime_utc.minute, |
||
153 | second=current_datetime_utc.second, |
||
154 | microsecond=current_datetime_utc.microsecond, |
||
155 | tzinfo=current_datetime_utc.tzinfo) - timedelta(days=1) |
||
156 | subtotal = Decimal(0.0) |
||
157 | for row in rows_hourly: |
||
158 | if current_datetime_utc <= row[0] < next_datetime_utc: |
||
159 | subtotal += row[1] |
||
160 | |||
161 | result_rows_yearly.append((current_datetime_utc, subtotal)) |
||
162 | current_datetime_utc = next_datetime_utc |
||
163 | return result_rows_yearly |
||
164 | |||
165 | |||
166 | ######################################################################################################################## |
||
167 | # Get tariffs by energy category |
||
168 | ######################################################################################################################## |
||
169 | View Code Duplication | def get_energy_category_tariffs(cost_center_id, energy_category_id, start_datetime_utc, end_datetime_utc): |
|
170 | # todo: validate parameters |
||
171 | if cost_center_id is None: |
||
172 | return dict() |
||
173 | |||
174 | start_datetime_utc = start_datetime_utc.replace(tzinfo=None) |
||
175 | end_datetime_utc = end_datetime_utc.replace(tzinfo=None) |
||
176 | |||
177 | # get timezone offset in minutes, this value will be returned to client |
||
178 | timezone_offset = int(config.utc_offset[1:3]) * 60 + int(config.utc_offset[4:6]) |
||
179 | if config.utc_offset[0] == '-': |
||
180 | timezone_offset = -timezone_offset |
||
181 | |||
182 | tariff_dict = collections.OrderedDict() |
||
183 | |||
184 | cnx = None |
||
185 | cursor = None |
||
186 | try: |
||
187 | cnx = mysql.connector.connect(**config.myems_system_db) |
||
188 | cursor = cnx.cursor() |
||
189 | query_tariffs = (" SELECT t.id, t.valid_from_datetime_utc, t.valid_through_datetime_utc " |
||
190 | " FROM tbl_tariffs t, tbl_cost_centers_tariffs cct " |
||
191 | " WHERE t.energy_category_id = %s AND " |
||
192 | " t.id = cct.tariff_id AND " |
||
193 | " cct.cost_center_id = %s AND " |
||
194 | " t.valid_through_datetime_utc >= %s AND " |
||
195 | " t.valid_from_datetime_utc <= %s " |
||
196 | " ORDER BY t.valid_from_datetime_utc ") |
||
197 | cursor.execute(query_tariffs, (energy_category_id, cost_center_id, start_datetime_utc, end_datetime_utc,)) |
||
198 | rows_tariffs = cursor.fetchall() |
||
199 | except Exception as e: |
||
200 | print(str(e)) |
||
201 | if cnx: |
||
202 | cnx.disconnect() |
||
203 | if cursor: |
||
204 | cursor.close() |
||
205 | return dict() |
||
206 | |||
207 | if rows_tariffs is None or len(rows_tariffs) == 0: |
||
208 | if cursor: |
||
209 | cursor.close() |
||
210 | if cnx: |
||
211 | cnx.disconnect() |
||
212 | return dict() |
||
213 | |||
214 | for row in rows_tariffs: |
||
215 | tariff_dict[row[0]] = {'valid_from_datetime_utc': row[1], |
||
216 | 'valid_through_datetime_utc': row[2], |
||
217 | 'rates': list()} |
||
218 | |||
219 | try: |
||
220 | query_timeofuse_tariffs = (" SELECT tariff_id, start_time_of_day, end_time_of_day, price " |
||
221 | " FROM tbl_tariffs_timeofuses " |
||
222 | " WHERE tariff_id IN ( " + ', '.join(map(str, tariff_dict.keys())) + ")" |
||
223 | " ORDER BY tariff_id, start_time_of_day ") |
||
224 | cursor.execute(query_timeofuse_tariffs, ) |
||
225 | rows_timeofuse_tariffs = cursor.fetchall() |
||
226 | except Exception as e: |
||
227 | print(str(e)) |
||
228 | if cnx: |
||
229 | cnx.disconnect() |
||
230 | if cursor: |
||
231 | cursor.close() |
||
232 | return dict() |
||
233 | |||
234 | if cursor: |
||
235 | cursor.close() |
||
236 | if cnx: |
||
237 | cnx.disconnect() |
||
238 | |||
239 | if rows_timeofuse_tariffs is None or len(rows_timeofuse_tariffs) == 0: |
||
240 | return dict() |
||
241 | |||
242 | for row in rows_timeofuse_tariffs: |
||
243 | tariff_dict[row[0]]['rates'].append({'start_time_of_day': row[1], |
||
244 | 'end_time_of_day': row[2], |
||
245 | 'price': row[3]}) |
||
246 | |||
247 | result = dict() |
||
248 | for tariff_id, tariff_value in tariff_dict.items(): |
||
249 | current_datetime_utc = tariff_value['valid_from_datetime_utc'] |
||
250 | while current_datetime_utc < tariff_value['valid_through_datetime_utc']: |
||
251 | for rate in tariff_value['rates']: |
||
252 | current_datetime_local = current_datetime_utc + timedelta(minutes=timezone_offset) |
||
253 | seconds_since_midnight = (current_datetime_local - |
||
254 | current_datetime_local.replace(hour=0, |
||
255 | second=0, |
||
256 | microsecond=0, |
||
257 | tzinfo=None)).total_seconds() |
||
258 | if rate['start_time_of_day'].total_seconds() <= \ |
||
259 | seconds_since_midnight < rate['end_time_of_day'].total_seconds(): |
||
260 | result[current_datetime_utc] = rate['price'] |
||
261 | break |
||
262 | |||
263 | # start from the next time slot |
||
264 | current_datetime_utc += timedelta(minutes=config.minutes_to_count) |
||
265 | |||
266 | return {k: v for k, v in result.items() if start_datetime_utc <= k <= end_datetime_utc} |
||
267 | |||
268 | |||
269 | ######################################################################################################################## |
||
270 | # Get peak types of tariff by energy category |
||
271 | # peak types: toppeak, onpeak, midpeak, offpeak |
||
272 | ######################################################################################################################## |
||
273 | View Code Duplication | def get_energy_category_peak_types(cost_center_id, energy_category_id, start_datetime_utc, end_datetime_utc): |
|
274 | # todo: validate parameters |
||
275 | if cost_center_id is None: |
||
276 | return dict() |
||
277 | |||
278 | start_datetime_utc = start_datetime_utc.replace(tzinfo=None) |
||
279 | end_datetime_utc = end_datetime_utc.replace(tzinfo=None) |
||
280 | |||
281 | # get timezone offset in minutes, this value will be returned to client |
||
282 | timezone_offset = int(config.utc_offset[1:3]) * 60 + int(config.utc_offset[4:6]) |
||
283 | if config.utc_offset[0] == '-': |
||
284 | timezone_offset = -timezone_offset |
||
285 | |||
286 | tariff_dict = collections.OrderedDict() |
||
287 | |||
288 | cnx = None |
||
289 | cursor = None |
||
290 | try: |
||
291 | cnx = mysql.connector.connect(**config.myems_system_db) |
||
292 | cursor = cnx.cursor() |
||
293 | query_tariffs = (" SELECT t.id, t.valid_from_datetime_utc, t.valid_through_datetime_utc " |
||
294 | " FROM tbl_tariffs t, tbl_cost_centers_tariffs cct " |
||
295 | " WHERE t.energy_category_id = %s AND " |
||
296 | " t.id = cct.tariff_id AND " |
||
297 | " cct.cost_center_id = %s AND " |
||
298 | " t.valid_through_datetime_utc >= %s AND " |
||
299 | " t.valid_from_datetime_utc <= %s " |
||
300 | " ORDER BY t.valid_from_datetime_utc ") |
||
301 | cursor.execute(query_tariffs, (energy_category_id, cost_center_id, start_datetime_utc, end_datetime_utc,)) |
||
302 | rows_tariffs = cursor.fetchall() |
||
303 | except Exception as e: |
||
304 | print(str(e)) |
||
305 | if cnx: |
||
306 | cnx.disconnect() |
||
307 | if cursor: |
||
308 | cursor.close() |
||
309 | return dict() |
||
310 | |||
311 | if rows_tariffs is None or len(rows_tariffs) == 0: |
||
312 | if cursor: |
||
313 | cursor.close() |
||
314 | if cnx: |
||
315 | cnx.disconnect() |
||
316 | return dict() |
||
317 | |||
318 | for row in rows_tariffs: |
||
319 | tariff_dict[row[0]] = {'valid_from_datetime_utc': row[1], |
||
320 | 'valid_through_datetime_utc': row[2], |
||
321 | 'rates': list()} |
||
322 | |||
323 | try: |
||
324 | query_timeofuse_tariffs = (" SELECT tariff_id, start_time_of_day, end_time_of_day, peak_type " |
||
325 | " FROM tbl_tariffs_timeofuses " |
||
326 | " WHERE tariff_id IN ( " + ', '.join(map(str, tariff_dict.keys())) + ")" |
||
327 | " ORDER BY tariff_id, start_time_of_day ") |
||
328 | cursor.execute(query_timeofuse_tariffs, ) |
||
329 | rows_timeofuse_tariffs = cursor.fetchall() |
||
330 | except Exception as e: |
||
331 | print(str(e)) |
||
332 | if cnx: |
||
333 | cnx.disconnect() |
||
334 | if cursor: |
||
335 | cursor.close() |
||
336 | return dict() |
||
337 | |||
338 | if cursor: |
||
339 | cursor.close() |
||
340 | if cnx: |
||
341 | cnx.disconnect() |
||
342 | |||
343 | if rows_timeofuse_tariffs is None or len(rows_timeofuse_tariffs) == 0: |
||
344 | return dict() |
||
345 | |||
346 | for row in rows_timeofuse_tariffs: |
||
347 | tariff_dict[row[0]]['rates'].append({'start_time_of_day': row[1], |
||
348 | 'end_time_of_day': row[2], |
||
349 | 'peak_type': row[3]}) |
||
350 | |||
351 | result = dict() |
||
352 | for tariff_id, tariff_value in tariff_dict.items(): |
||
353 | current_datetime_utc = tariff_value['valid_from_datetime_utc'] |
||
354 | while current_datetime_utc < tariff_value['valid_through_datetime_utc']: |
||
355 | for rate in tariff_value['rates']: |
||
356 | current_datetime_local = current_datetime_utc + timedelta(minutes=timezone_offset) |
||
357 | seconds_since_midnight = (current_datetime_local - |
||
358 | current_datetime_local.replace(hour=0, |
||
359 | second=0, |
||
360 | microsecond=0, |
||
361 | tzinfo=None)).total_seconds() |
||
362 | if rate['start_time_of_day'].total_seconds() <= \ |
||
363 | seconds_since_midnight < rate['end_time_of_day'].total_seconds(): |
||
364 | result[current_datetime_utc] = rate['peak_type'] |
||
365 | break |
||
366 | |||
367 | # start from the next time slot |
||
368 | current_datetime_utc += timedelta(minutes=config.minutes_to_count) |
||
369 | |||
370 | return {k: v for k, v in result.items() if start_datetime_utc <= k <= end_datetime_utc} |
||
371 | |||
372 | |||
373 | ######################################################################################################################## |
||
374 | # Averaging calculator of hourly data by period |
||
375 | # rows_hourly: list of (start_datetime_utc, actual_value), should belong to one energy_category_id |
||
376 | # start_datetime_utc: start datetime in utc |
||
377 | # end_datetime_utc: end datetime in utc |
||
378 | # period_type: one of the following period types, 'hourly', 'daily', 'monthly' and 'yearly' |
||
379 | # Returns: periodically data of average and maximum |
||
380 | # Note: this procedure doesn't work with multiple energy categories |
||
381 | ######################################################################################################################## |
||
382 | def averaging_hourly_data_by_period(rows_hourly, start_datetime_utc, end_datetime_utc, period_type): |
||
383 | # todo: validate parameters |
||
384 | start_datetime_utc = start_datetime_utc.replace(tzinfo=None) |
||
385 | end_datetime_utc = end_datetime_utc.replace(tzinfo=None) |
||
386 | |||
387 | if period_type == "hourly": |
||
388 | result_rows_hourly = list() |
||
389 | # todo: add config.working_day_start_time_local |
||
390 | # todo: add config.minutes_to_count |
||
391 | total = Decimal(0.0) |
||
392 | maximum = None |
||
393 | counter = 0 |
||
394 | current_datetime_utc = start_datetime_utc.replace(minute=0, second=0, microsecond=0, tzinfo=None) |
||
395 | View Code Duplication | while current_datetime_utc <= end_datetime_utc: |
|
396 | sub_total = Decimal(0.0) |
||
397 | sub_maximum = None |
||
398 | sub_counter = 0 |
||
399 | for row in rows_hourly: |
||
400 | if current_datetime_utc <= row[0] < current_datetime_utc + \ |
||
401 | timedelta(minutes=config.minutes_to_count): |
||
402 | sub_total += row[1] |
||
403 | if sub_maximum is None: |
||
404 | sub_maximum = row[1] |
||
405 | elif sub_maximum < row[1]: |
||
406 | sub_maximum = row[1] |
||
407 | sub_counter += 1 |
||
408 | |||
409 | sub_average = (sub_total / sub_counter) if sub_counter > 0 else None |
||
410 | result_rows_hourly.append((current_datetime_utc, sub_average, sub_maximum)) |
||
411 | |||
412 | total += sub_total |
||
413 | counter += sub_counter |
||
414 | if sub_maximum is None: |
||
415 | pass |
||
416 | elif maximum is None: |
||
417 | maximum = sub_maximum |
||
418 | elif maximum < sub_maximum: |
||
419 | maximum = sub_maximum |
||
420 | |||
421 | current_datetime_utc += timedelta(minutes=config.minutes_to_count) |
||
422 | |||
423 | average = total / counter if counter > 0 else None |
||
424 | return result_rows_hourly, average, maximum |
||
425 | |||
426 | elif period_type == "daily": |
||
427 | result_rows_daily = list() |
||
428 | # todo: add config.working_day_start_time_local |
||
429 | # todo: add config.minutes_to_count |
||
430 | total = Decimal(0.0) |
||
431 | maximum = None |
||
432 | counter = 0 |
||
433 | # calculate the start datetime in utc of the first day in local |
||
434 | start_datetime_local = start_datetime_utc + timedelta(hours=int(config.utc_offset[1:3])) |
||
435 | current_datetime_utc = start_datetime_local.replace(hour=0) - timedelta(hours=int(config.utc_offset[1:3])) |
||
436 | View Code Duplication | while current_datetime_utc <= end_datetime_utc: |
|
437 | sub_total = Decimal(0.0) |
||
438 | sub_maximum = None |
||
439 | sub_counter = 0 |
||
440 | for row in rows_hourly: |
||
441 | if current_datetime_utc <= row[0] < current_datetime_utc + timedelta(days=1): |
||
442 | sub_total += row[1] |
||
443 | if sub_maximum is None: |
||
444 | sub_maximum = row[1] |
||
445 | elif sub_maximum < row[1]: |
||
446 | sub_maximum = row[1] |
||
447 | sub_counter += 1 |
||
448 | |||
449 | sub_average = (sub_total / sub_counter) if sub_counter > 0 else None |
||
450 | result_rows_daily.append((current_datetime_utc, sub_average, sub_maximum)) |
||
451 | total += sub_total |
||
452 | counter += sub_counter |
||
453 | if sub_maximum is None: |
||
454 | pass |
||
455 | elif maximum is None: |
||
456 | maximum = sub_maximum |
||
457 | elif maximum < sub_maximum: |
||
458 | maximum = sub_maximum |
||
459 | current_datetime_utc += timedelta(days=1) |
||
460 | |||
461 | average = total / counter if counter > 0 else None |
||
462 | return result_rows_daily, average, maximum |
||
463 | |||
464 | elif period_type == "monthly": |
||
465 | result_rows_monthly = list() |
||
466 | # todo: add config.working_day_start_time_local |
||
467 | # todo: add config.minutes_to_count |
||
468 | total = Decimal(0.0) |
||
469 | maximum = None |
||
470 | counter = 0 |
||
471 | # calculate the start datetime in utc of the first day in the first month in local |
||
472 | start_datetime_local = start_datetime_utc + timedelta(hours=int(config.utc_offset[1:3])) |
||
473 | current_datetime_utc = \ |
||
474 | start_datetime_local.replace(day=1, hour=0) - timedelta(hours=int(config.utc_offset[1:3])) |
||
475 | |||
476 | while current_datetime_utc <= end_datetime_utc: |
||
477 | # calculate the next datetime in utc |
||
478 | View Code Duplication | if current_datetime_utc.month == 1: |
|
479 | temp_day = 28 |
||
480 | ny = current_datetime_utc.year |
||
481 | if (ny % 100 != 0 and ny % 4 == 0) or (ny % 100 == 0 and ny % 400 == 0): |
||
482 | temp_day = 29 |
||
483 | |||
484 | next_datetime_utc = datetime(year=current_datetime_utc.year, |
||
485 | month=current_datetime_utc.month + 1, |
||
486 | day=temp_day, |
||
487 | hour=current_datetime_utc.hour, |
||
488 | minute=current_datetime_utc.minute, |
||
489 | second=0, |
||
490 | microsecond=0, |
||
491 | tzinfo=None) |
||
492 | elif current_datetime_utc.month == 2: |
||
493 | next_datetime_utc = datetime(year=current_datetime_utc.year, |
||
494 | month=current_datetime_utc.month + 1, |
||
495 | day=31, |
||
496 | hour=current_datetime_utc.hour, |
||
497 | minute=current_datetime_utc.minute, |
||
498 | second=0, |
||
499 | microsecond=0, |
||
500 | tzinfo=None) |
||
501 | elif current_datetime_utc.month in [3, 5, 8, 10]: |
||
502 | next_datetime_utc = datetime(year=current_datetime_utc.year, |
||
503 | month=current_datetime_utc.month + 1, |
||
504 | day=30, |
||
505 | hour=current_datetime_utc.hour, |
||
506 | minute=current_datetime_utc.minute, |
||
507 | second=0, |
||
508 | microsecond=0, |
||
509 | tzinfo=None) |
||
510 | elif current_datetime_utc.month == 7: |
||
511 | next_datetime_utc = datetime(year=current_datetime_utc.year, |
||
512 | month=current_datetime_utc.month + 1, |
||
513 | day=31, |
||
514 | hour=current_datetime_utc.hour, |
||
515 | minute=current_datetime_utc.minute, |
||
516 | second=0, |
||
517 | microsecond=0, |
||
518 | tzinfo=None) |
||
519 | elif current_datetime_utc.month in [4, 6, 9, 11]: |
||
520 | next_datetime_utc = datetime(year=current_datetime_utc.year, |
||
521 | month=current_datetime_utc.month + 1, |
||
522 | day=31, |
||
523 | hour=current_datetime_utc.hour, |
||
524 | minute=current_datetime_utc.minute, |
||
525 | second=0, |
||
526 | microsecond=0, |
||
527 | tzinfo=None) |
||
528 | elif current_datetime_utc.month == 12: |
||
529 | next_datetime_utc = datetime(year=current_datetime_utc.year + 1, |
||
530 | month=1, |
||
531 | day=31, |
||
532 | hour=current_datetime_utc.hour, |
||
533 | minute=current_datetime_utc.minute, |
||
534 | second=0, |
||
535 | microsecond=0, |
||
536 | tzinfo=None) |
||
537 | |||
538 | sub_total = Decimal(0.0) |
||
539 | sub_maximum = None |
||
540 | sub_counter = 0 |
||
541 | for row in rows_hourly: |
||
542 | if current_datetime_utc <= row[0] < next_datetime_utc: |
||
543 | sub_total += row[1] |
||
544 | if sub_maximum is None: |
||
545 | sub_maximum = row[1] |
||
546 | elif sub_maximum < row[1]: |
||
547 | sub_maximum = row[1] |
||
548 | sub_counter += 1 |
||
549 | |||
550 | sub_average = (sub_total / sub_counter) if sub_counter > 0 else None |
||
551 | result_rows_monthly.append((current_datetime_utc, sub_average, sub_maximum)) |
||
552 | total += sub_total |
||
553 | counter += sub_counter |
||
554 | if sub_maximum is None: |
||
555 | pass |
||
556 | elif maximum is None: |
||
557 | maximum = sub_maximum |
||
558 | elif maximum < sub_maximum: |
||
559 | maximum = sub_maximum |
||
560 | current_datetime_utc = next_datetime_utc |
||
561 | |||
562 | average = total / counter if counter > 0 else None |
||
563 | return result_rows_monthly, average, maximum |
||
564 | |||
565 | elif period_type == "yearly": |
||
566 | result_rows_yearly = list() |
||
567 | # todo: add config.working_day_start_time_local |
||
568 | # todo: add config.minutes_to_count |
||
569 | total = Decimal(0.0) |
||
570 | maximum = None |
||
571 | counter = 0 |
||
572 | # calculate the start datetime in utc of the first day in the first month in local |
||
573 | start_datetime_local = start_datetime_utc + timedelta(hours=int(config.utc_offset[1:3])) |
||
574 | current_datetime_utc = start_datetime_local.replace(month=1, day=1, hour=0) - timedelta( |
||
575 | hours=int(config.utc_offset[1:3])) |
||
576 | |||
577 | while current_datetime_utc <= end_datetime_utc: |
||
578 | # calculate the next datetime in utc |
||
579 | # todo: timedelta of year |
||
580 | next_datetime_utc = datetime(year=current_datetime_utc.year + 2, |
||
581 | month=1, |
||
582 | day=1, |
||
583 | hour=current_datetime_utc.hour, |
||
584 | minute=current_datetime_utc.minute, |
||
585 | second=current_datetime_utc.second, |
||
586 | microsecond=current_datetime_utc.microsecond, |
||
587 | tzinfo=current_datetime_utc.tzinfo) - timedelta(days=1) |
||
588 | sub_total = Decimal(0.0) |
||
589 | sub_maximum = None |
||
590 | sub_counter = 0 |
||
591 | for row in rows_hourly: |
||
592 | if current_datetime_utc <= row[0] < next_datetime_utc: |
||
593 | sub_total += row[1] |
||
594 | if sub_maximum is None: |
||
595 | sub_maximum = row[1] |
||
596 | elif sub_maximum < row[1]: |
||
597 | sub_maximum = row[1] |
||
598 | sub_counter += 1 |
||
599 | |||
600 | sub_average = (sub_total / sub_counter) if sub_counter > 0 else None |
||
601 | result_rows_yearly.append((current_datetime_utc, sub_average, sub_maximum)) |
||
602 | total += sub_total |
||
603 | counter += sub_counter |
||
604 | if sub_maximum is None: |
||
605 | pass |
||
606 | elif maximum is None: |
||
607 | maximum = sub_maximum |
||
608 | elif maximum < sub_maximum: |
||
609 | maximum = sub_maximum |
||
610 | current_datetime_utc = next_datetime_utc |
||
611 | |||
612 | average = total / counter if counter > 0 else None |
||
613 | return result_rows_yearly, average, maximum |
||
614 | |||
615 | |||
616 | ######################################################################################################################## |
||
617 | # Statistics calculator of hourly data by period |
||
618 | # rows_hourly: list of (start_datetime_utc, actual_value), should belong to one energy_category_id |
||
619 | # start_datetime_utc: start datetime in utc |
||
620 | # end_datetime_utc: end datetime in utc |
||
621 | # period_type: one of the following period types, 'hourly', 'daily', 'monthly' and 'yearly' |
||
622 | # Returns: periodically data of values and statistics of mean, median, minimum, maximum, stdev and variance |
||
623 | # Note: this procedure doesn't work with multiple energy categories |
||
624 | ######################################################################################################################## |
||
625 | def statistics_hourly_data_by_period(rows_hourly, start_datetime_utc, end_datetime_utc, period_type): |
||
626 | # todo: validate parameters |
||
627 | start_datetime_utc = start_datetime_utc.replace(tzinfo=None) |
||
628 | end_datetime_utc = end_datetime_utc.replace(tzinfo=None) |
||
629 | |||
630 | if period_type == "hourly": |
||
631 | result_rows_hourly = list() |
||
632 | sample_data = list() |
||
633 | # todo: add config.working_day_start_time_local |
||
634 | # todo: add config.minutes_to_count |
||
635 | counter = 0 |
||
636 | mean = None |
||
637 | median = None |
||
638 | minimum = None |
||
639 | maximum = None |
||
640 | stdev = None |
||
641 | variance = None |
||
642 | current_datetime_utc = start_datetime_utc.replace(minute=0, second=0, microsecond=0, tzinfo=None) |
||
643 | View Code Duplication | while current_datetime_utc <= end_datetime_utc: |
|
644 | sub_total = Decimal(0.0) |
||
645 | for row in rows_hourly: |
||
646 | if current_datetime_utc <= row[0] < current_datetime_utc + \ |
||
647 | timedelta(minutes=config.minutes_to_count): |
||
648 | sub_total += row[1] |
||
649 | |||
650 | result_rows_hourly.append((current_datetime_utc, sub_total)) |
||
651 | sample_data.append(sub_total) |
||
652 | |||
653 | counter += 1 |
||
654 | if minimum is None: |
||
655 | minimum = sub_total |
||
656 | elif minimum > sub_total: |
||
657 | minimum = sub_total |
||
658 | |||
659 | if maximum is None: |
||
660 | maximum = sub_total |
||
661 | elif maximum < sub_total: |
||
662 | maximum = sub_total |
||
663 | |||
664 | current_datetime_utc += timedelta(minutes=config.minutes_to_count) |
||
665 | |||
666 | if len(sample_data) > 1: |
||
667 | mean = statistics.mean(sample_data) |
||
668 | median = statistics.median(sample_data) |
||
669 | stdev = statistics.stdev(sample_data) |
||
670 | variance = statistics.variance(sample_data) |
||
671 | |||
672 | return result_rows_hourly, mean, median, minimum, maximum, stdev, variance |
||
673 | |||
674 | elif period_type == "daily": |
||
675 | result_rows_daily = list() |
||
676 | sample_data = list() |
||
677 | # todo: add config.working_day_start_time_local |
||
678 | # todo: add config.minutes_to_count |
||
679 | counter = 0 |
||
680 | mean = None |
||
681 | median = None |
||
682 | minimum = None |
||
683 | maximum = None |
||
684 | stdev = None |
||
685 | variance = None |
||
686 | # calculate the start datetime in utc of the first day in local |
||
687 | start_datetime_local = start_datetime_utc + timedelta(hours=int(config.utc_offset[1:3])) |
||
688 | current_datetime_utc = start_datetime_local.replace(hour=0) - timedelta(hours=int(config.utc_offset[1:3])) |
||
689 | View Code Duplication | while current_datetime_utc <= end_datetime_utc: |
|
690 | sub_total = Decimal(0.0) |
||
691 | for row in rows_hourly: |
||
692 | if current_datetime_utc <= row[0] < current_datetime_utc + timedelta(days=1): |
||
693 | sub_total += row[1] |
||
694 | |||
695 | result_rows_daily.append((current_datetime_utc, sub_total)) |
||
696 | sample_data.append(sub_total) |
||
697 | |||
698 | counter += 1 |
||
699 | if minimum is None: |
||
700 | minimum = sub_total |
||
701 | elif minimum > sub_total: |
||
702 | minimum = sub_total |
||
703 | |||
704 | if maximum is None: |
||
705 | maximum = sub_total |
||
706 | elif maximum < sub_total: |
||
707 | maximum = sub_total |
||
708 | current_datetime_utc += timedelta(days=1) |
||
709 | |||
710 | if len(sample_data) > 1: |
||
711 | mean = statistics.mean(sample_data) |
||
712 | median = statistics.median(sample_data) |
||
713 | stdev = statistics.stdev(sample_data) |
||
714 | variance = statistics.variance(sample_data) |
||
715 | |||
716 | return result_rows_daily, mean, median, minimum, maximum, stdev, variance |
||
717 | |||
718 | elif period_type == "monthly": |
||
719 | result_rows_monthly = list() |
||
720 | sample_data = list() |
||
721 | # todo: add config.working_day_start_time_local |
||
722 | # todo: add config.minutes_to_count |
||
723 | counter = 0 |
||
724 | mean = None |
||
725 | median = None |
||
726 | minimum = None |
||
727 | maximum = None |
||
728 | stdev = None |
||
729 | variance = None |
||
730 | # calculate the start datetime in utc of the first day in the first month in local |
||
731 | start_datetime_local = start_datetime_utc + timedelta(hours=int(config.utc_offset[1:3])) |
||
732 | current_datetime_utc = \ |
||
733 | start_datetime_local.replace(day=1, hour=0) - timedelta(hours=int(config.utc_offset[1:3])) |
||
734 | |||
735 | while current_datetime_utc <= end_datetime_utc: |
||
736 | # calculate the next datetime in utc |
||
737 | View Code Duplication | if current_datetime_utc.month == 1: |
|
738 | temp_day = 28 |
||
739 | ny = current_datetime_utc.year |
||
740 | if (ny % 100 != 0 and ny % 4 == 0) or (ny % 100 == 0 and ny % 400 == 0): |
||
741 | temp_day = 29 |
||
742 | |||
743 | next_datetime_utc = datetime(year=current_datetime_utc.year, |
||
744 | month=current_datetime_utc.month + 1, |
||
745 | day=temp_day, |
||
746 | hour=current_datetime_utc.hour, |
||
747 | minute=current_datetime_utc.minute, |
||
748 | second=0, |
||
749 | microsecond=0, |
||
750 | tzinfo=None) |
||
751 | elif current_datetime_utc.month == 2: |
||
752 | next_datetime_utc = datetime(year=current_datetime_utc.year, |
||
753 | month=current_datetime_utc.month + 1, |
||
754 | day=31, |
||
755 | hour=current_datetime_utc.hour, |
||
756 | minute=current_datetime_utc.minute, |
||
757 | second=0, |
||
758 | microsecond=0, |
||
759 | tzinfo=None) |
||
760 | elif current_datetime_utc.month in [3, 5, 8, 10]: |
||
761 | next_datetime_utc = datetime(year=current_datetime_utc.year, |
||
762 | month=current_datetime_utc.month + 1, |
||
763 | day=30, |
||
764 | hour=current_datetime_utc.hour, |
||
765 | minute=current_datetime_utc.minute, |
||
766 | second=0, |
||
767 | microsecond=0, |
||
768 | tzinfo=None) |
||
769 | elif current_datetime_utc.month == 7: |
||
770 | next_datetime_utc = datetime(year=current_datetime_utc.year, |
||
771 | month=current_datetime_utc.month + 1, |
||
772 | day=31, |
||
773 | hour=current_datetime_utc.hour, |
||
774 | minute=current_datetime_utc.minute, |
||
775 | second=0, |
||
776 | microsecond=0, |
||
777 | tzinfo=None) |
||
778 | elif current_datetime_utc.month in [4, 6, 9, 11]: |
||
779 | next_datetime_utc = datetime(year=current_datetime_utc.year, |
||
780 | month=current_datetime_utc.month + 1, |
||
781 | day=31, |
||
782 | hour=current_datetime_utc.hour, |
||
783 | minute=current_datetime_utc.minute, |
||
784 | second=0, |
||
785 | microsecond=0, |
||
786 | tzinfo=None) |
||
787 | elif current_datetime_utc.month == 12: |
||
788 | next_datetime_utc = datetime(year=current_datetime_utc.year + 1, |
||
789 | month=1, |
||
790 | day=31, |
||
791 | hour=current_datetime_utc.hour, |
||
792 | minute=current_datetime_utc.minute, |
||
793 | second=0, |
||
794 | microsecond=0, |
||
795 | tzinfo=None) |
||
796 | |||
797 | sub_total = Decimal(0.0) |
||
798 | for row in rows_hourly: |
||
799 | if current_datetime_utc <= row[0] < next_datetime_utc: |
||
800 | sub_total += row[1] |
||
801 | |||
802 | result_rows_monthly.append((current_datetime_utc, sub_total)) |
||
803 | sample_data.append(sub_total) |
||
804 | |||
805 | counter += 1 |
||
806 | if minimum is None: |
||
807 | minimum = sub_total |
||
808 | elif minimum > sub_total: |
||
809 | minimum = sub_total |
||
810 | |||
811 | if maximum is None: |
||
812 | maximum = sub_total |
||
813 | elif maximum < sub_total: |
||
814 | maximum = sub_total |
||
815 | current_datetime_utc = next_datetime_utc |
||
816 | |||
817 | if len(sample_data) > 1: |
||
818 | mean = statistics.mean(sample_data) |
||
819 | median = statistics.median(sample_data) |
||
820 | stdev = statistics.stdev(sample_data) |
||
821 | variance = statistics.variance(sample_data) |
||
822 | |||
823 | return result_rows_monthly, mean, median, minimum, maximum, stdev, variance |
||
824 | |||
825 | elif period_type == "yearly": |
||
826 | result_rows_yearly = list() |
||
827 | sample_data = list() |
||
828 | # todo: add config.working_day_start_time_local |
||
829 | # todo: add config.minutes_to_count |
||
830 | mean = None |
||
831 | median = None |
||
832 | minimum = None |
||
833 | maximum = None |
||
834 | stdev = None |
||
835 | variance = None |
||
836 | # calculate the start datetime in utc of the first day in the first month in local |
||
837 | start_datetime_local = start_datetime_utc + timedelta(hours=int(config.utc_offset[1:3])) |
||
838 | current_datetime_utc = start_datetime_local.replace(month=1, day=1, hour=0) - timedelta( |
||
839 | hours=int(config.utc_offset[1:3])) |
||
840 | |||
841 | while current_datetime_utc <= end_datetime_utc: |
||
842 | # calculate the next datetime in utc |
||
843 | # todo: timedelta of year |
||
844 | next_datetime_utc = datetime(year=current_datetime_utc.year + 2, |
||
845 | month=1, |
||
846 | day=1, |
||
847 | hour=current_datetime_utc.hour, |
||
848 | minute=current_datetime_utc.minute, |
||
849 | second=current_datetime_utc.second, |
||
850 | microsecond=current_datetime_utc.microsecond, |
||
851 | tzinfo=current_datetime_utc.tzinfo) - timedelta(days=1) |
||
852 | sub_total = Decimal(0.0) |
||
853 | for row in rows_hourly: |
||
854 | if current_datetime_utc <= row[0] < next_datetime_utc: |
||
855 | sub_total += row[1] |
||
856 | |||
857 | result_rows_yearly.append((current_datetime_utc, sub_total)) |
||
858 | sample_data.append(sub_total) |
||
859 | |||
860 | if minimum is None: |
||
861 | minimum = sub_total |
||
862 | elif minimum > sub_total: |
||
863 | minimum = sub_total |
||
864 | if maximum is None: |
||
865 | maximum = sub_total |
||
866 | elif maximum < sub_total: |
||
867 | maximum = sub_total |
||
868 | |||
869 | current_datetime_utc = next_datetime_utc |
||
870 | |||
871 | if len(sample_data) > 1: |
||
872 | mean = statistics.mean(sample_data) |
||
873 | median = statistics.median(sample_data) |
||
874 | stdev = statistics.stdev(sample_data) |
||
875 | variance = statistics.variance(sample_data) |
||
876 | |||
877 | return result_rows_yearly, mean, median, minimum, maximum, stdev, variance |
||
878 |