1
|
|
|
from datetime import datetime, timedelta |
2
|
|
|
import mysql.connector |
3
|
|
|
import collections |
4
|
|
|
from decimal import Decimal |
5
|
|
|
import config |
6
|
|
|
import statistics |
7
|
|
|
|
8
|
|
|
|
9
|
|
|
######################################################################################################################## |
10
|
|
|
# Aggregate hourly data by period |
11
|
|
|
# rows_hourly: list of (start_datetime_utc, actual_value), should belong to one energy_category_id |
12
|
|
|
# start_datetime_utc: start datetime in utc |
13
|
|
|
# end_datetime_utc: end datetime in utc |
14
|
|
|
# period_type: one of the following period types, 'hourly', 'daily', 'monthly' and 'yearly' |
15
|
|
|
# Note: this procedure doesn't work with multiple energy categories |
16
|
|
|
######################################################################################################################## |
17
|
|
|
def aggregate_hourly_data_by_period(rows_hourly, start_datetime_utc, end_datetime_utc, period_type): |
18
|
|
|
# todo: validate parameters |
19
|
|
|
start_datetime_utc = start_datetime_utc.replace(tzinfo=None) |
20
|
|
|
end_datetime_utc = end_datetime_utc.replace(tzinfo=None) |
21
|
|
|
|
22
|
|
|
if period_type == "hourly": |
23
|
|
|
result_rows_hourly = list() |
24
|
|
|
# todo: add config.working_day_start_time_local |
25
|
|
|
# todo: add config.minutes_to_count |
26
|
|
|
current_datetime_utc = start_datetime_utc.replace(minute=0, second=0, microsecond=0, tzinfo=None) |
27
|
|
|
while current_datetime_utc <= end_datetime_utc: |
28
|
|
|
subtotal = Decimal(0.0) |
29
|
|
|
for row in rows_hourly: |
30
|
|
|
if current_datetime_utc <= row[0] < current_datetime_utc + \ |
31
|
|
|
timedelta(minutes=config.minutes_to_count): |
32
|
|
|
subtotal += row[1] |
33
|
|
|
result_rows_hourly.append((current_datetime_utc, subtotal)) |
34
|
|
|
current_datetime_utc += timedelta(minutes=config.minutes_to_count) |
35
|
|
|
|
36
|
|
|
return result_rows_hourly |
37
|
|
|
|
38
|
|
|
elif period_type == "daily": |
39
|
|
|
result_rows_daily = list() |
40
|
|
|
# todo: add config.working_day_start_time_local |
41
|
|
|
# todo: add config.minutes_to_count |
42
|
|
|
# calculate the start datetime in utc of the first day in local |
43
|
|
|
start_datetime_local = start_datetime_utc + timedelta(hours=int(config.utc_offset[1:3])) |
44
|
|
|
current_datetime_utc = start_datetime_local.replace(hour=0) - timedelta(hours=int(config.utc_offset[1:3])) |
45
|
|
|
while current_datetime_utc <= end_datetime_utc: |
46
|
|
|
subtotal = Decimal(0.0) |
47
|
|
|
for row in rows_hourly: |
48
|
|
|
if current_datetime_utc <= row[0] < current_datetime_utc + timedelta(days=1): |
49
|
|
|
subtotal += row[1] |
50
|
|
|
result_rows_daily.append((current_datetime_utc, subtotal)) |
51
|
|
|
current_datetime_utc += timedelta(days=1) |
52
|
|
|
|
53
|
|
|
return result_rows_daily |
54
|
|
|
|
55
|
|
|
elif period_type == "monthly": |
56
|
|
|
result_rows_monthly = list() |
57
|
|
|
# todo: add config.working_day_start_time_local |
58
|
|
|
# todo: add config.minutes_to_count |
59
|
|
|
# calculate the start datetime in utc of the first day in the first month in local |
60
|
|
|
start_datetime_local = start_datetime_utc + timedelta(hours=int(config.utc_offset[1:3])) |
61
|
|
|
current_datetime_utc = \ |
62
|
|
|
start_datetime_local.replace(day=1, hour=0) - timedelta(hours=int(config.utc_offset[1:3])) |
63
|
|
|
|
64
|
|
|
while current_datetime_utc <= end_datetime_utc: |
65
|
|
|
# calculate the next datetime in utc |
66
|
|
View Code Duplication |
if current_datetime_utc.month == 1: |
|
|
|
|
67
|
|
|
temp_day = 28 |
68
|
|
|
ny = current_datetime_utc.year |
69
|
|
|
if (ny % 100 != 0 and ny % 4 == 0) or (ny % 100 == 0 and ny % 400 == 0): |
70
|
|
|
temp_day = 29 |
71
|
|
|
|
72
|
|
|
next_datetime_utc = datetime(year=current_datetime_utc.year, |
73
|
|
|
month=current_datetime_utc.month + 1, |
74
|
|
|
day=temp_day, |
75
|
|
|
hour=current_datetime_utc.hour, |
76
|
|
|
minute=current_datetime_utc.minute, |
77
|
|
|
second=0, |
78
|
|
|
microsecond=0, |
79
|
|
|
tzinfo=None) |
80
|
|
|
elif current_datetime_utc.month == 2: |
81
|
|
|
next_datetime_utc = datetime(year=current_datetime_utc.year, |
82
|
|
|
month=current_datetime_utc.month + 1, |
83
|
|
|
day=31, |
84
|
|
|
hour=current_datetime_utc.hour, |
85
|
|
|
minute=current_datetime_utc.minute, |
86
|
|
|
second=0, |
87
|
|
|
microsecond=0, |
88
|
|
|
tzinfo=None) |
89
|
|
|
elif current_datetime_utc.month in [3, 5, 8, 10]: |
90
|
|
|
next_datetime_utc = datetime(year=current_datetime_utc.year, |
91
|
|
|
month=current_datetime_utc.month + 1, |
92
|
|
|
day=30, |
93
|
|
|
hour=current_datetime_utc.hour, |
94
|
|
|
minute=current_datetime_utc.minute, |
95
|
|
|
second=0, |
96
|
|
|
microsecond=0, |
97
|
|
|
tzinfo=None) |
98
|
|
|
elif current_datetime_utc.month == 7: |
99
|
|
|
next_datetime_utc = datetime(year=current_datetime_utc.year, |
100
|
|
|
month=current_datetime_utc.month + 1, |
101
|
|
|
day=31, |
102
|
|
|
hour=current_datetime_utc.hour, |
103
|
|
|
minute=current_datetime_utc.minute, |
104
|
|
|
second=0, |
105
|
|
|
microsecond=0, |
106
|
|
|
tzinfo=None) |
107
|
|
|
elif current_datetime_utc.month in [4, 6, 9, 11]: |
108
|
|
|
next_datetime_utc = datetime(year=current_datetime_utc.year, |
109
|
|
|
month=current_datetime_utc.month + 1, |
110
|
|
|
day=31, |
111
|
|
|
hour=current_datetime_utc.hour, |
112
|
|
|
minute=current_datetime_utc.minute, |
113
|
|
|
second=0, |
114
|
|
|
microsecond=0, |
115
|
|
|
tzinfo=None) |
116
|
|
|
elif current_datetime_utc.month == 12: |
117
|
|
|
next_datetime_utc = datetime(year=current_datetime_utc.year + 1, |
118
|
|
|
month=1, |
119
|
|
|
day=31, |
120
|
|
|
hour=current_datetime_utc.hour, |
121
|
|
|
minute=current_datetime_utc.minute, |
122
|
|
|
second=0, |
123
|
|
|
microsecond=0, |
124
|
|
|
tzinfo=None) |
125
|
|
|
|
126
|
|
|
subtotal = Decimal(0.0) |
127
|
|
|
for row in rows_hourly: |
128
|
|
|
if current_datetime_utc <= row[0] < next_datetime_utc: |
|
|
|
|
129
|
|
|
subtotal += row[1] |
130
|
|
|
|
131
|
|
|
result_rows_monthly.append((current_datetime_utc, subtotal)) |
132
|
|
|
current_datetime_utc = next_datetime_utc |
133
|
|
|
|
134
|
|
|
return result_rows_monthly |
135
|
|
|
|
136
|
|
|
elif period_type == "yearly": |
137
|
|
|
result_rows_yearly = list() |
138
|
|
|
# todo: add config.working_day_start_time_local |
139
|
|
|
# todo: add config.minutes_to_count |
140
|
|
|
# calculate the start datetime in utc of the first day in the first month in local |
141
|
|
|
start_datetime_local = start_datetime_utc + timedelta(hours=int(config.utc_offset[1:3])) |
142
|
|
|
current_datetime_utc = start_datetime_local.replace(month=1, day=1, hour=0) - timedelta( |
143
|
|
|
hours=int(config.utc_offset[1:3])) |
144
|
|
|
|
145
|
|
|
while current_datetime_utc <= end_datetime_utc: |
146
|
|
|
# calculate the next datetime in utc |
147
|
|
|
# todo: timedelta of year |
148
|
|
|
next_datetime_utc = datetime(year=current_datetime_utc.year + 2, |
149
|
|
|
month=1, |
150
|
|
|
day=1, |
151
|
|
|
hour=current_datetime_utc.hour, |
152
|
|
|
minute=current_datetime_utc.minute, |
153
|
|
|
second=current_datetime_utc.second, |
154
|
|
|
microsecond=current_datetime_utc.microsecond, |
155
|
|
|
tzinfo=current_datetime_utc.tzinfo) - timedelta(days=1) |
156
|
|
|
subtotal = Decimal(0.0) |
157
|
|
|
for row in rows_hourly: |
158
|
|
|
if current_datetime_utc <= row[0] < next_datetime_utc: |
159
|
|
|
subtotal += row[1] |
160
|
|
|
|
161
|
|
|
result_rows_yearly.append((current_datetime_utc, subtotal)) |
162
|
|
|
current_datetime_utc = next_datetime_utc |
163
|
|
|
return result_rows_yearly |
164
|
|
|
|
165
|
|
|
|
166
|
|
|
######################################################################################################################## |
167
|
|
|
# Get tariffs by energy category |
168
|
|
|
######################################################################################################################## |
169
|
|
View Code Duplication |
def get_energy_category_tariffs(cost_center_id, energy_category_id, start_datetime_utc, end_datetime_utc): |
|
|
|
|
170
|
|
|
# todo: validate parameters |
171
|
|
|
if cost_center_id is None: |
172
|
|
|
return dict() |
173
|
|
|
|
174
|
|
|
start_datetime_utc = start_datetime_utc.replace(tzinfo=None) |
175
|
|
|
end_datetime_utc = end_datetime_utc.replace(tzinfo=None) |
176
|
|
|
|
177
|
|
|
# get timezone offset in minutes, this value will be returned to client |
178
|
|
|
timezone_offset = int(config.utc_offset[1:3]) * 60 + int(config.utc_offset[4:6]) |
179
|
|
|
if config.utc_offset[0] == '-': |
180
|
|
|
timezone_offset = -timezone_offset |
181
|
|
|
|
182
|
|
|
tariff_dict = collections.OrderedDict() |
183
|
|
|
|
184
|
|
|
cnx = None |
185
|
|
|
cursor = None |
186
|
|
|
try: |
187
|
|
|
cnx = mysql.connector.connect(**config.myems_system_db) |
188
|
|
|
cursor = cnx.cursor() |
189
|
|
|
query_tariffs = (" SELECT t.id, t.valid_from_datetime_utc, t.valid_through_datetime_utc " |
190
|
|
|
" FROM tbl_tariffs t, tbl_cost_centers_tariffs cct " |
191
|
|
|
" WHERE t.energy_category_id = %s AND " |
192
|
|
|
" t.id = cct.tariff_id AND " |
193
|
|
|
" cct.cost_center_id = %s AND " |
194
|
|
|
" t.valid_through_datetime_utc >= %s AND " |
195
|
|
|
" t.valid_from_datetime_utc <= %s " |
196
|
|
|
" ORDER BY t.valid_from_datetime_utc ") |
197
|
|
|
cursor.execute(query_tariffs, (energy_category_id, cost_center_id, start_datetime_utc, end_datetime_utc,)) |
198
|
|
|
rows_tariffs = cursor.fetchall() |
199
|
|
|
except Exception as e: |
200
|
|
|
print(str(e)) |
201
|
|
|
if cnx: |
202
|
|
|
cnx.disconnect() |
203
|
|
|
if cursor: |
204
|
|
|
cursor.close() |
205
|
|
|
return dict() |
206
|
|
|
|
207
|
|
|
if rows_tariffs is None or len(rows_tariffs) == 0: |
208
|
|
|
if cursor: |
209
|
|
|
cursor.close() |
210
|
|
|
if cnx: |
211
|
|
|
cnx.disconnect() |
212
|
|
|
return dict() |
213
|
|
|
|
214
|
|
|
for row in rows_tariffs: |
215
|
|
|
tariff_dict[row[0]] = {'valid_from_datetime_utc': row[1], |
216
|
|
|
'valid_through_datetime_utc': row[2], |
217
|
|
|
'rates': list()} |
218
|
|
|
|
219
|
|
|
try: |
220
|
|
|
query_timeofuse_tariffs = (" SELECT tariff_id, start_time_of_day, end_time_of_day, price " |
221
|
|
|
" FROM tbl_tariffs_timeofuses " |
222
|
|
|
" WHERE tariff_id IN ( " + ', '.join(map(str, tariff_dict.keys())) + ")" |
223
|
|
|
" ORDER BY tariff_id, start_time_of_day ") |
224
|
|
|
cursor.execute(query_timeofuse_tariffs, ) |
225
|
|
|
rows_timeofuse_tariffs = cursor.fetchall() |
226
|
|
|
except Exception as e: |
227
|
|
|
print(str(e)) |
228
|
|
|
if cnx: |
229
|
|
|
cnx.disconnect() |
230
|
|
|
if cursor: |
231
|
|
|
cursor.close() |
232
|
|
|
return dict() |
233
|
|
|
|
234
|
|
|
if cursor: |
235
|
|
|
cursor.close() |
236
|
|
|
if cnx: |
237
|
|
|
cnx.disconnect() |
238
|
|
|
|
239
|
|
|
if rows_timeofuse_tariffs is None or len(rows_timeofuse_tariffs) == 0: |
240
|
|
|
return dict() |
241
|
|
|
|
242
|
|
|
for row in rows_timeofuse_tariffs: |
243
|
|
|
tariff_dict[row[0]]['rates'].append({'start_time_of_day': row[1], |
244
|
|
|
'end_time_of_day': row[2], |
245
|
|
|
'price': row[3]}) |
246
|
|
|
|
247
|
|
|
result = dict() |
248
|
|
|
for tariff_id, tariff_value in tariff_dict.items(): |
249
|
|
|
current_datetime_utc = tariff_value['valid_from_datetime_utc'] |
250
|
|
|
while current_datetime_utc < tariff_value['valid_through_datetime_utc']: |
251
|
|
|
for rate in tariff_value['rates']: |
252
|
|
|
current_datetime_local = current_datetime_utc + timedelta(minutes=timezone_offset) |
253
|
|
|
seconds_since_midnight = (current_datetime_local - |
254
|
|
|
current_datetime_local.replace(hour=0, |
255
|
|
|
second=0, |
256
|
|
|
microsecond=0, |
257
|
|
|
tzinfo=None)).total_seconds() |
258
|
|
|
if rate['start_time_of_day'].total_seconds() <= \ |
259
|
|
|
seconds_since_midnight < rate['end_time_of_day'].total_seconds(): |
260
|
|
|
result[current_datetime_utc] = rate['price'] |
261
|
|
|
break |
262
|
|
|
|
263
|
|
|
# start from the next time slot |
264
|
|
|
current_datetime_utc += timedelta(minutes=config.minutes_to_count) |
265
|
|
|
|
266
|
|
|
return {k: v for k, v in result.items() if start_datetime_utc <= k <= end_datetime_utc} |
267
|
|
|
|
268
|
|
|
|
269
|
|
|
######################################################################################################################## |
270
|
|
|
# Get peak types of tariff by energy category |
271
|
|
|
# peak types: toppeak, onpeak, midpeak, offpeak |
272
|
|
|
######################################################################################################################## |
273
|
|
View Code Duplication |
def get_energy_category_peak_types(cost_center_id, energy_category_id, start_datetime_utc, end_datetime_utc): |
|
|
|
|
274
|
|
|
# todo: validate parameters |
275
|
|
|
if cost_center_id is None: |
276
|
|
|
return dict() |
277
|
|
|
|
278
|
|
|
start_datetime_utc = start_datetime_utc.replace(tzinfo=None) |
279
|
|
|
end_datetime_utc = end_datetime_utc.replace(tzinfo=None) |
280
|
|
|
|
281
|
|
|
# get timezone offset in minutes, this value will be returned to client |
282
|
|
|
timezone_offset = int(config.utc_offset[1:3]) * 60 + int(config.utc_offset[4:6]) |
283
|
|
|
if config.utc_offset[0] == '-': |
284
|
|
|
timezone_offset = -timezone_offset |
285
|
|
|
|
286
|
|
|
tariff_dict = collections.OrderedDict() |
287
|
|
|
|
288
|
|
|
cnx = None |
289
|
|
|
cursor = None |
290
|
|
|
try: |
291
|
|
|
cnx = mysql.connector.connect(**config.myems_system_db) |
292
|
|
|
cursor = cnx.cursor() |
293
|
|
|
query_tariffs = (" SELECT t.id, t.valid_from_datetime_utc, t.valid_through_datetime_utc " |
294
|
|
|
" FROM tbl_tariffs t, tbl_cost_centers_tariffs cct " |
295
|
|
|
" WHERE t.energy_category_id = %s AND " |
296
|
|
|
" t.id = cct.tariff_id AND " |
297
|
|
|
" cct.cost_center_id = %s AND " |
298
|
|
|
" t.valid_through_datetime_utc >= %s AND " |
299
|
|
|
" t.valid_from_datetime_utc <= %s " |
300
|
|
|
" ORDER BY t.valid_from_datetime_utc ") |
301
|
|
|
cursor.execute(query_tariffs, (energy_category_id, cost_center_id, start_datetime_utc, end_datetime_utc,)) |
302
|
|
|
rows_tariffs = cursor.fetchall() |
303
|
|
|
except Exception as e: |
304
|
|
|
print(str(e)) |
305
|
|
|
if cnx: |
306
|
|
|
cnx.disconnect() |
307
|
|
|
if cursor: |
308
|
|
|
cursor.close() |
309
|
|
|
return dict() |
310
|
|
|
|
311
|
|
|
if rows_tariffs is None or len(rows_tariffs) == 0: |
312
|
|
|
if cursor: |
313
|
|
|
cursor.close() |
314
|
|
|
if cnx: |
315
|
|
|
cnx.disconnect() |
316
|
|
|
return dict() |
317
|
|
|
|
318
|
|
|
for row in rows_tariffs: |
319
|
|
|
tariff_dict[row[0]] = {'valid_from_datetime_utc': row[1], |
320
|
|
|
'valid_through_datetime_utc': row[2], |
321
|
|
|
'rates': list()} |
322
|
|
|
|
323
|
|
|
try: |
324
|
|
|
query_timeofuse_tariffs = (" SELECT tariff_id, start_time_of_day, end_time_of_day, peak_type " |
325
|
|
|
" FROM tbl_tariffs_timeofuses " |
326
|
|
|
" WHERE tariff_id IN ( " + ', '.join(map(str, tariff_dict.keys())) + ")" |
327
|
|
|
" ORDER BY tariff_id, start_time_of_day ") |
328
|
|
|
cursor.execute(query_timeofuse_tariffs, ) |
329
|
|
|
rows_timeofuse_tariffs = cursor.fetchall() |
330
|
|
|
except Exception as e: |
331
|
|
|
print(str(e)) |
332
|
|
|
if cnx: |
333
|
|
|
cnx.disconnect() |
334
|
|
|
if cursor: |
335
|
|
|
cursor.close() |
336
|
|
|
return dict() |
337
|
|
|
|
338
|
|
|
if cursor: |
339
|
|
|
cursor.close() |
340
|
|
|
if cnx: |
341
|
|
|
cnx.disconnect() |
342
|
|
|
|
343
|
|
|
if rows_timeofuse_tariffs is None or len(rows_timeofuse_tariffs) == 0: |
344
|
|
|
return dict() |
345
|
|
|
|
346
|
|
|
for row in rows_timeofuse_tariffs: |
347
|
|
|
tariff_dict[row[0]]['rates'].append({'start_time_of_day': row[1], |
348
|
|
|
'end_time_of_day': row[2], |
349
|
|
|
'peak_type': row[3]}) |
350
|
|
|
|
351
|
|
|
result = dict() |
352
|
|
|
for tariff_id, tariff_value in tariff_dict.items(): |
353
|
|
|
current_datetime_utc = tariff_value['valid_from_datetime_utc'] |
354
|
|
|
while current_datetime_utc < tariff_value['valid_through_datetime_utc']: |
355
|
|
|
for rate in tariff_value['rates']: |
356
|
|
|
current_datetime_local = current_datetime_utc + timedelta(minutes=timezone_offset) |
357
|
|
|
seconds_since_midnight = (current_datetime_local - |
358
|
|
|
current_datetime_local.replace(hour=0, |
359
|
|
|
second=0, |
360
|
|
|
microsecond=0, |
361
|
|
|
tzinfo=None)).total_seconds() |
362
|
|
|
if rate['start_time_of_day'].total_seconds() <= \ |
363
|
|
|
seconds_since_midnight < rate['end_time_of_day'].total_seconds(): |
364
|
|
|
result[current_datetime_utc] = rate['peak_type'] |
365
|
|
|
break |
366
|
|
|
|
367
|
|
|
# start from the next time slot |
368
|
|
|
current_datetime_utc += timedelta(minutes=config.minutes_to_count) |
369
|
|
|
|
370
|
|
|
return {k: v for k, v in result.items() if start_datetime_utc <= k <= end_datetime_utc} |
371
|
|
|
|
372
|
|
|
|
373
|
|
|
######################################################################################################################## |
374
|
|
|
# Averaging calculator of hourly data by period |
375
|
|
|
# rows_hourly: list of (start_datetime_utc, actual_value), should belong to one energy_category_id |
376
|
|
|
# start_datetime_utc: start datetime in utc |
377
|
|
|
# end_datetime_utc: end datetime in utc |
378
|
|
|
# period_type: one of the following period types, 'hourly', 'daily', 'monthly' and 'yearly' |
379
|
|
|
# Returns: periodically data of average and maximum |
380
|
|
|
# Note: this procedure doesn't work with multiple energy categories |
381
|
|
|
######################################################################################################################## |
382
|
|
|
def averaging_hourly_data_by_period(rows_hourly, start_datetime_utc, end_datetime_utc, period_type): |
383
|
|
|
# todo: validate parameters |
384
|
|
|
start_datetime_utc = start_datetime_utc.replace(tzinfo=None) |
385
|
|
|
end_datetime_utc = end_datetime_utc.replace(tzinfo=None) |
386
|
|
|
|
387
|
|
|
if period_type == "hourly": |
388
|
|
|
result_rows_hourly = list() |
389
|
|
|
# todo: add config.working_day_start_time_local |
390
|
|
|
# todo: add config.minutes_to_count |
391
|
|
|
total = Decimal(0.0) |
392
|
|
|
maximum = None |
393
|
|
|
counter = 0 |
394
|
|
|
current_datetime_utc = start_datetime_utc.replace(minute=0, second=0, microsecond=0, tzinfo=None) |
395
|
|
View Code Duplication |
while current_datetime_utc <= end_datetime_utc: |
|
|
|
|
396
|
|
|
sub_total = Decimal(0.0) |
397
|
|
|
sub_maximum = None |
398
|
|
|
sub_counter = 0 |
399
|
|
|
for row in rows_hourly: |
400
|
|
|
if current_datetime_utc <= row[0] < current_datetime_utc + \ |
401
|
|
|
timedelta(minutes=config.minutes_to_count): |
402
|
|
|
sub_total += row[1] |
403
|
|
|
if sub_maximum is None: |
404
|
|
|
sub_maximum = row[1] |
405
|
|
|
elif sub_maximum < row[1]: |
406
|
|
|
sub_maximum = row[1] |
407
|
|
|
sub_counter += 1 |
408
|
|
|
|
409
|
|
|
sub_average = (sub_total / sub_counter) if sub_counter > 0 else None |
410
|
|
|
result_rows_hourly.append((current_datetime_utc, sub_average, sub_maximum)) |
411
|
|
|
|
412
|
|
|
total += sub_total |
413
|
|
|
counter += sub_counter |
414
|
|
|
if sub_maximum is None: |
415
|
|
|
pass |
416
|
|
|
elif maximum is None: |
417
|
|
|
maximum = sub_maximum |
418
|
|
|
elif maximum < sub_maximum: |
419
|
|
|
maximum = sub_maximum |
420
|
|
|
|
421
|
|
|
current_datetime_utc += timedelta(minutes=config.minutes_to_count) |
422
|
|
|
|
423
|
|
|
average = total / counter if counter > 0 else None |
424
|
|
|
return result_rows_hourly, average, maximum |
425
|
|
|
|
426
|
|
|
elif period_type == "daily": |
427
|
|
|
result_rows_daily = list() |
428
|
|
|
# todo: add config.working_day_start_time_local |
429
|
|
|
# todo: add config.minutes_to_count |
430
|
|
|
total = Decimal(0.0) |
431
|
|
|
maximum = None |
432
|
|
|
counter = 0 |
433
|
|
|
# calculate the start datetime in utc of the first day in local |
434
|
|
|
start_datetime_local = start_datetime_utc + timedelta(hours=int(config.utc_offset[1:3])) |
435
|
|
|
current_datetime_utc = start_datetime_local.replace(hour=0) - timedelta(hours=int(config.utc_offset[1:3])) |
436
|
|
View Code Duplication |
while current_datetime_utc <= end_datetime_utc: |
|
|
|
|
437
|
|
|
sub_total = Decimal(0.0) |
438
|
|
|
sub_maximum = None |
439
|
|
|
sub_counter = 0 |
440
|
|
|
for row in rows_hourly: |
441
|
|
|
if current_datetime_utc <= row[0] < current_datetime_utc + timedelta(days=1): |
442
|
|
|
sub_total += row[1] |
443
|
|
|
if sub_maximum is None: |
444
|
|
|
sub_maximum = row[1] |
445
|
|
|
elif sub_maximum < row[1]: |
446
|
|
|
sub_maximum = row[1] |
447
|
|
|
sub_counter += 1 |
448
|
|
|
|
449
|
|
|
sub_average = (sub_total / sub_counter) if sub_counter > 0 else None |
450
|
|
|
result_rows_daily.append((current_datetime_utc, sub_average, sub_maximum)) |
451
|
|
|
total += sub_total |
452
|
|
|
counter += sub_counter |
453
|
|
|
if sub_maximum is None: |
454
|
|
|
pass |
455
|
|
|
elif maximum is None: |
456
|
|
|
maximum = sub_maximum |
457
|
|
|
elif maximum < sub_maximum: |
458
|
|
|
maximum = sub_maximum |
459
|
|
|
current_datetime_utc += timedelta(days=1) |
460
|
|
|
|
461
|
|
|
average = total / counter if counter > 0 else None |
462
|
|
|
return result_rows_daily, average, maximum |
463
|
|
|
|
464
|
|
|
elif period_type == "monthly": |
465
|
|
|
result_rows_monthly = list() |
466
|
|
|
# todo: add config.working_day_start_time_local |
467
|
|
|
# todo: add config.minutes_to_count |
468
|
|
|
total = Decimal(0.0) |
469
|
|
|
maximum = None |
470
|
|
|
counter = 0 |
471
|
|
|
# calculate the start datetime in utc of the first day in the first month in local |
472
|
|
|
start_datetime_local = start_datetime_utc + timedelta(hours=int(config.utc_offset[1:3])) |
473
|
|
|
current_datetime_utc = \ |
474
|
|
|
start_datetime_local.replace(day=1, hour=0) - timedelta(hours=int(config.utc_offset[1:3])) |
475
|
|
|
|
476
|
|
|
while current_datetime_utc <= end_datetime_utc: |
477
|
|
|
# calculate the next datetime in utc |
478
|
|
View Code Duplication |
if current_datetime_utc.month == 1: |
|
|
|
|
479
|
|
|
temp_day = 28 |
480
|
|
|
ny = current_datetime_utc.year |
481
|
|
|
if (ny % 100 != 0 and ny % 4 == 0) or (ny % 100 == 0 and ny % 400 == 0): |
482
|
|
|
temp_day = 29 |
483
|
|
|
|
484
|
|
|
next_datetime_utc = datetime(year=current_datetime_utc.year, |
485
|
|
|
month=current_datetime_utc.month + 1, |
486
|
|
|
day=temp_day, |
487
|
|
|
hour=current_datetime_utc.hour, |
488
|
|
|
minute=current_datetime_utc.minute, |
489
|
|
|
second=0, |
490
|
|
|
microsecond=0, |
491
|
|
|
tzinfo=None) |
492
|
|
|
elif current_datetime_utc.month == 2: |
493
|
|
|
next_datetime_utc = datetime(year=current_datetime_utc.year, |
494
|
|
|
month=current_datetime_utc.month + 1, |
495
|
|
|
day=31, |
496
|
|
|
hour=current_datetime_utc.hour, |
497
|
|
|
minute=current_datetime_utc.minute, |
498
|
|
|
second=0, |
499
|
|
|
microsecond=0, |
500
|
|
|
tzinfo=None) |
501
|
|
|
elif current_datetime_utc.month in [3, 5, 8, 10]: |
502
|
|
|
next_datetime_utc = datetime(year=current_datetime_utc.year, |
503
|
|
|
month=current_datetime_utc.month + 1, |
504
|
|
|
day=30, |
505
|
|
|
hour=current_datetime_utc.hour, |
506
|
|
|
minute=current_datetime_utc.minute, |
507
|
|
|
second=0, |
508
|
|
|
microsecond=0, |
509
|
|
|
tzinfo=None) |
510
|
|
|
elif current_datetime_utc.month == 7: |
511
|
|
|
next_datetime_utc = datetime(year=current_datetime_utc.year, |
512
|
|
|
month=current_datetime_utc.month + 1, |
513
|
|
|
day=31, |
514
|
|
|
hour=current_datetime_utc.hour, |
515
|
|
|
minute=current_datetime_utc.minute, |
516
|
|
|
second=0, |
517
|
|
|
microsecond=0, |
518
|
|
|
tzinfo=None) |
519
|
|
|
elif current_datetime_utc.month in [4, 6, 9, 11]: |
520
|
|
|
next_datetime_utc = datetime(year=current_datetime_utc.year, |
521
|
|
|
month=current_datetime_utc.month + 1, |
522
|
|
|
day=31, |
523
|
|
|
hour=current_datetime_utc.hour, |
524
|
|
|
minute=current_datetime_utc.minute, |
525
|
|
|
second=0, |
526
|
|
|
microsecond=0, |
527
|
|
|
tzinfo=None) |
528
|
|
|
elif current_datetime_utc.month == 12: |
529
|
|
|
next_datetime_utc = datetime(year=current_datetime_utc.year + 1, |
530
|
|
|
month=1, |
531
|
|
|
day=31, |
532
|
|
|
hour=current_datetime_utc.hour, |
533
|
|
|
minute=current_datetime_utc.minute, |
534
|
|
|
second=0, |
535
|
|
|
microsecond=0, |
536
|
|
|
tzinfo=None) |
537
|
|
|
|
538
|
|
|
sub_total = Decimal(0.0) |
539
|
|
|
sub_maximum = None |
540
|
|
|
sub_counter = 0 |
541
|
|
|
for row in rows_hourly: |
542
|
|
|
if current_datetime_utc <= row[0] < next_datetime_utc: |
|
|
|
|
543
|
|
|
sub_total += row[1] |
544
|
|
|
if sub_maximum is None: |
545
|
|
|
sub_maximum = row[1] |
546
|
|
|
elif sub_maximum < row[1]: |
547
|
|
|
sub_maximum = row[1] |
548
|
|
|
sub_counter += 1 |
549
|
|
|
|
550
|
|
|
sub_average = (sub_total / sub_counter) if sub_counter > 0 else None |
551
|
|
|
result_rows_monthly.append((current_datetime_utc, sub_average, sub_maximum)) |
552
|
|
|
total += sub_total |
553
|
|
|
counter += sub_counter |
554
|
|
|
if sub_maximum is None: |
555
|
|
|
pass |
556
|
|
|
elif maximum is None: |
557
|
|
|
maximum = sub_maximum |
558
|
|
|
elif maximum < sub_maximum: |
559
|
|
|
maximum = sub_maximum |
560
|
|
|
current_datetime_utc = next_datetime_utc |
561
|
|
|
|
562
|
|
|
average = total / counter if counter > 0 else None |
563
|
|
|
return result_rows_monthly, average, maximum |
564
|
|
|
|
565
|
|
|
elif period_type == "yearly": |
566
|
|
|
result_rows_yearly = list() |
567
|
|
|
# todo: add config.working_day_start_time_local |
568
|
|
|
# todo: add config.minutes_to_count |
569
|
|
|
total = Decimal(0.0) |
570
|
|
|
maximum = None |
571
|
|
|
counter = 0 |
572
|
|
|
# calculate the start datetime in utc of the first day in the first month in local |
573
|
|
|
start_datetime_local = start_datetime_utc + timedelta(hours=int(config.utc_offset[1:3])) |
574
|
|
|
current_datetime_utc = start_datetime_local.replace(month=1, day=1, hour=0) - timedelta( |
575
|
|
|
hours=int(config.utc_offset[1:3])) |
576
|
|
|
|
577
|
|
|
while current_datetime_utc <= end_datetime_utc: |
578
|
|
|
# calculate the next datetime in utc |
579
|
|
|
# todo: timedelta of year |
580
|
|
|
next_datetime_utc = datetime(year=current_datetime_utc.year + 2, |
581
|
|
|
month=1, |
582
|
|
|
day=1, |
583
|
|
|
hour=current_datetime_utc.hour, |
584
|
|
|
minute=current_datetime_utc.minute, |
585
|
|
|
second=current_datetime_utc.second, |
586
|
|
|
microsecond=current_datetime_utc.microsecond, |
587
|
|
|
tzinfo=current_datetime_utc.tzinfo) - timedelta(days=1) |
588
|
|
|
sub_total = Decimal(0.0) |
589
|
|
|
sub_maximum = None |
590
|
|
|
sub_counter = 0 |
591
|
|
|
for row in rows_hourly: |
592
|
|
|
if current_datetime_utc <= row[0] < next_datetime_utc: |
593
|
|
|
sub_total += row[1] |
594
|
|
|
if sub_maximum is None: |
595
|
|
|
sub_maximum = row[1] |
596
|
|
|
elif sub_maximum < row[1]: |
597
|
|
|
sub_maximum = row[1] |
598
|
|
|
sub_counter += 1 |
599
|
|
|
|
600
|
|
|
sub_average = (sub_total / sub_counter) if sub_counter > 0 else None |
601
|
|
|
result_rows_yearly.append((current_datetime_utc, sub_average, sub_maximum)) |
602
|
|
|
total += sub_total |
603
|
|
|
counter += sub_counter |
604
|
|
|
if sub_maximum is None: |
605
|
|
|
pass |
606
|
|
|
elif maximum is None: |
607
|
|
|
maximum = sub_maximum |
608
|
|
|
elif maximum < sub_maximum: |
609
|
|
|
maximum = sub_maximum |
610
|
|
|
current_datetime_utc = next_datetime_utc |
611
|
|
|
|
612
|
|
|
average = total / counter if counter > 0 else None |
613
|
|
|
return result_rows_yearly, average, maximum |
614
|
|
|
|
615
|
|
|
|
616
|
|
|
######################################################################################################################## |
617
|
|
|
# Statistics calculator of hourly data by period |
618
|
|
|
# rows_hourly: list of (start_datetime_utc, actual_value), should belong to one energy_category_id |
619
|
|
|
# start_datetime_utc: start datetime in utc |
620
|
|
|
# end_datetime_utc: end datetime in utc |
621
|
|
|
# period_type: one of the following period types, 'hourly', 'daily', 'monthly' and 'yearly' |
622
|
|
|
# Returns: periodically data of values and statistics of mean, median, minimum, maximum, stdev and variance |
623
|
|
|
# Note: this procedure doesn't work with multiple energy categories |
624
|
|
|
######################################################################################################################## |
625
|
|
|
def statistics_hourly_data_by_period(rows_hourly, start_datetime_utc, end_datetime_utc, period_type): |
626
|
|
|
# todo: validate parameters |
627
|
|
|
start_datetime_utc = start_datetime_utc.replace(tzinfo=None) |
628
|
|
|
end_datetime_utc = end_datetime_utc.replace(tzinfo=None) |
629
|
|
|
|
630
|
|
|
if period_type == "hourly": |
631
|
|
|
result_rows_hourly = list() |
632
|
|
|
sample_data = list() |
633
|
|
|
# todo: add config.working_day_start_time_local |
634
|
|
|
# todo: add config.minutes_to_count |
635
|
|
|
counter = 0 |
636
|
|
|
mean = None |
637
|
|
|
median = None |
638
|
|
|
minimum = None |
639
|
|
|
maximum = None |
640
|
|
|
stdev = None |
641
|
|
|
variance = None |
642
|
|
|
current_datetime_utc = start_datetime_utc.replace(minute=0, second=0, microsecond=0, tzinfo=None) |
643
|
|
View Code Duplication |
while current_datetime_utc <= end_datetime_utc: |
|
|
|
|
644
|
|
|
sub_total = Decimal(0.0) |
645
|
|
|
for row in rows_hourly: |
646
|
|
|
if current_datetime_utc <= row[0] < current_datetime_utc + \ |
647
|
|
|
timedelta(minutes=config.minutes_to_count): |
648
|
|
|
sub_total += row[1] |
649
|
|
|
|
650
|
|
|
result_rows_hourly.append((current_datetime_utc, sub_total)) |
651
|
|
|
sample_data.append(sub_total) |
652
|
|
|
|
653
|
|
|
counter += 1 |
654
|
|
|
if minimum is None: |
655
|
|
|
minimum = sub_total |
656
|
|
|
elif minimum > sub_total: |
657
|
|
|
minimum = sub_total |
658
|
|
|
|
659
|
|
|
if maximum is None: |
660
|
|
|
maximum = sub_total |
661
|
|
|
elif maximum < sub_total: |
662
|
|
|
maximum = sub_total |
663
|
|
|
|
664
|
|
|
current_datetime_utc += timedelta(minutes=config.minutes_to_count) |
665
|
|
|
|
666
|
|
|
if len(sample_data) > 1: |
667
|
|
|
mean = statistics.mean(sample_data) |
668
|
|
|
median = statistics.median(sample_data) |
669
|
|
|
stdev = statistics.stdev(sample_data) |
670
|
|
|
variance = statistics.variance(sample_data) |
671
|
|
|
|
672
|
|
|
return result_rows_hourly, mean, median, minimum, maximum, stdev, variance |
673
|
|
|
|
674
|
|
|
elif period_type == "daily": |
675
|
|
|
result_rows_daily = list() |
676
|
|
|
sample_data = list() |
677
|
|
|
# todo: add config.working_day_start_time_local |
678
|
|
|
# todo: add config.minutes_to_count |
679
|
|
|
counter = 0 |
680
|
|
|
mean = None |
681
|
|
|
median = None |
682
|
|
|
minimum = None |
683
|
|
|
maximum = None |
684
|
|
|
stdev = None |
685
|
|
|
variance = None |
686
|
|
|
# calculate the start datetime in utc of the first day in local |
687
|
|
|
start_datetime_local = start_datetime_utc + timedelta(hours=int(config.utc_offset[1:3])) |
688
|
|
|
current_datetime_utc = start_datetime_local.replace(hour=0) - timedelta(hours=int(config.utc_offset[1:3])) |
689
|
|
View Code Duplication |
while current_datetime_utc <= end_datetime_utc: |
|
|
|
|
690
|
|
|
sub_total = Decimal(0.0) |
691
|
|
|
for row in rows_hourly: |
692
|
|
|
if current_datetime_utc <= row[0] < current_datetime_utc + timedelta(days=1): |
693
|
|
|
sub_total += row[1] |
694
|
|
|
|
695
|
|
|
result_rows_daily.append((current_datetime_utc, sub_total)) |
696
|
|
|
sample_data.append(sub_total) |
697
|
|
|
|
698
|
|
|
counter += 1 |
699
|
|
|
if minimum is None: |
700
|
|
|
minimum = sub_total |
701
|
|
|
elif minimum > sub_total: |
702
|
|
|
minimum = sub_total |
703
|
|
|
|
704
|
|
|
if maximum is None: |
705
|
|
|
maximum = sub_total |
706
|
|
|
elif maximum < sub_total: |
707
|
|
|
maximum = sub_total |
708
|
|
|
current_datetime_utc += timedelta(days=1) |
709
|
|
|
|
710
|
|
|
if len(sample_data) > 1: |
711
|
|
|
mean = statistics.mean(sample_data) |
712
|
|
|
median = statistics.median(sample_data) |
713
|
|
|
stdev = statistics.stdev(sample_data) |
714
|
|
|
variance = statistics.variance(sample_data) |
715
|
|
|
|
716
|
|
|
return result_rows_daily, mean, median, minimum, maximum, stdev, variance |
717
|
|
|
|
718
|
|
|
elif period_type == "monthly": |
719
|
|
|
result_rows_monthly = list() |
720
|
|
|
sample_data = list() |
721
|
|
|
# todo: add config.working_day_start_time_local |
722
|
|
|
# todo: add config.minutes_to_count |
723
|
|
|
counter = 0 |
724
|
|
|
mean = None |
725
|
|
|
median = None |
726
|
|
|
minimum = None |
727
|
|
|
maximum = None |
728
|
|
|
stdev = None |
729
|
|
|
variance = None |
730
|
|
|
# calculate the start datetime in utc of the first day in the first month in local |
731
|
|
|
start_datetime_local = start_datetime_utc + timedelta(hours=int(config.utc_offset[1:3])) |
732
|
|
|
current_datetime_utc = \ |
733
|
|
|
start_datetime_local.replace(day=1, hour=0) - timedelta(hours=int(config.utc_offset[1:3])) |
734
|
|
|
|
735
|
|
|
while current_datetime_utc <= end_datetime_utc: |
736
|
|
|
# calculate the next datetime in utc |
737
|
|
View Code Duplication |
if current_datetime_utc.month == 1: |
|
|
|
|
738
|
|
|
temp_day = 28 |
739
|
|
|
ny = current_datetime_utc.year |
740
|
|
|
if (ny % 100 != 0 and ny % 4 == 0) or (ny % 100 == 0 and ny % 400 == 0): |
741
|
|
|
temp_day = 29 |
742
|
|
|
|
743
|
|
|
next_datetime_utc = datetime(year=current_datetime_utc.year, |
744
|
|
|
month=current_datetime_utc.month + 1, |
745
|
|
|
day=temp_day, |
746
|
|
|
hour=current_datetime_utc.hour, |
747
|
|
|
minute=current_datetime_utc.minute, |
748
|
|
|
second=0, |
749
|
|
|
microsecond=0, |
750
|
|
|
tzinfo=None) |
751
|
|
|
elif current_datetime_utc.month == 2: |
752
|
|
|
next_datetime_utc = datetime(year=current_datetime_utc.year, |
753
|
|
|
month=current_datetime_utc.month + 1, |
754
|
|
|
day=31, |
755
|
|
|
hour=current_datetime_utc.hour, |
756
|
|
|
minute=current_datetime_utc.minute, |
757
|
|
|
second=0, |
758
|
|
|
microsecond=0, |
759
|
|
|
tzinfo=None) |
760
|
|
|
elif current_datetime_utc.month in [3, 5, 8, 10]: |
761
|
|
|
next_datetime_utc = datetime(year=current_datetime_utc.year, |
762
|
|
|
month=current_datetime_utc.month + 1, |
763
|
|
|
day=30, |
764
|
|
|
hour=current_datetime_utc.hour, |
765
|
|
|
minute=current_datetime_utc.minute, |
766
|
|
|
second=0, |
767
|
|
|
microsecond=0, |
768
|
|
|
tzinfo=None) |
769
|
|
|
elif current_datetime_utc.month == 7: |
770
|
|
|
next_datetime_utc = datetime(year=current_datetime_utc.year, |
771
|
|
|
month=current_datetime_utc.month + 1, |
772
|
|
|
day=31, |
773
|
|
|
hour=current_datetime_utc.hour, |
774
|
|
|
minute=current_datetime_utc.minute, |
775
|
|
|
second=0, |
776
|
|
|
microsecond=0, |
777
|
|
|
tzinfo=None) |
778
|
|
|
elif current_datetime_utc.month in [4, 6, 9, 11]: |
779
|
|
|
next_datetime_utc = datetime(year=current_datetime_utc.year, |
780
|
|
|
month=current_datetime_utc.month + 1, |
781
|
|
|
day=31, |
782
|
|
|
hour=current_datetime_utc.hour, |
783
|
|
|
minute=current_datetime_utc.minute, |
784
|
|
|
second=0, |
785
|
|
|
microsecond=0, |
786
|
|
|
tzinfo=None) |
787
|
|
|
elif current_datetime_utc.month == 12: |
788
|
|
|
next_datetime_utc = datetime(year=current_datetime_utc.year + 1, |
789
|
|
|
month=1, |
790
|
|
|
day=31, |
791
|
|
|
hour=current_datetime_utc.hour, |
792
|
|
|
minute=current_datetime_utc.minute, |
793
|
|
|
second=0, |
794
|
|
|
microsecond=0, |
795
|
|
|
tzinfo=None) |
796
|
|
|
|
797
|
|
|
sub_total = Decimal(0.0) |
798
|
|
|
for row in rows_hourly: |
799
|
|
|
if current_datetime_utc <= row[0] < next_datetime_utc: |
|
|
|
|
800
|
|
|
sub_total += row[1] |
801
|
|
|
|
802
|
|
|
result_rows_monthly.append((current_datetime_utc, sub_total)) |
803
|
|
|
sample_data.append(sub_total) |
804
|
|
|
|
805
|
|
|
counter += 1 |
806
|
|
|
if minimum is None: |
807
|
|
|
minimum = sub_total |
808
|
|
|
elif minimum > sub_total: |
809
|
|
|
minimum = sub_total |
810
|
|
|
|
811
|
|
|
if maximum is None: |
812
|
|
|
maximum = sub_total |
813
|
|
|
elif maximum < sub_total: |
814
|
|
|
maximum = sub_total |
815
|
|
|
current_datetime_utc = next_datetime_utc |
816
|
|
|
|
817
|
|
|
if len(sample_data) > 1: |
818
|
|
|
mean = statistics.mean(sample_data) |
819
|
|
|
median = statistics.median(sample_data) |
820
|
|
|
stdev = statistics.stdev(sample_data) |
821
|
|
|
variance = statistics.variance(sample_data) |
822
|
|
|
|
823
|
|
|
return result_rows_monthly, mean, median, minimum, maximum, stdev, variance |
824
|
|
|
|
825
|
|
|
elif period_type == "yearly": |
826
|
|
|
result_rows_yearly = list() |
827
|
|
|
sample_data = list() |
828
|
|
|
# todo: add config.working_day_start_time_local |
829
|
|
|
# todo: add config.minutes_to_count |
830
|
|
|
mean = None |
831
|
|
|
median = None |
832
|
|
|
minimum = None |
833
|
|
|
maximum = None |
834
|
|
|
stdev = None |
835
|
|
|
variance = None |
836
|
|
|
# calculate the start datetime in utc of the first day in the first month in local |
837
|
|
|
start_datetime_local = start_datetime_utc + timedelta(hours=int(config.utc_offset[1:3])) |
838
|
|
|
current_datetime_utc = start_datetime_local.replace(month=1, day=1, hour=0) - timedelta( |
839
|
|
|
hours=int(config.utc_offset[1:3])) |
840
|
|
|
|
841
|
|
|
while current_datetime_utc <= end_datetime_utc: |
842
|
|
|
# calculate the next datetime in utc |
843
|
|
|
# todo: timedelta of year |
844
|
|
|
next_datetime_utc = datetime(year=current_datetime_utc.year + 2, |
845
|
|
|
month=1, |
846
|
|
|
day=1, |
847
|
|
|
hour=current_datetime_utc.hour, |
848
|
|
|
minute=current_datetime_utc.minute, |
849
|
|
|
second=current_datetime_utc.second, |
850
|
|
|
microsecond=current_datetime_utc.microsecond, |
851
|
|
|
tzinfo=current_datetime_utc.tzinfo) - timedelta(days=1) |
852
|
|
|
sub_total = Decimal(0.0) |
853
|
|
|
for row in rows_hourly: |
854
|
|
|
if current_datetime_utc <= row[0] < next_datetime_utc: |
855
|
|
|
sub_total += row[1] |
856
|
|
|
|
857
|
|
|
result_rows_yearly.append((current_datetime_utc, sub_total)) |
858
|
|
|
sample_data.append(sub_total) |
859
|
|
|
|
860
|
|
|
if minimum is None: |
861
|
|
|
minimum = sub_total |
862
|
|
|
elif minimum > sub_total: |
863
|
|
|
minimum = sub_total |
864
|
|
|
if maximum is None: |
865
|
|
|
maximum = sub_total |
866
|
|
|
elif maximum < sub_total: |
867
|
|
|
maximum = sub_total |
868
|
|
|
|
869
|
|
|
current_datetime_utc = next_datetime_utc |
870
|
|
|
|
871
|
|
|
if len(sample_data) > 1: |
872
|
|
|
mean = statistics.mean(sample_data) |
873
|
|
|
median = statistics.median(sample_data) |
874
|
|
|
stdev = statistics.stdev(sample_data) |
875
|
|
|
variance = statistics.variance(sample_data) |
876
|
|
|
|
877
|
|
|
return result_rows_yearly, mean, median, minimum, maximum, stdev, variance |
878
|
|
|
|