1
|
|
|
import os |
2
|
|
|
import logging |
3
|
|
|
import pdb |
4
|
|
|
import time |
5
|
|
|
import random |
6
|
|
|
import string |
7
|
|
|
import json |
8
|
|
|
import csv |
9
|
|
|
from multiprocessing import Process |
10
|
|
|
import numpy as np |
11
|
|
|
import concurrent.futures |
12
|
|
|
from client import MilvusClient |
13
|
|
|
import utils |
14
|
|
|
import parser |
15
|
|
|
from runner import Runner |
16
|
|
|
|
17
|
|
|
DELETE_INTERVAL_TIME = 5 |
18
|
|
|
INSERT_INTERVAL = 50000 |
19
|
|
|
logger = logging.getLogger("milvus_benchmark.local_runner") |
20
|
|
|
|
21
|
|
|
|
22
|
|
|
class LocalRunner(Runner): |
23
|
|
|
def __init__(self, host, port): |
24
|
|
|
""" |
25
|
|
|
Run tests at local mode. |
26
|
|
|
|
27
|
|
|
Make sure the server has started |
28
|
|
|
""" |
29
|
|
|
super(LocalRunner, self).__init__() |
30
|
|
|
self.host = host |
31
|
|
|
self.port = port |
32
|
|
|
|
33
|
|
|
def run(self, run_type, collection): |
34
|
|
|
logger.debug(run_type) |
35
|
|
|
logger.debug(collection) |
36
|
|
|
collection_name = collection["collection_name"] if "collection_name" in collection else None |
37
|
|
|
milvus_instance = MilvusClient(collection_name=collection_name, host=self.host, port=self.port) |
38
|
|
|
logger.info(milvus_instance.show_collections()) |
39
|
|
|
env_value = milvus_instance.get_server_config() |
40
|
|
|
logger.debug(env_value) |
41
|
|
|
|
42
|
|
|
if run_type in ["insert_performance", "insert_flush_performance"]: |
43
|
|
|
(data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) |
44
|
|
|
ni_per = collection["ni_per"] |
45
|
|
|
build_index = collection["build_index"] |
46
|
|
|
if milvus_instance.exists_collection(): |
47
|
|
|
milvus_instance.drop() |
48
|
|
|
time.sleep(10) |
49
|
|
|
milvus_instance.create_collection(collection_name, dimension, index_file_size, metric_type) |
50
|
|
|
if build_index is True: |
51
|
|
|
index_type = collection["index_type"] |
52
|
|
|
index_param = collection["index_param"] |
53
|
|
|
milvus_instance.create_index(index_type, index_param) |
54
|
|
|
logger.debug(milvus_instance.describe_index()) |
55
|
|
|
res = self.do_insert(milvus_instance, collection_name, data_type, dimension, collection_size, ni_per) |
56
|
|
|
milvus_instance.flush() |
57
|
|
|
logger.debug("Table row counts: %d" % milvus_instance.count()) |
58
|
|
|
if build_index is True: |
59
|
|
|
logger.debug("Start build index for last file") |
60
|
|
|
milvus_instance.create_index(index_type, index_param) |
|
|
|
|
61
|
|
|
logger.debug(milvus_instance.describe_index()) |
62
|
|
|
|
63
|
|
|
elif run_type == "delete_performance": |
64
|
|
|
(data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) |
65
|
|
|
ni_per = collection["ni_per"] |
66
|
|
|
if not milvus_instance.exists_collection(): |
67
|
|
|
logger.error(milvus_instance.show_collections()) |
68
|
|
|
logger.warning("Table: %s not found" % collection_name) |
69
|
|
|
return |
70
|
|
|
length = milvus_instance.count() |
71
|
|
|
ids = [i for i in range(length)] |
72
|
|
|
loops = int(length / ni_per) |
73
|
|
|
for i in range(loops): |
74
|
|
|
delete_ids = ids[i*ni_per : i*ni_per+ni_per] |
75
|
|
|
logger.debug("Delete %d - %d" % (delete_ids[0], delete_ids[-1])) |
76
|
|
|
milvus_instance.delete(delete_ids) |
77
|
|
|
milvus_instance.flush() |
78
|
|
|
logger.debug("Table row counts: %d" % milvus_instance.count()) |
79
|
|
|
logger.debug("Table row counts: %d" % milvus_instance.count()) |
80
|
|
|
milvus_instance.flush() |
81
|
|
|
logger.debug("Table row counts: %d" % milvus_instance.count()) |
82
|
|
|
|
83
|
|
|
elif run_type == "build_performance": |
84
|
|
|
(data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) |
85
|
|
|
index_type = collection["index_type"] |
86
|
|
|
index_param = collection["index_param"] |
87
|
|
|
if not milvus_instance.exists_collection(): |
88
|
|
|
logger.error("Table name: %s not existed" % collection_name) |
89
|
|
|
return |
90
|
|
|
search_params = {} |
91
|
|
|
start_time = time.time() |
92
|
|
|
# drop index |
93
|
|
|
logger.debug("Drop index") |
94
|
|
|
milvus_instance.drop_index() |
95
|
|
|
start_mem_usage = milvus_instance.get_mem_info()["memory_used"] |
96
|
|
|
milvus_instance.create_index(index_type, index_param) |
97
|
|
|
logger.debug(milvus_instance.describe_index()) |
98
|
|
|
logger.debug("Table row counts: %d" % milvus_instance.count()) |
99
|
|
|
end_time = time.time() |
100
|
|
|
end_mem_usage = milvus_instance.get_mem_info()["memory_used"] |
101
|
|
|
logger.debug("Diff memory: %s, current memory usage: %s, build time: %s" % ((end_mem_usage - start_mem_usage), end_mem_usage, round(end_time - start_time, 1))) |
102
|
|
|
|
103
|
|
|
elif run_type == "search_performance": |
104
|
|
|
(data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) |
105
|
|
|
run_count = collection["run_count"] |
106
|
|
|
top_ks = collection["top_ks"] |
107
|
|
|
nqs = collection["nqs"] |
108
|
|
|
search_params = collection["search_params"] |
109
|
|
|
# for debugging |
110
|
|
|
# time.sleep(3600) |
111
|
|
|
if not milvus_instance.exists_collection(): |
112
|
|
|
logger.error("Table name: %s not existed" % collection_name) |
113
|
|
|
return |
114
|
|
|
logger.info(milvus_instance.count()) |
115
|
|
|
result = milvus_instance.describe_index() |
116
|
|
|
logger.info(result) |
117
|
|
|
milvus_instance.preload_collection() |
118
|
|
|
mem_usage = milvus_instance.get_mem_info()["memory_used"] |
119
|
|
|
logger.info(mem_usage) |
120
|
|
|
for search_param in search_params: |
121
|
|
|
logger.info("Search param: %s" % json.dumps(search_param)) |
122
|
|
|
res = self.do_query(milvus_instance, collection_name, top_ks, nqs, run_count, search_param) |
123
|
|
|
headers = ["Nq/Top-k"] |
124
|
|
|
headers.extend([str(top_k) for top_k in top_ks]) |
125
|
|
|
logger.info("Search param: %s" % json.dumps(search_param)) |
126
|
|
|
utils.print_table(headers, nqs, res) |
127
|
|
|
mem_usage = milvus_instance.get_mem_info()["memory_used"] |
128
|
|
|
logger.info(mem_usage) |
129
|
|
|
|
130
|
|
|
elif run_type == "locust_search_performance": |
131
|
|
|
(data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) |
132
|
|
|
### spawn locust requests |
133
|
|
|
collection_num = collection["collection_num"] |
134
|
|
|
task = collection["task"] |
135
|
|
|
#. generate task code |
136
|
|
|
task_file = utils.get_unique_name() |
137
|
|
|
task_file_script = task_file+'.py' |
138
|
|
|
task_file_csv = task_file+'_stats.csv' |
139
|
|
|
task_type = task["type"] |
140
|
|
|
connection_type = "single" |
141
|
|
|
connection_num = task["connection_num"] |
142
|
|
|
if connection_num > 1: |
143
|
|
|
connection_type = "multi" |
144
|
|
|
clients_num = task["clients_num"] |
145
|
|
|
hatch_rate = task["hatch_rate"] |
146
|
|
|
during_time = task["during_time"] |
147
|
|
|
def_name = task_type |
148
|
|
|
task_params = task["params"] |
149
|
|
|
collection_names = [] |
150
|
|
|
for i in range(collection_num): |
151
|
|
|
suffix = "".join(random.choice(string.ascii_letters + string.digits) for _ in range(5)) |
152
|
|
|
collection_names.append(collection_name + "_" + suffix) |
153
|
|
|
# collection_names = ['sift_1m_1024_128_l2_Kg6co', 'sift_1m_1024_128_l2_egkBK', 'sift_1m_1024_128_l2_D0wtE', |
154
|
|
|
# 'sift_1m_1024_128_l2_9naps', 'sift_1m_1024_128_l2_iJ0jj', 'sift_1m_1024_128_l2_nqUTm', |
155
|
|
|
# 'sift_1m_1024_128_l2_GIF0D', 'sift_1m_1024_128_l2_EL2qk', 'sift_1m_1024_128_l2_qLRnC', |
156
|
|
|
# 'sift_1m_1024_128_l2_8Ditg'] |
157
|
|
|
# ##### |
158
|
|
|
ni_per = collection["ni_per"] |
159
|
|
|
build_index = collection["build_index"] |
160
|
|
|
for c_name in collection_names: |
161
|
|
|
milvus_instance = MilvusClient(collection_name=c_name, host=self.host, port=self.port) |
162
|
|
|
if milvus_instance.exists_collection(collection_name=c_name): |
163
|
|
|
milvus_instance.drop(name=c_name) |
164
|
|
|
time.sleep(10) |
165
|
|
|
milvus_instance.create_collection(c_name, dimension, index_file_size, metric_type) |
166
|
|
|
if build_index is True: |
167
|
|
|
index_type = collection["index_type"] |
168
|
|
|
index_param = collection["index_param"] |
169
|
|
|
milvus_instance.create_index(index_type, index_param) |
170
|
|
|
logger.debug(milvus_instance.describe_index()) |
171
|
|
|
res = self.do_insert(milvus_instance, c_name, data_type, dimension, collection_size, ni_per) |
172
|
|
|
milvus_instance.flush() |
173
|
|
|
logger.debug("Table row counts: %d" % milvus_instance.count(name=c_name)) |
174
|
|
|
if build_index is True: |
175
|
|
|
logger.debug("Start build index for last file") |
176
|
|
|
milvus_instance.create_index(index_type, index_param) |
177
|
|
|
logger.debug(milvus_instance.describe_index()) |
178
|
|
|
code_str = """ |
179
|
|
|
import random |
180
|
|
|
import string |
181
|
|
|
from locust import User, task, between |
182
|
|
|
from locust_task import MilvusTask |
183
|
|
|
from client import MilvusClient |
184
|
|
|
|
185
|
|
|
host = '%s' |
186
|
|
|
port = %s |
187
|
|
|
dim = %s |
188
|
|
|
connection_type = '%s' |
189
|
|
|
collection_names = %s |
190
|
|
|
m = MilvusClient(host=host, port=port) |
191
|
|
|
|
192
|
|
|
|
193
|
|
|
def get_collection_name(): |
194
|
|
|
return random.choice(collection_names) |
195
|
|
|
|
196
|
|
|
|
197
|
|
|
def get_client(collection_name): |
198
|
|
|
if connection_type == 'single': |
199
|
|
|
return MilvusTask(m=m) |
200
|
|
|
elif connection_type == 'multi': |
201
|
|
|
return MilvusTask(connection_type='multi', host=host, port=port, collection_name=collection_name) |
202
|
|
|
|
203
|
|
|
|
204
|
|
|
class QueryTask(User): |
205
|
|
|
wait_time = between(0.001, 0.002) |
206
|
|
|
|
207
|
|
|
@task() |
208
|
|
|
def %s(self): |
209
|
|
|
top_k = %s |
210
|
|
|
X = [[random.random() for i in range(dim)] for i in range(%s)] |
211
|
|
|
search_param = %s |
212
|
|
|
collection_name = get_collection_name() |
213
|
|
|
print(collection_name) |
214
|
|
|
client = get_client(collection_name) |
215
|
|
|
client.query(X, top_k, search_param, collection_name=collection_name) |
216
|
|
|
""" % (self.host, self.port, dimension, connection_type, collection_names, def_name, task_params["top_k"], task_params["nq"], task_params["search_param"]) |
217
|
|
|
with open(task_file_script, 'w+') as fd: |
218
|
|
|
fd.write(code_str) |
219
|
|
|
locust_cmd = "locust -f %s --headless --csv=%s -u %d -r %d -t %s" % ( |
220
|
|
|
task_file_script, |
221
|
|
|
task_file, |
222
|
|
|
clients_num, |
223
|
|
|
hatch_rate, |
224
|
|
|
during_time) |
225
|
|
|
logger.info(locust_cmd) |
226
|
|
|
try: |
227
|
|
|
res = os.system(locust_cmd) |
228
|
|
|
except Exception as e: |
229
|
|
|
logger.error(str(e)) |
230
|
|
|
return |
231
|
|
|
#. retrieve and collect test statistics |
232
|
|
|
metric = None |
233
|
|
|
with open(task_file_csv, newline='') as fd: |
234
|
|
|
dr = csv.DictReader(fd) |
235
|
|
|
for row in dr: |
236
|
|
|
if row["Name"] != "Aggregated": |
237
|
|
|
continue |
238
|
|
|
metric = row |
239
|
|
|
logger.info(metric) |
240
|
|
|
# clean up temp files |
241
|
|
|
|
242
|
|
|
elif run_type == "search_ids_stability": |
243
|
|
|
(data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) |
244
|
|
|
search_params = collection["search_params"] |
245
|
|
|
during_time = collection["during_time"] |
246
|
|
|
ids_length = collection["ids_length"] |
247
|
|
|
ids = collection["ids"] |
248
|
|
|
logger.info(milvus_instance.count()) |
249
|
|
|
index_info = milvus_instance.describe_index() |
250
|
|
|
logger.info(index_info) |
251
|
|
|
g_top_k = int(collection["top_ks"].split("-")[1]) |
252
|
|
|
l_top_k = int(collection["top_ks"].split("-")[0]) |
253
|
|
|
g_id = int(ids.split("-")[1]) |
254
|
|
|
l_id = int(ids.split("-")[0]) |
255
|
|
|
g_id_length = int(ids_length.split("-")[1]) |
256
|
|
|
l_id_length = int(ids_length.split("-")[0]) |
257
|
|
|
|
258
|
|
|
milvus_instance.preload_collection() |
259
|
|
|
start_mem_usage = milvus_instance.get_mem_info()["memory_used"] |
260
|
|
|
logger.debug(start_mem_usage) |
261
|
|
|
start_time = time.time() |
262
|
|
|
while time.time() < start_time + during_time * 60: |
263
|
|
|
search_param = {} |
264
|
|
|
top_k = random.randint(l_top_k, g_top_k) |
265
|
|
|
ids_num = random.randint(l_id_length, g_id_length) |
266
|
|
|
l_ids = random.randint(l_id, g_id-ids_num) |
267
|
|
|
# ids_param = [random.randint(l_id_length, g_id_length) for _ in range(ids_num)] |
268
|
|
|
ids_param = [id for id in range(l_ids, l_ids+ids_num)] |
269
|
|
|
for k, v in search_params.items(): |
270
|
|
|
search_param[k] = random.randint(int(v.split("-")[0]), int(v.split("-")[1])) |
271
|
|
|
logger.debug("Query top-k: %d, ids_num: %d, param: %s" % (top_k, ids_num, json.dumps(search_param))) |
272
|
|
|
result = milvus_instance.query_ids(top_k, ids_param, search_param=search_param) |
273
|
|
|
end_mem_usage = milvus_instance.get_mem_info()["memory_used"] |
274
|
|
|
metrics = { |
275
|
|
|
"during_time": during_time, |
276
|
|
|
"start_mem_usage": start_mem_usage, |
277
|
|
|
"end_mem_usage": end_mem_usage, |
278
|
|
|
"diff_mem": end_mem_usage - start_mem_usage, |
279
|
|
|
} |
280
|
|
|
logger.info(metrics) |
281
|
|
|
|
282
|
|
|
elif run_type == "search_performance_concurrents": |
283
|
|
|
data_type, dimension, metric_type = parser.parse_ann_collection_name(collection_name) |
284
|
|
|
hdf5_source_file = collection["source_file"] |
285
|
|
|
use_single_connection = collection["use_single_connection"] |
286
|
|
|
concurrents = collection["concurrents"] |
287
|
|
|
top_ks = collection["top_ks"] |
288
|
|
|
nqs = collection["nqs"] |
289
|
|
|
search_params = self.generate_combinations(collection["search_params"]) |
290
|
|
|
if not milvus_instance.exists_collection(): |
291
|
|
|
logger.error("Table name: %s not existed" % collection_name) |
292
|
|
|
return |
293
|
|
|
logger.info(milvus_instance.count()) |
294
|
|
|
result = milvus_instance.describe_index() |
295
|
|
|
logger.info(result) |
296
|
|
|
milvus_instance.preload_collection() |
297
|
|
|
dataset = utils.get_dataset(hdf5_source_file) |
298
|
|
|
for concurrent_num in concurrents: |
299
|
|
|
top_k = top_ks[0] |
300
|
|
|
for nq in nqs: |
301
|
|
|
mem_usage = milvus_instance.get_mem_info()["memory_used"] |
302
|
|
|
logger.info(mem_usage) |
303
|
|
|
query_vectors = self.normalize(metric_type, np.array(dataset["test"][:nq])) |
304
|
|
|
logger.debug(search_params) |
305
|
|
|
for search_param in search_params: |
306
|
|
|
logger.info("Search param: %s" % json.dumps(search_param)) |
307
|
|
|
total_time = 0.0 |
308
|
|
|
if use_single_connection is True: |
309
|
|
|
connections = [MilvusClient(collection_name=collection_name, host=self.host, port=self.port)] |
310
|
|
|
with concurrent.futures.ThreadPoolExecutor(max_workers=concurrent_num) as executor: |
311
|
|
|
future_results = {executor.submit( |
312
|
|
|
self.do_query_qps, connections[0], query_vectors, top_k, search_param=search_param) : index for index in range(concurrent_num)} |
313
|
|
|
else: |
314
|
|
|
connections = [MilvusClient(collection_name=collection_name, host=self.hos, port=self.port) for i in range(concurrent_num)] |
315
|
|
|
with concurrent.futures.ThreadPoolExecutor(max_workers=concurrent_num) as executor: |
316
|
|
|
future_results = {executor.submit( |
317
|
|
|
self.do_query_qps, connections[index], query_vectors, top_k, search_param=search_param) : index for index in range(concurrent_num)} |
318
|
|
|
for future in concurrent.futures.as_completed(future_results): |
319
|
|
|
total_time = total_time + future.result() |
320
|
|
|
qps_value = total_time / concurrent_num |
321
|
|
|
logger.debug("QPS value: %f, total_time: %f, request_nums: %f" % (qps_value, total_time, concurrent_num)) |
322
|
|
|
mem_usage = milvus_instance.get_mem_info()["memory_used"] |
323
|
|
|
logger.info(mem_usage) |
324
|
|
|
|
325
|
|
|
elif run_type == "ann_accuracy": |
326
|
|
|
hdf5_source_file = collection["source_file"] |
327
|
|
|
collection_name = collection["collection_name"] |
328
|
|
|
index_file_sizes = collection["index_file_sizes"] |
329
|
|
|
index_types = collection["index_types"] |
330
|
|
|
index_params = collection["index_params"] |
331
|
|
|
top_ks = collection["top_ks"] |
332
|
|
|
nqs = collection["nqs"] |
333
|
|
|
search_params = collection["search_params"] |
334
|
|
|
# mapping to search param list |
335
|
|
|
search_params = self.generate_combinations(search_params) |
336
|
|
|
# mapping to index param list |
337
|
|
|
index_params = self.generate_combinations(index_params) |
338
|
|
|
|
339
|
|
|
data_type, dimension, metric_type = parser.parse_ann_collection_name(collection_name) |
340
|
|
|
dataset = utils.get_dataset(hdf5_source_file) |
341
|
|
|
if milvus_instance.exists_collection(collection_name): |
342
|
|
|
logger.info("Re-create collection: %s" % collection_name) |
343
|
|
|
milvus_instance.drop() |
344
|
|
|
time.sleep(DELETE_INTERVAL_TIME) |
345
|
|
|
true_ids = np.array(dataset["neighbors"]) |
346
|
|
|
for index_file_size in index_file_sizes: |
347
|
|
|
milvus_instance.create_collection(collection_name, dimension, index_file_size, metric_type) |
348
|
|
|
logger.info(milvus_instance.describe()) |
349
|
|
|
insert_vectors = self.normalize(metric_type, np.array(dataset["train"])) |
350
|
|
|
logger.debug(len(insert_vectors)) |
351
|
|
|
# Insert batch once |
352
|
|
|
# milvus_instance.insert(insert_vectors) |
353
|
|
|
loops = len(insert_vectors) // INSERT_INTERVAL + 1 |
354
|
|
|
for i in range(loops): |
355
|
|
|
start = i*INSERT_INTERVAL |
356
|
|
|
end = min((i+1)*INSERT_INTERVAL, len(insert_vectors)) |
357
|
|
|
tmp_vectors = insert_vectors[start:end] |
358
|
|
|
if start < end: |
359
|
|
|
if not isinstance(tmp_vectors, list): |
360
|
|
|
milvus_instance.insert(tmp_vectors.tolist(), ids=[i for i in range(start, end)]) |
361
|
|
|
else: |
362
|
|
|
milvus_instance.insert(tmp_vectors, ids=[i for i in range(start, end)]) |
363
|
|
|
milvus_instance.flush() |
364
|
|
|
logger.info("Table: %s, row count: %s" % (collection_name, milvus_instance.count())) |
365
|
|
|
if milvus_instance.count() != len(insert_vectors): |
366
|
|
|
logger.error("Table row count is not equal to insert vectors") |
367
|
|
|
return |
368
|
|
|
for index_type in index_types: |
369
|
|
|
for index_param in index_params: |
370
|
|
|
logger.debug("Building index with param: %s" % json.dumps(index_param)) |
371
|
|
|
milvus_instance.create_index(index_type, index_param=index_param) |
372
|
|
|
logger.info(milvus_instance.describe_index()) |
373
|
|
|
logger.info("Start preload collection: %s" % collection_name) |
374
|
|
|
milvus_instance.preload_collection() |
375
|
|
|
for search_param in search_params: |
376
|
|
|
for nq in nqs: |
377
|
|
|
query_vectors = self.normalize(metric_type, np.array(dataset["test"][:nq])) |
378
|
|
|
for top_k in top_ks: |
379
|
|
|
logger.debug("Search nq: %d, top-k: %d, search_param: %s" % (nq, top_k, json.dumps(search_param))) |
380
|
|
|
if not isinstance(query_vectors, list): |
381
|
|
|
result = milvus_instance.query(query_vectors.tolist(), top_k, search_param=search_param) |
382
|
|
|
else: |
383
|
|
|
result = milvus_instance.query(query_vectors, top_k, search_param=search_param) |
384
|
|
|
result_ids = result.id_array |
385
|
|
|
acc_value = self.get_recall_value(true_ids[:nq, :top_k].tolist(), result_ids) |
386
|
|
|
logger.info("Query ann_accuracy: %s" % acc_value) |
387
|
|
|
|
388
|
|
|
|
389
|
|
|
elif run_type == "stability": |
390
|
|
|
(data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) |
391
|
|
|
search_params = collection["search_params"] |
392
|
|
|
insert_xb = collection["insert_xb"] |
393
|
|
|
insert_interval = collection["insert_interval"] |
394
|
|
|
delete_xb = collection["delete_xb"] |
395
|
|
|
# flush_interval = collection["flush_interval"] |
396
|
|
|
# compact_interval = collection["compact_interval"] |
397
|
|
|
during_time = collection["during_time"] |
398
|
|
|
if not milvus_instance.exists_collection(): |
399
|
|
|
logger.error(milvus_instance.show_collections()) |
400
|
|
|
logger.error("Table name: %s not existed" % collection_name) |
401
|
|
|
return |
402
|
|
|
g_top_k = int(collection["top_ks"].split("-")[1]) |
403
|
|
|
g_nq = int(collection["nqs"].split("-")[1]) |
404
|
|
|
l_top_k = int(collection["top_ks"].split("-")[0]) |
405
|
|
|
l_nq = int(collection["nqs"].split("-")[0]) |
406
|
|
|
milvus_instance.preload_collection() |
407
|
|
|
start_mem_usage = milvus_instance.get_mem_info()["memory_used"] |
408
|
|
|
start_row_count = milvus_instance.count() |
409
|
|
|
logger.debug(milvus_instance.describe_index()) |
410
|
|
|
logger.info(start_row_count) |
411
|
|
|
start_time = time.time() |
412
|
|
|
i = 0 |
413
|
|
|
ids = [] |
414
|
|
|
insert_vectors = [[random.random() for _ in range(dimension)] for _ in range(insert_xb)] |
415
|
|
|
query_vectors = [[random.random() for _ in range(dimension)] for _ in range(10000)] |
416
|
|
View Code Duplication |
while time.time() < start_time + during_time * 60: |
|
|
|
|
417
|
|
|
i = i + 1 |
418
|
|
|
for _ in range(insert_interval): |
419
|
|
|
top_k = random.randint(l_top_k, g_top_k) |
420
|
|
|
nq = random.randint(l_nq, g_nq) |
421
|
|
|
search_param = {} |
422
|
|
|
for k, v in search_params.items(): |
423
|
|
|
search_param[k] = random.randint(int(v.split("-")[0]), int(v.split("-")[1])) |
424
|
|
|
logger.debug("Query nq: %d, top-k: %d, param: %s" % (nq, top_k, json.dumps(search_param))) |
425
|
|
|
result = milvus_instance.query(query_vectors[0:nq], top_k, search_param=search_param) |
426
|
|
|
count = milvus_instance.count() |
427
|
|
|
insert_ids = [(count+x) for x in range(len(insert_vectors))] |
428
|
|
|
ids.extend(insert_ids) |
429
|
|
|
_, res = milvus_instance.insert(insert_vectors, ids=insert_ids) |
430
|
|
|
logger.debug("%d, row_count: %d" % (i, milvus_instance.count())) |
431
|
|
|
milvus_instance.delete(ids[-delete_xb:]) |
432
|
|
|
milvus_instance.flush() |
433
|
|
|
milvus_instance.compact() |
434
|
|
|
end_mem_usage = milvus_instance.get_mem_info()["memory_used"] |
435
|
|
|
end_row_count = milvus_instance.count() |
436
|
|
|
metrics = { |
437
|
|
|
"during_time": during_time, |
438
|
|
|
"start_mem_usage": start_mem_usage, |
439
|
|
|
"end_mem_usage": end_mem_usage, |
440
|
|
|
"diff_mem": end_mem_usage - start_mem_usage, |
441
|
|
|
"row_count_increments": end_row_count - start_row_count |
442
|
|
|
} |
443
|
|
|
logger.info(metrics) |
444
|
|
|
|
445
|
|
|
elif run_type == "loop_stability": |
446
|
|
|
# init data |
447
|
|
|
milvus_instance.clean_db() |
448
|
|
|
pull_interval = collection["pull_interval"] |
449
|
|
|
pull_interval_seconds = pull_interval * 60 |
450
|
|
|
collection_num = collection["collection_num"] |
451
|
|
|
dimension = collection["dimension"] if "dimension" in collection else 128 |
452
|
|
|
insert_xb = collection["insert_xb"] if "insert_xb" in collection else 100000 |
453
|
|
|
index_types = collection["index_types"] if "index_types" in collection else ['ivf_sq8'] |
454
|
|
|
index_param = {"nlist": 2048} |
455
|
|
|
collection_names = [] |
456
|
|
|
milvus_instances_map = {} |
457
|
|
|
insert_vectors = [[random.random() for _ in range(dimension)] for _ in range(insert_xb)] |
458
|
|
|
for i in range(collection_num): |
459
|
|
|
name = utils.get_unique_name(prefix="collection_") |
460
|
|
|
collection_names.append(name) |
461
|
|
|
metric_type = random.choice(["l2", "ip"]) |
462
|
|
|
index_file_size = random.randint(10, 20) |
463
|
|
|
milvus_instance.create_collection(name, dimension, index_file_size, metric_type) |
464
|
|
|
milvus_instance = MilvusClient(collection_name=name, host=self.host) |
465
|
|
|
index_type = random.choice(index_types) |
466
|
|
|
milvus_instance.create_index(index_type, index_param=index_param) |
467
|
|
|
logger.info(milvus_instance.describe_index()) |
468
|
|
|
insert_vectors = utils.normalize(metric_type, insert_vectors) |
469
|
|
|
milvus_instance.insert(insert_vectors) |
470
|
|
|
milvus_instance.flush() |
471
|
|
|
milvus_instances_map.update({name: milvus_instance}) |
472
|
|
|
logger.info(milvus_instance.describe_index()) |
473
|
|
|
logger.info(milvus_instance.describe()) |
474
|
|
|
|
475
|
|
|
tasks = ["insert_rand", "delete_rand", "query_rand", "flush"] |
476
|
|
|
i = 1 |
477
|
|
|
while True: |
478
|
|
|
logger.info("Loop time: %d" % i) |
479
|
|
|
start_time = time.time() |
480
|
|
|
while time.time() - start_time < pull_interval_seconds: |
481
|
|
|
# choose collection |
482
|
|
|
tmp_collection_name = random.choice(collection_names) |
483
|
|
|
# choose task from task |
484
|
|
|
task_name = random.choice(tasks) |
485
|
|
|
logger.info(tmp_collection_name) |
486
|
|
|
logger.info(task_name) |
487
|
|
|
# execute task |
488
|
|
|
task_run = getattr(milvus_instances_map[tmp_collection_name], task_name) |
489
|
|
|
task_run() |
490
|
|
|
# new connection |
491
|
|
|
for name in collection_names: |
492
|
|
|
milvus_instance = MilvusClient(collection_name=name, host=self.host) |
493
|
|
|
milvus_instances_map.update({name: milvus_instance}) |
494
|
|
|
i = i + 1 |
495
|
|
|
elif run_type == "locust_mix_performance": |
496
|
|
|
(data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) |
497
|
|
|
# ni_per = collection["ni_per"] |
498
|
|
|
# build_index = collection["build_index"] |
499
|
|
|
# if milvus_instance.exists_collection(): |
500
|
|
|
# milvus_instance.drop() |
501
|
|
|
# time.sleep(10) |
502
|
|
|
# milvus_instance.create_collection(collection_name, dimension, index_file_size, metric_type) |
503
|
|
|
# if build_index is True: |
504
|
|
|
# index_type = collection["index_type"] |
505
|
|
|
# index_param = collection["index_param"] |
506
|
|
|
# milvus_instance.create_index(index_type, index_param) |
507
|
|
|
# logger.debug(milvus_instance.describe_index()) |
508
|
|
|
# res = self.do_insert(milvus_instance, collection_name, data_type, dimension, collection_size, ni_per) |
509
|
|
|
# milvus_instance.flush() |
510
|
|
|
# logger.debug("Table row counts: %d" % milvus_instance.count()) |
511
|
|
|
# if build_index is True: |
512
|
|
|
# logger.debug("Start build index for last file") |
513
|
|
|
# milvus_instance.create_index(index_type, index_param) |
514
|
|
|
# logger.debug(milvus_instance.describe_index()) |
515
|
|
|
task = collection["tasks"] |
516
|
|
|
task_file = utils.get_unique_name() |
517
|
|
|
task_file_script = task_file + '.py' |
518
|
|
|
task_file_csv = task_file + '_stats.csv' |
519
|
|
|
task_types = task["types"] |
520
|
|
|
connection_type = "single" |
521
|
|
|
connection_num = task["connection_num"] |
522
|
|
|
if connection_num > 1: |
523
|
|
|
connection_type = "multi" |
524
|
|
|
clients_num = task["clients_num"] |
525
|
|
|
hatch_rate = task["hatch_rate"] |
526
|
|
|
during_time = task["during_time"] |
527
|
|
|
def_strs = "" |
528
|
|
|
for task_type in task_types: |
529
|
|
|
_type = task_type["type"] |
530
|
|
|
weight = task_type["weight"] |
531
|
|
|
if _type == "flush": |
532
|
|
|
def_str = """ |
533
|
|
|
@task(%d) |
534
|
|
|
def flush(self): |
535
|
|
|
client = get_client(collection_name) |
536
|
|
|
client.flush(collection_name=collection_name) |
537
|
|
|
""" % weight |
538
|
|
|
if _type == "compact": |
539
|
|
|
def_str = """ |
540
|
|
|
@task(%d) |
541
|
|
|
def compact(self): |
542
|
|
|
client = get_client(collection_name) |
543
|
|
|
client.compact(collection_name) |
544
|
|
|
""" % weight |
545
|
|
|
if _type == "query": |
546
|
|
|
def_str = """ |
547
|
|
|
@task(%d) |
548
|
|
|
def query(self): |
549
|
|
|
client = get_client(collection_name) |
550
|
|
|
params = %s |
551
|
|
|
X = [[random.random() for i in range(dim)] for i in range(params["nq"])] |
552
|
|
|
client.query(X, params["top_k"], params["search_param"], collection_name=collection_name) |
553
|
|
|
""" % (weight, task_type["params"]) |
554
|
|
|
if _type == "insert": |
555
|
|
|
def_str = """ |
556
|
|
|
@task(%d) |
557
|
|
|
def insert(self): |
558
|
|
|
client = get_client(collection_name) |
559
|
|
|
params = %s |
560
|
|
|
ids = [random.randint(10, 1000000) for i in range(params["nb"])] |
561
|
|
|
X = [[random.random() for i in range(dim)] for i in range(params["nb"])] |
562
|
|
|
client.insert(X,ids=ids, collection_name=collection_name) |
563
|
|
|
""" % (weight, task_type["params"]) |
564
|
|
|
if _type == "delete": |
565
|
|
|
def_str = """ |
566
|
|
|
@task(%d) |
567
|
|
|
def delete(self): |
568
|
|
|
client = get_client(collection_name) |
569
|
|
|
ids = [random.randint(1, 1000000) for i in range(1)] |
570
|
|
|
client.delete(ids, collection_name) |
571
|
|
|
""" % weight |
572
|
|
|
def_strs += def_str |
|
|
|
|
573
|
|
|
print(def_strs) |
574
|
|
|
code_str = """ |
575
|
|
|
import random |
576
|
|
|
import json |
577
|
|
|
from locust import User, task, between |
578
|
|
|
from locust_task import MilvusTask |
579
|
|
|
from client import MilvusClient |
580
|
|
|
|
581
|
|
|
host = '%s' |
582
|
|
|
port = %s |
583
|
|
|
collection_name = '%s' |
584
|
|
|
dim = %s |
585
|
|
|
connection_type = '%s' |
586
|
|
|
m = MilvusClient(host=host, port=port) |
587
|
|
|
|
588
|
|
|
|
589
|
|
|
def get_client(collection_name): |
590
|
|
|
if connection_type == 'single': |
591
|
|
|
return MilvusTask(m=m) |
592
|
|
|
elif connection_type == 'multi': |
593
|
|
|
return MilvusTask(connection_type='multi', host=host, port=port, collection_name=collection_name) |
594
|
|
|
|
595
|
|
|
|
596
|
|
|
class MixTask(User): |
597
|
|
|
wait_time = between(0.001, 0.002) |
598
|
|
|
%s |
599
|
|
|
""" % (self.host, self.port, collection_name, dimension, connection_type, def_strs) |
600
|
|
|
with open(task_file_script, "w+") as fd: |
601
|
|
|
fd.write(code_str) |
|
|
|
|
602
|
|
|
locust_cmd = "locust -f %s --headless --csv=%s -u %d -r %d -t %s" % ( |
603
|
|
|
task_file_script, |
604
|
|
|
task_file, |
605
|
|
|
clients_num, |
606
|
|
|
hatch_rate, |
607
|
|
|
during_time) |
608
|
|
|
logger.info(locust_cmd) |
609
|
|
|
try: |
610
|
|
|
res = os.system(locust_cmd) |
611
|
|
|
except Exception as e: |
612
|
|
|
logger.error(str(e)) |
613
|
|
|
return |
614
|
|
|
|
615
|
|
|
# . retrieve and collect test statistics |
616
|
|
|
metric = None |
617
|
|
|
with open(task_file_csv, newline='') as fd: |
618
|
|
|
dr = csv.DictReader(fd) |
619
|
|
|
for row in dr: |
620
|
|
|
if row["Name"] != "Aggregated": |
621
|
|
|
continue |
622
|
|
|
metric = row |
623
|
|
|
logger.info(metric) |
624
|
|
|
|
625
|
|
|
else: |
626
|
|
|
logger.warning("Run type not defined") |
627
|
|
|
return |
628
|
|
|
logger.debug("Test finished") |
629
|
|
|
|