Code Duplication    Length = 18-18 lines in 2 locations

tests/milvus_benchmark/k8s_runner.py 1 location

@@ 916-933 (lines=18) @@
913
            ids = []
914
            insert_vectors = [[random.random() for _ in range(dimension)] for _ in range(insert_xb)]
915
            query_vectors = [[random.random() for _ in range(dimension)] for _ in range(10000)]
916
            while time.time() < start_time + during_time * 60:
917
                i = i + 1
918
                for j in range(insert_interval):
919
                    top_k = random.randint(l_top_k, g_top_k)
920
                    nq = random.randint(l_nq, g_nq)
921
                    search_param = {}
922
                    for k, v in search_params.items():
923
                        search_param[k] = random.randint(int(v.split("-")[0]), int(v.split("-")[1]))
924
                    logger.debug("Query nq: %d, top-k: %d, param: %s" % (nq, top_k, json.dumps(search_param)))
925
                    result = milvus_instance.query(query_vectors[0:nq], top_k, search_param=search_param)
926
                count = milvus_instance.count()
927
                insert_ids = [(count+x) for x in range(len(insert_vectors))]
928
                ids.extend(insert_ids)
929
                status, res = milvus_instance.insert(insert_vectors, ids=insert_ids)
930
                logger.debug("%d, row_count: %d" % (i, milvus_instance.count()))
931
                milvus_instance.delete(ids[-delete_xb:])
932
                milvus_instance.flush()
933
                milvus_instance.compact()
934
            end_mem_usage = milvus_instance.get_mem_info()["memory_used"]
935
            end_row_count = milvus_instance.count()
936
            metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, {})

tests/milvus_benchmark/local_runner.py 1 location

@@ 416-433 (lines=18) @@
413
            ids = []
414
            insert_vectors = [[random.random() for _ in range(dimension)] for _ in range(insert_xb)]
415
            query_vectors = [[random.random() for _ in range(dimension)] for _ in range(10000)]
416
            while time.time() < start_time + during_time * 60:
417
                i = i + 1
418
                for _ in range(insert_interval):
419
                    top_k = random.randint(l_top_k, g_top_k)
420
                    nq = random.randint(l_nq, g_nq)
421
                    search_param = {}
422
                    for k, v in search_params.items():
423
                        search_param[k] = random.randint(int(v.split("-")[0]), int(v.split("-")[1]))
424
                    logger.debug("Query nq: %d, top-k: %d, param: %s" % (nq, top_k, json.dumps(search_param)))
425
                    result = milvus_instance.query(query_vectors[0:nq], top_k, search_param=search_param)
426
                count = milvus_instance.count()
427
                insert_ids = [(count+x) for x in range(len(insert_vectors))]
428
                ids.extend(insert_ids)
429
                _, res = milvus_instance.insert(insert_vectors, ids=insert_ids)
430
                logger.debug("%d, row_count: %d" % (i, milvus_instance.count()))
431
                milvus_instance.delete(ids[-delete_xb:])
432
                milvus_instance.flush()
433
                milvus_instance.compact()
434
            end_mem_usage = milvus_instance.get_mem_info()["memory_used"]
435
            end_row_count = milvus_instance.count()
436
            metrics = {