1 | import numpy |
||
0 ignored issues
–
show
|
|||
2 | |||
3 | from Orange.regression import Learner, Model |
||
4 | from Orange.data import ContinuousVariable |
||
0 ignored issues
–
show
|
|||
5 | from Orange.statistics import distribution |
||
6 | |||
7 | __all__ = ["MeanLearner"] |
||
8 | |||
9 | |||
10 | class MeanLearner(Learner): |
||
11 | """ |
||
12 | Fit a regression model that returns the average response (class) value. |
||
13 | """ |
||
14 | |||
15 | name = 'mean' |
||
16 | |||
17 | def fit_storage(self, data): |
||
18 | """ |
||
19 | Construct a :obj:`MeanModel` by computing the mean value of the given |
||
20 | data. |
||
21 | |||
22 | :param data: data table |
||
23 | :type data: Orange.data.Table |
||
24 | :return: regression model, which always returns mean value |
||
25 | :rtype: :obj:`MeanModel` |
||
26 | """ |
||
27 | if not data.domain.has_continuous_class: |
||
28 | raise ValueError("regression.MeanLearner expects a domain with a " |
||
29 | "(single) continuous variable") |
||
30 | dist = distribution.get_distribution(data, data.domain.class_var) |
||
31 | return MeanModel(dist) |
||
32 | |||
33 | |||
34 | # noinspection PyMissingConstructor |
||
35 | class MeanModel(Model): |
||
36 | """ |
||
37 | A regression model that returns the average response (class) value. |
||
38 | Instances can be constructed directly, by passing a distribution to the |
||
39 | constructor, or by calling the :obj:`MeanLearner`. |
||
40 | |||
41 | .. automethod:: __init__ |
||
42 | |||
43 | """ |
||
44 | def __init__(self, dist, domain=None): |
||
0 ignored issues
–
show
The
__init__ method of the super-class ModelRegression is not called.
It is generally advisable to initialize the super-class by calling its class SomeParent:
def __init__(self):
self.x = 1
class SomeChild(SomeParent):
def __init__(self):
# Initialize the super class
SomeParent.__init__(self)
![]() |
|||
45 | """ |
||
46 | Construct :obj:`Orange.regression.MeanModel` that always returns the |
||
47 | mean value computed from the given distribution. |
||
48 | |||
49 | If the distribution is empty, it constructs a model that returns zero. |
||
50 | |||
51 | :param dist: domain for the `Table` |
||
52 | :type dist: Orange.statistics.distribution.Continuous |
||
53 | :return: regression model that returns mean value |
||
54 | :rtype: :obj:`MeanModel` |
||
55 | """ |
||
56 | # Don't call super().__init__ because it will raise an error since |
||
57 | # domain is None. |
||
58 | self.domain = domain |
||
59 | self.dist = dist |
||
60 | if dist.any(): |
||
61 | self.mean = self.dist.mean() |
||
62 | else: |
||
63 | self.mean = 0.0 |
||
64 | |||
65 | # noinspection PyPep8Naming |
||
66 | def predict(self, X): |
||
67 | """ |
||
68 | Return predictions (that is, the same mean value) for each given |
||
69 | instance in `X`. |
||
70 | |||
71 | :param X: data for which to make predictions |
||
72 | :type X: :obj:`numpy.ndarray` |
||
73 | :return: a vector of predictions |
||
74 | :rtype: :obj:`numpy.ndarray` |
||
75 | """ |
||
76 | return numpy.full(len(X), self.mean) |
||
77 | |||
78 | def __str__(self): |
||
79 | return 'MeanModel({})'.format(self.mean) |
||
80 |
This can be caused by one of the following:
1. Missing Dependencies
This error could indicate a configuration issue of Pylint. Make sure that your libraries are available by adding the necessary commands.
2. Missing __init__.py files
This error could also result from missing
__init__.py
files in your module folders. Make sure that you place one file in each sub-folder.