|
1
|
|
|
import h5py |
|
2
|
|
|
import numpy as np |
|
3
|
|
|
|
|
4
|
|
|
from threeML.utils.polarization.binned_polarization import BinnedModulationCurve |
|
5
|
|
|
|
|
6
|
|
|
|
|
7
|
|
|
class ModulationCurveFile(object): |
|
8
|
|
|
|
|
9
|
|
|
def __init__(self, |
|
10
|
|
|
counts, |
|
11
|
|
|
scattering_bins, |
|
12
|
|
|
exposures, |
|
13
|
|
|
count_errors=None, |
|
14
|
|
|
sys_errors=None, |
|
15
|
|
|
scale_factor=1., |
|
16
|
|
|
mission=None, |
|
17
|
|
|
instrument=None, |
|
18
|
|
|
tstart=None, |
|
19
|
|
|
tstop=None): |
|
20
|
|
|
""" |
|
21
|
|
|
|
|
22
|
|
|
A interface for the modulation curve to facilitate the reading and writing of files |
|
23
|
|
|
|
|
24
|
|
|
:param counts: a matrix of counts where the rows are time intervals and the columns are scattering bins |
|
25
|
|
|
:param scattering_bins: and array of scattering bin edges |
|
26
|
|
|
:param exposures: and array of exposures for each time bin |
|
27
|
|
|
:param count_errors: a matrix of counts where the rows are time intervals and the columns are scattering bins |
|
28
|
|
|
:param sys_errors: a matrix of counts where the rows are time intervals and the columns are scattering bins |
|
29
|
|
|
:param scale_factor: the scale factor of the background |
|
30
|
|
|
:param mission: the space mission |
|
31
|
|
|
:param instrument: the instrument on the mission |
|
32
|
|
|
:param tstart: an array of start times for the intervals |
|
33
|
|
|
:param tstop: an array of stop times for the intervals |
|
34
|
|
|
""" |
|
35
|
|
|
|
|
36
|
|
|
# make sure that all the arrays are the correct shape |
|
37
|
|
|
|
|
38
|
|
|
counts = np.atleast_2d(counts) |
|
39
|
|
|
exposures = np.atleast_1d(exposures) |
|
40
|
|
|
|
|
41
|
|
|
assert len(exposures.shape) == 1 |
|
42
|
|
|
|
|
43
|
|
|
assert len(counts.shape) == 2 |
|
44
|
|
|
|
|
45
|
|
|
# extract the shape so we know the interval size |
|
46
|
|
|
# as well as the number of bins |
|
47
|
|
|
|
|
48
|
|
|
n_intervals, n_bins = counts.shape |
|
49
|
|
|
|
|
50
|
|
|
assert len(exposures) == n_intervals |
|
51
|
|
|
|
|
52
|
|
|
assert len(scattering_bins) == n_bins + 1, 'The shape of the counts is incorrect' |
|
53
|
|
|
|
|
54
|
|
|
assert np.all(exposures >= 0.), 'exposures are not positive' |
|
55
|
|
|
|
|
56
|
|
|
if count_errors is not None: |
|
57
|
|
|
|
|
58
|
|
|
self._is_poisson = False |
|
59
|
|
|
count_errors = np.atleast_2d(count_errors) |
|
60
|
|
|
|
|
61
|
|
|
assert np.all(count_errors.shape == counts.shape) |
|
62
|
|
|
|
|
63
|
|
|
else: |
|
64
|
|
|
|
|
65
|
|
|
self._is_poisson = True |
|
66
|
|
|
|
|
67
|
|
|
self._count_errors = count_errors |
|
68
|
|
|
|
|
69
|
|
|
# correct start and stops |
|
70
|
|
|
tmp = [tstart, tstop] |
|
71
|
|
|
|
|
72
|
|
|
for i, _ in enumerate(tmp): |
|
73
|
|
|
|
|
74
|
|
|
if tmp[i] is not None: |
|
75
|
|
|
tmp[i] = np.atleast_1d(tmp[i]) |
|
76
|
|
|
assert len(tmp[i].shape) == 1 |
|
77
|
|
|
assert len(tmp[i]) == n_intervals |
|
78
|
|
|
|
|
79
|
|
|
## fix this later |
|
80
|
|
|
self._sys_errors = sys_errors |
|
81
|
|
|
|
|
82
|
|
|
if instrument is None: |
|
83
|
|
|
instrument = 'Unknown' |
|
84
|
|
|
|
|
85
|
|
|
if mission is None: |
|
86
|
|
|
mission = 'Unknown' |
|
87
|
|
|
|
|
88
|
|
|
self._counts = counts |
|
89
|
|
|
self._scattering_bins = scattering_bins |
|
90
|
|
|
self._exposures = exposures |
|
91
|
|
|
self._n_intervals = n_intervals |
|
92
|
|
|
self._scale_factor = scale_factor |
|
93
|
|
|
self._tstart = tstart |
|
94
|
|
|
self._tstop = tstop |
|
95
|
|
|
self._instrument = instrument |
|
96
|
|
|
self._mission = mission |
|
97
|
|
|
|
|
98
|
|
|
@classmethod |
|
99
|
|
|
def read(cls, file_name): |
|
100
|
|
|
|
|
101
|
|
|
with h5py.File(file_name, 'r') as f: |
|
102
|
|
|
|
|
103
|
|
|
n_intervals = int(f.attrs['n_intervals']) |
|
104
|
|
|
is_poisson = bool(f.attrs['is_poisson']) |
|
105
|
|
|
scattering_bins = f['scattering_bins'].value |
|
106
|
|
|
mission = f.attrs['mission'] |
|
107
|
|
|
instrument = f.attrs['instrument'] |
|
108
|
|
|
scale_factor = f.attrs['scale_factor'] |
|
109
|
|
|
|
|
110
|
|
|
counts = [] |
|
111
|
|
|
exposures = [] |
|
112
|
|
|
|
|
113
|
|
|
if not is_poisson: |
|
114
|
|
|
|
|
115
|
|
|
count_errors = [] |
|
116
|
|
|
|
|
117
|
|
|
else: |
|
118
|
|
|
|
|
119
|
|
|
count_errors = None |
|
120
|
|
|
|
|
121
|
|
|
tstart_flag = True |
|
122
|
|
|
tstop_flag = True |
|
123
|
|
|
tstart = [] |
|
124
|
|
|
tstop = [] |
|
125
|
|
|
|
|
126
|
|
|
for interval in range(n_intervals): |
|
|
|
|
|
|
127
|
|
|
int_grp = f['interval_%d' % interval] |
|
128
|
|
|
|
|
129
|
|
|
counts.append(int_grp['counts'].value) |
|
130
|
|
|
exposures.append(int_grp.attrs['exposure']) |
|
131
|
|
|
|
|
132
|
|
|
if not is_poisson: |
|
133
|
|
|
count_errors.append(int_grp['count_errors'].value) |
|
134
|
|
|
|
|
135
|
|
|
if tstart_flag: |
|
136
|
|
|
try: |
|
137
|
|
|
|
|
138
|
|
|
tstart.append(int_grp.attrs['tstart']) |
|
139
|
|
|
|
|
140
|
|
|
except: |
|
141
|
|
|
|
|
142
|
|
|
tstart = None |
|
143
|
|
|
tstart_flag = False |
|
144
|
|
|
|
|
145
|
|
|
if tstop_flag: |
|
146
|
|
|
try: |
|
147
|
|
|
|
|
148
|
|
|
tstop.append(int_grp.attrs['tstop']) |
|
149
|
|
|
|
|
150
|
|
|
except: |
|
151
|
|
|
|
|
152
|
|
|
tstop = None |
|
153
|
|
|
tstop_flag = False |
|
154
|
|
|
|
|
155
|
|
|
return cls(counts=counts, |
|
156
|
|
|
exposures=exposures, |
|
157
|
|
|
scattering_bins=scattering_bins, |
|
158
|
|
|
count_errors=count_errors, |
|
159
|
|
|
sys_errors=None, |
|
160
|
|
|
scale_factor=scale_factor, |
|
161
|
|
|
mission=mission, |
|
162
|
|
|
instrument=instrument, |
|
163
|
|
|
tstart=tstart, |
|
164
|
|
|
tstop=tstop) |
|
165
|
|
|
|
|
166
|
|
|
def writeto(self, file_name): |
|
167
|
|
|
|
|
168
|
|
|
with h5py.File(file_name, 'w') as f: |
|
169
|
|
|
|
|
170
|
|
|
for interval in range(self._n_intervals): |
|
|
|
|
|
|
171
|
|
|
|
|
172
|
|
|
int_grp = f.create_group('interval_%d' % interval) |
|
173
|
|
|
|
|
174
|
|
|
int_grp.create_dataset('counts', data=self._counts[interval], compression='lzf') |
|
175
|
|
|
int_grp.attrs['exposure'] = self._exposures[interval] |
|
176
|
|
|
|
|
177
|
|
|
if self._count_errors is not None: |
|
178
|
|
|
int_grp.create_dataset('count_errors', data=self._count_errors[interval], compression='lzf') |
|
179
|
|
|
|
|
180
|
|
|
if self._tstart is not None: |
|
181
|
|
|
int_grp.attrs['tstart'] = self._tstart[interval] |
|
182
|
|
|
|
|
183
|
|
|
if self._tstop is not None: |
|
184
|
|
|
int_grp.attrs['tstop'] = self._tstop[interval] |
|
185
|
|
|
|
|
186
|
|
|
f.create_dataset('scattering_bins', data=self._scattering_bins, compression='lzf') |
|
187
|
|
|
f.attrs['n_intervals'] = self._n_intervals |
|
188
|
|
|
f.attrs['is_poisson'] = self._is_poisson |
|
189
|
|
|
f.attrs['instrument'] = self._instrument |
|
190
|
|
|
f.attrs['mission'] = self._mission |
|
191
|
|
|
f.attrs['scale_factor'] = self._scale_factor |
|
192
|
|
|
|
|
193
|
|
|
def to_binned_modulation_curve(self, interval=0): |
|
194
|
|
|
""" |
|
195
|
|
|
|
|
196
|
|
|
Create a 3ML BinnedModulationCurve from the contents of the interface. |
|
197
|
|
|
An interval with c-style indexing must be specified. |
|
198
|
|
|
|
|
199
|
|
|
:param interval: The interval to extract. Starting at zero |
|
200
|
|
|
:return: A 3ML BinnedModulationCurve |
|
201
|
|
|
""" |
|
202
|
|
|
|
|
203
|
|
|
# this keeps us from trying to call create things |
|
204
|
|
|
# not stored |
|
205
|
|
|
|
|
206
|
|
|
count_errors = None |
|
207
|
|
|
sys_errors = None |
|
208
|
|
|
if self._count_errors is not None: |
|
209
|
|
|
count_errors = self._count_errors[interval] |
|
210
|
|
|
|
|
211
|
|
|
if self._sys_errors is not None: |
|
212
|
|
|
sys_errors = self._sys_errors[interval] |
|
213
|
|
|
|
|
214
|
|
|
return BinnedModulationCurve( |
|
215
|
|
|
counts=self._counts[interval], |
|
216
|
|
|
exposure=self._exposures[interval], |
|
217
|
|
|
abounds=self._scattering_bins, |
|
218
|
|
|
count_errors=count_errors, |
|
219
|
|
|
sys_errors=sys_errors, |
|
220
|
|
|
scale_factor=self._scale_factor, |
|
221
|
|
|
is_poisson=self._is_poisson, |
|
222
|
|
|
instrument=self._instrument, |
|
223
|
|
|
tstart=self._tstart, |
|
224
|
|
|
tstop=self._tstop) |
|
225
|
|
|
|
|
226
|
|
|
@classmethod |
|
227
|
|
|
def from_binned_modulation_curve(cls, binned_mod_curve): |
|
228
|
|
|
""" |
|
229
|
|
|
Create a modulation curve file from a binned modulation curve |
|
230
|
|
|
instance. This is really a simple pass thru for writing to |
|
231
|
|
|
disk |
|
232
|
|
|
:param binned_mod_curve: a 3ML BinnedModulationCurve |
|
233
|
|
|
:return: a modulation curve fit file memory instance |
|
234
|
|
|
|
|
235
|
|
|
""" |
|
236
|
|
|
return cls(counts=binned_mod_curve.counts, |
|
237
|
|
|
exposures=binned_mod_curve.exposure, |
|
238
|
|
|
scattering_bins=binned_mod_curve.edges, |
|
239
|
|
|
count_errors=binned_mod_curve.count_errors, |
|
240
|
|
|
sys_errors=binned_mod_curve.sys_errors, |
|
241
|
|
|
scale_factor=binned_mod_curve.scale_factor, |
|
242
|
|
|
mission=binned_mod_curve.mission, |
|
243
|
|
|
instrument=binned_mod_curve.instrument, |
|
244
|
|
|
tstart=binned_mod_curve.tstart, |
|
245
|
|
|
tstop=binned_mod_curve.tstop) |
|
246
|
|
|
|
|
247
|
|
|
@classmethod |
|
248
|
|
|
def from_list_of_plugins(cls, plugins, kind='total'): |
|
249
|
|
|
|
|
250
|
|
|
assert (kind == 'total') or (kind == 'background'), 'invalid kind. Must be totla or background' |
|
251
|
|
|
|
|
252
|
|
|
out = dict( |
|
253
|
|
|
tstart=[], |
|
254
|
|
|
tstop=[], |
|
255
|
|
|
counts=[], |
|
256
|
|
|
count_errors=[], |
|
257
|
|
|
sys_errors=[], |
|
258
|
|
|
exposures=[],) |
|
259
|
|
|
for plugin in plugins: |
|
260
|
|
|
|
|
261
|
|
|
# assert isinstance(plugin, PolarLike), 'must be a PolarLike plugin' |
|
262
|
|
|
|
|
263
|
|
|
if kind == 'total': |
|
264
|
|
|
|
|
265
|
|
|
bmc = plugin.observation |
|
266
|
|
|
|
|
267
|
|
|
elif kind == 'background': |
|
268
|
|
|
|
|
269
|
|
|
bmc = plugin.background |
|
270
|
|
|
|
|
271
|
|
|
out['tstart'].append(bmc.tstart) |
|
|
|
|
|
|
272
|
|
|
out['tstop'].append(bmc.tstop) |
|
273
|
|
|
out['counts'].append(bmc.counts) |
|
274
|
|
|
out['count_errors'].append(bmc.count_errors) |
|
275
|
|
|
out['sys_errors'].append(bmc.sys_errors) |
|
276
|
|
|
out['exposures'].append(bmc.exposure) |
|
277
|
|
|
|
|
278
|
|
|
for k, v in out.items(): |
|
279
|
|
|
|
|
280
|
|
|
if np.all(np.array(v) == None): |
|
281
|
|
|
out[k] = None |
|
282
|
|
|
|
|
283
|
|
|
return cls(counts=out['counts'], |
|
284
|
|
|
exposures=out['exposures'], |
|
285
|
|
|
scattering_bins=bmc.edges, |
|
286
|
|
|
count_errors=out['count_errors'], |
|
287
|
|
|
sys_errors=out['sys_errors'], |
|
288
|
|
|
scale_factor=bmc.scale_factor, |
|
289
|
|
|
mission=bmc.mission, |
|
290
|
|
|
instrument=bmc.instrument, |
|
291
|
|
|
tstart=out['tstart'], |
|
292
|
|
|
tstop=out['tstop']) |
|
293
|
|
|
|
|
294
|
|
|
@property |
|
295
|
|
|
def counts(self): |
|
296
|
|
|
return self._counts |
|
297
|
|
|
|
|
298
|
|
|
@property |
|
299
|
|
|
def scattering_bins(self): |
|
300
|
|
|
return self._scattering_bins |
|
301
|
|
|
|
|
302
|
|
|
@property |
|
303
|
|
|
def exposures(self): |
|
304
|
|
|
return self._exposures |
|
305
|
|
|
|