1
|
|
|
import h5py |
2
|
|
|
import numpy as np |
3
|
|
|
|
4
|
|
|
from threeML.utils.polarization.binned_polarization import BinnedModulationCurve |
5
|
|
|
|
6
|
|
|
|
7
|
|
|
class ModulationCurveFile(object): |
8
|
|
|
|
9
|
|
|
def __init__(self, |
10
|
|
|
counts, |
11
|
|
|
scattering_bins, |
12
|
|
|
exposures, |
13
|
|
|
count_errors=None, |
14
|
|
|
sys_errors=None, |
15
|
|
|
scale_factor=1., |
16
|
|
|
mission=None, |
17
|
|
|
instrument=None, |
18
|
|
|
tstart=None, |
19
|
|
|
tstop=None): |
20
|
|
|
""" |
21
|
|
|
|
22
|
|
|
A interface for the modulation curve to facilitate the reading and writing of files |
23
|
|
|
|
24
|
|
|
:param counts: a matrix of counts where the rows are time intervals and the columns are scattering bins |
25
|
|
|
:param scattering_bins: and array of scattering bin edges |
26
|
|
|
:param exposures: and array of exposures for each time bin |
27
|
|
|
:param count_errors: a matrix of counts where the rows are time intervals and the columns are scattering bins |
28
|
|
|
:param sys_errors: a matrix of counts where the rows are time intervals and the columns are scattering bins |
29
|
|
|
:param scale_factor: the scale factor of the background |
30
|
|
|
:param mission: the space mission |
31
|
|
|
:param instrument: the instrument on the mission |
32
|
|
|
:param tstart: an array of start times for the intervals |
33
|
|
|
:param tstop: an array of stop times for the intervals |
34
|
|
|
""" |
35
|
|
|
|
36
|
|
|
# make sure that all the arrays are the correct shape |
37
|
|
|
|
38
|
|
|
counts = np.atleast_2d(counts) |
39
|
|
|
exposures = np.atleast_1d(exposures) |
40
|
|
|
|
41
|
|
|
assert len(exposures.shape) == 1 |
42
|
|
|
|
43
|
|
|
assert len(counts.shape) == 2 |
44
|
|
|
|
45
|
|
|
# extract the shape so we know the interval size |
46
|
|
|
# as well as the number of bins |
47
|
|
|
|
48
|
|
|
n_intervals, n_bins = counts.shape |
49
|
|
|
|
50
|
|
|
assert len(exposures) == n_intervals |
51
|
|
|
|
52
|
|
|
assert len(scattering_bins) == n_bins + 1, 'The shape of the counts is incorrect' |
53
|
|
|
|
54
|
|
|
assert np.all(exposures >= 0.), 'exposures are not positive' |
55
|
|
|
|
56
|
|
|
if count_errors is not None: |
57
|
|
|
|
58
|
|
|
self._is_poisson = False |
59
|
|
|
count_errors = np.atleast_2d(count_errors) |
60
|
|
|
|
61
|
|
|
assert np.all(count_errors.shape == counts.shape) |
62
|
|
|
|
63
|
|
|
else: |
64
|
|
|
|
65
|
|
|
self._is_poisson = True |
66
|
|
|
|
67
|
|
|
self._count_errors = count_errors |
68
|
|
|
|
69
|
|
|
# correct start and stops |
70
|
|
|
tmp = [tstart, tstop] |
71
|
|
|
|
72
|
|
|
for i, _ in enumerate(tmp): |
73
|
|
|
|
74
|
|
|
if tmp[i] is not None: |
75
|
|
|
tmp[i] = np.atleast_1d(tmp[i]) |
76
|
|
|
assert len(tmp[i].shape) == 1 |
77
|
|
|
assert len(tmp[i]) == n_intervals |
78
|
|
|
|
79
|
|
|
## fix this later |
80
|
|
|
self._sys_errors = sys_errors |
81
|
|
|
|
82
|
|
|
if instrument is None: |
83
|
|
|
instrument = 'Unknown' |
84
|
|
|
|
85
|
|
|
if mission is None: |
86
|
|
|
mission = 'Unknown' |
87
|
|
|
|
88
|
|
|
self._counts = counts |
89
|
|
|
self._scattering_bins = scattering_bins |
90
|
|
|
self._exposures = exposures |
91
|
|
|
self._n_intervals = n_intervals |
92
|
|
|
self._scale_factor = scale_factor |
93
|
|
|
self._tstart = tstart |
94
|
|
|
self._tstop = tstop |
95
|
|
|
self._instrument = instrument |
96
|
|
|
self._mission = mission |
97
|
|
|
|
98
|
|
|
@classmethod |
99
|
|
|
def read(cls, file_name): |
100
|
|
|
|
101
|
|
|
with h5py.File(file_name, 'r') as f: |
102
|
|
|
|
103
|
|
|
n_intervals = int(f.attrs['n_intervals']) |
104
|
|
|
is_poisson = bool(f.attrs['is_poisson']) |
105
|
|
|
scattering_bins = f['scattering_bins'].value |
106
|
|
|
mission = f.attrs['mission'] |
107
|
|
|
instrument = f.attrs['instrument'] |
108
|
|
|
scale_factor = f.attrs['scale_factor'] |
109
|
|
|
|
110
|
|
|
counts = [] |
111
|
|
|
exposures = [] |
112
|
|
|
|
113
|
|
|
if not is_poisson: |
114
|
|
|
|
115
|
|
|
count_errors = [] |
116
|
|
|
|
117
|
|
|
else: |
118
|
|
|
|
119
|
|
|
count_errors = None |
120
|
|
|
|
121
|
|
|
tstart_flag = True |
122
|
|
|
tstop_flag = True |
123
|
|
|
tstart = [] |
124
|
|
|
tstop = [] |
125
|
|
|
|
126
|
|
|
for interval in range(n_intervals): |
|
|
|
|
127
|
|
|
int_grp = f['interval_%d' % interval] |
128
|
|
|
|
129
|
|
|
counts.append(int_grp['counts'].value) |
130
|
|
|
exposures.append(int_grp.attrs['exposure']) |
131
|
|
|
|
132
|
|
|
if not is_poisson: |
133
|
|
|
count_errors.append(int_grp['count_errors'].value) |
134
|
|
|
|
135
|
|
|
if tstart_flag: |
136
|
|
|
try: |
137
|
|
|
|
138
|
|
|
tstart.append(int_grp.attrs['tstart']) |
139
|
|
|
|
140
|
|
|
except: |
141
|
|
|
|
142
|
|
|
tstart = None |
143
|
|
|
tstart_flag = False |
144
|
|
|
|
145
|
|
|
if tstop_flag: |
146
|
|
|
try: |
147
|
|
|
|
148
|
|
|
tstop.append(int_grp.attrs['tstop']) |
149
|
|
|
|
150
|
|
|
except: |
151
|
|
|
|
152
|
|
|
tstop = None |
153
|
|
|
tstop_flag = False |
154
|
|
|
|
155
|
|
|
return cls(counts=counts, |
156
|
|
|
exposures=exposures, |
157
|
|
|
scattering_bins=scattering_bins, |
158
|
|
|
count_errors=count_errors, |
159
|
|
|
sys_errors=None, |
160
|
|
|
scale_factor=scale_factor, |
161
|
|
|
mission=mission, |
162
|
|
|
instrument=instrument, |
163
|
|
|
tstart=tstart, |
164
|
|
|
tstop=tstop) |
165
|
|
|
|
166
|
|
|
def writeto(self, file_name): |
167
|
|
|
|
168
|
|
|
with h5py.File(file_name, 'w') as f: |
169
|
|
|
|
170
|
|
|
for interval in range(self._n_intervals): |
|
|
|
|
171
|
|
|
|
172
|
|
|
int_grp = f.create_group('interval_%d' % interval) |
173
|
|
|
|
174
|
|
|
int_grp.create_dataset('counts', data=self._counts[interval], compression='lzf') |
175
|
|
|
int_grp.attrs['exposure'] = self._exposures[interval] |
176
|
|
|
|
177
|
|
|
if self._count_errors is not None: |
178
|
|
|
int_grp.create_dataset('count_errors', data=self._count_errors[interval], compression='lzf') |
179
|
|
|
|
180
|
|
|
if self._tstart is not None: |
181
|
|
|
int_grp.attrs['tstart'] = self._tstart[interval] |
182
|
|
|
|
183
|
|
|
if self._tstop is not None: |
184
|
|
|
int_grp.attrs['tstop'] = self._tstop[interval] |
185
|
|
|
|
186
|
|
|
f.create_dataset('scattering_bins', data=self._scattering_bins, compression='lzf') |
187
|
|
|
f.attrs['n_intervals'] = self._n_intervals |
188
|
|
|
f.attrs['is_poisson'] = self._is_poisson |
189
|
|
|
f.attrs['instrument'] = self._instrument |
190
|
|
|
f.attrs['mission'] = self._mission |
191
|
|
|
f.attrs['scale_factor'] = self._scale_factor |
192
|
|
|
|
193
|
|
|
def to_binned_modulation_curve(self, interval=0): |
194
|
|
|
""" |
195
|
|
|
|
196
|
|
|
Create a 3ML BinnedModulationCurve from the contents of the interface. |
197
|
|
|
An interval with c-style indexing must be specified. |
198
|
|
|
|
199
|
|
|
:param interval: The interval to extract. Starting at zero |
200
|
|
|
:return: A 3ML BinnedModulationCurve |
201
|
|
|
""" |
202
|
|
|
|
203
|
|
|
# this keeps us from trying to call create things |
204
|
|
|
# not stored |
205
|
|
|
|
206
|
|
|
count_errors = None |
207
|
|
|
sys_errors = None |
208
|
|
|
if self._count_errors is not None: |
209
|
|
|
count_errors = self._count_errors[interval] |
210
|
|
|
|
211
|
|
|
if self._sys_errors is not None: |
212
|
|
|
sys_errors = self._sys_errors[interval] |
213
|
|
|
|
214
|
|
|
return BinnedModulationCurve( |
215
|
|
|
counts=self._counts[interval], |
216
|
|
|
exposure=self._exposures[interval], |
217
|
|
|
abounds=self._scattering_bins, |
218
|
|
|
count_errors=count_errors, |
219
|
|
|
sys_errors=sys_errors, |
220
|
|
|
scale_factor=self._scale_factor, |
221
|
|
|
is_poisson=self._is_poisson, |
222
|
|
|
instrument=self._instrument, |
223
|
|
|
tstart=self._tstart, |
224
|
|
|
tstop=self._tstop) |
225
|
|
|
|
226
|
|
|
@classmethod |
227
|
|
|
def from_binned_modulation_curve(cls, binned_mod_curve): |
228
|
|
|
""" |
229
|
|
|
Create a modulation curve file from a binned modulation curve |
230
|
|
|
instance. This is really a simple pass thru for writing to |
231
|
|
|
disk |
232
|
|
|
:param binned_mod_curve: a 3ML BinnedModulationCurve |
233
|
|
|
:return: a modulation curve fit file memory instance |
234
|
|
|
|
235
|
|
|
""" |
236
|
|
|
return cls(counts=binned_mod_curve.counts, |
237
|
|
|
exposures=binned_mod_curve.exposure, |
238
|
|
|
scattering_bins=binned_mod_curve.edges, |
239
|
|
|
count_errors=binned_mod_curve.count_errors, |
240
|
|
|
sys_errors=binned_mod_curve.sys_errors, |
241
|
|
|
scale_factor=binned_mod_curve.scale_factor, |
242
|
|
|
mission=binned_mod_curve.mission, |
243
|
|
|
instrument=binned_mod_curve.instrument, |
244
|
|
|
tstart=binned_mod_curve.tstart, |
245
|
|
|
tstop=binned_mod_curve.tstop) |
246
|
|
|
|
247
|
|
|
@classmethod |
248
|
|
|
def from_list_of_plugins(cls, plugins, kind='total'): |
249
|
|
|
|
250
|
|
|
assert (kind == 'total') or (kind == 'background'), 'invalid kind. Must be totla or background' |
251
|
|
|
|
252
|
|
|
out = dict( |
253
|
|
|
tstart=[], |
254
|
|
|
tstop=[], |
255
|
|
|
counts=[], |
256
|
|
|
count_errors=[], |
257
|
|
|
sys_errors=[], |
258
|
|
|
exposures=[],) |
259
|
|
|
for plugin in plugins: |
260
|
|
|
|
261
|
|
|
# assert isinstance(plugin, PolarLike), 'must be a PolarLike plugin' |
262
|
|
|
|
263
|
|
|
if kind == 'total': |
264
|
|
|
|
265
|
|
|
bmc = plugin.observation |
266
|
|
|
|
267
|
|
|
elif kind == 'background': |
268
|
|
|
|
269
|
|
|
bmc = plugin.background |
270
|
|
|
|
271
|
|
|
out['tstart'].append(bmc.tstart) |
|
|
|
|
272
|
|
|
out['tstop'].append(bmc.tstop) |
273
|
|
|
out['counts'].append(bmc.counts) |
274
|
|
|
out['count_errors'].append(bmc.count_errors) |
275
|
|
|
out['sys_errors'].append(bmc.sys_errors) |
276
|
|
|
out['exposures'].append(bmc.exposure) |
277
|
|
|
|
278
|
|
|
for k, v in out.items(): |
279
|
|
|
|
280
|
|
|
if np.all(np.array(v) == None): |
281
|
|
|
out[k] = None |
282
|
|
|
|
283
|
|
|
return cls(counts=out['counts'], |
284
|
|
|
exposures=out['exposures'], |
285
|
|
|
scattering_bins=bmc.edges, |
286
|
|
|
count_errors=out['count_errors'], |
287
|
|
|
sys_errors=out['sys_errors'], |
288
|
|
|
scale_factor=bmc.scale_factor, |
289
|
|
|
mission=bmc.mission, |
290
|
|
|
instrument=bmc.instrument, |
291
|
|
|
tstart=out['tstart'], |
292
|
|
|
tstop=out['tstop']) |
293
|
|
|
|
294
|
|
|
@property |
295
|
|
|
def counts(self): |
296
|
|
|
return self._counts |
297
|
|
|
|
298
|
|
|
@property |
299
|
|
|
def scattering_bins(self): |
300
|
|
|
return self._scattering_bins |
301
|
|
|
|
302
|
|
|
@property |
303
|
|
|
def exposures(self): |
304
|
|
|
return self._exposures |
305
|
|
|
|