|
1
|
|
|
"""Functions for calculating the average minimum distance (AMD) and |
|
2
|
|
|
point-wise distance distribution (PDD) isometric invariants of |
|
3
|
|
|
periodic crystals and finite sets. |
|
4
|
|
|
""" |
|
5
|
|
|
|
|
6
|
|
|
import collections |
|
7
|
|
|
from typing import Tuple, Union |
|
8
|
|
|
|
|
9
|
|
|
import numpy as np |
|
10
|
|
|
import numba |
|
11
|
|
|
from scipy.spatial.distance import pdist, squareform |
|
12
|
|
|
from scipy.special import factorial |
|
13
|
|
|
|
|
14
|
|
|
from .periodicset import PeriodicSet |
|
15
|
|
|
from ._nearest_neighbours import nearest_neighbours, nearest_neighbours_minval |
|
16
|
|
|
from .utils import diameter |
|
17
|
|
|
|
|
18
|
|
|
__all__ = [ |
|
19
|
|
|
'AMD', |
|
20
|
|
|
'PDD', |
|
21
|
|
|
'PDD_to_AMD', |
|
22
|
|
|
'AMD_finite', |
|
23
|
|
|
'PDD_finite', |
|
24
|
|
|
'PDD_reconstructable', |
|
25
|
|
|
'PPC', |
|
26
|
|
|
'AMD_estimate' |
|
27
|
|
|
] |
|
28
|
|
|
|
|
29
|
|
|
|
|
30
|
|
|
def AMD(pset: PeriodicSet, k: int) -> np.ndarray: |
|
31
|
|
|
"""Return the average minimum distance (AMD) of a periodic set |
|
32
|
|
|
(crystal). |
|
33
|
|
|
|
|
34
|
|
|
The AMD of a periodic set is a geometry based descriptor independent |
|
35
|
|
|
of choice of motif and unit cell. It is a vector, the (weighted) |
|
36
|
|
|
average of the :func:`PDD <.calculate.PDD>` matrix, which has one |
|
37
|
|
|
row for each (unique) point in the unit cell containing distances to |
|
38
|
|
|
k nearest neighbours. |
|
39
|
|
|
|
|
40
|
|
|
Parameters |
|
41
|
|
|
---------- |
|
42
|
|
|
pset : :class:`amd.PeriodicSet <.periodicset.PeriodicSet>` |
|
43
|
|
|
A periodic set (crystal) consisting of a unit cell and motif of |
|
44
|
|
|
points. |
|
45
|
|
|
k : int |
|
46
|
|
|
The number of neighbouring points (atoms) considered for each |
|
47
|
|
|
point in the unit cell. |
|
48
|
|
|
|
|
49
|
|
|
Returns |
|
50
|
|
|
------- |
|
51
|
|
|
:class:`numpy.ndarray` |
|
52
|
|
|
A :class:`numpy.ndarray` shape ``(k, )``, the AMD of |
|
53
|
|
|
``pset`` up to k. |
|
54
|
|
|
|
|
55
|
|
|
Examples |
|
56
|
|
|
-------- |
|
57
|
|
|
Make list of AMDs with k = 100 for crystals in data.cif:: |
|
58
|
|
|
|
|
59
|
|
|
amds = [] |
|
60
|
|
|
for periodic_set in amd.CifReader('data.cif'): |
|
61
|
|
|
amds.append(amd.AMD(periodic_set, 100)) |
|
62
|
|
|
|
|
63
|
|
|
Make list of AMDs with k = 10 for crystals in these CSD refcode families:: |
|
64
|
|
|
|
|
65
|
|
|
amds = [] |
|
66
|
|
|
for periodic_set in amd.CSDReader(['HXACAN', 'ACSALA'], families=True): |
|
67
|
|
|
amds.append(amd.AMD(periodic_set, 10)) |
|
68
|
|
|
|
|
69
|
|
|
Manually create a periodic set as a tuple (motif, cell):: |
|
70
|
|
|
|
|
71
|
|
|
# simple cubic lattice |
|
72
|
|
|
motif = np.array([[0,0,0]]) |
|
73
|
|
|
cell = np.array([[1,0,0], [0,1,0], [0,0,1]]) |
|
74
|
|
|
periodic_set = amd.PeriodicSet(motif, cell) |
|
75
|
|
|
cubic_amd = amd.AMD(periodic_set, 100) |
|
76
|
|
|
""" |
|
77
|
|
|
|
|
78
|
|
|
if pset.asym_unit is None or pset.multiplicities is None: |
|
79
|
|
|
asym_unit = pset.motif |
|
80
|
|
|
weights = np.ones((asym_unit.shape[0], ), dtype=np.float64) |
|
81
|
|
|
else: |
|
82
|
|
|
asym_unit = pset.motif[pset.asym_unit] |
|
83
|
|
|
weights = pset.multiplicities |
|
84
|
|
|
|
|
85
|
|
|
dists = nearest_neighbours(pset.motif, pset.cell, asym_unit, k + 1) |
|
86
|
|
|
return _average_columns_except_first(dists, weights) |
|
87
|
|
|
|
|
88
|
|
|
|
|
89
|
|
|
def PDD( |
|
90
|
|
|
pset: PeriodicSet, |
|
91
|
|
|
k: int, |
|
92
|
|
|
lexsort: bool = True, |
|
93
|
|
|
collapse: bool = True, |
|
94
|
|
|
collapse_tol: float = 1e-4, |
|
95
|
|
|
return_row_groups: bool = False |
|
96
|
|
|
) -> Union[np.ndarray, Tuple[np.ndarray, list]]: |
|
97
|
|
|
"""Return the point-wise distance distribution (PDD) of a periodic |
|
98
|
|
|
set (crystal). |
|
99
|
|
|
|
|
100
|
|
|
The PDD of a periodic set is a geometry based descriptor independent |
|
101
|
|
|
of choice of motif and unit cell. It is a matrix where each row |
|
102
|
|
|
corresponds to a point in the motif, containing a weight followed by |
|
103
|
|
|
distances to the k nearest neighbours of the point. |
|
104
|
|
|
|
|
105
|
|
|
Parameters |
|
106
|
|
|
---------- |
|
107
|
|
|
pset : :class:`amd.PeriodicSet <.periodicset.PeriodicSet>` |
|
108
|
|
|
A periodic set (crystal) consisting of a unit cell and motif of |
|
109
|
|
|
points. |
|
110
|
|
|
k : int |
|
111
|
|
|
The number of neighbours considered for each atom (point) in the |
|
112
|
|
|
unit cell. The returned matrix has k + 1 columns, the first |
|
113
|
|
|
column for weights of rows. |
|
114
|
|
|
lexsort : bool, default True |
|
115
|
|
|
Lexicographically order the rows. |
|
116
|
|
|
collapse: bool, default True |
|
117
|
|
|
Collapse repeated rows (within tolerance ``collapse_tol``). |
|
118
|
|
|
collapse_tol: float, default 1e-4 |
|
119
|
|
|
If two rows have all elements closer than ``collapse_tol``, they |
|
120
|
|
|
are merged and weights are given to rows in proportion to the |
|
121
|
|
|
number of times they appeared. |
|
122
|
|
|
return_row_groups: bool, default False |
|
123
|
|
|
If True, return a tuple ``(pdd, groups)`` where ``groups`` |
|
124
|
|
|
contains information about which rows in ``pdd`` correspond to |
|
125
|
|
|
which points. If ``pset.asym_unit`` is None, then |
|
126
|
|
|
``groups[i]`` contains indices of points in |
|
127
|
|
|
``pset.motif`` corresponding to ``pdd[i]``. Otherwise, |
|
128
|
|
|
PDD rows correspond to points in the asymmetric unit, and |
|
129
|
|
|
``groups[i]`` contains indices of points in |
|
130
|
|
|
``pset.motif[pset.asym_unit]``. |
|
131
|
|
|
|
|
132
|
|
|
Returns |
|
133
|
|
|
------- |
|
134
|
|
|
pdd : :class:`numpy.ndarray` |
|
135
|
|
|
A :class:`numpy.ndarray` with k+1 columns, the PDD of |
|
136
|
|
|
``pset`` up to k. The first column contains the weights |
|
137
|
|
|
of rows. If ``return_row_groups`` is True, returns a tuple with |
|
138
|
|
|
types (:class:`numpy.ndarray`, list). |
|
139
|
|
|
|
|
140
|
|
|
Examples |
|
141
|
|
|
-------- |
|
142
|
|
|
Make list of PDDs with ``k=100`` for crystals in data.cif:: |
|
143
|
|
|
|
|
144
|
|
|
pdds = [] |
|
145
|
|
|
for periodic_set in amd.CifReader('data.cif'): |
|
146
|
|
|
# do not lexicographically order rows |
|
147
|
|
|
pdds.append(amd.PDD(periodic_set, 100, lexsort=False)) |
|
148
|
|
|
|
|
149
|
|
|
Make list of PDDs with ``k=10`` for crystals in these CSD refcode |
|
150
|
|
|
families:: |
|
151
|
|
|
|
|
152
|
|
|
pdds = [] |
|
153
|
|
|
for periodic_set in amd.CSDReader(['HXACAN', 'ACSALA'], families=True): |
|
154
|
|
|
# do not collapse rows |
|
155
|
|
|
pdds.append(amd.PDD(periodic_set, 10, collapse=False)) |
|
156
|
|
|
|
|
157
|
|
|
Manually create a periodic set as a tuple (motif, cell):: |
|
158
|
|
|
|
|
159
|
|
|
# simple cubic lattice |
|
160
|
|
|
motif = np.array([[0,0,0]]) |
|
161
|
|
|
cell = np.array([[1,0,0], [0,1,0], [0,0,1]]) |
|
162
|
|
|
periodic_set = amd.PeriodicSet(motif, cell) |
|
163
|
|
|
cubic_amd = amd.PDD(periodic_set, 100) |
|
164
|
|
|
""" |
|
165
|
|
|
|
|
166
|
|
|
m = pset.motif.shape[0] |
|
167
|
|
|
if pset.asym_unit is None or pset.multiplicities is None: |
|
168
|
|
|
asym_unit = pset.motif |
|
169
|
|
|
weights = np.full((m, ), 1 / m, dtype=np.float64) |
|
170
|
|
|
else: |
|
171
|
|
|
asym_unit = pset.motif[pset.asym_unit] |
|
172
|
|
|
weights = pset.multiplicities / m |
|
173
|
|
|
|
|
174
|
|
|
dists = nearest_neighbours(pset.motif, pset.cell, asym_unit, k + 1) |
|
175
|
|
|
dists = dists[:, 1:] |
|
176
|
|
|
groups = [[i] for i in range(len(dists))] |
|
177
|
|
|
|
|
178
|
|
|
if collapse: |
|
179
|
|
|
overlapping = pdist(dists, metric='chebyshev') <= collapse_tol |
|
180
|
|
|
if overlapping.any(): |
|
181
|
|
|
groups = _collapse_into_groups(overlapping) |
|
182
|
|
|
weights = np.array([np.sum(weights[group]) for group in groups]) |
|
183
|
|
|
dists = np.array( |
|
184
|
|
|
[np.average(dists[group], axis=0) for group in groups], |
|
185
|
|
|
dtype=np.float64 |
|
186
|
|
|
) |
|
187
|
|
|
|
|
188
|
|
|
pdd = np.empty(shape=(len(dists), k + 1), dtype=np.float64) |
|
189
|
|
|
|
|
190
|
|
|
if lexsort: |
|
191
|
|
|
lex_ordering = np.lexsort(np.rot90(dists)) |
|
192
|
|
|
pdd[:, 0] = weights[lex_ordering] |
|
193
|
|
|
pdd[:, 1:] = dists[lex_ordering] |
|
194
|
|
|
if return_row_groups: |
|
195
|
|
|
groups = [groups[i] for i in lex_ordering] |
|
196
|
|
|
else: |
|
197
|
|
|
pdd[:, 0] = weights |
|
198
|
|
|
pdd[:, 1:] = dists |
|
199
|
|
|
|
|
200
|
|
|
if return_row_groups: |
|
201
|
|
|
return pdd, groups |
|
202
|
|
|
return pdd |
|
203
|
|
|
|
|
204
|
|
|
|
|
205
|
|
|
def PDD_to_AMD(pdd: np.ndarray) -> np.ndarray: |
|
206
|
|
|
"""Calculate an AMD from a PDD. Faster than computing both from |
|
207
|
|
|
scratch. |
|
208
|
|
|
|
|
209
|
|
|
Parameters |
|
210
|
|
|
---------- |
|
211
|
|
|
pdd : :class:`numpy.ndarray` |
|
212
|
|
|
The PDD of a periodic set. |
|
213
|
|
|
|
|
214
|
|
|
Returns |
|
215
|
|
|
------- |
|
216
|
|
|
:class:`numpy.ndarray` |
|
217
|
|
|
The AMD of the periodic set. |
|
218
|
|
|
""" |
|
219
|
|
|
return np.average(pdd[:, 1:], weights=pdd[:, 0], axis=0) |
|
220
|
|
|
|
|
221
|
|
|
|
|
222
|
|
|
def AMD_finite(motif: np.ndarray) -> np.ndarray: |
|
223
|
|
|
"""Return the AMD of a finite m-point set up to k = m - 1. |
|
224
|
|
|
|
|
225
|
|
|
Parameters |
|
226
|
|
|
---------- |
|
227
|
|
|
motif : :class:`numpy.ndarray` |
|
228
|
|
|
Collection of points. |
|
229
|
|
|
|
|
230
|
|
|
Returns |
|
231
|
|
|
------- |
|
232
|
|
|
:class:`numpy.ndarray` |
|
233
|
|
|
A vector shape (motif.shape[0] - 1, ), the AMD of ``motif``. |
|
234
|
|
|
|
|
235
|
|
|
Examples |
|
236
|
|
|
-------- |
|
237
|
|
|
The (L-infinity) AMD distance between finite trapezium and kite |
|
238
|
|
|
point sets:: |
|
239
|
|
|
|
|
240
|
|
|
trapezium = np.array([[0,0],[1,1],[3,1],[4,0]]) |
|
241
|
|
|
kite = np.array([[0,0],[1,1],[1,-1],[4,0]]) |
|
242
|
|
|
|
|
243
|
|
|
trap_amd = amd.AMD_finite(trapezium) |
|
244
|
|
|
kite_amd = amd.AMD_finite(kite) |
|
245
|
|
|
|
|
246
|
|
|
l_inf_dist = np.amax(np.abs(trap_amd - kite_amd)) |
|
247
|
|
|
""" |
|
248
|
|
|
|
|
249
|
|
|
dm = np.sort(squareform(pdist(motif)), axis=-1)[:, 1:] |
|
250
|
|
|
return np.average(dm, axis=0) |
|
251
|
|
|
|
|
252
|
|
|
|
|
253
|
|
|
def PDD_finite( |
|
254
|
|
|
motif: np.ndarray, |
|
255
|
|
|
lexsort: bool = True, |
|
256
|
|
|
collapse: bool = True, |
|
257
|
|
|
collapse_tol: float = 1e-4, |
|
258
|
|
|
return_row_groups: bool = False |
|
259
|
|
|
) -> Union[np.ndarray, Tuple[np.ndarray, list]]: |
|
260
|
|
|
"""Return the PDD of a finite m-point set up to k = m - 1. |
|
261
|
|
|
|
|
262
|
|
|
Parameters |
|
263
|
|
|
---------- |
|
264
|
|
|
motif : :class:`numpy.ndarray` |
|
265
|
|
|
Coordinates of a set of points. |
|
266
|
|
|
lexsort : bool, default True |
|
267
|
|
|
Whether or not to lexicographically order the rows. |
|
268
|
|
|
collapse: bool, default True |
|
269
|
|
|
Whether or not to collapse repeated rows (within tolerance |
|
270
|
|
|
``collapse_tol``). |
|
271
|
|
|
collapse_tol: float, default 1e-4 |
|
272
|
|
|
If two rows have all elements closer than ``collapse_tol``, they |
|
273
|
|
|
are merged and weights are given to rows in proportion to the |
|
274
|
|
|
number of times they appeared. |
|
275
|
|
|
return_row_groups: bool, default False |
|
276
|
|
|
If True, return a tuple ``(pdd, groups)`` where ``groups[i]`` |
|
277
|
|
|
contains indices of points in ``motif`` corresponding to |
|
278
|
|
|
``pdd[i]``. |
|
279
|
|
|
|
|
280
|
|
|
Returns |
|
281
|
|
|
------- |
|
282
|
|
|
pdd : :class:`numpy.ndarray` |
|
283
|
|
|
A :class:`numpy.ndarray` with m columns (where m is the number |
|
284
|
|
|
of points), the PDD of ``motif``. The first column contains the |
|
285
|
|
|
weights of rows. |
|
286
|
|
|
|
|
287
|
|
|
Examples |
|
288
|
|
|
-------- |
|
289
|
|
|
Find PDD distance between finite trapezium and kite point sets:: |
|
290
|
|
|
|
|
291
|
|
|
trapezium = np.array([[0,0],[1,1],[3,1],[4,0]]) |
|
292
|
|
|
kite = np.array([[0,0],[1,1],[1,-1],[4,0]]) |
|
293
|
|
|
|
|
294
|
|
|
trap_pdd = amd.PDD_finite(trapezium) |
|
295
|
|
|
kite_pdd = amd.PDD_finite(kite) |
|
296
|
|
|
|
|
297
|
|
|
dist = amd.EMD(trap_pdd, kite_pdd) |
|
298
|
|
|
""" |
|
299
|
|
|
|
|
300
|
|
|
m = motif.shape[0] |
|
301
|
|
|
dists = np.sort(squareform(pdist(motif)), axis=-1)[:, 1:] |
|
302
|
|
|
weights = np.full((m, ), 1 / m) |
|
303
|
|
|
groups = [[i] for i in range(len(dists))] |
|
304
|
|
|
|
|
305
|
|
|
if collapse: |
|
306
|
|
|
overlapping = pdist(dists, metric='chebyshev') <= collapse_tol |
|
307
|
|
|
if overlapping.any(): |
|
308
|
|
|
groups = _collapse_into_groups(overlapping) |
|
309
|
|
|
weights = np.array([np.sum(weights[group]) for group in groups]) |
|
310
|
|
|
dists = np.array([ |
|
311
|
|
|
np.average(dists[group], axis=0) for group in groups |
|
312
|
|
|
], dtype=np.float64) |
|
313
|
|
|
|
|
314
|
|
|
pdd = np.empty(shape=(len(weights), m), dtype=np.float64) |
|
315
|
|
|
|
|
316
|
|
|
if lexsort: |
|
317
|
|
|
lex_ordering = np.lexsort(np.rot90(dists)) |
|
318
|
|
|
pdd[:, 0] = weights[lex_ordering] |
|
319
|
|
|
pdd[:, 1:] = dists[lex_ordering] |
|
320
|
|
|
if return_row_groups: |
|
321
|
|
|
groups = [groups[i] for i in lex_ordering] |
|
322
|
|
|
else: |
|
323
|
|
|
pdd[:, 0] = weights |
|
324
|
|
|
pdd[:, 1:] = dists |
|
325
|
|
|
|
|
326
|
|
|
if return_row_groups: |
|
327
|
|
|
return pdd, groups |
|
328
|
|
|
return pdd |
|
329
|
|
|
|
|
330
|
|
|
|
|
331
|
|
|
def PDD_reconstructable(pset: PeriodicSet, lexsort: bool = True) -> np.ndarray: |
|
332
|
|
|
"""Return the PDD of a periodic set with `k` (number of columns) |
|
333
|
|
|
large enough such that the periodic set can be reconstructed from |
|
334
|
|
|
the PDD. |
|
335
|
|
|
|
|
336
|
|
|
Parameters |
|
337
|
|
|
---------- |
|
338
|
|
|
pset : :class:`amd.PeriodicSet <.periodicset.PeriodicSet>` |
|
339
|
|
|
A periodic set (crystal) consisting of a unit cell and motif of |
|
340
|
|
|
points. |
|
341
|
|
|
lexsort : bool, default True |
|
342
|
|
|
Whether or not to lexicographically order the rows. |
|
343
|
|
|
|
|
344
|
|
|
Returns |
|
345
|
|
|
------- |
|
346
|
|
|
pdd : :class:`numpy.ndarray` |
|
347
|
|
|
The PDD of ``pset`` with enough columns to reconstruct ``pset`` |
|
348
|
|
|
using :func:`amd.reconstruct.reconstruct`. |
|
349
|
|
|
""" |
|
350
|
|
|
|
|
351
|
|
|
dims = pset.cell.shape[0] |
|
352
|
|
|
if dims not in (2, 3): |
|
353
|
|
|
raise ValueError( |
|
354
|
|
|
'Reconstructing from PDD is only possible for 2 and 3 dimensions.' |
|
355
|
|
|
) |
|
356
|
|
|
min_val = diameter(pset.cell) * 2 |
|
357
|
|
|
pdd, _, _ = nearest_neighbours_minval(pset.motif, pset.cell, min_val) |
|
358
|
|
|
if lexsort: |
|
359
|
|
|
lex_ordering = np.lexsort(np.rot90(pdd)) |
|
360
|
|
|
pdd = pdd[lex_ordering] |
|
361
|
|
|
return pdd |
|
362
|
|
|
|
|
363
|
|
|
|
|
364
|
|
|
def PPC(pset: PeriodicSet) -> float: |
|
365
|
|
|
r"""Return the point packing coefficient (PPC) of ``pset``. |
|
366
|
|
|
|
|
367
|
|
|
The PPC is a constant of any periodic set determining the |
|
368
|
|
|
asymptotic behaviour of its AMD and PDD. As |
|
369
|
|
|
:math:`k \rightarrow \infty`, the ratio |
|
370
|
|
|
:math:`\text{AMD}_k / \sqrt[n]{k}` converges to the PPC, as does any |
|
371
|
|
|
row of its PDD. |
|
372
|
|
|
|
|
373
|
|
|
For a unit cell :math:`U` and :math:`m` motif points in :math:`n` |
|
374
|
|
|
dimensions, |
|
375
|
|
|
|
|
376
|
|
|
.. math:: |
|
377
|
|
|
|
|
378
|
|
|
\text{PPC} = \sqrt[n]{\frac{\text{Vol}[U]}{m V_n}} |
|
379
|
|
|
|
|
380
|
|
|
where :math:`V_n` is the volume of a unit sphere in :math:`n` |
|
381
|
|
|
dimensions. |
|
382
|
|
|
|
|
383
|
|
|
Parameters |
|
384
|
|
|
---------- |
|
385
|
|
|
pset : :class:`amd.PeriodicSet <.periodicset.PeriodicSet>` |
|
386
|
|
|
A periodic set (crystal) consisting of a unit cell and motif of |
|
387
|
|
|
points. |
|
388
|
|
|
|
|
389
|
|
|
Returns |
|
390
|
|
|
------- |
|
391
|
|
|
ppc : float |
|
392
|
|
|
The PPC of ``pset``. |
|
393
|
|
|
""" |
|
394
|
|
|
|
|
395
|
|
|
m, n = pset.motif.shape |
|
396
|
|
|
t = int(n // 2) |
|
397
|
|
|
if n % 2 == 0: |
|
398
|
|
|
sphere_vol = (np.pi ** t) / factorial(t) |
|
399
|
|
|
else: |
|
400
|
|
|
sphere_vol = (2 * factorial(t) * (4 * np.pi) ** t) / factorial(n) |
|
401
|
|
|
|
|
402
|
|
|
return (np.linalg.det(pset.cell) / (m * sphere_vol)) ** (1.0 / n) |
|
403
|
|
|
|
|
404
|
|
|
|
|
405
|
|
|
def AMD_estimate(pset: PeriodicSet, k: int) -> np.ndarray: |
|
406
|
|
|
r"""Calculate an estimate of AMD based on the PPC. |
|
407
|
|
|
|
|
408
|
|
|
Parameters |
|
409
|
|
|
---------- |
|
410
|
|
|
pset : :class:`amd.PeriodicSet <.periodicset.PeriodicSet>` |
|
411
|
|
|
A periodic set (crystal) consisting of a unit cell and motif of |
|
412
|
|
|
points. |
|
413
|
|
|
|
|
414
|
|
|
Returns |
|
415
|
|
|
------- |
|
416
|
|
|
amd_est : :class:`numpy.ndarray` |
|
417
|
|
|
An array shape (k, ), where ``amd_est[i]`` |
|
418
|
|
|
:math:`= \text{PPC} \sqrt[n]{k}` in n dimensions. |
|
419
|
|
|
""" |
|
420
|
|
|
|
|
421
|
|
|
n = pset.cell.shape[0] |
|
422
|
|
|
k_root = np.power(np.arange(1, k + 1, dtype=np.float64), 1.0 / n) |
|
423
|
|
|
return PPC((pset.motif, pset.cell)) * k_root |
|
424
|
|
|
|
|
425
|
|
|
|
|
426
|
|
|
@numba.njit(cache=True, fastmath=True) |
|
427
|
|
|
def _average_columns_except_first(dists, weights): |
|
428
|
|
|
m, k = dists.shape |
|
429
|
|
|
k -= 1 |
|
430
|
|
|
result = np.empty((k, ), dtype=np.float64) |
|
431
|
|
|
div = np.sum(weights) |
|
432
|
|
|
for j in range(k): |
|
433
|
|
|
av = 0 |
|
434
|
|
|
for i in range(m): |
|
435
|
|
|
av += dists[i, j+1] * weights[i] |
|
436
|
|
|
result[j] = av |
|
437
|
|
|
result /= div |
|
438
|
|
|
return result |
|
439
|
|
|
|
|
440
|
|
|
|
|
441
|
|
|
def _collapse_into_groups(overlapping: np.ndarray) -> list: |
|
442
|
|
|
"""Return a list of groups of indices where all indices in the same |
|
443
|
|
|
group overlap. ``overlapping`` indicates for each pair of items in a |
|
444
|
|
|
set whether or not the items overlap, in the shape of a condensed |
|
445
|
|
|
distance matrix. |
|
446
|
|
|
""" |
|
447
|
|
|
|
|
448
|
|
|
overlapping = squareform(overlapping) |
|
449
|
|
|
group_nums = {} |
|
450
|
|
|
group = 0 |
|
451
|
|
|
for i, row in enumerate(overlapping): |
|
452
|
|
|
if i not in group_nums: |
|
453
|
|
|
group_nums[i] = group |
|
454
|
|
|
group += 1 |
|
455
|
|
|
|
|
456
|
|
|
for j in np.argwhere(row).T[0]: |
|
457
|
|
|
if j not in group_nums: |
|
458
|
|
|
group_nums[j] = group_nums[i] |
|
459
|
|
|
|
|
460
|
|
|
groups = collections.defaultdict(list) |
|
461
|
|
|
for row_ind, group_num in sorted(group_nums.items()): |
|
462
|
|
|
groups[group_num].append(row_ind) |
|
463
|
|
|
groups = list(groups.values()) |
|
464
|
|
|
|
|
465
|
|
|
return groups |
|
466
|
|
|
|