1
|
|
|
"""Functions for calculating the average minimum distance (AMD) and |
2
|
|
|
point-wise distance distribution (PDD) isometric invariants of |
3
|
|
|
periodic crystals and finite sets. |
4
|
|
|
""" |
5
|
|
|
|
6
|
|
|
import collections |
7
|
|
|
from typing import Tuple, Union |
8
|
|
|
|
9
|
|
|
import numpy as np |
10
|
|
|
import numba |
11
|
|
|
from scipy.spatial.distance import pdist, squareform |
12
|
|
|
from scipy.special import factorial |
13
|
|
|
|
14
|
|
|
from .periodicset import PeriodicSet |
15
|
|
|
from ._nearest_neighbours import nearest_neighbours, nearest_neighbours_minval |
16
|
|
|
from .utils import diameter |
17
|
|
|
|
18
|
|
|
__all__ = [ |
19
|
|
|
'AMD', |
20
|
|
|
'PDD', |
21
|
|
|
'PDD_to_AMD', |
22
|
|
|
'AMD_finite', |
23
|
|
|
'PDD_finite', |
24
|
|
|
'PDD_reconstructable', |
25
|
|
|
'PPC', |
26
|
|
|
'AMD_estimate' |
27
|
|
|
] |
28
|
|
|
|
29
|
|
|
|
30
|
|
|
def AMD(pset: PeriodicSet, k: int) -> np.ndarray: |
31
|
|
|
"""Return the average minimum distance (AMD) of a periodic set |
32
|
|
|
(crystal). |
33
|
|
|
|
34
|
|
|
The AMD of a periodic set is a geometry based descriptor independent |
35
|
|
|
of choice of motif and unit cell. It is a vector, the (weighted) |
36
|
|
|
average of the :func:`PDD <.calculate.PDD>` matrix, which has one |
37
|
|
|
row for each (unique) point in the unit cell containing distances to |
38
|
|
|
k nearest neighbours. |
39
|
|
|
|
40
|
|
|
Parameters |
41
|
|
|
---------- |
42
|
|
|
pset : :class:`amd.PeriodicSet <.periodicset.PeriodicSet>` |
43
|
|
|
A periodic set (crystal) consisting of a unit cell and motif of |
44
|
|
|
points. |
45
|
|
|
k : int |
46
|
|
|
The number of neighbouring points (atoms) considered for each |
47
|
|
|
point in the unit cell. |
48
|
|
|
|
49
|
|
|
Returns |
50
|
|
|
------- |
51
|
|
|
:class:`numpy.ndarray` |
52
|
|
|
A :class:`numpy.ndarray` shape ``(k, )``, the AMD of |
53
|
|
|
``pset`` up to k. |
54
|
|
|
|
55
|
|
|
Examples |
56
|
|
|
-------- |
57
|
|
|
Make list of AMDs with k = 100 for crystals in data.cif:: |
58
|
|
|
|
59
|
|
|
amds = [] |
60
|
|
|
for periodic_set in amd.CifReader('data.cif'): |
61
|
|
|
amds.append(amd.AMD(periodic_set, 100)) |
62
|
|
|
|
63
|
|
|
Make list of AMDs with k = 10 for crystals in these CSD refcode families:: |
64
|
|
|
|
65
|
|
|
amds = [] |
66
|
|
|
for periodic_set in amd.CSDReader(['HXACAN', 'ACSALA'], families=True): |
67
|
|
|
amds.append(amd.AMD(periodic_set, 10)) |
68
|
|
|
|
69
|
|
|
Manually create a periodic set as a tuple (motif, cell):: |
70
|
|
|
|
71
|
|
|
# simple cubic lattice |
72
|
|
|
motif = np.array([[0,0,0]]) |
73
|
|
|
cell = np.array([[1,0,0], [0,1,0], [0,0,1]]) |
74
|
|
|
periodic_set = amd.PeriodicSet(motif, cell) |
75
|
|
|
cubic_amd = amd.AMD(periodic_set, 100) |
76
|
|
|
""" |
77
|
|
|
|
78
|
|
|
if pset.asym_unit is None or pset.multiplicities is None: |
79
|
|
|
asym_unit = pset.motif |
80
|
|
|
weights = np.ones((asym_unit.shape[0], ), dtype=np.float64) |
81
|
|
|
else: |
82
|
|
|
asym_unit = pset.motif[pset.asym_unit] |
83
|
|
|
weights = pset.multiplicities |
84
|
|
|
|
85
|
|
|
dists = nearest_neighbours(pset.motif, pset.cell, asym_unit, k + 1) |
86
|
|
|
return _average_columns_except_first(dists, weights) |
87
|
|
|
|
88
|
|
|
|
89
|
|
|
def PDD( |
90
|
|
|
pset: PeriodicSet, |
91
|
|
|
k: int, |
92
|
|
|
lexsort: bool = True, |
93
|
|
|
collapse: bool = True, |
94
|
|
|
collapse_tol: float = 1e-4, |
95
|
|
|
return_row_groups: bool = False |
96
|
|
|
) -> Union[np.ndarray, Tuple[np.ndarray, list]]: |
97
|
|
|
"""Return the point-wise distance distribution (PDD) of a periodic |
98
|
|
|
set (crystal). |
99
|
|
|
|
100
|
|
|
The PDD of a periodic set is a geometry based descriptor independent |
101
|
|
|
of choice of motif and unit cell. It is a matrix where each row |
102
|
|
|
corresponds to a point in the motif, containing a weight followed by |
103
|
|
|
distances to the k nearest neighbours of the point. |
104
|
|
|
|
105
|
|
|
Parameters |
106
|
|
|
---------- |
107
|
|
|
pset : :class:`amd.PeriodicSet <.periodicset.PeriodicSet>` |
108
|
|
|
A periodic set (crystal) consisting of a unit cell and motif of |
109
|
|
|
points. |
110
|
|
|
k : int |
111
|
|
|
The number of neighbours considered for each atom (point) in the |
112
|
|
|
unit cell. The returned matrix has k + 1 columns, the first |
113
|
|
|
column for weights of rows. |
114
|
|
|
lexsort : bool, default True |
115
|
|
|
Lexicographically order the rows. |
116
|
|
|
collapse: bool, default True |
117
|
|
|
Collapse repeated rows (within tolerance ``collapse_tol``). |
118
|
|
|
collapse_tol: float, default 1e-4 |
119
|
|
|
If two rows have all elements closer than ``collapse_tol``, they |
120
|
|
|
are merged and weights are given to rows in proportion to the |
121
|
|
|
number of times they appeared. |
122
|
|
|
return_row_groups: bool, default False |
123
|
|
|
If True, return a tuple ``(pdd, groups)`` where ``groups`` |
124
|
|
|
contains information about which rows in ``pdd`` correspond to |
125
|
|
|
which points. If ``pset.asym_unit`` is None, then |
126
|
|
|
``groups[i]`` contains indices of points in |
127
|
|
|
``pset.motif`` corresponding to ``pdd[i]``. Otherwise, |
128
|
|
|
PDD rows correspond to points in the asymmetric unit, and |
129
|
|
|
``groups[i]`` contains indices of points in |
130
|
|
|
``pset.motif[pset.asym_unit]``. |
131
|
|
|
|
132
|
|
|
Returns |
133
|
|
|
------- |
134
|
|
|
pdd : :class:`numpy.ndarray` |
135
|
|
|
A :class:`numpy.ndarray` with k+1 columns, the PDD of |
136
|
|
|
``pset`` up to k. The first column contains the weights |
137
|
|
|
of rows. If ``return_row_groups`` is True, returns a tuple with |
138
|
|
|
types (:class:`numpy.ndarray`, list). |
139
|
|
|
|
140
|
|
|
Examples |
141
|
|
|
-------- |
142
|
|
|
Make list of PDDs with ``k=100`` for crystals in data.cif:: |
143
|
|
|
|
144
|
|
|
pdds = [] |
145
|
|
|
for periodic_set in amd.CifReader('data.cif'): |
146
|
|
|
# do not lexicographically order rows |
147
|
|
|
pdds.append(amd.PDD(periodic_set, 100, lexsort=False)) |
148
|
|
|
|
149
|
|
|
Make list of PDDs with ``k=10`` for crystals in these CSD refcode |
150
|
|
|
families:: |
151
|
|
|
|
152
|
|
|
pdds = [] |
153
|
|
|
for periodic_set in amd.CSDReader(['HXACAN', 'ACSALA'], families=True): |
154
|
|
|
# do not collapse rows |
155
|
|
|
pdds.append(amd.PDD(periodic_set, 10, collapse=False)) |
156
|
|
|
|
157
|
|
|
Manually create a periodic set as a tuple (motif, cell):: |
158
|
|
|
|
159
|
|
|
# simple cubic lattice |
160
|
|
|
motif = np.array([[0,0,0]]) |
161
|
|
|
cell = np.array([[1,0,0], [0,1,0], [0,0,1]]) |
162
|
|
|
periodic_set = amd.PeriodicSet(motif, cell) |
163
|
|
|
cubic_amd = amd.PDD(periodic_set, 100) |
164
|
|
|
""" |
165
|
|
|
|
166
|
|
|
m = pset.motif.shape[0] |
167
|
|
|
if pset.asym_unit is None or pset.multiplicities is None: |
168
|
|
|
asym_unit = pset.motif |
169
|
|
|
weights = np.full((m, ), 1 / m, dtype=np.float64) |
170
|
|
|
else: |
171
|
|
|
asym_unit = pset.motif[pset.asym_unit] |
172
|
|
|
weights = pset.multiplicities / m |
173
|
|
|
|
174
|
|
|
dists = nearest_neighbours(pset.motif, pset.cell, asym_unit, k + 1) |
175
|
|
|
dists = dists[:, 1:] |
176
|
|
|
groups = [[i] for i in range(len(dists))] |
177
|
|
|
|
178
|
|
|
if collapse: |
179
|
|
|
overlapping = pdist(dists, metric='chebyshev') <= collapse_tol |
180
|
|
|
if overlapping.any(): |
181
|
|
|
groups = _collapse_into_groups(overlapping) |
182
|
|
|
weights = np.array([np.sum(weights[group]) for group in groups]) |
183
|
|
|
dists = np.array( |
184
|
|
|
[np.average(dists[group], axis=0) for group in groups], |
185
|
|
|
dtype=np.float64 |
186
|
|
|
) |
187
|
|
|
|
188
|
|
|
pdd = np.empty(shape=(len(dists), k + 1), dtype=np.float64) |
189
|
|
|
|
190
|
|
|
if lexsort: |
191
|
|
|
lex_ordering = np.lexsort(np.rot90(dists)) |
192
|
|
|
pdd[:, 0] = weights[lex_ordering] |
193
|
|
|
pdd[:, 1:] = dists[lex_ordering] |
194
|
|
|
if return_row_groups: |
195
|
|
|
groups = [groups[i] for i in lex_ordering] |
196
|
|
|
else: |
197
|
|
|
pdd[:, 0] = weights |
198
|
|
|
pdd[:, 1:] = dists |
199
|
|
|
|
200
|
|
|
if return_row_groups: |
201
|
|
|
return pdd, groups |
202
|
|
|
return pdd |
203
|
|
|
|
204
|
|
|
|
205
|
|
|
def PDD_to_AMD(pdd: np.ndarray) -> np.ndarray: |
206
|
|
|
"""Calculate an AMD from a PDD. Faster than computing both from |
207
|
|
|
scratch. |
208
|
|
|
|
209
|
|
|
Parameters |
210
|
|
|
---------- |
211
|
|
|
pdd : :class:`numpy.ndarray` |
212
|
|
|
The PDD of a periodic set. |
213
|
|
|
|
214
|
|
|
Returns |
215
|
|
|
------- |
216
|
|
|
:class:`numpy.ndarray` |
217
|
|
|
The AMD of the periodic set. |
218
|
|
|
""" |
219
|
|
|
return np.average(pdd[:, 1:], weights=pdd[:, 0], axis=0) |
220
|
|
|
|
221
|
|
|
|
222
|
|
|
def AMD_finite(motif: np.ndarray) -> np.ndarray: |
223
|
|
|
"""Return the AMD of a finite m-point set up to k = m - 1. |
224
|
|
|
|
225
|
|
|
Parameters |
226
|
|
|
---------- |
227
|
|
|
motif : :class:`numpy.ndarray` |
228
|
|
|
Collection of points. |
229
|
|
|
|
230
|
|
|
Returns |
231
|
|
|
------- |
232
|
|
|
:class:`numpy.ndarray` |
233
|
|
|
A vector shape (motif.shape[0] - 1, ), the AMD of ``motif``. |
234
|
|
|
|
235
|
|
|
Examples |
236
|
|
|
-------- |
237
|
|
|
The (L-infinity) AMD distance between finite trapezium and kite |
238
|
|
|
point sets:: |
239
|
|
|
|
240
|
|
|
trapezium = np.array([[0,0],[1,1],[3,1],[4,0]]) |
241
|
|
|
kite = np.array([[0,0],[1,1],[1,-1],[4,0]]) |
242
|
|
|
|
243
|
|
|
trap_amd = amd.AMD_finite(trapezium) |
244
|
|
|
kite_amd = amd.AMD_finite(kite) |
245
|
|
|
|
246
|
|
|
l_inf_dist = np.amax(np.abs(trap_amd - kite_amd)) |
247
|
|
|
""" |
248
|
|
|
|
249
|
|
|
dm = np.sort(squareform(pdist(motif)), axis=-1)[:, 1:] |
250
|
|
|
return np.average(dm, axis=0) |
251
|
|
|
|
252
|
|
|
|
253
|
|
|
def PDD_finite( |
254
|
|
|
motif: np.ndarray, |
255
|
|
|
lexsort: bool = True, |
256
|
|
|
collapse: bool = True, |
257
|
|
|
collapse_tol: float = 1e-4, |
258
|
|
|
return_row_groups: bool = False |
259
|
|
|
) -> Union[np.ndarray, Tuple[np.ndarray, list]]: |
260
|
|
|
"""Return the PDD of a finite m-point set up to k = m - 1. |
261
|
|
|
|
262
|
|
|
Parameters |
263
|
|
|
---------- |
264
|
|
|
motif : :class:`numpy.ndarray` |
265
|
|
|
Coordinates of a set of points. |
266
|
|
|
lexsort : bool, default True |
267
|
|
|
Whether or not to lexicographically order the rows. |
268
|
|
|
collapse: bool, default True |
269
|
|
|
Whether or not to collapse repeated rows (within tolerance |
270
|
|
|
``collapse_tol``). |
271
|
|
|
collapse_tol: float, default 1e-4 |
272
|
|
|
If two rows have all elements closer than ``collapse_tol``, they |
273
|
|
|
are merged and weights are given to rows in proportion to the |
274
|
|
|
number of times they appeared. |
275
|
|
|
return_row_groups: bool, default False |
276
|
|
|
If True, return a tuple ``(pdd, groups)`` where ``groups[i]`` |
277
|
|
|
contains indices of points in ``motif`` corresponding to |
278
|
|
|
``pdd[i]``. |
279
|
|
|
|
280
|
|
|
Returns |
281
|
|
|
------- |
282
|
|
|
pdd : :class:`numpy.ndarray` |
283
|
|
|
A :class:`numpy.ndarray` with m columns (where m is the number |
284
|
|
|
of points), the PDD of ``motif``. The first column contains the |
285
|
|
|
weights of rows. |
286
|
|
|
|
287
|
|
|
Examples |
288
|
|
|
-------- |
289
|
|
|
Find PDD distance between finite trapezium and kite point sets:: |
290
|
|
|
|
291
|
|
|
trapezium = np.array([[0,0],[1,1],[3,1],[4,0]]) |
292
|
|
|
kite = np.array([[0,0],[1,1],[1,-1],[4,0]]) |
293
|
|
|
|
294
|
|
|
trap_pdd = amd.PDD_finite(trapezium) |
295
|
|
|
kite_pdd = amd.PDD_finite(kite) |
296
|
|
|
|
297
|
|
|
dist = amd.EMD(trap_pdd, kite_pdd) |
298
|
|
|
""" |
299
|
|
|
|
300
|
|
|
m = motif.shape[0] |
301
|
|
|
dists = np.sort(squareform(pdist(motif)), axis=-1)[:, 1:] |
302
|
|
|
weights = np.full((m, ), 1 / m) |
303
|
|
|
groups = [[i] for i in range(len(dists))] |
304
|
|
|
|
305
|
|
|
if collapse: |
306
|
|
|
overlapping = pdist(dists, metric='chebyshev') <= collapse_tol |
307
|
|
|
if overlapping.any(): |
308
|
|
|
groups = _collapse_into_groups(overlapping) |
309
|
|
|
weights = np.array([np.sum(weights[group]) for group in groups]) |
310
|
|
|
dists = np.array([ |
311
|
|
|
np.average(dists[group], axis=0) for group in groups |
312
|
|
|
], dtype=np.float64) |
313
|
|
|
|
314
|
|
|
pdd = np.empty(shape=(len(weights), m), dtype=np.float64) |
315
|
|
|
|
316
|
|
|
if lexsort: |
317
|
|
|
lex_ordering = np.lexsort(np.rot90(dists)) |
318
|
|
|
pdd[:, 0] = weights[lex_ordering] |
319
|
|
|
pdd[:, 1:] = dists[lex_ordering] |
320
|
|
|
if return_row_groups: |
321
|
|
|
groups = [groups[i] for i in lex_ordering] |
322
|
|
|
else: |
323
|
|
|
pdd[:, 0] = weights |
324
|
|
|
pdd[:, 1:] = dists |
325
|
|
|
|
326
|
|
|
if return_row_groups: |
327
|
|
|
return pdd, groups |
328
|
|
|
return pdd |
329
|
|
|
|
330
|
|
|
|
331
|
|
|
def PDD_reconstructable(pset: PeriodicSet, lexsort: bool = True) -> np.ndarray: |
332
|
|
|
"""Return the PDD of a periodic set with `k` (number of columns) |
333
|
|
|
large enough such that the periodic set can be reconstructed from |
334
|
|
|
the PDD. |
335
|
|
|
|
336
|
|
|
Parameters |
337
|
|
|
---------- |
338
|
|
|
pset : :class:`amd.PeriodicSet <.periodicset.PeriodicSet>` |
339
|
|
|
A periodic set (crystal) consisting of a unit cell and motif of |
340
|
|
|
points. |
341
|
|
|
lexsort : bool, default True |
342
|
|
|
Whether or not to lexicographically order the rows. |
343
|
|
|
|
344
|
|
|
Returns |
345
|
|
|
------- |
346
|
|
|
pdd : :class:`numpy.ndarray` |
347
|
|
|
The PDD of ``pset`` with enough columns to reconstruct ``pset`` |
348
|
|
|
using :func:`amd.reconstruct.reconstruct`. |
349
|
|
|
""" |
350
|
|
|
|
351
|
|
|
dims = pset.cell.shape[0] |
352
|
|
|
if dims not in (2, 3): |
353
|
|
|
raise ValueError( |
354
|
|
|
'Reconstructing from PDD is only possible for 2 and 3 dimensions.' |
355
|
|
|
) |
356
|
|
|
min_val = diameter(pset.cell) * 2 |
357
|
|
|
pdd, _, _ = nearest_neighbours_minval(pset.motif, pset.cell, min_val) |
358
|
|
|
if lexsort: |
359
|
|
|
lex_ordering = np.lexsort(np.rot90(pdd)) |
360
|
|
|
pdd = pdd[lex_ordering] |
361
|
|
|
return pdd |
362
|
|
|
|
363
|
|
|
|
364
|
|
|
def PPC(pset: PeriodicSet) -> float: |
365
|
|
|
r"""Return the point packing coefficient (PPC) of ``pset``. |
366
|
|
|
|
367
|
|
|
The PPC is a constant of any periodic set determining the |
368
|
|
|
asymptotic behaviour of its AMD and PDD. As |
369
|
|
|
:math:`k \rightarrow \infty`, the ratio |
370
|
|
|
:math:`\text{AMD}_k / \sqrt[n]{k}` converges to the PPC, as does any |
371
|
|
|
row of its PDD. |
372
|
|
|
|
373
|
|
|
For a unit cell :math:`U` and :math:`m` motif points in :math:`n` |
374
|
|
|
dimensions, |
375
|
|
|
|
376
|
|
|
.. math:: |
377
|
|
|
|
378
|
|
|
\text{PPC} = \sqrt[n]{\frac{\text{Vol}[U]}{m V_n}} |
379
|
|
|
|
380
|
|
|
where :math:`V_n` is the volume of a unit sphere in :math:`n` |
381
|
|
|
dimensions. |
382
|
|
|
|
383
|
|
|
Parameters |
384
|
|
|
---------- |
385
|
|
|
pset : :class:`amd.PeriodicSet <.periodicset.PeriodicSet>` |
386
|
|
|
A periodic set (crystal) consisting of a unit cell and motif of |
387
|
|
|
points. |
388
|
|
|
|
389
|
|
|
Returns |
390
|
|
|
------- |
391
|
|
|
ppc : float |
392
|
|
|
The PPC of ``pset``. |
393
|
|
|
""" |
394
|
|
|
|
395
|
|
|
m, n = pset.motif.shape |
396
|
|
|
t = int(n // 2) |
397
|
|
|
if n % 2 == 0: |
398
|
|
|
sphere_vol = (np.pi ** t) / factorial(t) |
399
|
|
|
else: |
400
|
|
|
sphere_vol = (2 * factorial(t) * (4 * np.pi) ** t) / factorial(n) |
401
|
|
|
|
402
|
|
|
return (np.linalg.det(pset.cell) / (m * sphere_vol)) ** (1.0 / n) |
403
|
|
|
|
404
|
|
|
|
405
|
|
|
def AMD_estimate(pset: PeriodicSet, k: int) -> np.ndarray: |
406
|
|
|
r"""Calculate an estimate of AMD based on the PPC. |
407
|
|
|
|
408
|
|
|
Parameters |
409
|
|
|
---------- |
410
|
|
|
pset : :class:`amd.PeriodicSet <.periodicset.PeriodicSet>` |
411
|
|
|
A periodic set (crystal) consisting of a unit cell and motif of |
412
|
|
|
points. |
413
|
|
|
|
414
|
|
|
Returns |
415
|
|
|
------- |
416
|
|
|
amd_est : :class:`numpy.ndarray` |
417
|
|
|
An array shape (k, ), where ``amd_est[i]`` |
418
|
|
|
:math:`= \text{PPC} \sqrt[n]{k}` in n dimensions. |
419
|
|
|
""" |
420
|
|
|
|
421
|
|
|
n = pset.cell.shape[0] |
422
|
|
|
k_root = np.power(np.arange(1, k + 1, dtype=np.float64), 1.0 / n) |
423
|
|
|
return PPC((pset.motif, pset.cell)) * k_root |
424
|
|
|
|
425
|
|
|
|
426
|
|
|
@numba.njit(cache=True, fastmath=True) |
427
|
|
|
def _average_columns_except_first(dists, weights): |
428
|
|
|
m, k = dists.shape |
429
|
|
|
k -= 1 |
430
|
|
|
result = np.empty((k, ), dtype=np.float64) |
431
|
|
|
div = np.sum(weights) |
432
|
|
|
for j in range(k): |
433
|
|
|
av = 0 |
434
|
|
|
for i in range(m): |
435
|
|
|
av += dists[i, j+1] * weights[i] |
436
|
|
|
result[j] = av |
437
|
|
|
result /= div |
438
|
|
|
return result |
439
|
|
|
|
440
|
|
|
|
441
|
|
|
def _collapse_into_groups(overlapping: np.ndarray) -> list: |
442
|
|
|
"""Return a list of groups of indices where all indices in the same |
443
|
|
|
group overlap. ``overlapping`` indicates for each pair of items in a |
444
|
|
|
set whether or not the items overlap, in the shape of a condensed |
445
|
|
|
distance matrix. |
446
|
|
|
""" |
447
|
|
|
|
448
|
|
|
overlapping = squareform(overlapping) |
449
|
|
|
group_nums = {} |
450
|
|
|
group = 0 |
451
|
|
|
for i, row in enumerate(overlapping): |
452
|
|
|
if i not in group_nums: |
453
|
|
|
group_nums[i] = group |
454
|
|
|
group += 1 |
455
|
|
|
|
456
|
|
|
for j in np.argwhere(row).T[0]: |
457
|
|
|
if j not in group_nums: |
458
|
|
|
group_nums[j] = group_nums[i] |
459
|
|
|
|
460
|
|
|
groups = collections.defaultdict(list) |
461
|
|
|
for row_ind, group_num in sorted(group_nums.items()): |
462
|
|
|
groups[group_num].append(row_ind) |
463
|
|
|
groups = list(groups.values()) |
464
|
|
|
|
465
|
|
|
return groups |
466
|
|
|
|