|
1
|
|
|
"""Implements core function nearest_neighbours used for AMD and PDD |
|
2
|
|
|
calculations. |
|
3
|
|
|
""" |
|
4
|
|
|
|
|
5
|
|
|
from typing import Tuple, Iterable |
|
6
|
|
|
from itertools import product, tee |
|
7
|
|
|
import functools |
|
8
|
|
|
|
|
9
|
|
|
import numba |
|
10
|
|
|
import numpy as np |
|
11
|
|
|
from scipy.spatial import KDTree |
|
12
|
|
|
from scipy.spatial.distance import cdist |
|
13
|
|
|
|
|
14
|
|
|
__all__ = [ |
|
15
|
|
|
'nearest_neighbours', |
|
16
|
|
|
'nearest_neighbours_data', |
|
17
|
|
|
'nearest_neighbours_minval', |
|
18
|
|
|
'generate_concentric_cloud' |
|
19
|
|
|
] |
|
20
|
|
|
|
|
21
|
|
|
|
|
22
|
|
|
def nearest_neighbours( |
|
23
|
|
|
motif: np.ndarray, cell: np.ndarray, x: np.ndarray, k: int |
|
24
|
|
|
) -> np.ndarray: |
|
25
|
|
|
"""Find distances to ``k`` nearest neighbours in a periodic set for |
|
26
|
|
|
each point in ``x``. |
|
27
|
|
|
|
|
28
|
|
|
Given a periodic set described by ``motif`` and ``cell``, a query |
|
29
|
|
|
set of points ``x`` and an integer ``k``, find distances to the |
|
30
|
|
|
``k`` nearest neighbours in the periodic set for all points in |
|
31
|
|
|
``x``. Returns an array with shape (x.shape[0], k) of distances to |
|
32
|
|
|
the neighbours. This function only returns distances, see the |
|
33
|
|
|
function nearest_neighbours_data() to also get the point cloud and |
|
34
|
|
|
indices of the points which are neighbours. |
|
35
|
|
|
|
|
36
|
|
|
Parameters |
|
37
|
|
|
---------- |
|
38
|
|
|
motif : :class:`numpy.ndarray` |
|
39
|
|
|
Cartesian coordinates of the motif, shape (no points, dims). |
|
40
|
|
|
cell : :class:`numpy.ndarray` |
|
41
|
|
|
The unit cell as a square array, shape (dims, dims). |
|
42
|
|
|
x : :class:`numpy.ndarray` |
|
43
|
|
|
Array of points to query for neighbours. For AMD/PDD invariants |
|
44
|
|
|
this is the motif, or more commonly an asymmetric unit of it. |
|
45
|
|
|
k : int |
|
46
|
|
|
Number of nearest neighbours to find for each point in ``x``. |
|
47
|
|
|
|
|
48
|
|
|
Returns |
|
49
|
|
|
------- |
|
50
|
|
|
dists : numpy.ndarray |
|
51
|
|
|
Array shape ``(x.shape[0], k)`` of distances from points in |
|
52
|
|
|
``x`` to their ``k`` nearest neighbours in the periodic set in |
|
53
|
|
|
order, e.g. ``dists[m][n]`` is the distance from ``x[m]`` to its |
|
54
|
|
|
n-th nearest neighbour in the periodic set. |
|
55
|
|
|
""" |
|
56
|
|
|
|
|
57
|
|
|
m, dims = motif.shape |
|
58
|
|
|
# Get an initial collection of lattice points + a generator for more |
|
59
|
|
|
int_lat_cloud, int_lat_generator = _get_integer_lattice(dims, m, k) |
|
60
|
|
|
cloud = _int_lattice_to_cloud(motif, cell, int_lat_cloud) |
|
61
|
|
|
|
|
62
|
|
|
# Squared distances to k nearest neighbours |
|
63
|
|
|
sqdists = _cdist_sqeuclidean(x, cloud) |
|
64
|
|
|
motif_diam = np.sqrt(_max_in_columns(sqdists, m)) |
|
65
|
|
|
sqdists.partition(k - 1) |
|
66
|
|
|
sqdists = sqdists[:, :k] |
|
67
|
|
|
sqdists.sort() |
|
68
|
|
|
|
|
69
|
|
|
# Generate layers of lattice until they are too far away to give |
|
70
|
|
|
# nearer neighbours. For a lattice point l, points in l + motif are |
|
71
|
|
|
# further away from x than |l| - max|p-p'| (p in x, p' in motif), |
|
72
|
|
|
# giving a bound we can use to rule out distant lattice points |
|
73
|
|
|
max_sqd = np.amax(sqdists[:, -1]) |
|
74
|
|
|
bound = (np.sqrt(max_sqd) + motif_diam) ** 2 |
|
75
|
|
|
|
|
76
|
|
|
while True: |
|
77
|
|
|
|
|
78
|
|
|
# Get next layer of lattice |
|
79
|
|
|
lattice = _close_lattice_points(next(int_lat_generator), cell, bound) |
|
80
|
|
|
if lattice.size == 0: # None are close enough |
|
81
|
|
|
break |
|
82
|
|
|
|
|
83
|
|
|
# Squared distances to new points |
|
84
|
|
|
sqdists_ = _cdist_sqeuclidean(x, _lattice_to_cloud(motif, lattice)) |
|
85
|
|
|
close = sqdists_ < max_sqd |
|
86
|
|
|
if not np.any(close): # None are close enough |
|
87
|
|
|
break |
|
88
|
|
|
|
|
89
|
|
|
# Squared distances to up to k nearest new points |
|
90
|
|
|
sqdists_ = sqdists_[:, np.any(close, axis=0)] |
|
91
|
|
|
if sqdists_.shape[-1] > k: |
|
92
|
|
|
sqdists_.partition(k - 1) |
|
93
|
|
|
sqdists_ = sqdists_[:, :k] |
|
94
|
|
|
sqdists_.sort() |
|
95
|
|
|
|
|
96
|
|
|
# Merge existing and new distances |
|
97
|
|
|
sqdists = _merge_sorted_arrays(sqdists, sqdists_) |
|
98
|
|
|
max_sqd = np.amax(sqdists[:, -1]) |
|
99
|
|
|
bound = (np.sqrt(max_sqd) + motif_diam) ** 2 |
|
100
|
|
|
|
|
101
|
|
|
return np.sqrt(sqdists) |
|
102
|
|
|
|
|
103
|
|
|
|
|
104
|
|
|
def nearest_neighbours_data( |
|
105
|
|
|
motif: np.ndarray, cell: np.ndarray, x: np.ndarray, k: int |
|
106
|
|
|
) -> np.ndarray: |
|
107
|
|
|
"""Find the ``k`` nearest neighbours in a periodic set for each |
|
108
|
|
|
point in ``x``. |
|
109
|
|
|
|
|
110
|
|
|
Given a periodic set described by ``motif`` and ``cell``, a query |
|
111
|
|
|
set of points ``x`` and an integer ``k``, find the ``k`` nearest |
|
112
|
|
|
neighbours in the periodic set for all points in ``x``. Return |
|
113
|
|
|
an array of distances to neighbours, the point cloud generated |
|
114
|
|
|
during the search and the indices of which points in the cloud are |
|
115
|
|
|
the neighbours of points in ``x``. |
|
116
|
|
|
|
|
117
|
|
|
Parameters |
|
118
|
|
|
---------- |
|
119
|
|
|
motif : :class:`numpy.ndarray` |
|
120
|
|
|
Cartesian coordinates of the motif, shape (no points, dims). |
|
121
|
|
|
cell : :class:`numpy.ndarray` |
|
122
|
|
|
The unit cell as a square array, shape (dims, dims). |
|
123
|
|
|
x : :class:`numpy.ndarray` |
|
124
|
|
|
Array of points to query for neighbours. For AMD/PDD invariants |
|
125
|
|
|
this is the motif, or more commonly an asymmetric unit of it. |
|
126
|
|
|
k : int |
|
127
|
|
|
Number of nearest neighbours to find for each point in ``x``. |
|
128
|
|
|
|
|
129
|
|
|
Returns |
|
130
|
|
|
------- |
|
131
|
|
|
dists : numpy.ndarray |
|
132
|
|
|
Array shape ``(x.shape[0], k)`` of distances from points in |
|
133
|
|
|
``x`` to their ``k`` nearest neighbours in the periodic set in |
|
134
|
|
|
order, e.g. ``dists[m][n]`` is the distance from ``x[m]`` to its |
|
135
|
|
|
n-th nearest neighbour in the periodic set. |
|
136
|
|
|
cloud : numpy.ndarray |
|
137
|
|
|
Collection of points in the periodic set that were generated |
|
138
|
|
|
during the search. |
|
139
|
|
|
inds : numpy.ndarray |
|
140
|
|
|
Array shape ``(x.shape[0], k)`` containing the indices of |
|
141
|
|
|
nearest neighbours in ``cloud``, e.g. the n-th nearest neighbour |
|
142
|
|
|
to ``x[m]`` is ``cloud[inds[m][n]]``. |
|
143
|
|
|
""" |
|
144
|
|
|
|
|
145
|
|
|
m, dims = motif.shape |
|
146
|
|
|
int_lat, int_lat_gen = _get_integer_lattice(dims, m, k) |
|
147
|
|
|
cloud = _int_lattice_to_cloud(motif, cell, int_lat) |
|
148
|
|
|
dists = cdist(x, cloud) |
|
149
|
|
|
motif_diam = _max_in_columns(dists, m) |
|
150
|
|
|
inds = np.argsort(dists)[:, :k] |
|
151
|
|
|
dists = np.take_along_axis(dists, inds, -1) |
|
152
|
|
|
b = (np.amax(dists[:, -1]) + motif_diam) ** 2 |
|
153
|
|
|
|
|
154
|
|
|
while True: |
|
155
|
|
|
|
|
156
|
|
|
lattice = _close_lattice_points(next(int_lat_gen), cell, b) |
|
157
|
|
|
if lattice.size == 0: |
|
158
|
|
|
break |
|
159
|
|
|
|
|
160
|
|
|
cloud = np.concatenate((cloud, _lattice_to_cloud(motif, lattice))) |
|
161
|
|
|
dists = cdist(x, cloud) |
|
162
|
|
|
inds = np.argsort(dists)[:, :k] |
|
163
|
|
|
dists = np.take_along_axis(dists, inds, -1) |
|
164
|
|
|
b = (np.amax(dists[:, -1]) + motif_diam) ** 2 |
|
165
|
|
|
|
|
166
|
|
|
return dists, cloud, inds |
|
167
|
|
|
|
|
168
|
|
|
|
|
169
|
|
|
def _get_integer_lattice_cache(f): |
|
170
|
|
|
"""Specialised cache for ``_get_integer_lattice()``.""" |
|
171
|
|
|
|
|
172
|
|
|
cache = {} |
|
173
|
|
|
num_points_cache = {} |
|
174
|
|
|
|
|
175
|
|
|
@functools.wraps(f) |
|
176
|
|
|
def wrapper(dims, m, k): |
|
177
|
|
|
|
|
178
|
|
|
if dims not in num_points_cache: |
|
|
|
|
|
|
179
|
|
|
num_points_cache[dims] = [] |
|
180
|
|
|
|
|
181
|
|
|
n_points = 0 |
|
182
|
|
|
n_layers = 0 |
|
183
|
|
|
within_cache = False |
|
184
|
|
|
for num_p in num_points_cache[dims]: |
|
185
|
|
|
if n_points > k / m: |
|
186
|
|
|
within_cache = True |
|
187
|
|
|
break |
|
188
|
|
|
n_points += num_p |
|
189
|
|
|
n_layers += 1 |
|
190
|
|
|
n_layers += 1 |
|
191
|
|
|
|
|
192
|
|
|
if not (within_cache and (dims, n_layers) in cache): |
|
|
|
|
|
|
193
|
|
|
layers, int_lat_generator = f(dims, m, k) |
|
194
|
|
|
n_layers = len(layers) |
|
195
|
|
|
if len(num_points_cache[dims]) < n_layers: |
|
196
|
|
|
num_points_cache[dims] = [len(i) for i in layers] |
|
197
|
|
|
layers = np.concatenate(layers) |
|
198
|
|
|
cache[(dims, n_layers)] = [layers, int_lat_generator] |
|
199
|
|
|
|
|
200
|
|
|
arr, g = cache[(dims, n_layers)] |
|
201
|
|
|
cache[(dims, n_layers)][1], r = tee(g) |
|
202
|
|
|
return arr, r |
|
203
|
|
|
|
|
204
|
|
|
return wrapper |
|
205
|
|
|
|
|
206
|
|
|
|
|
207
|
|
|
@_get_integer_lattice_cache |
|
208
|
|
|
def _get_integer_lattice(dims, m, k): |
|
209
|
|
|
"""Return an initial batch of integer lattice points (number |
|
210
|
|
|
according to m and k) and a generator for more distant points. |
|
211
|
|
|
|
|
212
|
|
|
Parameters |
|
213
|
|
|
---------- |
|
214
|
|
|
dims : int |
|
215
|
|
|
The dimension of Euclidean space the lattice is in. |
|
216
|
|
|
m : int |
|
217
|
|
|
Number of motif points. |
|
218
|
|
|
k : int |
|
219
|
|
|
Number of nearest neighbours to find (parameter of |
|
220
|
|
|
nearest_neighbours). |
|
221
|
|
|
|
|
222
|
|
|
Returns |
|
223
|
|
|
------- |
|
224
|
|
|
initial_integer_lattice : :class:`numpy.ndarray` |
|
225
|
|
|
A collection of integer lattice points. Consists of the first |
|
226
|
|
|
few layers generated by ``integer_lattice_generator`` (number of |
|
227
|
|
|
layers depends on m, k). |
|
228
|
|
|
integer_lattice_generator |
|
229
|
|
|
A generator for integer lattice points more distant than those |
|
230
|
|
|
in ``initial_integer_lattice``. |
|
231
|
|
|
""" |
|
232
|
|
|
|
|
233
|
|
|
g = iter(_generate_integer_lattice(dims)) |
|
234
|
|
|
layers = [next(g)] |
|
235
|
|
|
n_points = 1 |
|
236
|
|
|
while n_points <= k / m: |
|
237
|
|
|
layer = next(g) |
|
238
|
|
|
n_points += layer.shape[0] |
|
239
|
|
|
layers.append(layer) |
|
240
|
|
|
layers.append(next(g)) |
|
241
|
|
|
return layers, g |
|
242
|
|
|
|
|
243
|
|
|
|
|
244
|
|
|
def memoized_generator(f): |
|
245
|
|
|
"""Caches results of a generator.""" |
|
246
|
|
|
cache = {} |
|
247
|
|
|
@functools.wraps(f) |
|
248
|
|
|
def wrapper(*args): |
|
249
|
|
|
if args not in cache: |
|
|
|
|
|
|
250
|
|
|
cache[args] = f(*args) |
|
251
|
|
|
cache[args], r = tee(cache[args]) |
|
252
|
|
|
return r |
|
253
|
|
|
return wrapper |
|
254
|
|
|
|
|
255
|
|
|
|
|
256
|
|
|
@memoized_generator |
|
257
|
|
|
def _generate_integer_lattice(dims: int) -> Iterable[np.ndarray]: |
|
258
|
|
|
"""Generate batches of integer lattice points. Each yield gives all |
|
259
|
|
|
points (that have not already been yielded) inside a sphere centered |
|
260
|
|
|
at the origin with radius d; d starts at 0 and increments by 1 on |
|
261
|
|
|
each loop. |
|
262
|
|
|
|
|
263
|
|
|
Parameters |
|
264
|
|
|
---------- |
|
265
|
|
|
dims : int |
|
266
|
|
|
The dimension of Euclidean space the lattice is in. |
|
267
|
|
|
|
|
268
|
|
|
Yields |
|
269
|
|
|
------- |
|
270
|
|
|
:class:`numpy.ndarray` |
|
271
|
|
|
Yields arrays of integer points in `dims`-dimensional Euclidean |
|
272
|
|
|
space. |
|
273
|
|
|
""" |
|
274
|
|
|
|
|
275
|
|
|
d = 0 |
|
276
|
|
|
if dims == 1: |
|
277
|
|
|
yield np.zeros((1, 1), dtype=np.float64) |
|
278
|
|
|
while True: |
|
279
|
|
|
d += 1 |
|
280
|
|
|
yield np.array([[-d], [d]], dtype=np.float64) |
|
281
|
|
|
|
|
282
|
|
|
ymax = {} |
|
283
|
|
|
while True: |
|
284
|
|
|
positive_int_lattice = [] |
|
285
|
|
|
while True: |
|
286
|
|
|
batch = False |
|
287
|
|
|
for xy in product(range(d + 1), repeat=dims-1): |
|
288
|
|
|
if xy not in ymax: |
|
289
|
|
|
ymax[xy] = 0 |
|
290
|
|
|
if sum(i**2 for i in xy) + ymax[xy]**2 <= d**2: |
|
291
|
|
|
positive_int_lattice.append((*xy, ymax[xy])) |
|
292
|
|
|
batch = True |
|
293
|
|
|
ymax[xy] += 1 |
|
294
|
|
|
if not batch: |
|
295
|
|
|
break |
|
296
|
|
|
pos_int_lat = np.array(positive_int_lattice, dtype=np.float64) |
|
297
|
|
|
yield _reflect_positive_integer_lattice(pos_int_lat) |
|
298
|
|
|
d += 1 |
|
299
|
|
|
|
|
300
|
|
|
|
|
301
|
|
|
@numba.njit(cache=True, fastmath=True) |
|
302
|
|
|
def _reflect_positive_integer_lattice( |
|
303
|
|
|
positive_int_lattice: np.ndarray |
|
304
|
|
|
) -> np.ndarray: |
|
305
|
|
|
"""Reflect points in the positive quadrant across all combinations |
|
306
|
|
|
of axes, without duplicating points that are invariant under |
|
307
|
|
|
reflections. |
|
308
|
|
|
""" |
|
309
|
|
|
|
|
310
|
|
|
dims = positive_int_lattice.shape[-1] |
|
311
|
|
|
batches = [] |
|
312
|
|
|
batches.extend(positive_int_lattice) |
|
313
|
|
|
|
|
314
|
|
|
for n_reflections in range(1, dims + 1): |
|
315
|
|
|
|
|
316
|
|
|
axes = np.arange(n_reflections) |
|
317
|
|
|
batches.extend(_reflect_in_axes(positive_int_lattice, axes)) |
|
318
|
|
|
|
|
319
|
|
|
while True: |
|
320
|
|
|
i = n_reflections - 1 |
|
321
|
|
|
for _ in range(n_reflections): |
|
322
|
|
|
if axes[i] != i + dims - n_reflections: |
|
323
|
|
|
break |
|
324
|
|
|
i -= 1 |
|
325
|
|
|
else: |
|
326
|
|
|
break |
|
327
|
|
|
axes[i] += 1 |
|
328
|
|
|
for j in range(i + 1, n_reflections): |
|
329
|
|
|
axes[j] = axes[j-1] + 1 |
|
330
|
|
|
batches.extend(_reflect_in_axes(positive_int_lattice, axes)) |
|
331
|
|
|
|
|
332
|
|
|
int_lattice = np.empty(shape=(len(batches), dims), dtype=np.float64) |
|
333
|
|
|
for i in range(len(batches)): |
|
334
|
|
|
int_lattice[i] = batches[i] |
|
335
|
|
|
|
|
336
|
|
|
return int_lattice |
|
337
|
|
|
|
|
338
|
|
|
|
|
339
|
|
|
@numba.njit(cache=True, fastmath=True) |
|
340
|
|
|
def _reflect_in_axes( |
|
341
|
|
|
positive_int_lattice: np.ndarray, axes: np.ndarray |
|
342
|
|
|
) -> np.ndarray: |
|
343
|
|
|
"""Reflect points in `positive_int_lattice` in the axes described by |
|
344
|
|
|
`axes`, without duplicating invariant points. |
|
345
|
|
|
""" |
|
346
|
|
|
not_on_axes = (positive_int_lattice[:, axes] == 0).sum(axis=-1) == 0 |
|
347
|
|
|
int_lattice = positive_int_lattice[not_on_axes] |
|
348
|
|
|
int_lattice[:, axes] *= -1 |
|
349
|
|
|
return int_lattice |
|
350
|
|
|
|
|
351
|
|
|
|
|
352
|
|
|
@numba.njit(cache=True, fastmath=True) |
|
353
|
|
|
def _close_lattice_points( |
|
354
|
|
|
int_lattice: np.ndarray, cell: np.ndarray, bound: float |
|
355
|
|
|
) -> np.ndarray: |
|
356
|
|
|
"""Given integer lattice points, a unit cell and ``bound``, return |
|
357
|
|
|
lattice points which are close enough such that the corresponding |
|
358
|
|
|
motif copy could contain nearest neighbours. ``bound`` should be |
|
359
|
|
|
equal to (max_d + motif_diam) ** 2, where max_d is the maximum |
|
360
|
|
|
k-th nearest neighbour distance found so far and motif_diam is the |
|
361
|
|
|
largest distance between any point in the query set and motif. |
|
362
|
|
|
""" |
|
363
|
|
|
|
|
364
|
|
|
lattice = int_lattice @ cell |
|
365
|
|
|
inds = [] |
|
366
|
|
|
for i in range(len(lattice)): |
|
367
|
|
|
s = 0 |
|
368
|
|
|
for xyz in lattice[i]: |
|
369
|
|
|
s += xyz ** 2 |
|
370
|
|
|
if s < bound: |
|
371
|
|
|
inds.append(i) |
|
372
|
|
|
ret = np.empty((len(inds), lattice.shape[-1]), dtype=np.float64) |
|
373
|
|
|
for i in range(len(inds)): |
|
374
|
|
|
ret[i] = lattice[inds[i]] |
|
375
|
|
|
return ret |
|
376
|
|
|
|
|
377
|
|
|
|
|
378
|
|
|
@numba.njit(cache=True, fastmath=True) |
|
379
|
|
|
def _lattice_to_cloud(motif: np.ndarray, lattice: np.ndarray) -> np.ndarray: |
|
380
|
|
|
"""Transform a batch of lattice points (generated by |
|
381
|
|
|
_generate_integer_lattice then mutliplied by the cell) into a cloud |
|
382
|
|
|
of points from a periodic set. |
|
383
|
|
|
""" |
|
384
|
|
|
|
|
385
|
|
|
m = len(motif) |
|
386
|
|
|
layer = np.empty((m * len(lattice), motif.shape[-1]), dtype=np.float64) |
|
387
|
|
|
i1 = 0 |
|
388
|
|
|
for translation in lattice: |
|
389
|
|
|
i2 = i1 + m |
|
390
|
|
|
layer[i1:i2] = motif + translation |
|
391
|
|
|
i1 = i2 |
|
392
|
|
|
return layer |
|
393
|
|
|
|
|
394
|
|
|
|
|
395
|
|
|
@numba.njit(cache=True, fastmath=True) |
|
396
|
|
|
def _int_lattice_to_cloud( |
|
397
|
|
|
motif: np.ndarray, cell: np.ndarray, int_lattice: np.ndarray |
|
398
|
|
|
) -> np.ndarray: |
|
399
|
|
|
"""Transform a batch of integer lattice points (generated by |
|
400
|
|
|
_generate_integer_lattice) into a cloud of points from a periodic |
|
401
|
|
|
set. |
|
402
|
|
|
""" |
|
403
|
|
|
return _lattice_to_cloud(motif, int_lattice @ cell) |
|
404
|
|
|
|
|
405
|
|
|
|
|
406
|
|
|
@numba.njit(cache=True, fastmath=True) |
|
407
|
|
|
def _cdist_sqeuclidean(arr1, arr2): |
|
408
|
|
|
"""Squared Euclidean distance between points in ``arr1`` and |
|
409
|
|
|
``arr2``.""" |
|
410
|
|
|
n1, n2 = arr1.shape[0], arr2.shape[0] |
|
411
|
|
|
res = np.empty((n1, n2), dtype=np.float64) |
|
412
|
|
|
for i in range(n1): |
|
413
|
|
|
for j in range(n2): |
|
414
|
|
|
s = 0. |
|
415
|
|
|
for n in range(arr1.shape[-1]): |
|
416
|
|
|
s += (arr1[i, n] - arr2[j, n]) ** 2 |
|
417
|
|
|
res[i, j] = s |
|
418
|
|
|
return res |
|
419
|
|
|
|
|
420
|
|
|
|
|
421
|
|
|
@numba.njit(cache=True, fastmath=True) |
|
422
|
|
|
def _max_in_column(arr, col): |
|
423
|
|
|
"""Return maximum value in chosen column col of array arr.""" |
|
424
|
|
|
ret = 0 |
|
425
|
|
|
for i in range(arr.shape[0]): |
|
426
|
|
|
v = arr[i, col] |
|
427
|
|
|
if v > ret: |
|
428
|
|
|
ret = v |
|
429
|
|
|
return ret |
|
430
|
|
|
|
|
431
|
|
|
|
|
432
|
|
|
@numba.njit(cache=True, fastmath=True) |
|
433
|
|
|
def _max_in_columns(arr, max_col): |
|
434
|
|
|
"""Return maximum value in all columns up to a chosen column col of |
|
435
|
|
|
array arr.""" |
|
436
|
|
|
ret = 0 |
|
437
|
|
|
for col in range(max_col): |
|
438
|
|
|
v = _max_in_column(arr, col) |
|
439
|
|
|
if v > ret: |
|
440
|
|
|
ret = v |
|
441
|
|
|
return ret |
|
442
|
|
|
|
|
443
|
|
|
|
|
444
|
|
|
@numba.njit(cache=True, fastmath=True) |
|
445
|
|
|
def _merge_sorted_arrays(dists, dists_): |
|
446
|
|
|
"""Merge two 2D arrays sorted along last axis into one sorted array |
|
447
|
|
|
with same number of columns as ``dists``. Optimised for the distance |
|
448
|
|
|
arrays in nearest_neighbours, where ``dists`` will contain most of |
|
449
|
|
|
the smallest elements and only a few values in later columns will |
|
450
|
|
|
need to be replaced with values in ``dists_``. |
|
451
|
|
|
""" |
|
452
|
|
|
|
|
453
|
|
|
m, n_new_points = dists_.shape |
|
454
|
|
|
ret = np.copy(dists) |
|
455
|
|
|
|
|
456
|
|
|
for i in range(m): |
|
457
|
|
|
# Traverse row backwards until value smaller than dists_[i, 0] |
|
458
|
|
|
j = 0 |
|
459
|
|
|
dp_ = 0 |
|
460
|
|
|
d_ = dists_[i, dp_] |
|
461
|
|
|
while True: |
|
462
|
|
|
j -= 1 |
|
463
|
|
|
if dists[i, j] <= d_: |
|
464
|
|
|
j += 1 |
|
465
|
|
|
break |
|
466
|
|
|
|
|
467
|
|
|
if j == 0: # If dists_[i, 0] >= dists[i, -1], no need to insert |
|
468
|
|
|
continue |
|
469
|
|
|
|
|
470
|
|
|
# dp points to dists[i], dp_ points to dists_[i]. |
|
471
|
|
|
# fill ret with the larger dist, then increment pointers and repeat. |
|
472
|
|
|
dp = j |
|
473
|
|
|
d = dists[i, dp] |
|
474
|
|
|
|
|
475
|
|
|
while j < 0: |
|
476
|
|
|
if d <= d_: |
|
477
|
|
|
ret[i, j] = d |
|
478
|
|
|
dp += 1 |
|
479
|
|
|
d = dists[i, dp] |
|
480
|
|
|
else: |
|
481
|
|
|
ret[i, j] = d_ |
|
482
|
|
|
dp_ += 1 |
|
483
|
|
|
if dp_ < n_new_points: |
|
484
|
|
|
d_ = dists_[i, dp_] |
|
485
|
|
|
else: # ran out of points in dists_ |
|
486
|
|
|
d_ = np.inf |
|
487
|
|
|
j += 1 |
|
488
|
|
|
|
|
489
|
|
|
return ret |
|
490
|
|
|
|
|
491
|
|
|
|
|
492
|
|
|
def nearest_neighbours_minval( |
|
493
|
|
|
motif: np.ndarray, cell: np.ndarray, min_val: float |
|
494
|
|
|
) -> Tuple[np.ndarray, ...]: |
|
495
|
|
|
"""Return the same ``dists``/PDD matrix as ``nearest_neighbours``, |
|
496
|
|
|
but with enough columns such that all values in the last column are |
|
497
|
|
|
at least ``min_val``. Unlike ``nearest_neighbours``, does not take a |
|
498
|
|
|
query array ``x`` but only finds neighbours to motif points, and |
|
499
|
|
|
does not return the point cloud or indices of the nearest |
|
500
|
|
|
neighbours. Used in ``PDD_reconstructable``. |
|
501
|
|
|
|
|
502
|
|
|
TODO: this function should be updated in line with |
|
503
|
|
|
nearest_neighbours. |
|
504
|
|
|
""" |
|
505
|
|
|
|
|
506
|
|
|
# Generate initial cloud of points from the periodic set |
|
507
|
|
|
int_lat_generator = _generate_integer_lattice(cell.shape[0]) |
|
508
|
|
|
int_lat_generator = iter(int_lat_generator) |
|
509
|
|
|
cloud = [] |
|
510
|
|
|
for _ in range(3): |
|
511
|
|
|
cloud.append(_lattice_to_cloud(motif, next(int_lat_generator) @ cell)) |
|
512
|
|
|
cloud = np.concatenate(cloud) |
|
513
|
|
|
|
|
514
|
|
|
# Find k neighbours in the point cloud for points in motif |
|
515
|
|
|
dists_, inds = KDTree( |
|
516
|
|
|
cloud, leafsize=30, compact_nodes=False, balanced_tree=False |
|
517
|
|
|
).query(motif, k=cloud.shape[0]) |
|
518
|
|
|
dists = np.zeros_like(dists_, dtype=np.float64) |
|
519
|
|
|
|
|
520
|
|
|
# Add layers & find k nearest neighbours until all distances smaller than |
|
521
|
|
|
# min_val don't change |
|
522
|
|
|
max_cdist = np.amax(cdist(motif, motif)) |
|
523
|
|
|
while True: |
|
524
|
|
|
if np.all(dists_[:, -1] >= min_val): |
|
525
|
|
|
col = np.argwhere(np.all(dists_ >= min_val, axis=0))[0][0] + 1 |
|
526
|
|
|
if np.array_equal(dists[:, :col], dists_[:, :col]): |
|
527
|
|
|
break |
|
528
|
|
|
dists = dists_ |
|
529
|
|
|
lattice = next(int_lat_generator) @ cell |
|
530
|
|
|
closest_dist_bound = np.linalg.norm(lattice, axis=-1) - max_cdist |
|
531
|
|
|
is_close = closest_dist_bound <= np.amax(dists_[:, -1]) |
|
532
|
|
|
if not np.any(is_close): |
|
533
|
|
|
break |
|
534
|
|
|
cloud = np.vstack((cloud, _lattice_to_cloud(motif, lattice[is_close]))) |
|
535
|
|
|
dists_, inds = KDTree( |
|
536
|
|
|
cloud, leafsize=30, compact_nodes=False, balanced_tree=False |
|
537
|
|
|
).query(motif, k=cloud.shape[0]) |
|
538
|
|
|
|
|
539
|
|
|
k = np.argwhere(np.all(dists >= min_val, axis=0))[0][0] |
|
540
|
|
|
return dists_[:, 1:k+1], cloud, inds |
|
541
|
|
|
|
|
542
|
|
|
|
|
543
|
|
|
def generate_concentric_cloud(motif, cell): |
|
544
|
|
|
"""Generates batches of points from a periodic set given by (motif, |
|
545
|
|
|
cell) which get successively further away from the origin. |
|
546
|
|
|
|
|
547
|
|
|
Each yield gives all points (that have not already been yielded) |
|
548
|
|
|
which lie in a unit cell whose corner lattice point was generated by |
|
549
|
|
|
``generate_integer_lattice(motif.shape[1])``. |
|
550
|
|
|
|
|
551
|
|
|
Parameters |
|
552
|
|
|
---------- |
|
553
|
|
|
motif : :class:`numpy.ndarray` |
|
554
|
|
|
Cartesian representation of the motif, shape (no points, dims). |
|
555
|
|
|
cell : :class:`numpy.ndarray` |
|
556
|
|
|
Cartesian representation of the unit cell, shape (dims, dims). |
|
557
|
|
|
|
|
558
|
|
|
Yields |
|
559
|
|
|
------- |
|
560
|
|
|
:class:`numpy.ndarray` |
|
561
|
|
|
Yields arrays of points from the periodic set. |
|
562
|
|
|
""" |
|
563
|
|
|
|
|
564
|
|
|
int_lat_generator = _generate_integer_lattice(cell.shape[0]) |
|
565
|
|
|
for layer in int_lat_generator: |
|
566
|
|
|
yield _lattice_to_cloud(motif, layer @ cell) |
|
567
|
|
|
|