1
|
|
|
"""Implements core function nearest_neighbours used for AMD and PDD |
2
|
|
|
calculations. |
3
|
|
|
""" |
4
|
|
|
|
5
|
|
|
from typing import Tuple, Iterable |
6
|
|
|
from itertools import product, tee |
7
|
|
|
import functools |
8
|
|
|
|
9
|
|
|
import numba |
10
|
|
|
import numpy as np |
11
|
|
|
from scipy.spatial import KDTree |
12
|
|
|
from scipy.spatial.distance import cdist |
13
|
|
|
|
14
|
|
|
__all__ = [ |
15
|
|
|
'nearest_neighbours', |
16
|
|
|
'nearest_neighbours_data', |
17
|
|
|
'nearest_neighbours_minval', |
18
|
|
|
'generate_concentric_cloud' |
19
|
|
|
] |
20
|
|
|
|
21
|
|
|
|
22
|
|
|
def nearest_neighbours( |
23
|
|
|
motif: np.ndarray, cell: np.ndarray, x: np.ndarray, k: int |
24
|
|
|
) -> np.ndarray: |
25
|
|
|
"""Find distances to ``k`` nearest neighbours in a periodic set for |
26
|
|
|
each point in ``x``. |
27
|
|
|
|
28
|
|
|
Given a periodic set described by ``motif`` and ``cell``, a query |
29
|
|
|
set of points ``x`` and an integer ``k``, find distances to the |
30
|
|
|
``k`` nearest neighbours in the periodic set for all points in |
31
|
|
|
``x``. Returns an array with shape (x.shape[0], k) of distances to |
32
|
|
|
the neighbours. This function only returns distances, see the |
33
|
|
|
function nearest_neighbours_data() to also get the point cloud and |
34
|
|
|
indices of the points which are neighbours. |
35
|
|
|
|
36
|
|
|
Parameters |
37
|
|
|
---------- |
38
|
|
|
motif : :class:`numpy.ndarray` |
39
|
|
|
Cartesian coordinates of the motif, shape (no points, dims). |
40
|
|
|
cell : :class:`numpy.ndarray` |
41
|
|
|
The unit cell as a square array, shape (dims, dims). |
42
|
|
|
x : :class:`numpy.ndarray` |
43
|
|
|
Array of points to query for neighbours. For AMD/PDD invariants |
44
|
|
|
this is the motif, or more commonly an asymmetric unit of it. |
45
|
|
|
k : int |
46
|
|
|
Number of nearest neighbours to find for each point in ``x``. |
47
|
|
|
|
48
|
|
|
Returns |
49
|
|
|
------- |
50
|
|
|
dists : numpy.ndarray |
51
|
|
|
Array shape ``(x.shape[0], k)`` of distances from points in |
52
|
|
|
``x`` to their ``k`` nearest neighbours in the periodic set in |
53
|
|
|
order, e.g. ``dists[m][n]`` is the distance from ``x[m]`` to its |
54
|
|
|
n-th nearest neighbour in the periodic set. |
55
|
|
|
""" |
56
|
|
|
|
57
|
|
|
m, dims = motif.shape |
58
|
|
|
# Get an initial collection of lattice points + a generator for more |
59
|
|
|
int_lat_cloud, int_lat_generator = _get_integer_lattice(dims, m, k) |
60
|
|
|
cloud = _int_lattice_to_cloud(motif, cell, int_lat_cloud) |
61
|
|
|
|
62
|
|
|
# Squared distances to k nearest neighbours |
63
|
|
|
sqdists = _cdist_sqeuclidean(x, cloud) |
64
|
|
|
motif_diam = np.sqrt(_max_in_columns(sqdists, m)) |
65
|
|
|
sqdists.partition(k - 1) |
66
|
|
|
sqdists = sqdists[:, :k] |
67
|
|
|
sqdists.sort() |
68
|
|
|
|
69
|
|
|
# Generate layers of lattice until they are too far away to give |
70
|
|
|
# nearer neighbours. For a lattice point l, points in l + motif are |
71
|
|
|
# further away from x than |l| - max|p-p'| (p in x, p' in motif), |
72
|
|
|
# giving a bound we can use to rule out distant lattice points |
73
|
|
|
max_sqd = np.amax(sqdists[:, -1]) |
74
|
|
|
bound = (np.sqrt(max_sqd) + motif_diam) ** 2 |
75
|
|
|
|
76
|
|
|
while True: |
77
|
|
|
|
78
|
|
|
# Get next layer of lattice |
79
|
|
|
lattice = _close_lattice_points(next(int_lat_generator), cell, bound) |
80
|
|
|
if lattice.size == 0: # None are close enough |
81
|
|
|
break |
82
|
|
|
|
83
|
|
|
# Squared distances to new points |
84
|
|
|
sqdists_ = _cdist_sqeuclidean(x, _lattice_to_cloud(motif, lattice)) |
85
|
|
|
close = sqdists_ < max_sqd |
86
|
|
|
if not np.any(close): # None are close enough |
87
|
|
|
break |
88
|
|
|
|
89
|
|
|
# Squared distances to up to k nearest new points |
90
|
|
|
sqdists_ = sqdists_[:, np.any(close, axis=0)] |
91
|
|
|
if sqdists_.shape[-1] > k: |
92
|
|
|
sqdists_.partition(k - 1) |
93
|
|
|
sqdists_ = sqdists_[:, :k] |
94
|
|
|
sqdists_.sort() |
95
|
|
|
|
96
|
|
|
# Merge existing and new distances |
97
|
|
|
sqdists = _merge_sorted_arrays(sqdists, sqdists_) |
98
|
|
|
max_sqd = np.amax(sqdists[:, -1]) |
99
|
|
|
bound = (np.sqrt(max_sqd) + motif_diam) ** 2 |
100
|
|
|
|
101
|
|
|
return np.sqrt(sqdists) |
102
|
|
|
|
103
|
|
|
|
104
|
|
|
def nearest_neighbours_data( |
105
|
|
|
motif: np.ndarray, cell: np.ndarray, x: np.ndarray, k: int |
106
|
|
|
) -> np.ndarray: |
107
|
|
|
"""Find the ``k`` nearest neighbours in a periodic set for each |
108
|
|
|
point in ``x``. |
109
|
|
|
|
110
|
|
|
Given a periodic set described by ``motif`` and ``cell``, a query |
111
|
|
|
set of points ``x`` and an integer ``k``, find the ``k`` nearest |
112
|
|
|
neighbours in the periodic set for all points in ``x``. Return |
113
|
|
|
an array of distances to neighbours, the point cloud generated |
114
|
|
|
during the search and the indices of which points in the cloud are |
115
|
|
|
the neighbours of points in ``x``. |
116
|
|
|
|
117
|
|
|
Parameters |
118
|
|
|
---------- |
119
|
|
|
motif : :class:`numpy.ndarray` |
120
|
|
|
Cartesian coordinates of the motif, shape (no points, dims). |
121
|
|
|
cell : :class:`numpy.ndarray` |
122
|
|
|
The unit cell as a square array, shape (dims, dims). |
123
|
|
|
x : :class:`numpy.ndarray` |
124
|
|
|
Array of points to query for neighbours. For AMD/PDD invariants |
125
|
|
|
this is the motif, or more commonly an asymmetric unit of it. |
126
|
|
|
k : int |
127
|
|
|
Number of nearest neighbours to find for each point in ``x``. |
128
|
|
|
|
129
|
|
|
Returns |
130
|
|
|
------- |
131
|
|
|
dists : numpy.ndarray |
132
|
|
|
Array shape ``(x.shape[0], k)`` of distances from points in |
133
|
|
|
``x`` to their ``k`` nearest neighbours in the periodic set in |
134
|
|
|
order, e.g. ``dists[m][n]`` is the distance from ``x[m]`` to its |
135
|
|
|
n-th nearest neighbour in the periodic set. |
136
|
|
|
cloud : numpy.ndarray |
137
|
|
|
Collection of points in the periodic set that were generated |
138
|
|
|
during the search. |
139
|
|
|
inds : numpy.ndarray |
140
|
|
|
Array shape ``(x.shape[0], k)`` containing the indices of |
141
|
|
|
nearest neighbours in ``cloud``, e.g. the n-th nearest neighbour |
142
|
|
|
to ``x[m]`` is ``cloud[inds[m][n]]``. |
143
|
|
|
""" |
144
|
|
|
|
145
|
|
|
m, dims = motif.shape |
146
|
|
|
int_lat, int_lat_gen = _get_integer_lattice(dims, m, k) |
147
|
|
|
cloud = _int_lattice_to_cloud(motif, cell, int_lat) |
148
|
|
|
dists = cdist(x, cloud) |
149
|
|
|
motif_diam = _max_in_columns(dists, m) |
150
|
|
|
inds = np.argsort(dists)[:, :k] |
151
|
|
|
dists = np.take_along_axis(dists, inds, -1) |
152
|
|
|
b = (np.amax(dists[:, -1]) + motif_diam) ** 2 |
153
|
|
|
|
154
|
|
|
while True: |
155
|
|
|
|
156
|
|
|
lattice = _close_lattice_points(next(int_lat_gen), cell, b) |
157
|
|
|
if lattice.size == 0: |
158
|
|
|
break |
159
|
|
|
|
160
|
|
|
cloud = np.concatenate((cloud, _lattice_to_cloud(motif, lattice))) |
161
|
|
|
dists = cdist(x, cloud) |
162
|
|
|
inds = np.argsort(dists)[:, :k] |
163
|
|
|
dists = np.take_along_axis(dists, inds, -1) |
164
|
|
|
b = (np.amax(dists[:, -1]) + motif_diam) ** 2 |
165
|
|
|
|
166
|
|
|
return dists, cloud, inds |
167
|
|
|
|
168
|
|
|
|
169
|
|
|
def _get_integer_lattice_cache(f): |
170
|
|
|
"""Specialised cache for ``_get_integer_lattice()``.""" |
171
|
|
|
|
172
|
|
|
cache = {} |
173
|
|
|
num_points_cache = {} |
174
|
|
|
|
175
|
|
|
@functools.wraps(f) |
176
|
|
|
def wrapper(dims, m, k): |
177
|
|
|
|
178
|
|
|
if dims not in num_points_cache: |
|
|
|
|
179
|
|
|
num_points_cache[dims] = [] |
180
|
|
|
|
181
|
|
|
n_points = 0 |
182
|
|
|
n_layers = 0 |
183
|
|
|
within_cache = False |
184
|
|
|
for num_p in num_points_cache[dims]: |
185
|
|
|
if n_points > k / m: |
186
|
|
|
within_cache = True |
187
|
|
|
break |
188
|
|
|
n_points += num_p |
189
|
|
|
n_layers += 1 |
190
|
|
|
n_layers += 1 |
191
|
|
|
|
192
|
|
|
if not (within_cache and (dims, n_layers) in cache): |
|
|
|
|
193
|
|
|
layers, int_lat_generator = f(dims, m, k) |
194
|
|
|
n_layers = len(layers) |
195
|
|
|
if len(num_points_cache[dims]) < n_layers: |
196
|
|
|
num_points_cache[dims] = [len(i) for i in layers] |
197
|
|
|
layers = np.concatenate(layers) |
198
|
|
|
cache[(dims, n_layers)] = [layers, int_lat_generator] |
199
|
|
|
|
200
|
|
|
arr, g = cache[(dims, n_layers)] |
201
|
|
|
cache[(dims, n_layers)][1], r = tee(g) |
202
|
|
|
return arr, r |
203
|
|
|
|
204
|
|
|
return wrapper |
205
|
|
|
|
206
|
|
|
|
207
|
|
|
@_get_integer_lattice_cache |
208
|
|
|
def _get_integer_lattice(dims, m, k): |
209
|
|
|
"""Return an initial batch of integer lattice points (number |
210
|
|
|
according to m and k) and a generator for more distant points. |
211
|
|
|
|
212
|
|
|
Parameters |
213
|
|
|
---------- |
214
|
|
|
dims : int |
215
|
|
|
The dimension of Euclidean space the lattice is in. |
216
|
|
|
m : int |
217
|
|
|
Number of motif points. |
218
|
|
|
k : int |
219
|
|
|
Number of nearest neighbours to find (parameter of |
220
|
|
|
nearest_neighbours). |
221
|
|
|
|
222
|
|
|
Returns |
223
|
|
|
------- |
224
|
|
|
initial_integer_lattice : :class:`numpy.ndarray` |
225
|
|
|
A collection of integer lattice points. Consists of the first |
226
|
|
|
few layers generated by ``integer_lattice_generator`` (number of |
227
|
|
|
layers depends on m, k). |
228
|
|
|
integer_lattice_generator |
229
|
|
|
A generator for integer lattice points more distant than those |
230
|
|
|
in ``initial_integer_lattice``. |
231
|
|
|
""" |
232
|
|
|
|
233
|
|
|
g = iter(_generate_integer_lattice(dims)) |
234
|
|
|
layers = [next(g)] |
235
|
|
|
n_points = 1 |
236
|
|
|
while n_points <= k / m: |
237
|
|
|
layer = next(g) |
238
|
|
|
n_points += layer.shape[0] |
239
|
|
|
layers.append(layer) |
240
|
|
|
layers.append(next(g)) |
241
|
|
|
return layers, g |
242
|
|
|
|
243
|
|
|
|
244
|
|
|
def memoized_generator(f): |
245
|
|
|
"""Caches results of a generator.""" |
246
|
|
|
cache = {} |
247
|
|
|
@functools.wraps(f) |
248
|
|
|
def wrapper(*args): |
249
|
|
|
if args not in cache: |
|
|
|
|
250
|
|
|
cache[args] = f(*args) |
251
|
|
|
cache[args], r = tee(cache[args]) |
252
|
|
|
return r |
253
|
|
|
return wrapper |
254
|
|
|
|
255
|
|
|
|
256
|
|
|
@memoized_generator |
257
|
|
|
def _generate_integer_lattice(dims: int) -> Iterable[np.ndarray]: |
258
|
|
|
"""Generate batches of integer lattice points. Each yield gives all |
259
|
|
|
points (that have not already been yielded) inside a sphere centered |
260
|
|
|
at the origin with radius d; d starts at 0 and increments by 1 on |
261
|
|
|
each loop. |
262
|
|
|
|
263
|
|
|
Parameters |
264
|
|
|
---------- |
265
|
|
|
dims : int |
266
|
|
|
The dimension of Euclidean space the lattice is in. |
267
|
|
|
|
268
|
|
|
Yields |
269
|
|
|
------- |
270
|
|
|
:class:`numpy.ndarray` |
271
|
|
|
Yields arrays of integer points in `dims`-dimensional Euclidean |
272
|
|
|
space. |
273
|
|
|
""" |
274
|
|
|
|
275
|
|
|
d = 0 |
276
|
|
|
if dims == 1: |
277
|
|
|
yield np.zeros((1, 1), dtype=np.float64) |
278
|
|
|
while True: |
279
|
|
|
d += 1 |
280
|
|
|
yield np.array([[-d], [d]], dtype=np.float64) |
281
|
|
|
|
282
|
|
|
ymax = {} |
283
|
|
|
while True: |
284
|
|
|
positive_int_lattice = [] |
285
|
|
|
while True: |
286
|
|
|
batch = False |
287
|
|
|
for xy in product(range(d + 1), repeat=dims-1): |
288
|
|
|
if xy not in ymax: |
289
|
|
|
ymax[xy] = 0 |
290
|
|
|
if sum(i**2 for i in xy) + ymax[xy]**2 <= d**2: |
291
|
|
|
positive_int_lattice.append((*xy, ymax[xy])) |
292
|
|
|
batch = True |
293
|
|
|
ymax[xy] += 1 |
294
|
|
|
if not batch: |
295
|
|
|
break |
296
|
|
|
pos_int_lat = np.array(positive_int_lattice, dtype=np.float64) |
297
|
|
|
yield _reflect_positive_integer_lattice(pos_int_lat) |
298
|
|
|
d += 1 |
299
|
|
|
|
300
|
|
|
|
301
|
|
|
@numba.njit(cache=True, fastmath=True) |
302
|
|
|
def _reflect_positive_integer_lattice( |
303
|
|
|
positive_int_lattice: np.ndarray |
304
|
|
|
) -> np.ndarray: |
305
|
|
|
"""Reflect points in the positive quadrant across all combinations |
306
|
|
|
of axes, without duplicating points that are invariant under |
307
|
|
|
reflections. |
308
|
|
|
""" |
309
|
|
|
|
310
|
|
|
dims = positive_int_lattice.shape[-1] |
311
|
|
|
batches = [] |
312
|
|
|
batches.extend(positive_int_lattice) |
313
|
|
|
|
314
|
|
|
for n_reflections in range(1, dims + 1): |
315
|
|
|
|
316
|
|
|
axes = np.arange(n_reflections) |
317
|
|
|
batches.extend(_reflect_in_axes(positive_int_lattice, axes)) |
318
|
|
|
|
319
|
|
|
while True: |
320
|
|
|
i = n_reflections - 1 |
321
|
|
|
for _ in range(n_reflections): |
322
|
|
|
if axes[i] != i + dims - n_reflections: |
323
|
|
|
break |
324
|
|
|
i -= 1 |
325
|
|
|
else: |
326
|
|
|
break |
327
|
|
|
axes[i] += 1 |
328
|
|
|
for j in range(i + 1, n_reflections): |
329
|
|
|
axes[j] = axes[j-1] + 1 |
330
|
|
|
batches.extend(_reflect_in_axes(positive_int_lattice, axes)) |
331
|
|
|
|
332
|
|
|
int_lattice = np.empty(shape=(len(batches), dims), dtype=np.float64) |
333
|
|
|
for i in range(len(batches)): |
334
|
|
|
int_lattice[i] = batches[i] |
335
|
|
|
|
336
|
|
|
return int_lattice |
337
|
|
|
|
338
|
|
|
|
339
|
|
|
@numba.njit(cache=True, fastmath=True) |
340
|
|
|
def _reflect_in_axes( |
341
|
|
|
positive_int_lattice: np.ndarray, axes: np.ndarray |
342
|
|
|
) -> np.ndarray: |
343
|
|
|
"""Reflect points in `positive_int_lattice` in the axes described by |
344
|
|
|
`axes`, without duplicating invariant points. |
345
|
|
|
""" |
346
|
|
|
not_on_axes = (positive_int_lattice[:, axes] == 0).sum(axis=-1) == 0 |
347
|
|
|
int_lattice = positive_int_lattice[not_on_axes] |
348
|
|
|
int_lattice[:, axes] *= -1 |
349
|
|
|
return int_lattice |
350
|
|
|
|
351
|
|
|
|
352
|
|
|
@numba.njit(cache=True, fastmath=True) |
353
|
|
|
def _close_lattice_points( |
354
|
|
|
int_lattice: np.ndarray, cell: np.ndarray, bound: float |
355
|
|
|
) -> np.ndarray: |
356
|
|
|
"""Given integer lattice points, a unit cell and ``bound``, return |
357
|
|
|
lattice points which are close enough such that the corresponding |
358
|
|
|
motif copy could contain nearest neighbours. ``bound`` should be |
359
|
|
|
equal to (max_d + motif_diam) ** 2, where max_d is the maximum |
360
|
|
|
k-th nearest neighbour distance found so far and motif_diam is the |
361
|
|
|
largest distance between any point in the query set and motif. |
362
|
|
|
""" |
363
|
|
|
|
364
|
|
|
lattice = int_lattice @ cell |
365
|
|
|
inds = [] |
366
|
|
|
for i in range(len(lattice)): |
367
|
|
|
s = 0 |
368
|
|
|
for xyz in lattice[i]: |
369
|
|
|
s += xyz ** 2 |
370
|
|
|
if s < bound: |
371
|
|
|
inds.append(i) |
372
|
|
|
ret = np.empty((len(inds), lattice.shape[-1]), dtype=np.float64) |
373
|
|
|
for i in range(len(inds)): |
374
|
|
|
ret[i] = lattice[inds[i]] |
375
|
|
|
return ret |
376
|
|
|
|
377
|
|
|
|
378
|
|
|
@numba.njit(cache=True, fastmath=True) |
379
|
|
|
def _lattice_to_cloud(motif: np.ndarray, lattice: np.ndarray) -> np.ndarray: |
380
|
|
|
"""Transform a batch of lattice points (generated by |
381
|
|
|
_generate_integer_lattice then mutliplied by the cell) into a cloud |
382
|
|
|
of points from a periodic set. |
383
|
|
|
""" |
384
|
|
|
|
385
|
|
|
m = len(motif) |
386
|
|
|
layer = np.empty((m * len(lattice), motif.shape[-1]), dtype=np.float64) |
387
|
|
|
i1 = 0 |
388
|
|
|
for translation in lattice: |
389
|
|
|
i2 = i1 + m |
390
|
|
|
layer[i1:i2] = motif + translation |
391
|
|
|
i1 = i2 |
392
|
|
|
return layer |
393
|
|
|
|
394
|
|
|
|
395
|
|
|
@numba.njit(cache=True, fastmath=True) |
396
|
|
|
def _int_lattice_to_cloud( |
397
|
|
|
motif: np.ndarray, cell: np.ndarray, int_lattice: np.ndarray |
398
|
|
|
) -> np.ndarray: |
399
|
|
|
"""Transform a batch of integer lattice points (generated by |
400
|
|
|
_generate_integer_lattice) into a cloud of points from a periodic |
401
|
|
|
set. |
402
|
|
|
""" |
403
|
|
|
return _lattice_to_cloud(motif, int_lattice @ cell) |
404
|
|
|
|
405
|
|
|
|
406
|
|
|
@numba.njit(cache=True, fastmath=True) |
407
|
|
|
def _cdist_sqeuclidean(arr1, arr2): |
408
|
|
|
"""Squared Euclidean distance between points in ``arr1`` and |
409
|
|
|
``arr2``.""" |
410
|
|
|
n1, n2 = arr1.shape[0], arr2.shape[0] |
411
|
|
|
res = np.empty((n1, n2), dtype=np.float64) |
412
|
|
|
for i in range(n1): |
413
|
|
|
for j in range(n2): |
414
|
|
|
s = 0. |
415
|
|
|
for n in range(arr1.shape[-1]): |
416
|
|
|
s += (arr1[i, n] - arr2[j, n]) ** 2 |
417
|
|
|
res[i, j] = s |
418
|
|
|
return res |
419
|
|
|
|
420
|
|
|
|
421
|
|
|
@numba.njit(cache=True, fastmath=True) |
422
|
|
|
def _max_in_column(arr, col): |
423
|
|
|
"""Return maximum value in chosen column col of array arr.""" |
424
|
|
|
ret = 0 |
425
|
|
|
for i in range(arr.shape[0]): |
426
|
|
|
v = arr[i, col] |
427
|
|
|
if v > ret: |
428
|
|
|
ret = v |
429
|
|
|
return ret |
430
|
|
|
|
431
|
|
|
|
432
|
|
|
@numba.njit(cache=True, fastmath=True) |
433
|
|
|
def _max_in_columns(arr, max_col): |
434
|
|
|
"""Return maximum value in all columns up to a chosen column col of |
435
|
|
|
array arr.""" |
436
|
|
|
ret = 0 |
437
|
|
|
for col in range(max_col): |
438
|
|
|
v = _max_in_column(arr, col) |
439
|
|
|
if v > ret: |
440
|
|
|
ret = v |
441
|
|
|
return ret |
442
|
|
|
|
443
|
|
|
|
444
|
|
|
@numba.njit(cache=True, fastmath=True) |
445
|
|
|
def _merge_sorted_arrays(dists, dists_): |
446
|
|
|
"""Merge two 2D arrays sorted along last axis into one sorted array |
447
|
|
|
with same number of columns as ``dists``. Optimised for the distance |
448
|
|
|
arrays in nearest_neighbours, where ``dists`` will contain most of |
449
|
|
|
the smallest elements and only a few values in later columns will |
450
|
|
|
need to be replaced with values in ``dists_``. |
451
|
|
|
""" |
452
|
|
|
|
453
|
|
|
m, n_new_points = dists_.shape |
454
|
|
|
ret = np.copy(dists) |
455
|
|
|
|
456
|
|
|
for i in range(m): |
457
|
|
|
# Traverse row backwards until value smaller than dists_[i, 0] |
458
|
|
|
j = 0 |
459
|
|
|
dp_ = 0 |
460
|
|
|
d_ = dists_[i, dp_] |
461
|
|
|
while True: |
462
|
|
|
j -= 1 |
463
|
|
|
if dists[i, j] <= d_: |
464
|
|
|
j += 1 |
465
|
|
|
break |
466
|
|
|
|
467
|
|
|
if j == 0: # If dists_[i, 0] >= dists[i, -1], no need to insert |
468
|
|
|
continue |
469
|
|
|
|
470
|
|
|
# dp points to dists[i], dp_ points to dists_[i]. |
471
|
|
|
# fill ret with the larger dist, then increment pointers and repeat. |
472
|
|
|
dp = j |
473
|
|
|
d = dists[i, dp] |
474
|
|
|
|
475
|
|
|
while j < 0: |
476
|
|
|
if d <= d_: |
477
|
|
|
ret[i, j] = d |
478
|
|
|
dp += 1 |
479
|
|
|
d = dists[i, dp] |
480
|
|
|
else: |
481
|
|
|
ret[i, j] = d_ |
482
|
|
|
dp_ += 1 |
483
|
|
|
if dp_ < n_new_points: |
484
|
|
|
d_ = dists_[i, dp_] |
485
|
|
|
else: # ran out of points in dists_ |
486
|
|
|
d_ = np.inf |
487
|
|
|
j += 1 |
488
|
|
|
|
489
|
|
|
return ret |
490
|
|
|
|
491
|
|
|
|
492
|
|
|
def nearest_neighbours_minval( |
493
|
|
|
motif: np.ndarray, cell: np.ndarray, min_val: float |
494
|
|
|
) -> Tuple[np.ndarray, ...]: |
495
|
|
|
"""Return the same ``dists``/PDD matrix as ``nearest_neighbours``, |
496
|
|
|
but with enough columns such that all values in the last column are |
497
|
|
|
at least ``min_val``. Unlike ``nearest_neighbours``, does not take a |
498
|
|
|
query array ``x`` but only finds neighbours to motif points, and |
499
|
|
|
does not return the point cloud or indices of the nearest |
500
|
|
|
neighbours. Used in ``PDD_reconstructable``. |
501
|
|
|
|
502
|
|
|
TODO: this function should be updated in line with |
503
|
|
|
nearest_neighbours. |
504
|
|
|
""" |
505
|
|
|
|
506
|
|
|
# Generate initial cloud of points from the periodic set |
507
|
|
|
int_lat_generator = _generate_integer_lattice(cell.shape[0]) |
508
|
|
|
int_lat_generator = iter(int_lat_generator) |
509
|
|
|
cloud = [] |
510
|
|
|
for _ in range(3): |
511
|
|
|
cloud.append(_lattice_to_cloud(motif, next(int_lat_generator) @ cell)) |
512
|
|
|
cloud = np.concatenate(cloud) |
513
|
|
|
|
514
|
|
|
# Find k neighbours in the point cloud for points in motif |
515
|
|
|
dists_, inds = KDTree( |
516
|
|
|
cloud, leafsize=30, compact_nodes=False, balanced_tree=False |
517
|
|
|
).query(motif, k=cloud.shape[0]) |
518
|
|
|
dists = np.zeros_like(dists_, dtype=np.float64) |
519
|
|
|
|
520
|
|
|
# Add layers & find k nearest neighbours until all distances smaller than |
521
|
|
|
# min_val don't change |
522
|
|
|
max_cdist = np.amax(cdist(motif, motif)) |
523
|
|
|
while True: |
524
|
|
|
if np.all(dists_[:, -1] >= min_val): |
525
|
|
|
col = np.argwhere(np.all(dists_ >= min_val, axis=0))[0][0] + 1 |
526
|
|
|
if np.array_equal(dists[:, :col], dists_[:, :col]): |
527
|
|
|
break |
528
|
|
|
dists = dists_ |
529
|
|
|
lattice = next(int_lat_generator) @ cell |
530
|
|
|
closest_dist_bound = np.linalg.norm(lattice, axis=-1) - max_cdist |
531
|
|
|
is_close = closest_dist_bound <= np.amax(dists_[:, -1]) |
532
|
|
|
if not np.any(is_close): |
533
|
|
|
break |
534
|
|
|
cloud = np.vstack((cloud, _lattice_to_cloud(motif, lattice[is_close]))) |
535
|
|
|
dists_, inds = KDTree( |
536
|
|
|
cloud, leafsize=30, compact_nodes=False, balanced_tree=False |
537
|
|
|
).query(motif, k=cloud.shape[0]) |
538
|
|
|
|
539
|
|
|
k = np.argwhere(np.all(dists >= min_val, axis=0))[0][0] |
540
|
|
|
return dists_[:, 1:k+1], cloud, inds |
541
|
|
|
|
542
|
|
|
|
543
|
|
|
def generate_concentric_cloud(motif, cell): |
544
|
|
|
"""Generates batches of points from a periodic set given by (motif, |
545
|
|
|
cell) which get successively further away from the origin. |
546
|
|
|
|
547
|
|
|
Each yield gives all points (that have not already been yielded) |
548
|
|
|
which lie in a unit cell whose corner lattice point was generated by |
549
|
|
|
``generate_integer_lattice(motif.shape[1])``. |
550
|
|
|
|
551
|
|
|
Parameters |
552
|
|
|
---------- |
553
|
|
|
motif : :class:`numpy.ndarray` |
554
|
|
|
Cartesian representation of the motif, shape (no points, dims). |
555
|
|
|
cell : :class:`numpy.ndarray` |
556
|
|
|
Cartesian representation of the unit cell, shape (dims, dims). |
557
|
|
|
|
558
|
|
|
Yields |
559
|
|
|
------- |
560
|
|
|
:class:`numpy.ndarray` |
561
|
|
|
Yields arrays of points from the periodic set. |
562
|
|
|
""" |
563
|
|
|
|
564
|
|
|
int_lat_generator = _generate_integer_lattice(cell.shape[0]) |
565
|
|
|
for layer in int_lat_generator: |
566
|
|
|
yield _lattice_to_cloud(motif, layer @ cell) |
567
|
|
|
|