dvdoug /
PHPCoord
| 1 | <?php |
||||||
| 2 | |||||||
| 3 | /** |
||||||
| 4 | * PHPCoord. |
||||||
| 5 | * |
||||||
| 6 | * @author Doug Wright |
||||||
| 7 | */ |
||||||
| 8 | declare(strict_types=1); |
||||||
| 9 | |||||||
| 10 | namespace PHPCoord\Point; |
||||||
| 11 | |||||||
| 12 | use DateTime; |
||||||
| 13 | use DateTimeImmutable; |
||||||
| 14 | use DateTimeInterface; |
||||||
| 15 | use PHPCoord\CoordinateOperation\AutoConversion; |
||||||
| 16 | use PHPCoord\CoordinateOperation\ComplexNumber; |
||||||
| 17 | use PHPCoord\CoordinateOperation\ConvertiblePoint; |
||||||
| 18 | use PHPCoord\CoordinateOperation\OSTNOSGM15Grid; |
||||||
| 19 | use PHPCoord\CoordinateReferenceSystem\Compound; |
||||||
| 20 | use PHPCoord\CoordinateReferenceSystem\Geocentric; |
||||||
| 21 | use PHPCoord\CoordinateReferenceSystem\Geographic2D; |
||||||
| 22 | use PHPCoord\CoordinateReferenceSystem\Geographic3D; |
||||||
| 23 | use PHPCoord\CoordinateReferenceSystem\Projected; |
||||||
| 24 | use PHPCoord\CoordinateReferenceSystem\Vertical; |
||||||
| 25 | use PHPCoord\CoordinateSystem\Axis; |
||||||
| 26 | use PHPCoord\CoordinateSystem\Cartesian; |
||||||
| 27 | use PHPCoord\Exception\InvalidAxesException; |
||||||
| 28 | use PHPCoord\Exception\InvalidCoordinateReferenceSystemException; |
||||||
| 29 | use PHPCoord\Exception\UnknownAxisException; |
||||||
| 30 | use PHPCoord\UnitOfMeasure\Angle\Angle; |
||||||
| 31 | use PHPCoord\UnitOfMeasure\Angle\ArcSecond; |
||||||
| 32 | use PHPCoord\UnitOfMeasure\Angle\Degree; |
||||||
| 33 | use PHPCoord\UnitOfMeasure\Angle\Radian; |
||||||
| 34 | use PHPCoord\UnitOfMeasure\Length\Length; |
||||||
| 35 | use PHPCoord\UnitOfMeasure\Length\Metre; |
||||||
| 36 | use PHPCoord\UnitOfMeasure\Scale\Coefficient; |
||||||
| 37 | use PHPCoord\UnitOfMeasure\Scale\Scale; |
||||||
| 38 | use PHPCoord\UnitOfMeasure\Scale\Unity; |
||||||
| 39 | |||||||
| 40 | use function abs; |
||||||
| 41 | use function asinh; |
||||||
| 42 | use function atan; |
||||||
| 43 | use function atan2; |
||||||
| 44 | use function atanh; |
||||||
| 45 | use function cos; |
||||||
| 46 | use function cosh; |
||||||
| 47 | use function count; |
||||||
| 48 | use function hypot; |
||||||
| 49 | use function implode; |
||||||
| 50 | use function is_nan; |
||||||
| 51 | use function log; |
||||||
| 52 | use function max; |
||||||
| 53 | use function sin; |
||||||
| 54 | use function sinh; |
||||||
| 55 | use function sqrt; |
||||||
| 56 | use function substr; |
||||||
| 57 | use function tan; |
||||||
| 58 | use function tanh; |
||||||
| 59 | use function assert; |
||||||
| 60 | |||||||
| 61 | use const M_E; |
||||||
| 62 | use const M_PI; |
||||||
| 63 | use const M_PI_2; |
||||||
| 64 | |||||||
| 65 | /** |
||||||
| 66 | * Coordinate representing a point on a map projection. |
||||||
| 67 | */ |
||||||
| 68 | class ProjectedPoint extends Point implements ConvertiblePoint |
||||||
| 69 | { |
||||||
| 70 | use AutoConversion { |
||||||
| 71 | convert as protected autoConvert; |
||||||
| 72 | } |
||||||
| 73 | |||||||
| 74 | /** |
||||||
| 75 | * Easting. |
||||||
| 76 | */ |
||||||
| 77 | protected Length $easting; |
||||||
| 78 | |||||||
| 79 | /** |
||||||
| 80 | * Northing. |
||||||
| 81 | */ |
||||||
| 82 | protected Length $northing; |
||||||
| 83 | |||||||
| 84 | /** |
||||||
| 85 | * Westing. |
||||||
| 86 | */ |
||||||
| 87 | protected Length $westing; |
||||||
| 88 | |||||||
| 89 | /** |
||||||
| 90 | * Southing. |
||||||
| 91 | */ |
||||||
| 92 | protected Length $southing; |
||||||
| 93 | |||||||
| 94 | /** |
||||||
| 95 | * Height. |
||||||
| 96 | */ |
||||||
| 97 | protected ?Length $height; |
||||||
| 98 | |||||||
| 99 | /** |
||||||
| 100 | * Coordinate reference system. |
||||||
| 101 | */ |
||||||
| 102 | protected Projected $crs; |
||||||
| 103 | |||||||
| 104 | /** |
||||||
| 105 | * Coordinate epoch (date for which the specified coordinates represented this point). |
||||||
| 106 | */ |
||||||
| 107 | protected ?DateTimeImmutable $epoch; |
||||||
| 108 | 1441 | ||||||
| 109 | protected function __construct(Projected $crs, ?Length $easting, ?Length $northing, ?Length $westing, ?Length $southing, ?DateTimeInterface $epoch, ?Length $height) |
||||||
| 110 | 1441 | { |
|||||
| 111 | if (count($crs->getCoordinateSystem()->getAxes()) === 2 && $height !== null) { |
||||||
| 112 | throw new InvalidCoordinateReferenceSystemException('A 2D projected point must not include a height'); |
||||||
| 113 | } |
||||||
| 114 | 1441 | ||||||
| 115 | if (count($crs->getCoordinateSystem()->getAxes()) === 3 && $height === null) { |
||||||
| 116 | throw new InvalidCoordinateReferenceSystemException('A 3D projected point must include a height, none given'); |
||||||
| 117 | } |
||||||
| 118 | 1441 | ||||||
| 119 | 1441 | $this->crs = $crs; |
|||||
| 120 | $cs = $this->crs->getCoordinateSystem(); |
||||||
| 121 | 1441 | ||||||
| 122 | 1441 | $eastingAxis = $cs->hasAxisByName(Axis::EASTING) ? $cs->getAxisByName(Axis::EASTING) : null; |
|||||
| 123 | 1441 | $westingAxis = $cs->hasAxisByName(Axis::WESTING) ? $cs->getAxisByName(Axis::WESTING) : null; |
|||||
| 124 | 1441 | $northingAxis = $cs->hasAxisByName(Axis::NORTHING) ? $cs->getAxisByName(Axis::NORTHING) : null; |
|||||
| 125 | $southingAxis = $cs->hasAxisByName(Axis::SOUTHING) ? $cs->getAxisByName(Axis::SOUTHING) : null; |
||||||
| 126 | 1441 | ||||||
| 127 | 1315 | if ($easting && $eastingAxis) { |
|||||
| 128 | 1315 | $this->easting = $easting::convert($easting, $eastingAxis->getUnitOfMeasureId()); |
|||||
| 129 | 126 | $this->westing = $this->easting->multiply(-1); |
|||||
| 130 | 117 | } elseif ($westing && $westingAxis) { |
|||||
| 131 | 117 | $this->westing = $westing::convert($westing, $westingAxis->getUnitOfMeasureId()); |
|||||
| 132 | $this->easting = $this->westing->multiply(-1); |
||||||
| 133 | 9 | } else { |
|||||
| 134 | throw new InvalidAxesException($crs->getCoordinateSystem()->getAxes()); |
||||||
| 135 | } |
||||||
| 136 | 1432 | ||||||
| 137 | 1342 | if ($northing && $northingAxis) { |
|||||
| 138 | 1342 | $this->northing = $northing::convert($northing, $northingAxis->getUnitOfMeasureId()); |
|||||
| 139 | 90 | $this->southing = $this->northing->multiply(-1); |
|||||
| 140 | 81 | } elseif ($southing && $southingAxis) { |
|||||
| 141 | 81 | $this->southing = $southing::convert($southing, $southingAxis->getUnitOfMeasureId()); |
|||||
| 142 | $this->northing = $this->southing->multiply(-1); |
||||||
| 143 | 9 | } else { |
|||||
| 144 | throw new InvalidAxesException($crs->getCoordinateSystem()->getAxes()); |
||||||
| 145 | } |
||||||
| 146 | 1423 | ||||||
| 147 | 36 | if ($epoch instanceof DateTime) { |
|||||
| 148 | $epoch = DateTimeImmutable::createFromMutable($epoch); |
||||||
| 149 | 1423 | } |
|||||
| 150 | $this->epoch = $epoch; |
||||||
| 151 | 1423 | ||||||
| 152 | $this->height = $height; |
||||||
| 153 | } |
||||||
| 154 | 1198 | ||||||
| 155 | public static function create(Projected $crs, ?Length $easting, ?Length $northing, ?Length $westing, ?Length $southing, ?DateTimeInterface $epoch = null, ?Length $height = null): self |
||||||
| 156 | 1198 | { |
|||||
| 157 | 1198 | return match ($crs->getSRID()) { |
|||||
| 158 | 1144 | Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID => new BritishNationalGridPoint($easting, $northing, $epoch), |
|||||
|
0 ignored issues
–
show
Bug
introduced
by
Loading history...
It seems like
$easting can also be of type null; however, parameter $easting of PHPCoord\Point\BritishNa...ridPoint::__construct() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check?
(
Ignorable by Annotation
)
If this is a false-positive, you can also ignore this issue in your code via the
Loading history...
|
|||||||
| 159 | 1108 | Projected::EPSG_TM75_IRISH_GRID => new IrishGridPoint($easting, $northing, $epoch), |
|||||
|
0 ignored issues
–
show
It seems like
$easting can also be of type null; however, parameter $easting of PHPCoord\Point\IrishGridPoint::__construct() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check?
(
Ignorable by Annotation
)
If this is a false-positive, you can also ignore this issue in your code via the
Loading history...
It seems like
$northing can also be of type null; however, parameter $northing of PHPCoord\Point\IrishGridPoint::__construct() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check?
(
Ignorable by Annotation
)
If this is a false-positive, you can also ignore this issue in your code via the
Loading history...
|
|||||||
| 160 | 1198 | Projected::EPSG_IRENET95_IRISH_TRANSVERSE_MERCATOR => new IrishTransverseMercatorPoint($easting, $northing, $epoch), |
|||||
|
0 ignored issues
–
show
It seems like
$northing can also be of type null; however, parameter $northing of PHPCoord\Point\IrishTran...torPoint::__construct() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check?
(
Ignorable by Annotation
)
If this is a false-positive, you can also ignore this issue in your code via the
Loading history...
It seems like
$easting can also be of type null; however, parameter $easting of PHPCoord\Point\IrishTran...torPoint::__construct() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check?
(
Ignorable by Annotation
)
If this is a false-positive, you can also ignore this issue in your code via the
Loading history...
|
|||||||
| 161 | 1198 | default => new self($crs, $easting, $northing, $westing, $southing, $epoch, $height), |
|||||
| 162 | }; |
||||||
| 163 | } |
||||||
| 164 | 532 | ||||||
| 165 | public static function createFromEastingNorthing(Projected $crs, Length $easting, Length $northing, ?DateTimeInterface $epoch = null, ?Length $height = null): self |
||||||
| 166 | 532 | { |
|||||
| 167 | return static::create($crs, $easting, $northing, null, null, $epoch, $height); |
||||||
| 168 | } |
||||||
| 169 | 27 | ||||||
| 170 | public static function createFromWestingNorthing(Projected $crs, Length $westing, Length $northing, ?DateTimeInterface $epoch = null, ?Length $height = null): self |
||||||
| 171 | 27 | { |
|||||
| 172 | return static::create($crs, null, $northing, $westing, null, $epoch, $height); |
||||||
| 173 | } |
||||||
| 174 | 54 | ||||||
| 175 | public static function createFromWestingSouthing(Projected $crs, Length $westing, Length $southing, ?DateTimeInterface $epoch = null, ?Length $height = null): self |
||||||
| 176 | 54 | { |
|||||
| 177 | return static::create($crs, null, null, $westing, $southing, $epoch, $height); |
||||||
| 178 | } |
||||||
| 179 | 640 | ||||||
| 180 | public function getEasting(): Length |
||||||
| 181 | 640 | { |
|||||
| 182 | return $this->easting; |
||||||
| 183 | } |
||||||
| 184 | 658 | ||||||
| 185 | public function getNorthing(): Length |
||||||
| 186 | 658 | { |
|||||
| 187 | return $this->northing; |
||||||
| 188 | } |
||||||
| 189 | 90 | ||||||
| 190 | public function getWesting(): Length |
||||||
| 191 | 90 | { |
|||||
| 192 | return $this->westing; |
||||||
| 193 | } |
||||||
| 194 | 72 | ||||||
| 195 | public function getSouthing(): Length |
||||||
| 196 | 72 | { |
|||||
| 197 | return $this->southing; |
||||||
| 198 | } |
||||||
| 199 | 9 | ||||||
| 200 | public function getHeight(): ?Length |
||||||
| 201 | 9 | { |
|||||
| 202 | return $this->height; |
||||||
| 203 | } |
||||||
| 204 | 289 | ||||||
| 205 | public function getCRS(): Projected |
||||||
| 206 | 289 | { |
|||||
| 207 | return $this->crs; |
||||||
| 208 | } |
||||||
| 209 | 27 | ||||||
| 210 | public function getCoordinateEpoch(): ?DateTimeImmutable |
||||||
| 211 | 27 | { |
|||||
| 212 | return $this->epoch; |
||||||
| 213 | } |
||||||
| 214 | |||||||
| 215 | /** |
||||||
| 216 | * Calculate distance between two points. |
||||||
| 217 | * Because this is a simple grid, we can use Pythagoras. |
||||||
| 218 | 63 | */ |
|||||
| 219 | public function calculateDistance(Point $to): Length |
||||||
| 220 | { |
||||||
| 221 | 63 | try { |
|||||
| 222 | 63 | if ($to instanceof ConvertiblePoint) { |
|||||
| 223 | $to = $to->convert($this->crs); |
||||||
| 224 | } |
||||||
| 225 | 63 | } finally { |
|||||
| 226 | 9 | if ($to->getCRS()->getSRID() !== $this->crs->getSRID()) { |
|||||
| 227 | throw new InvalidCoordinateReferenceSystemException('Can only calculate distances between two points in the same CRS'); |
||||||
| 228 | } |
||||||
| 229 | |||||||
| 230 | 54 | /** @var ProjectedPoint $to */ |
|||||
| 231 | 54 | return new Metre( |
|||||
| 232 | 54 | sqrt( |
|||||
| 233 | 54 | ($to->getEasting()->getValue() - $this->getEasting()->getValue()) ** 2 + |
|||||
| 234 | 54 | ($to->getNorthing()->getValue() - $this->getNorthing()->getValue()) ** 2 |
|||||
| 235 | 54 | ) |
|||||
| 236 | ); |
||||||
| 237 | } |
||||||
| 238 | } |
||||||
| 239 | 54 | ||||||
| 240 | public function asGeographicPoint(): GeographicPoint |
||||||
| 241 | 54 | { |
|||||
| 242 | 54 | $geographicPoint = $this->performOperation($this->crs->getDerivingConversion(), $this->crs->getBaseCRS(), true); |
|||||
| 243 | assert($geographicPoint instanceof GeographicPoint); |
||||||
| 244 | 54 | ||||||
| 245 | return $geographicPoint; |
||||||
| 246 | } |
||||||
| 247 | 118 | ||||||
| 248 | public function convert(Compound|Geocentric|Geographic2D|Geographic3D|Projected|Vertical $to, bool $ignoreBoundaryRestrictions = false): Point |
||||||
| 249 | 118 | { |
|||||
| 250 | 45 | if ($to->getSRID() === $this->crs->getBaseCRS()->getSRID()) { |
|||||
| 251 | return $this->performOperation($this->crs->getDerivingConversion(), $this->crs->getBaseCRS(), true); |
||||||
| 252 | } |
||||||
| 253 | 100 | ||||||
| 254 | return $this->autoConvert($to, $ignoreBoundaryRestrictions); |
||||||
| 255 | } |
||||||
| 256 | 162 | ||||||
| 257 | public function __toString(): string |
||||||
| 258 | 162 | { |
|||||
| 259 | 162 | $values = []; |
|||||
| 260 | 162 | foreach ($this->getCRS()->getCoordinateSystem()->getAxes() as $axis) { |
|||||
| 261 | 144 | if ($axis->getName() === Axis::EASTING) { |
|||||
| 262 | 162 | $values[] = $this->easting; |
|||||
| 263 | 153 | } elseif ($axis->getName() === Axis::NORTHING) { |
|||||
| 264 | 18 | $values[] = $this->northing; |
|||||
| 265 | 18 | } elseif ($axis->getName() === Axis::WESTING) { |
|||||
| 266 | 9 | $values[] = $this->westing; |
|||||
| 267 | 9 | } elseif ($axis->getName() === Axis::SOUTHING) { |
|||||
| 268 | $values[] = $this->southing; |
||||||
| 269 | } elseif ($axis->getName() === Axis::ELLIPSOIDAL_HEIGHT) { |
||||||
| 270 | $values[] = $this->height; |
||||||
| 271 | } else { |
||||||
| 272 | throw new UnknownAxisException(); // @codeCoverageIgnore |
||||||
| 273 | } |
||||||
| 274 | } |
||||||
| 275 | 162 | ||||||
| 276 | return '(' . implode(', ', $values) . ')'; |
||||||
| 277 | } |
||||||
| 278 | |||||||
| 279 | /** |
||||||
| 280 | * Affine parametric transformation. |
||||||
| 281 | 9 | */ |
|||||
| 282 | public function affineParametricTransform( |
||||||
| 283 | Projected $to, |
||||||
| 284 | Length $A0, |
||||||
| 285 | Coefficient $A1, |
||||||
| 286 | Coefficient $A2, |
||||||
| 287 | Length $B0, |
||||||
| 288 | Coefficient $B1, |
||||||
| 289 | Coefficient $B2, |
||||||
| 290 | bool $inReverse |
||||||
| 291 | 9 | ): self { |
|||||
| 292 | 9 | $xs = $this->easting->getValue(); // native unit to metre conversion already embedded in the scale factor |
|||||
| 293 | $ys = $this->northing->getValue(); // native unit to metre conversion already embedded in the scale factor |
||||||
| 294 | 9 | ||||||
| 295 | if ($inReverse) { |
||||||
| 296 | $D = ($A1->getValue() * $B2->getValue()) - ($A2->getValue() * $B1->getValue()); |
||||||
| 297 | $a0 = (($A2->getValue() * $B0->asMetres()->getValue()) - ($B2->getValue() * $A0->asMetres()->getValue())) / $D; |
||||||
| 298 | $b0 = (($B1->getValue() * $A0->asMetres()->getValue()) - ($A1->getValue() * $B0->asMetres()->getValue())) / $D; |
||||||
| 299 | $a1 = $B2->getValue() / $D; |
||||||
| 300 | $a2 = -$A2->getValue() / $D; |
||||||
| 301 | $b1 = -$B1->getValue() / $D; |
||||||
| 302 | $b2 = $A1->getValue() / $D; |
||||||
| 303 | 9 | } else { |
|||||
| 304 | 9 | $a0 = $A0->asMetres()->getValue(); |
|||||
| 305 | 9 | $a1 = $A1->getValue(); |
|||||
| 306 | 9 | $a2 = $A2->getValue(); |
|||||
| 307 | 9 | $b0 = $B0->asMetres()->getValue(); |
|||||
| 308 | 9 | $b1 = $B1->getValue(); |
|||||
| 309 | $b2 = $B2->getValue(); |
||||||
| 310 | } |
||||||
| 311 | 9 | ||||||
| 312 | 9 | $xt = $a0 + ($a1 * $xs) + ($a2 * $ys); |
|||||
| 313 | $yt = $b0 + ($b1 * $xs) + ($b2 * $ys); |
||||||
| 314 | 9 | ||||||
| 315 | return static::create($to, new Metre($xt), new Metre($yt), new Metre(-$xt), new Metre(-$yt), $this->epoch); |
||||||
| 316 | } |
||||||
| 317 | |||||||
| 318 | /** |
||||||
| 319 | * Albers Equal Area. |
||||||
| 320 | 18 | */ |
|||||
| 321 | public function albersEqualArea( |
||||||
| 322 | Geographic2D|Geographic3D $to, |
||||||
| 323 | Angle $latitudeOfFalseOrigin, |
||||||
| 324 | Angle $longitudeOfFalseOrigin, |
||||||
| 325 | Angle $latitudeOf1stStandardParallel, |
||||||
| 326 | Angle $latitudeOf2ndStandardParallel, |
||||||
| 327 | Length $eastingAtFalseOrigin, |
||||||
| 328 | Length $northingAtFalseOrigin |
||||||
| 329 | 18 | ): GeographicPoint { |
|||||
| 330 | 18 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
| 331 | 18 | $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue(); |
|||||
| 332 | 18 | $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue(); |
|||||
| 333 | 18 | $phiOrigin = $latitudeOfFalseOrigin->asRadians()->getValue(); |
|||||
| 334 | 18 | $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
|||||
| 335 | 18 | $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue(); |
|||||
| 336 | 18 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
| 337 | 18 | $e = $ellipsoid->getEccentricity(); |
|||||
| 338 | 18 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||||
| 339 | 18 | $e4 = $e ** 4; |
|||||
| 340 | $e6 = $e ** 6; |
||||||
| 341 | 18 | ||||||
| 342 | 18 | $centralMeridianFirstParallel = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2); |
|||||
| 343 | $centralMeridianSecondParallel = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2); |
||||||
| 344 | 18 | ||||||
| 345 | 18 | $alphaOrigin = (1 - $e2) * (sin($phiOrigin) / (1 - $e2 * sin($phiOrigin) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phiOrigin)) / (1 + $e * sin($phiOrigin)))); |
|||||
| 346 | 18 | $alphaFirstParallel = (1 - $e2) * (sin($phi1) / (1 - $e2 * sin($phi1) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi1)) / (1 + $e * sin($phi1)))); |
|||||
| 347 | $alphaSecondParallel = (1 - $e2) * (sin($phi2) / (1 - $e2 * sin($phi2) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi2)) / (1 + $e * sin($phi2)))); |
||||||
| 348 | 18 | ||||||
| 349 | 18 | $n = ($centralMeridianFirstParallel ** 2 - $centralMeridianSecondParallel ** 2) / ($alphaSecondParallel - $alphaFirstParallel); |
|||||
| 350 | 18 | $C = $centralMeridianFirstParallel ** 2 + $n * $alphaFirstParallel; |
|||||
| 351 | 18 | $rhoOrigin = $a * sqrt($C - $n * $alphaOrigin) / $n; |
|||||
| 352 | 18 | $rhoPrime = hypot($easting, $rhoOrigin - $northing); |
|||||
| 353 | 18 | $alphaPrime = ($C - $rhoPrime ** 2 * $n ** 2 / $a ** 2) / $n; |
|||||
| 354 | 18 | $betaPrime = self::asin($alphaPrime / (1 - (1 - $e2) / 2 / $e * log((1 - $e) / (1 + $e)))); |
|||||
| 355 | 9 | if ($n > 0) { |
|||||
| 356 | $theta = atan2($easting, $rhoOrigin - $northing); |
||||||
| 357 | 9 | } else { |
|||||
| 358 | $theta = atan2(-$easting, $northing - $rhoOrigin); |
||||||
| 359 | } |
||||||
| 360 | 18 | ||||||
| 361 | 18 | $latitude = $betaPrime + (($e2 / 3 + 31 * $e4 / 180 + 517 * $e6 / 5040) * sin(2 * $betaPrime)) + ((23 * $e4 / 360 + 251 * $e6 / 3780) * sin(4 * $betaPrime)) + ((761 * $e6 / 45360) * sin(6 * $betaPrime)); |
|||||
| 362 | $longitude = $longitudeOfFalseOrigin->asRadians()->getValue() + ($theta / $n); |
||||||
| 363 | 18 | ||||||
| 364 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
| 365 | } |
||||||
| 366 | |||||||
| 367 | /** |
||||||
| 368 | * American Polyconic. |
||||||
| 369 | 9 | */ |
|||||
| 370 | public function americanPolyconic( |
||||||
| 371 | Geographic2D|Geographic3D $to, |
||||||
| 372 | Angle $latitudeOfNaturalOrigin, |
||||||
| 373 | Angle $longitudeOfNaturalOrigin, |
||||||
| 374 | Length $falseEasting, |
||||||
| 375 | Length $falseNorthing |
||||||
| 376 | 9 | ): GeographicPoint { |
|||||
| 377 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
| 378 | 9 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
| 379 | 9 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
| 380 | 9 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
| 381 | 9 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
| 382 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
| 383 | 9 | $e = $ellipsoid->getEccentricity(); |
|||||
| 384 | 9 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||||
| 385 | 9 | $e4 = $e ** 4; |
|||||
| 386 | $e6 = $e ** 6; |
||||||
| 387 | 9 | ||||||
| 388 | 9 | $i = (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256); |
|||||
| 389 | 9 | $ii = (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024); |
|||||
| 390 | 9 | $iii = (15 * $e4 / 256 + 45 * $e6 / 1024); |
|||||
| 391 | $iv = (35 * $e6 / 3072); |
||||||
| 392 | 9 | ||||||
| 393 | $MO = $a * ($i * $latitudeOrigin - $ii * sin(2 * $latitudeOrigin) + $iii * sin(4 * $latitudeOrigin) - $iv * sin(6 * $latitudeOrigin)); |
||||||
| 394 | 9 | ||||||
| 395 | if ($MO === $northing) { |
||||||
| 396 | $latitude = 0; |
||||||
| 397 | $longitude = $longitudeOrigin + $easting / $a; |
||||||
| 398 | 9 | } else { |
|||||
| 399 | 9 | $A = ($MO + $northing) / $a; |
|||||
| 400 | $B = $A ** 2 + $easting ** 2 / $a ** 2; |
||||||
| 401 | 9 | ||||||
| 402 | 9 | $latitude = $A; |
|||||
| 403 | $C = sqrt(1 - $e2 * sin($latitude) ** 2) * tan($latitude); |
||||||
| 404 | 9 | do { |
|||||
| 405 | 9 | $latitudeN = $latitude; |
|||||
| 406 | 9 | $Ma = $i * $latitude - $ii * sin(2 * $latitude) + $iii * sin(4 * $latitude) - $iv * sin(6 * $latitude); |
|||||
| 407 | 9 | $MnPrime = $i - 2 * $ii * cos(2 * $latitude) + 4 * $iii * cos(4 * $latitude) - 6 * $iv * cos(6 * $latitude); |
|||||
| 408 | 9 | $latitude = $latitude - ($A * ($C * $Ma + 1) - $Ma - $C * ($Ma ** 2 + $B) / 2) / ($e2 * sin(2 * $latitude) * ($Ma ** 2 + $B - 2 * $A * $Ma) / 4 * $C + ($A - $Ma) * ($C * $MnPrime - (2 / sin(2 * $latitude))) - $MnPrime); |
|||||
| 409 | 9 | $C = sqrt(1 - $e2 * sin($latitude) ** 2) * tan($latitude); |
|||||
| 410 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||||||
| 411 | 9 | ||||||
| 412 | $longitude = $longitudeOrigin + self::asin($easting * $C / $a) / sin($latitude); |
||||||
| 413 | } |
||||||
| 414 | 9 | ||||||
| 415 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
| 416 | } |
||||||
| 417 | |||||||
| 418 | /** |
||||||
| 419 | * Bonne. |
||||||
| 420 | 9 | */ |
|||||
| 421 | public function bonne( |
||||||
| 422 | Geographic2D|Geographic3D $to, |
||||||
| 423 | Angle $latitudeOfNaturalOrigin, |
||||||
| 424 | Angle $longitudeOfNaturalOrigin, |
||||||
| 425 | Length $falseEasting, |
||||||
| 426 | Length $falseNorthing |
||||||
| 427 | 9 | ): GeographicPoint { |
|||||
| 428 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
| 429 | 9 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
| 430 | 9 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
| 431 | 9 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
| 432 | 9 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
| 433 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
| 434 | 9 | $e = $ellipsoid->getEccentricity(); |
|||||
| 435 | 9 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||||
| 436 | 9 | $e4 = $e ** 4; |
|||||
| 437 | $e6 = $e ** 6; |
||||||
| 438 | 9 | ||||||
| 439 | 9 | $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2); |
|||||
| 440 | 9 | $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
|||||
| 441 | $rho = hypot($easting, $a * $mO / sin($latitudeOrigin) - $northing) * static::sign($latitudeOrigin); |
||||||
| 442 | 9 | ||||||
| 443 | 9 | $M = $a * $mO / sin($latitudeOrigin) + $MO - $rho; |
|||||
| 444 | 9 | $mu = $M / ($a * (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256)); |
|||||
| 445 | $e1 = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2)); |
||||||
| 446 | 9 | ||||||
| 447 | 9 | $latitude = $mu + ((3 * $e1 / 2) - (27 * $e1 ** 3 / 32)) * sin(2 * $mu) + ((21 * $e1 ** 2 / 16) - (55 * $e1 ** 4 / 32)) * sin(4 * $mu) + (151 * $e1 ** 3 / 96) * sin(6 * $mu) + (1097 * $e1 ** 4 / 512) * sin(8 * $mu); |
|||||
| 448 | $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2); |
||||||
| 449 | 9 | ||||||
| 450 | if ($m === 0.0) { |
||||||
| 451 | 9 | $longitude = $longitudeOrigin; // pole |
|||||
| 452 | 9 | } elseif ($latitudeOrigin >= 0) { |
|||||
| 453 | $longitude = $longitudeOrigin + $rho * atan2($easting, $a * $mO / sin($latitudeOrigin) - $northing) / $a / $m; |
||||||
| 454 | } else { |
||||||
| 455 | $longitude = $longitudeOrigin + $rho * atan2(-$easting, -($a * $mO / sin($latitudeOrigin) - $northing)) / $a / $m; |
||||||
| 456 | } |
||||||
| 457 | 9 | ||||||
| 458 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
| 459 | } |
||||||
| 460 | |||||||
| 461 | /** |
||||||
| 462 | * Bonne South Orientated. |
||||||
| 463 | 9 | */ |
|||||
| 464 | public function bonneSouthOrientated( |
||||||
| 465 | Geographic2D|Geographic3D $to, |
||||||
| 466 | Angle $latitudeOfNaturalOrigin, |
||||||
| 467 | Angle $longitudeOfNaturalOrigin, |
||||||
| 468 | Length $falseEasting, |
||||||
| 469 | Length $falseNorthing |
||||||
| 470 | 9 | ): GeographicPoint { |
|||||
| 471 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
| 472 | 9 | $westing = $falseEasting->asMetres()->getValue() - $this->westing->asMetres()->getValue(); |
|||||
| 473 | 9 | $southing = $falseNorthing->asMetres()->getValue() - $this->southing->asMetres()->getValue(); |
|||||
| 474 | 9 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
| 475 | 9 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
| 476 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
| 477 | 9 | $e = $ellipsoid->getEccentricity(); |
|||||
| 478 | 9 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||||
| 479 | 9 | $e4 = $e ** 4; |
|||||
| 480 | $e6 = $e ** 6; |
||||||
| 481 | 9 | ||||||
| 482 | 9 | $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2); |
|||||
| 483 | 9 | $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
|||||
| 484 | $rho = hypot($westing, $a * $mO / sin($latitudeOrigin) - $southing) * static::sign($latitudeOrigin); |
||||||
| 485 | 9 | ||||||
| 486 | 9 | $M = $a * $mO / sin($latitudeOrigin) + $MO - $rho; |
|||||
| 487 | 9 | $mu = $M / ($a * (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256)); |
|||||
| 488 | $e1 = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2)); |
||||||
| 489 | 9 | ||||||
| 490 | 9 | $latitude = $mu + ((3 * $e1 / 2) - (27 * $e1 ** 3 / 32)) * sin(2 * $mu) + ((21 * $e1 ** 2 / 16) - (55 * $e1 ** 4 / 32)) * sin(4 * $mu) + (151 * $e1 ** 3 / 96) * sin(6 * $mu) + (1097 * $e1 ** 4 / 512) * sin(8 * $mu); |
|||||
| 491 | $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2); |
||||||
| 492 | 9 | ||||||
| 493 | if ($m === 0.0) { |
||||||
| 494 | 9 | $longitude = $longitudeOrigin; // pole |
|||||
| 495 | 9 | } elseif ($latitudeOrigin >= 0) { |
|||||
| 496 | $longitude = $longitudeOrigin + $rho * atan2($westing, $a * $mO / sin($latitudeOrigin) - $southing) / $a / $m; |
||||||
| 497 | } else { |
||||||
| 498 | $longitude = $longitudeOrigin + $rho * atan2(-$westing, -($a * $mO / sin($latitudeOrigin) - $southing)) / $a / $m; |
||||||
| 499 | } |
||||||
| 500 | 9 | ||||||
| 501 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
| 502 | } |
||||||
| 503 | |||||||
| 504 | /** |
||||||
| 505 | * Cartesian Grid Offsets |
||||||
| 506 | * This transformation allows calculation of coordinates in the target system by adding the parameter value to the |
||||||
| 507 | * coordinate values of the point in the source system. |
||||||
| 508 | 9 | */ |
|||||
| 509 | public function offsets( |
||||||
| 510 | Projected $to, |
||||||
| 511 | Length $eastingOffset, |
||||||
| 512 | Length $northingOffset |
||||||
| 513 | 9 | ): self { |
|||||
| 514 | 9 | $easting = $this->easting->asMetres()->getValue() + $eastingOffset->asMetres()->getValue(); |
|||||
| 515 | $northing = $this->northing->asMetres()->getValue() + $northingOffset->asMetres()->getValue(); |
||||||
| 516 | 9 | ||||||
| 517 | return static::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||||||
| 518 | } |
||||||
| 519 | |||||||
| 520 | /** |
||||||
| 521 | * Cassini-Soldner. |
||||||
| 522 | 9 | */ |
|||||
| 523 | public function cassiniSoldner( |
||||||
| 524 | Geographic2D|Geographic3D $to, |
||||||
| 525 | Angle $latitudeOfNaturalOrigin, |
||||||
| 526 | Angle $longitudeOfNaturalOrigin, |
||||||
| 527 | Length $falseEasting, |
||||||
| 528 | Length $falseNorthing |
||||||
| 529 | 9 | ): GeographicPoint { |
|||||
| 530 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
| 531 | 9 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
| 532 | 9 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
| 533 | 9 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
| 534 | 9 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
| 535 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
| 536 | 9 | $e = $ellipsoid->getEccentricity(); |
|||||
| 537 | 9 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||||
| 538 | 9 | $e4 = $e ** 4; |
|||||
| 539 | $e6 = $e ** 6; |
||||||
| 540 | 9 | ||||||
| 541 | $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
||||||
| 542 | 9 | ||||||
| 543 | 9 | $e1 = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2)); |
|||||
| 544 | 9 | $M = $MO + $northing; |
|||||
| 545 | 9 | $mu = $M / ($a * (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256)); |
|||||
| 546 | $latitudeCentralMeridian = $mu + (3 * $e1 / 2 - 27 * $e1 ** 3 / 32) * sin(2 * $mu) + (21 * $e1 ** 2 / 16 - 55 * $e1 ** 4 / 32) * sin(4 * $mu) + (151 * $e1 ** 3 / 96) * sin(6 * $mu) + (1097 * $e1 ** 4 / 512) * sin(8 * $mu); |
||||||
| 547 | 9 | ||||||
| 548 | 9 | $nu = $a / sqrt(1 - $e2 * sin($latitudeCentralMeridian) ** 2); |
|||||
| 549 | $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitudeCentralMeridian) ** 2) ** 1.5; |
||||||
| 550 | 9 | ||||||
| 551 | 9 | $T = tan($latitudeCentralMeridian) ** 2; |
|||||
| 552 | $D = $easting / $nu; |
||||||
| 553 | 9 | ||||||
| 554 | 9 | $latitude = $latitudeCentralMeridian - ($nu * tan($latitudeCentralMeridian) / $rho) * ($D ** 2 / 2 - (1 + 3 * $T) * $D ** 4 / 24); |
|||||
| 555 | $longitude = $longitudeOrigin + ($D - $T * $D ** 3 / 3 + (1 + 3 * $T) * $T * $D ** 5 / 15) / cos($latitudeCentralMeridian); |
||||||
| 556 | 9 | ||||||
| 557 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
| 558 | } |
||||||
| 559 | |||||||
| 560 | /** |
||||||
| 561 | * Hyperbolic Cassini-Soldner. |
||||||
| 562 | 9 | */ |
|||||
| 563 | public function hyperbolicCassiniSoldner( |
||||||
| 564 | Geographic2D|Geographic3D $to, |
||||||
| 565 | Angle $latitudeOfNaturalOrigin, |
||||||
| 566 | Angle $longitudeOfNaturalOrigin, |
||||||
| 567 | Length $falseEasting, |
||||||
| 568 | Length $falseNorthing |
||||||
| 569 | 9 | ): GeographicPoint { |
|||||
| 570 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
| 571 | 9 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
| 572 | 9 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
| 573 | 9 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
| 574 | 9 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
| 575 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
| 576 | 9 | $e = $ellipsoid->getEccentricity(); |
|||||
| 577 | 9 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||||
| 578 | 9 | $e4 = $e ** 4; |
|||||
| 579 | $e6 = $e ** 6; |
||||||
| 580 | 9 | ||||||
| 581 | 9 | $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
|||||
| 582 | $e1 = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2)); |
||||||
| 583 | 9 | ||||||
| 584 | $latitude1 = $latitudeOrigin + $northing / 1567446; |
||||||
| 585 | 9 | ||||||
| 586 | 9 | $nu = $a / sqrt(1 - $e2 * sin($latitude1) ** 2); |
|||||
| 587 | $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude1) ** 2) ** 1.5; |
||||||
| 588 | 9 | ||||||
| 589 | 9 | $qPrime = $northing ** 3 / (6 * $rho * $nu); |
|||||
| 590 | 9 | $q = ($northing + $qPrime) ** 3 / (6 * $rho * $nu); |
|||||
| 591 | $M = $MO + $northing + $q; |
||||||
| 592 | 9 | ||||||
| 593 | 9 | $mu = $M / ($a * (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256)); |
|||||
| 594 | $latitudeCentralMeridian = $mu + (3 * $e1 / 2 - 27 * $e1 ** 3 / 32) * sin(2 * $mu) + (21 * $e1 ** 2 / 16 - 55 * $e1 ** 4 / 32) * sin(4 * $mu) + (151 * $e1 ** 3 / 96) * sin(6 * $mu) + (1097 * $e1 ** 4 / 512) * sin(8 * $mu); |
||||||
| 595 | 9 | ||||||
| 596 | 9 | $T = tan($latitudeCentralMeridian) ** 2; |
|||||
| 597 | $D = $easting / $nu; |
||||||
| 598 | 9 | ||||||
| 599 | 9 | $latitude = $latitudeCentralMeridian - ($nu * tan($latitudeCentralMeridian) / $rho) * ($D ** 2 / 2 - (1 + 3 * $T) * $D ** 4 / 24); |
|||||
| 600 | $longitude = $longitudeOrigin + ($D - $T * $D ** 3 / 3 + (1 + 3 * $T) * $T * $D ** 5 / 15) / cos($latitudeCentralMeridian); |
||||||
| 601 | 9 | ||||||
| 602 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
| 603 | } |
||||||
| 604 | |||||||
| 605 | /** |
||||||
| 606 | * Colombia Urban. |
||||||
| 607 | 9 | */ |
|||||
| 608 | public function columbiaUrban( |
||||||
| 609 | Geographic2D|Geographic3D $to, |
||||||
| 610 | Angle $latitudeOfNaturalOrigin, |
||||||
| 611 | Angle $longitudeOfNaturalOrigin, |
||||||
| 612 | Length $falseEasting, |
||||||
| 613 | Length $falseNorthing, |
||||||
| 614 | Length $projectionPlaneOriginHeight |
||||||
| 615 | 9 | ): GeographicPoint { |
|||||
| 616 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
| 617 | 9 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
| 618 | 9 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
| 619 | 9 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
| 620 | 9 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
| 621 | 9 | $heightOrigin = $projectionPlaneOriginHeight->asMetres()->getValue(); |
|||||
| 622 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
| 623 | $e2 = $ellipsoid->getEccentricitySquared(); |
||||||
| 624 | 9 | ||||||
| 625 | $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** 1.5; |
||||||
| 626 | 9 | ||||||
| 627 | $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2)); |
||||||
| 628 | 9 | ||||||
| 629 | 9 | $B = tan($latitudeOrigin) / (2 * $rhoOrigin * $nuOrigin); |
|||||
| 630 | 9 | $C = 1 + $heightOrigin / $a; |
|||||
| 631 | $D = $rhoOrigin * (1 + $heightOrigin / ($a * (1 - $e2))); |
||||||
| 632 | 9 | ||||||
| 633 | 9 | $latitude = $latitudeOrigin + ($northing / $D) - $B * ($easting / $C) ** 2; |
|||||
| 634 | 9 | $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2)); |
|||||
| 635 | $longitude = $longitudeOrigin + $easting / ($C * $nu * cos($latitude)); |
||||||
| 636 | 9 | ||||||
| 637 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
| 638 | } |
||||||
| 639 | |||||||
| 640 | /** |
||||||
| 641 | * Equal Earth. |
||||||
| 642 | 9 | */ |
|||||
| 643 | public function equalEarth( |
||||||
| 644 | Geographic2D|Geographic3D $to, |
||||||
| 645 | Angle $longitudeOfNaturalOrigin, |
||||||
| 646 | Length $falseEasting, |
||||||
| 647 | Length $falseNorthing |
||||||
| 648 | 9 | ): GeographicPoint { |
|||||
| 649 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
| 650 | 9 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
| 651 | 9 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
| 652 | 9 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
| 653 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
| 654 | 9 | $e = $ellipsoid->getEccentricity(); |
|||||
| 655 | 9 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||||
| 656 | 9 | $e4 = $e ** 4; |
|||||
| 657 | $e6 = $e ** 6; |
||||||
| 658 | 9 | ||||||
| 659 | 9 | $qP = (1 - $e2) * ((1 / (1 - $e2)) - (1 / (2 * $e) * log((1 - $e) / (1 + $e)))); |
|||||
| 660 | $Rq = $a * sqrt($qP / 2); |
||||||
| 661 | 9 | ||||||
| 662 | $theta = $northing / $Rq; |
||||||
| 663 | 9 | do { |
|||||
| 664 | 9 | $thetaN = $theta; |
|||||
| 665 | 9 | $correctionFactor = ($theta * (1.340264 - 0.081106 * $theta ** 2 + $theta ** 6 * (0.000893 + 0.003796 * $theta ** 2)) - $northing / $Rq) / (1.340264 - 0.243318 * $theta ** 2 + $theta ** 6 * (0.006251 + 0.034164 * $theta ** 2)); |
|||||
| 666 | 9 | $theta -= $correctionFactor; |
|||||
| 667 | } while (abs($theta - $thetaN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||||||
| 668 | 9 | ||||||
| 669 | $beta = self::asin(2 * sin($theta) / sqrt(3)); |
||||||
| 670 | 9 | ||||||
| 671 | 9 | $latitude = $beta + (($e2 / 3 + 31 * $e4 / 180 + 517 * $e6 / 5040) * sin(2 * $beta)) + ((23 * $e4 / 360 + 251 * $e6 / 3780) * sin(4 * $beta)) + ((761 * $e6 / 45360) * sin(6 * $beta)); |
|||||
| 672 | $longitude = $longitudeOrigin + sqrt(3) * $easting * (1.340264 - 0.243318 * $theta ** 2 + $theta ** 6 * (0.006251 + 0.034164 * $theta ** 2)) / (2 * $Rq * cos($theta)); |
||||||
| 673 | 9 | ||||||
| 674 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
| 675 | } |
||||||
| 676 | |||||||
| 677 | /** |
||||||
| 678 | * Equidistant Cylindrical |
||||||
| 679 | * See method code 1029 for spherical development. See also Pseudo Plate Carree, method code 9825. |
||||||
| 680 | 9 | */ |
|||||
| 681 | public function equidistantCylindrical( |
||||||
| 682 | Geographic2D|Geographic3D $to, |
||||||
| 683 | Angle $latitudeOf1stStandardParallel, |
||||||
| 684 | Angle $longitudeOfNaturalOrigin, |
||||||
| 685 | Length $falseEasting, |
||||||
| 686 | Length $falseNorthing |
||||||
| 687 | 9 | ): GeographicPoint { |
|||||
| 688 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
| 689 | 9 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
| 690 | 9 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
| 691 | 9 | $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
|||||
| 692 | 9 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
| 693 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
| 694 | 9 | $e = $ellipsoid->getEccentricity(); |
|||||
| 695 | 9 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||||
| 696 | 9 | $e4 = $e ** 4; |
|||||
| 697 | 9 | $e6 = $e ** 6; |
|||||
| 698 | 9 | $e8 = $e ** 8; |
|||||
| 699 | 9 | $e10 = $e ** 10; |
|||||
| 700 | 9 | $e12 = $e ** 12; |
|||||
| 701 | $e14 = $e ** 14; |
||||||
| 702 | 9 | ||||||
| 703 | 9 | $n = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2)); |
|||||
| 704 | 9 | $n2 = $n ** 2; |
|||||
| 705 | 9 | $n3 = $n ** 3; |
|||||
| 706 | 9 | $n4 = $n ** 4; |
|||||
| 707 | 9 | $n5 = $n ** 5; |
|||||
| 708 | 9 | $n6 = $n ** 6; |
|||||
| 709 | 9 | $n7 = $n ** 7; |
|||||
| 710 | $mu = $northing / ($a * (1 - 1 / 4 * $e2 - 3 / 64 * $e4 - 5 / 256 * $e6 - 175 / 16384 * $e8 - 441 / 65536 * $e10 - 4851 / 1048576 * $e12 - 14157 / 4194304 * $e14)); |
||||||
| 711 | 9 | ||||||
| 712 | 9 | $latitude = $mu + (3 / 2 * $n - 27 / 32 * $n3 + 269 / 512 * $n5 - 6607 / 24576 * $n7) * sin(2 * $mu) |
|||||
| 713 | 9 | + (21 / 16 * $n2 - 55 / 32 * $n4 + 6759 / 4096 * $n6) * sin(4 * $mu) |
|||||
| 714 | 9 | + (151 / 96 * $n3 - 417 / 128 * $n5 + 87963 / 20480 * $n7) * sin(6 * $mu) |
|||||
| 715 | 9 | + (1097 / 512 * $n4 - 15543 / 2560 * $n6) * sin(8 * $mu) |
|||||
| 716 | 9 | + (8011 / 2560 * $n5 - 69119 / 6144 * $n7) * sin(10 * $mu) |
|||||
| 717 | 9 | + (293393 / 61440 * $n6) * sin(12 * $mu) |
|||||
| 718 | + (6845701 / 860160 * $n7) * sin(14 * $mu); |
||||||
| 719 | 9 | ||||||
| 720 | $longitude = $longitudeOrigin + $easting * sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2) / ($a * cos($latitudeFirstParallel)); |
||||||
| 721 | 9 | ||||||
| 722 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
| 723 | } |
||||||
| 724 | |||||||
| 725 | /** |
||||||
| 726 | * Guam Projection |
||||||
| 727 | * Simplified form of Oblique Azimuthal Equidistant projection method. |
||||||
| 728 | 9 | */ |
|||||
| 729 | public function guamProjection( |
||||||
| 730 | Geographic2D|Geographic3D $to, |
||||||
| 731 | Angle $latitudeOfNaturalOrigin, |
||||||
| 732 | Angle $longitudeOfNaturalOrigin, |
||||||
| 733 | Length $falseEasting, |
||||||
| 734 | Length $falseNorthing |
||||||
| 735 | 9 | ): GeographicPoint { |
|||||
| 736 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
| 737 | 9 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
| 738 | 9 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
| 739 | 9 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
| 740 | 9 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
| 741 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
| 742 | 9 | $e = $ellipsoid->getEccentricity(); |
|||||
| 743 | 9 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||||
| 744 | 9 | $e4 = $e ** 4; |
|||||
| 745 | $e6 = $e ** 6; |
||||||
| 746 | 9 | ||||||
| 747 | 9 | $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
|||||
| 748 | 9 | $e1 = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2)); |
|||||
| 749 | $i = (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256); |
||||||
| 750 | 9 | ||||||
| 751 | $latitude = $latitudeOrigin; |
||||||
| 752 | 9 | do { |
|||||
| 753 | 9 | $latitudeN = $latitude; |
|||||
| 754 | 9 | $M = $MO + $northing - ($easting ** 2 * tan($latitude) * sqrt(1 - $e2 * sin($latitude) ** 2) / (2 * $a)); |
|||||
| 755 | 9 | $mu = $M / ($a * $i); |
|||||
| 756 | 9 | $latitude = $mu + (3 * $e1 / 2 - 27 * $e1 ** 3 / 32) * sin(2 * $mu) + (21 * $e1 ** 2 / 16 - 55 * $e1 ** 4 / 32) * sin(4 * $mu) + (151 * $e1 ** 3 / 96) * sin(6 * $mu) + (1097 * $e1 ** 4 / 512) * sin(8 * $mu); |
|||||
| 757 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||||||
| 758 | 9 | ||||||
| 759 | $longitude = $longitudeOrigin + $easting * sqrt(1 - $e2 * sin($latitude) ** 2) / ($a * cos($latitude)); |
||||||
| 760 | 9 | ||||||
| 761 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
| 762 | } |
||||||
| 763 | |||||||
| 764 | /** |
||||||
| 765 | * Krovak. |
||||||
| 766 | 36 | */ |
|||||
| 767 | public function krovak( |
||||||
| 768 | Geographic2D|Geographic3D $to, |
||||||
| 769 | Angle $latitudeOfProjectionCentre, |
||||||
| 770 | Angle $longitudeOfOrigin, |
||||||
| 771 | Angle $coLatitudeOfConeAxis, |
||||||
| 772 | Angle $latitudeOfPseudoStandardParallel, |
||||||
| 773 | Scale $scaleFactorOnPseudoStandardParallel, |
||||||
| 774 | Length $falseEasting, |
||||||
| 775 | Length $falseNorthing |
||||||
| 776 | 36 | ): GeographicPoint { |
|||||
| 777 | 36 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
| 778 | 36 | $longitudeOffset = $this->crs->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue() - $to->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue(); |
|||||
| 779 | 36 | $westing = $this->westing->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
| 780 | 36 | $southing = $this->southing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
| 781 | 36 | $latitudeC = $latitudeOfProjectionCentre->asRadians()->getValue(); |
|||||
| 782 | 36 | $longitudeO = $longitudeOfOrigin->asRadians()->getValue(); |
|||||
| 783 | 36 | $alphaC = $coLatitudeOfConeAxis->asRadians()->getValue(); |
|||||
| 784 | 36 | $latitudeP = $latitudeOfPseudoStandardParallel->asRadians()->getValue(); |
|||||
| 785 | 36 | $kP = $scaleFactorOnPseudoStandardParallel->asUnity()->getValue(); |
|||||
| 786 | 36 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
| 787 | 36 | $e = $ellipsoid->getEccentricity(); |
|||||
| 788 | $e2 = $ellipsoid->getEccentricitySquared(); |
||||||
| 789 | 36 | ||||||
| 790 | 36 | $A = $a * sqrt(1 - $e2) / (1 - $e2 * sin($latitudeC) ** 2); |
|||||
| 791 | 36 | $B = sqrt(1 + $e2 * cos($latitudeC) ** 4 / (1 - $e2)); |
|||||
| 792 | 36 | $upsilonO = self::asin(sin($latitudeC) / $B); |
|||||
| 793 | 36 | $tO = tan(M_PI / 4 + $upsilonO / 2) * ((1 + $e * sin($latitudeC)) / (1 - $e * sin($latitudeC))) ** ($e * $B / 2) / (tan(M_PI / 4 + $latitudeC / 2) ** $B); |
|||||
| 794 | 36 | $n = sin($latitudeP); |
|||||
| 795 | $rO = $kP * $A / tan($latitudeP); |
||||||
| 796 | 36 | ||||||
| 797 | 36 | $r = hypot($southing, $westing) ?: 1; |
|||||
| 798 | 36 | $theta = atan2($westing, $southing); |
|||||
| 799 | 36 | $D = $theta / sin($latitudeP); |
|||||
| 800 | 36 | $T = 2 * (atan(($rO / $r) ** (1 / $n) * tan(M_PI / 4 + $latitudeP / 2)) - M_PI / 4); |
|||||
| 801 | 36 | $U = self::asin(cos($alphaC) * sin($T) - sin($alphaC) * cos($T) * cos($D)); |
|||||
| 802 | $V = self::asin(cos($T) * sin($D) / cos($U)); |
||||||
| 803 | 36 | ||||||
| 804 | $latitude = $U; |
||||||
| 805 | 36 | do { |
|||||
| 806 | 36 | $latitudeN = $latitude; |
|||||
| 807 | 36 | $latitude = 2 * (atan($tO ** (-1 / $B) * tan($U / 2 + M_PI / 4) ** (1 / $B) * ((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2)) - M_PI / 4); |
|||||
| 808 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||||||
| 809 | 36 | ||||||
| 810 | $longitude = $longitudeO + $longitudeOffset - $V / $B; |
||||||
| 811 | 36 | ||||||
| 812 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
| 813 | } |
||||||
| 814 | |||||||
| 815 | /** |
||||||
| 816 | * Krovak Modified |
||||||
| 817 | * Incorporates a polynomial transformation which is defined to be exact and for practical purposes is considered |
||||||
| 818 | * to be a map projection. |
||||||
| 819 | 18 | */ |
|||||
| 820 | public function krovakModified( |
||||||
| 821 | Geographic2D|Geographic3D $to, |
||||||
| 822 | Angle $latitudeOfProjectionCentre, |
||||||
| 823 | Angle $longitudeOfOrigin, |
||||||
| 824 | Angle $coLatitudeOfConeAxis, |
||||||
| 825 | Angle $latitudeOfPseudoStandardParallel, |
||||||
| 826 | Scale $scaleFactorOnPseudoStandardParallel, |
||||||
| 827 | Length $falseEasting, |
||||||
| 828 | Length $falseNorthing, |
||||||
| 829 | Length $ordinate1OfEvaluationPoint, |
||||||
| 830 | Length $ordinate2OfEvaluationPoint, |
||||||
| 831 | Coefficient $C1, |
||||||
| 832 | Coefficient $C2, |
||||||
| 833 | Coefficient $C3, |
||||||
| 834 | Coefficient $C4, |
||||||
| 835 | Coefficient $C5, |
||||||
| 836 | Coefficient $C6, |
||||||
| 837 | Coefficient $C7, |
||||||
| 838 | Coefficient $C8, |
||||||
| 839 | Coefficient $C9, |
||||||
| 840 | Coefficient $C10 |
||||||
| 841 | 18 | ): GeographicPoint { |
|||||
| 842 | 18 | $Xr = $this->getSouthing()->asMetres()->getValue() - $falseNorthing->asMetres()->getValue() - $ordinate1OfEvaluationPoint->asMetres()->getValue(); |
|||||
| 843 | 18 | $Yr = $this->getWesting()->asMetres()->getValue() - $falseEasting->asMetres()->getValue() - $ordinate2OfEvaluationPoint->asMetres()->getValue(); |
|||||
| 844 | 18 | $c1 = $C1->asUnity()->getValue(); |
|||||
| 845 | 18 | $c2 = $C2->asUnity()->getValue(); |
|||||
| 846 | 18 | $c3 = $C3->asUnity()->getValue(); |
|||||
| 847 | 18 | $c4 = $C4->asUnity()->getValue(); |
|||||
| 848 | 18 | $c5 = $C5->asUnity()->getValue(); |
|||||
| 849 | 18 | $c6 = $C6->asUnity()->getValue(); |
|||||
| 850 | 18 | $c7 = $C7->asUnity()->getValue(); |
|||||
| 851 | 18 | $c8 = $C8->asUnity()->getValue(); |
|||||
| 852 | 18 | $c9 = $C9->asUnity()->getValue(); |
|||||
| 853 | $c10 = $C10->asUnity()->getValue(); |
||||||
| 854 | 18 | ||||||
| 855 | 18 | $dX = $c1 + $c3 * $Xr - $c4 * $Yr - 2 * $c6 * $Xr * $Yr + $c5 * ($Xr ** 2 - $Yr ** 2) + $c7 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) - $c8 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) + 4 * $c9 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c10 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2); |
|||||
| 856 | $dY = $c2 + $c3 * $Yr + $c4 * $Xr + 2 * $c5 * $Xr * $Yr + $c6 * ($Xr ** 2 - $Yr ** 2) + $c8 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) + $c7 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) - 4 * $c10 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c9 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2); |
||||||
| 857 | 18 | ||||||
| 858 | 18 | $Xp = $this->getSouthing()->asMetres()->getValue() - $falseNorthing->asMetres()->getValue() + $dX; |
|||||
| 859 | $Yp = $this->getWesting()->asMetres()->getValue() - $falseEasting->asMetres()->getValue() + $dY; |
||||||
| 860 | 18 | ||||||
| 861 | $asKrovak = self::create($this->crs, new Metre(-$Yp), new Metre(-$Xp), new Metre($Yp), new Metre($Xp), $this->epoch); |
||||||
| 862 | 18 | ||||||
| 863 | return $asKrovak->krovak($to, $latitudeOfProjectionCentre, $longitudeOfOrigin, $coLatitudeOfConeAxis, $latitudeOfPseudoStandardParallel, $scaleFactorOnPseudoStandardParallel, new Metre(0), new Metre(0)); |
||||||
| 864 | } |
||||||
| 865 | |||||||
| 866 | /** |
||||||
| 867 | * Lambert Azimuthal Equal Area |
||||||
| 868 | * This is the ellipsoidal form of the projection. |
||||||
| 869 | 9 | */ |
|||||
| 870 | public function lambertAzimuthalEqualArea( |
||||||
| 871 | Geographic2D|Geographic3D $to, |
||||||
| 872 | Angle $latitudeOfNaturalOrigin, |
||||||
| 873 | Angle $longitudeOfNaturalOrigin, |
||||||
| 874 | Length $falseEasting, |
||||||
| 875 | Length $falseNorthing |
||||||
| 876 | 9 | ): GeographicPoint { |
|||||
| 877 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
| 878 | 9 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
| 879 | 9 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
| 880 | 9 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
| 881 | 9 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
| 882 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
| 883 | 9 | $e = $ellipsoid->getEccentricity(); |
|||||
| 884 | 9 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||||
| 885 | 9 | $e4 = $e ** 4; |
|||||
| 886 | $e6 = $e ** 6; |
||||||
| 887 | 9 | ||||||
| 888 | 9 | $qO = (1 - $e2) * ((sin($latitudeOrigin) / (1 - $e2 * sin($latitudeOrigin) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))))); |
|||||
| 889 | 9 | $qP = (1 - $e2) * ((1 / (1 - $e2)) - ((1 / (2 * $e)) * log((1 - $e) / (1 + $e)))); |
|||||
| 890 | 9 | $betaO = self::asin($qO / $qP); |
|||||
| 891 | 9 | $Rq = $a * sqrt($qP / 2); |
|||||
| 892 | 9 | $D = $a * (cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2)) / ($Rq * cos($betaO)); |
|||||
| 893 | 9 | $rho = hypot($easting / $D, $D * $northing) ?: 1; |
|||||
| 894 | 9 | $C = 2 * self::asin($rho / (2 * $Rq)); |
|||||
| 895 | $beta = self::asin(cos($C) * sin($betaO) + ($D * $northing * sin($C) * cos($betaO)) / $rho); |
||||||
| 896 | 9 | ||||||
| 897 | 9 | $latitude = $beta + (($e2 / 3 + 31 * $e4 / 180 + 517 * $e6 / 5040) * sin(2 * $beta)) + ((23 * $e4 / 360 + 251 * $e6 / 3780) * sin(4 * $beta)) + ((761 * $e6 / 45360) * sin(6 * $beta)); |
|||||
| 898 | $longitude = $longitudeOrigin + atan2($easting * sin($C), $D * $rho * cos($betaO) * cos($C) - $D ** 2 * $northing * sin($betaO) * sin($C)); |
||||||
| 899 | 9 | ||||||
| 900 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
| 901 | } |
||||||
| 902 | |||||||
| 903 | /** |
||||||
| 904 | * Lambert Azimuthal Equal Area (Spherical) |
||||||
| 905 | * This is the spherical form of the projection. See coordinate operation method Lambert Azimuthal Equal Area |
||||||
| 906 | * (code 9820) for ellipsoidal form. Differences of several tens of metres result from comparison of the two |
||||||
| 907 | * methods. |
||||||
| 908 | 9 | */ |
|||||
| 909 | public function lambertAzimuthalEqualAreaSpherical( |
||||||
| 910 | Geographic2D|Geographic3D $to, |
||||||
| 911 | Angle $latitudeOfNaturalOrigin, |
||||||
| 912 | Angle $longitudeOfNaturalOrigin, |
||||||
| 913 | Length $falseEasting, |
||||||
| 914 | Length $falseNorthing |
||||||
| 915 | 9 | ): GeographicPoint { |
|||||
| 916 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
| 917 | 9 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
| 918 | 9 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
| 919 | 9 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
| 920 | 9 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
| 921 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||||||
| 922 | 9 | ||||||
| 923 | 9 | $rho = hypot($easting, $northing) ?: 1; |
|||||
| 924 | $c = 2 * self::asin($rho / (2 * $a)); |
||||||
| 925 | 9 | ||||||
| 926 | $latitude = self::asin(cos($c) * sin($latitudeOrigin) + ($northing * sin($c) * cos($latitudeOrigin) / $rho)); |
||||||
| 927 | 9 | ||||||
| 928 | if ($latitudeOrigin === 90.0) { |
||||||
|
0 ignored issues
–
show
|
|||||||
| 929 | 9 | $longitude = $longitudeOrigin + atan($easting / -$northing); |
|||||
| 930 | } elseif ($latitudeOrigin === -90.0) { |
||||||
|
0 ignored issues
–
show
|
|||||||
| 931 | $longitude = $longitudeOrigin + atan($easting / $northing); |
||||||
| 932 | 9 | } else { |
|||||
| 933 | 9 | $longitudeDenominator = ($rho * cos($latitudeOrigin) * cos($c) - $northing * sin($latitudeOrigin) * sin($c)); |
|||||
| 934 | 9 | $longitude = $longitudeOrigin + atan($easting * sin($c) / $longitudeDenominator); |
|||||
| 935 | 9 | if ($longitudeDenominator < 0) { |
|||||
| 936 | $longitude += M_PI; |
||||||
| 937 | } |
||||||
| 938 | } |
||||||
| 939 | 9 | ||||||
| 940 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
| 941 | } |
||||||
| 942 | |||||||
| 943 | /** |
||||||
| 944 | * Lambert Conic Conformal (1SP). |
||||||
| 945 | 9 | */ |
|||||
| 946 | public function lambertConicConformal1SP( |
||||||
| 947 | Geographic2D|Geographic3D $to, |
||||||
| 948 | Angle $latitudeOfNaturalOrigin, |
||||||
| 949 | Angle $longitudeOfNaturalOrigin, |
||||||
| 950 | Scale $scaleFactorAtNaturalOrigin, |
||||||
| 951 | Length $falseEasting, |
||||||
| 952 | Length $falseNorthing |
||||||
| 953 | 9 | ): GeographicPoint { |
|||||
| 954 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
| 955 | 9 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
| 956 | 9 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
| 957 | 9 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
| 958 | 9 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
| 959 | 9 | $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
|||||
| 960 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
| 961 | 9 | $e = $ellipsoid->getEccentricity(); |
|||||
| 962 | $e2 = $ellipsoid->getEccentricitySquared(); |
||||||
| 963 | 9 | ||||||
| 964 | 9 | $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2); |
|||||
| 965 | 9 | $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2); |
|||||
| 966 | 9 | $n = sin($latitudeOrigin); |
|||||
| 967 | 9 | $F = $mO / ($n * $tO ** $n); |
|||||
| 968 | 9 | $rO = $a * $F * $tO ** $n * $scaleFactorOrigin; |
|||||
| 969 | 9 | $r = hypot($easting, $rO - $northing); |
|||||
| 970 | 9 | if ($n >= 0) { |
|||||
| 971 | $theta = atan2($easting, $rO - $northing); |
||||||
| 972 | } else { |
||||||
| 973 | $r = -$r; |
||||||
| 974 | $theta = atan2(-$easting, -($rO - $northing)); |
||||||
| 975 | } |
||||||
| 976 | 9 | ||||||
| 977 | $t = ($r / ($a * $scaleFactorOrigin * $F)) ** (1 / $n); |
||||||
| 978 | 9 | ||||||
| 979 | $latitude = M_PI / (2 - 2 * atan($t)); |
||||||
| 980 | 9 | do { |
|||||
| 981 | 9 | $latitudeN = $latitude; |
|||||
| 982 | 9 | $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2)); |
|||||
| 983 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||||||
| 984 | 9 | ||||||
| 985 | $longitude = $theta / $n + $longitudeOrigin; |
||||||
| 986 | 9 | ||||||
| 987 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
| 988 | } |
||||||
| 989 | |||||||
| 990 | /** |
||||||
| 991 | * Lambert Conic Conformal (west orientated). |
||||||
| 992 | */ |
||||||
| 993 | public function lambertConicConformalWestOrientated( |
||||||
| 994 | Geographic2D|Geographic3D $to, |
||||||
| 995 | Angle $latitudeOfNaturalOrigin, |
||||||
| 996 | Angle $longitudeOfNaturalOrigin, |
||||||
| 997 | Scale $scaleFactorAtNaturalOrigin, |
||||||
| 998 | Length $falseEasting, |
||||||
| 999 | Length $falseNorthing |
||||||
| 1000 | ): GeographicPoint { |
||||||
| 1001 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||||||
| 1002 | $westing = $falseEasting->asMetres()->getValue() - $this->westing->asMetres()->getValue(); |
||||||
| 1003 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||||||
| 1004 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||||||
| 1005 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||||||
| 1006 | $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
||||||
| 1007 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||||||
| 1008 | $e = $ellipsoid->getEccentricity(); |
||||||
| 1009 | $e2 = $ellipsoid->getEccentricitySquared(); |
||||||
| 1010 | |||||||
| 1011 | $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2); |
||||||
| 1012 | $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2); |
||||||
| 1013 | $n = sin($latitudeOrigin); |
||||||
| 1014 | $F = $mO / ($n * $tO ** $n); |
||||||
| 1015 | $rO = $a * $F * $tO ** $n ** $scaleFactorOrigin; |
||||||
| 1016 | $r = hypot($westing, $rO - $northing); |
||||||
| 1017 | if ($n >= 0) { |
||||||
| 1018 | $theta = atan2($westing, $rO - $northing); |
||||||
| 1019 | } else { |
||||||
| 1020 | $r = -$r; |
||||||
| 1021 | $theta = atan2(-$westing, -($rO - $northing)); |
||||||
| 1022 | } |
||||||
| 1023 | |||||||
| 1024 | $t = ($r / ($a * $scaleFactorOrigin * $F)) ** (1 / $n); |
||||||
| 1025 | |||||||
| 1026 | $latitude = M_PI / (2 - 2 * atan($t)); |
||||||
| 1027 | do { |
||||||
| 1028 | $latitudeN = $latitude; |
||||||
| 1029 | $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2)); |
||||||
| 1030 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||||||
| 1031 | |||||||
| 1032 | $longitude = $theta / $n + $longitudeOrigin; |
||||||
| 1033 | |||||||
| 1034 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
| 1035 | } |
||||||
| 1036 | |||||||
| 1037 | /** |
||||||
| 1038 | * Lambert Conic Conformal (1SP) Variant B. |
||||||
| 1039 | */ |
||||||
| 1040 | public function lambertConicConformal1SPVariantB( |
||||||
| 1041 | Geographic2D|Geographic3D $to, |
||||||
| 1042 | Angle $latitudeOfNaturalOrigin, |
||||||
| 1043 | Scale $scaleFactorAtNaturalOrigin, |
||||||
| 1044 | Angle $latitudeOfFalseOrigin, |
||||||
| 1045 | Angle $longitudeOfFalseOrigin, |
||||||
| 1046 | Length $eastingAtFalseOrigin, |
||||||
| 1047 | Length $northingAtFalseOrigin |
||||||
| 1048 | ): GeographicPoint { |
||||||
| 1049 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||||||
| 1050 | $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue(); |
||||||
| 1051 | $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue(); |
||||||
| 1052 | $latitudeNaturalOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||||||
| 1053 | $latitudeFalseOrigin = $latitudeOfFalseOrigin->asRadians()->getValue(); |
||||||
| 1054 | $longitudeFalseOrigin = $longitudeOfFalseOrigin->asRadians()->getValue(); |
||||||
| 1055 | $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
||||||
| 1056 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||||||
| 1057 | $e = $ellipsoid->getEccentricity(); |
||||||
| 1058 | $e2 = $ellipsoid->getEccentricitySquared(); |
||||||
| 1059 | |||||||
| 1060 | $mO = cos($latitudeNaturalOrigin) / sqrt(1 - $e2 * sin($latitudeNaturalOrigin) ** 2); |
||||||
| 1061 | $tO = tan(M_PI / 4 - $latitudeNaturalOrigin / 2) / ((1 - $e * sin($latitudeNaturalOrigin)) / (1 + $e * sin($latitudeNaturalOrigin))) ** ($e / 2); |
||||||
| 1062 | $tF = tan(M_PI / 4 - $latitudeFalseOrigin / 2) / ((1 - $e * sin($latitudeFalseOrigin)) / (1 + $e * sin($latitudeFalseOrigin))) ** ($e / 2); |
||||||
| 1063 | $n = sin($latitudeNaturalOrigin); |
||||||
| 1064 | $F = $mO / ($n * $tO ** $n); |
||||||
| 1065 | $rF = $a * $F * $tF ** $n * $scaleFactorOrigin; |
||||||
| 1066 | $r = hypot($easting, $rF - $northing); |
||||||
| 1067 | if ($n >= 0) { |
||||||
| 1068 | $theta = atan2($easting, $rF - $northing); |
||||||
| 1069 | } else { |
||||||
| 1070 | $r = -$r; |
||||||
| 1071 | $theta = atan2(-$easting, -($rF - $northing)); |
||||||
| 1072 | } |
||||||
| 1073 | |||||||
| 1074 | $t = ($r / ($a * $scaleFactorOrigin * $F)) ** (1 / $n); |
||||||
| 1075 | |||||||
| 1076 | $latitude = M_PI / (2 - 2 * atan($t)); |
||||||
| 1077 | do { |
||||||
| 1078 | $latitudeN = $latitude; |
||||||
| 1079 | $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2)); |
||||||
| 1080 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||||||
| 1081 | |||||||
| 1082 | $longitude = $theta / $n + $longitudeFalseOrigin; |
||||||
| 1083 | |||||||
| 1084 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
| 1085 | } |
||||||
| 1086 | |||||||
| 1087 | /** |
||||||
| 1088 | * Lambert Conic Conformal (2SP). |
||||||
| 1089 | 19 | */ |
|||||
| 1090 | public function lambertConicConformal2SP( |
||||||
| 1091 | Geographic2D|Geographic3D $to, |
||||||
| 1092 | Angle $latitudeOfFalseOrigin, |
||||||
| 1093 | Angle $longitudeOfFalseOrigin, |
||||||
| 1094 | Angle $latitudeOf1stStandardParallel, |
||||||
| 1095 | Angle $latitudeOf2ndStandardParallel, |
||||||
| 1096 | Length $eastingAtFalseOrigin, |
||||||
| 1097 | Length $northingAtFalseOrigin |
||||||
| 1098 | 19 | ): GeographicPoint { |
|||||
| 1099 | 19 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
| 1100 | 19 | $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue(); |
|||||
| 1101 | 19 | $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue(); |
|||||
| 1102 | 19 | $lambdaOrigin = $longitudeOfFalseOrigin->asRadians()->getValue(); |
|||||
| 1103 | 19 | $phiF = $latitudeOfFalseOrigin->asRadians()->getValue(); |
|||||
| 1104 | 19 | $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
|||||
| 1105 | 19 | $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue(); |
|||||
| 1106 | 19 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
| 1107 | 19 | $e = $ellipsoid->getEccentricity(); |
|||||
| 1108 | $e2 = $ellipsoid->getEccentricitySquared(); |
||||||
| 1109 | 19 | ||||||
| 1110 | 19 | $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2); |
|||||
| 1111 | 19 | $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2); |
|||||
| 1112 | 19 | $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2); |
|||||
| 1113 | 19 | $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2); |
|||||
| 1114 | 19 | $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2); |
|||||
| 1115 | 19 | $n = (log($m1) - log($m2)) / (log($t1) - log($t2)); |
|||||
| 1116 | 19 | $F = $m1 / ($n * $t1 ** $n); |
|||||
| 1117 | 19 | $rF = $a * $F * $tF ** $n; |
|||||
| 1118 | 19 | $r = hypot($easting, $rF - $northing) * static::sign($n); |
|||||
| 1119 | 19 | $t = ($r / ($a * $F)) ** (1 / $n); |
|||||
| 1120 | 19 | if ($n >= 0) { |
|||||
| 1121 | $theta = atan2($easting, $rF - $northing); |
||||||
| 1122 | } else { |
||||||
| 1123 | $theta = atan2(-$easting, -($rF - $northing)); |
||||||
| 1124 | } |
||||||
| 1125 | 19 | ||||||
| 1126 | $latitude = M_PI / 2 - 2 * atan($t); |
||||||
| 1127 | 19 | do { |
|||||
| 1128 | 19 | $latitudeN = $latitude; |
|||||
| 1129 | 19 | $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2)); |
|||||
| 1130 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||||||
| 1131 | 19 | ||||||
| 1132 | $longitude = $theta / $n + $lambdaOrigin; |
||||||
| 1133 | 19 | ||||||
| 1134 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
| 1135 | } |
||||||
| 1136 | |||||||
| 1137 | /** |
||||||
| 1138 | * Lambert Conic Conformal (2SP Michigan). |
||||||
| 1139 | 9 | */ |
|||||
| 1140 | public function lambertConicConformal2SPMichigan( |
||||||
| 1141 | Geographic2D|Geographic3D $to, |
||||||
| 1142 | Angle $latitudeOfFalseOrigin, |
||||||
| 1143 | Angle $longitudeOfFalseOrigin, |
||||||
| 1144 | Angle $latitudeOf1stStandardParallel, |
||||||
| 1145 | Angle $latitudeOf2ndStandardParallel, |
||||||
| 1146 | Length $eastingAtFalseOrigin, |
||||||
| 1147 | Length $northingAtFalseOrigin, |
||||||
| 1148 | Scale $ellipsoidScalingFactor |
||||||
| 1149 | 9 | ): GeographicPoint { |
|||||
| 1150 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
| 1151 | 9 | $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue(); |
|||||
| 1152 | 9 | $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue(); |
|||||
| 1153 | 9 | $lambdaOrigin = $longitudeOfFalseOrigin->asRadians()->getValue(); |
|||||
| 1154 | 9 | $phiF = $latitudeOfFalseOrigin->asRadians()->getValue(); |
|||||
| 1155 | 9 | $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
|||||
| 1156 | 9 | $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue(); |
|||||
| 1157 | 9 | $K = $ellipsoidScalingFactor->asUnity()->getValue(); |
|||||
| 1158 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
| 1159 | 9 | $e = $ellipsoid->getEccentricity(); |
|||||
| 1160 | $e2 = $ellipsoid->getEccentricitySquared(); |
||||||
| 1161 | 9 | ||||||
| 1162 | 9 | $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2); |
|||||
| 1163 | 9 | $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2); |
|||||
| 1164 | 9 | $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2); |
|||||
| 1165 | 9 | $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2); |
|||||
| 1166 | 9 | $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2); |
|||||
| 1167 | 9 | $n = (log($m1) - log($m2)) / (log($t1) - log($t2)); |
|||||
| 1168 | 9 | $F = $m1 / ($n * $t1 ** $n); |
|||||
| 1169 | 9 | $rF = $a * $K * $F * $tF ** $n; |
|||||
| 1170 | 9 | $r = sqrt($easting ** 2 + ($rF - $northing) ** 2) * static::sign($n); |
|||||
| 1171 | 9 | $t = ($r / ($a * $K * $F)) ** (1 / $n); |
|||||
| 1172 | 9 | if ($n >= 0) { |
|||||
| 1173 | $theta = atan2($easting, $rF - $northing); |
||||||
| 1174 | } else { |
||||||
| 1175 | $theta = atan2(-$easting, -($rF - $northing)); |
||||||
| 1176 | } |
||||||
| 1177 | 9 | ||||||
| 1178 | $latitude = M_PI / 2 - 2 * atan($t); |
||||||
| 1179 | 9 | do { |
|||||
| 1180 | 9 | $latitudeN = $latitude; |
|||||
| 1181 | 9 | $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2)); |
|||||
| 1182 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||||||
| 1183 | 9 | ||||||
| 1184 | $longitude = $theta / $n + $lambdaOrigin; |
||||||
| 1185 | 9 | ||||||
| 1186 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
| 1187 | } |
||||||
| 1188 | |||||||
| 1189 | /** |
||||||
| 1190 | * Lambert Conic Conformal (2SP Belgium) |
||||||
| 1191 | * In 2000 this modification was replaced through use of the regular Lambert Conic Conformal (2SP) method [9802] |
||||||
| 1192 | * with appropriately modified parameter values. |
||||||
| 1193 | 9 | */ |
|||||
| 1194 | public function lambertConicConformal2SPBelgium( |
||||||
| 1195 | Geographic2D|Geographic3D $to, |
||||||
| 1196 | Angle $latitudeOfFalseOrigin, |
||||||
| 1197 | Angle $longitudeOfFalseOrigin, |
||||||
| 1198 | Angle $latitudeOf1stStandardParallel, |
||||||
| 1199 | Angle $latitudeOf2ndStandardParallel, |
||||||
| 1200 | Length $eastingAtFalseOrigin, |
||||||
| 1201 | Length $northingAtFalseOrigin |
||||||
| 1202 | 9 | ): GeographicPoint { |
|||||
| 1203 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
| 1204 | 9 | $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue(); |
|||||
| 1205 | 9 | $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue(); |
|||||
| 1206 | 9 | $lambdaOrigin = $longitudeOfFalseOrigin->asRadians()->getValue(); |
|||||
| 1207 | 9 | $phiF = $latitudeOfFalseOrigin->asRadians()->getValue(); |
|||||
| 1208 | 9 | $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
|||||
| 1209 | 9 | $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue(); |
|||||
| 1210 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
| 1211 | 9 | $e = $ellipsoid->getEccentricity(); |
|||||
| 1212 | $e2 = $ellipsoid->getEccentricitySquared(); |
||||||
| 1213 | 9 | ||||||
| 1214 | 9 | $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2); |
|||||
| 1215 | 9 | $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2); |
|||||
| 1216 | 9 | $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2); |
|||||
| 1217 | 9 | $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2); |
|||||
| 1218 | 9 | $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2); |
|||||
| 1219 | 9 | $n = (log($m1) - log($m2)) / (log($t1) - log($t2)); |
|||||
| 1220 | 9 | $F = $m1 / ($n * $t1 ** $n); |
|||||
| 1221 | 9 | $rF = $a * $F * $tF ** $n; |
|||||
| 1222 | 9 | if (is_nan($rF)) { |
|||||
| 1223 | $rF = 0; |
||||||
| 1224 | 9 | } |
|||||
| 1225 | 9 | $r = hypot($easting, $rF - $northing) * static::sign($n); |
|||||
| 1226 | 9 | $t = ($r / ($a * $F)) ** (1 / $n); |
|||||
| 1227 | 9 | if ($n >= 0) { |
|||||
| 1228 | $theta = atan2($easting, $rF - $northing); |
||||||
| 1229 | } else { |
||||||
| 1230 | $theta = atan2(-$easting, -($rF - $northing)); |
||||||
| 1231 | } |
||||||
| 1232 | 9 | ||||||
| 1233 | $latitude = M_PI / 2 - 2 * atan($t); |
||||||
| 1234 | 9 | do { |
|||||
| 1235 | 9 | $latitudeN = $latitude; |
|||||
| 1236 | 9 | $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2)); |
|||||
| 1237 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||||||
| 1238 | 9 | ||||||
| 1239 | $longitude = ($theta + (new ArcSecond(29.2985))->asRadians()->getValue()) / $n + $lambdaOrigin; |
||||||
| 1240 | 9 | ||||||
| 1241 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
| 1242 | } |
||||||
| 1243 | |||||||
| 1244 | /** |
||||||
| 1245 | * Lambert Conic Near-Conformal |
||||||
| 1246 | * The Lambert Near-Conformal projection is derived from the Lambert Conformal Conic projection by truncating the |
||||||
| 1247 | * series expansion of the projection formulae. |
||||||
| 1248 | 9 | */ |
|||||
| 1249 | public function lambertConicNearConformal( |
||||||
| 1250 | Geographic2D|Geographic3D $to, |
||||||
| 1251 | Angle $latitudeOfNaturalOrigin, |
||||||
| 1252 | Angle $longitudeOfNaturalOrigin, |
||||||
| 1253 | Scale $scaleFactorAtNaturalOrigin, |
||||||
| 1254 | Length $falseEasting, |
||||||
| 1255 | Length $falseNorthing |
||||||
| 1256 | 9 | ): GeographicPoint { |
|||||
| 1257 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
| 1258 | 9 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
| 1259 | 9 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
| 1260 | 9 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
| 1261 | 9 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
| 1262 | 9 | $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
|||||
| 1263 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
| 1264 | 9 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||||
| 1265 | $f = $ellipsoid->getFlattening(); |
||||||
| 1266 | 9 | ||||||
| 1267 | 9 | $n = $f / (2 - $f); |
|||||
| 1268 | 9 | $rhoO = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2); |
|||||
| 1269 | 9 | $nuO = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2)); |
|||||
| 1270 | 9 | $A = 1 / (6 * $rhoO * $nuO); |
|||||
| 1271 | 9 | $APrime = $a * (1 - $n + 5 * ($n ** 2 - $n ** 3) / 4 + 81 * ($n ** 4 - $n ** 5) / 64); |
|||||
| 1272 | 9 | $BPrime = 3 * $a * ($n - $n ** 2 + 7 * ($n ** 3 - $n ** 4) / 8 + 55 * $n ** 5 / 64) / 2; |
|||||
| 1273 | 9 | $CPrime = 15 * $a * ($n ** 2 - $n ** 3 + 3 * ($n ** 4 - $n ** 5) / 4) / 16; |
|||||
| 1274 | 9 | $DPrime = 35 * $a * ($n ** 3 - $n ** 4 + 11 * $n ** 5 / 16) / 48; |
|||||
| 1275 | 9 | $EPrime = 315 * $a * ($n ** 4 - $n ** 5) / 512; |
|||||
| 1276 | 9 | $rO = $scaleFactorOrigin * $nuO / tan($latitudeOrigin); |
|||||
| 1277 | $sO = $APrime * $latitudeOrigin - $BPrime * sin(2 * $latitudeOrigin) + $CPrime * sin(4 * $latitudeOrigin) - $DPrime * sin(6 * $latitudeOrigin) + $EPrime * sin(8 * $latitudeOrigin); |
||||||
| 1278 | 9 | ||||||
| 1279 | 9 | $theta = atan2($easting, $rO - $northing); |
|||||
| 1280 | 9 | $r = hypot($easting, $rO - $northing) * static::sign($latitudeOrigin); |
|||||
| 1281 | $M = $rO - $r; |
||||||
| 1282 | 9 | ||||||
| 1283 | $m = $M; |
||||||
| 1284 | 9 | do { |
|||||
| 1285 | 9 | $mN = $m; |
|||||
| 1286 | 9 | $m = $m - ($M - $scaleFactorOrigin * $m - $scaleFactorOrigin * $A * $m ** 3) / (-$scaleFactorOrigin - 3 * $scaleFactorOrigin * $A * $m ** 2); |
|||||
| 1287 | } while (abs($m - $mN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||||||
| 1288 | 9 | ||||||
| 1289 | $latitude = $latitudeOrigin + $m / $A; |
||||||
| 1290 | 9 | do { |
|||||
| 1291 | 9 | $latitudeN = $latitude; |
|||||
| 1292 | 9 | $latitude = $latitude + ($m + $sO - ($APrime * $latitude - $BPrime * sin(2 * $latitude) + $CPrime * sin(4 * $latitude) - $DPrime * sin(6 * $latitude) + $EPrime * sin(8 * $latitude))) / $APrime; |
|||||
| 1293 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||||||
| 1294 | 9 | ||||||
| 1295 | $longitude = $longitudeOrigin + $theta / sin($latitudeOrigin); |
||||||
| 1296 | 9 | ||||||
| 1297 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
| 1298 | } |
||||||
| 1299 | |||||||
| 1300 | /** |
||||||
| 1301 | * Lambert Cylindrical Equal Area |
||||||
| 1302 | * This is the ellipsoidal form of the projection. |
||||||
| 1303 | 9 | */ |
|||||
| 1304 | public function lambertCylindricalEqualArea( |
||||||
| 1305 | Geographic2D|Geographic3D $to, |
||||||
| 1306 | Angle $latitudeOf1stStandardParallel, |
||||||
| 1307 | Angle $longitudeOfNaturalOrigin, |
||||||
| 1308 | Length $falseEasting, |
||||||
| 1309 | Length $falseNorthing |
||||||
| 1310 | 9 | ): GeographicPoint { |
|||||
| 1311 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
| 1312 | 9 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
| 1313 | 9 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
| 1314 | 9 | $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
|||||
| 1315 | 9 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
| 1316 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
| 1317 | 9 | $e = $ellipsoid->getEccentricity(); |
|||||
| 1318 | 9 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||||
| 1319 | 9 | $e4 = $e ** 4; |
|||||
| 1320 | $e6 = $e ** 6; |
||||||
| 1321 | 9 | ||||||
| 1322 | 9 | $k = cos($latitudeFirstParallel) / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2); |
|||||
| 1323 | 9 | $qP = (1 - $e2) * ((sin(M_PI_2) / (1 - $e2 * sin(M_PI_2) ** 2)) - (1 / (2 * $e)) * log((1 - $e * sin(M_PI_2)) / (1 + $e * sin(M_PI_2)))); |
|||||
| 1324 | $beta = self::asin(2 * $northing * $k / ($a * $qP)); |
||||||
| 1325 | 9 | ||||||
| 1326 | 9 | $latitude = $beta + (($e2 / 3 + 31 * $e4 / 180 + 517 * $e6 / 5040) * sin(2 * $beta)) + ((23 * $e4 / 360 + 251 * $e6 / 3780) * sin(4 * $beta)) + ((761 * $e6 / 45360) * sin(6 * $beta)); |
|||||
| 1327 | $longitude = $longitudeOrigin + $easting / ($a * $k); |
||||||
| 1328 | 9 | ||||||
| 1329 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
| 1330 | } |
||||||
| 1331 | |||||||
| 1332 | /** |
||||||
| 1333 | * Lambert Cylindrical Equal Area |
||||||
| 1334 | * This is the spherical form of the projection. |
||||||
| 1335 | 9 | */ |
|||||
| 1336 | public function lambertCylindricalEqualAreaSpherical( |
||||||
| 1337 | Geographic2D|Geographic3D $to, |
||||||
| 1338 | Angle $latitudeOf1stStandardParallel, |
||||||
| 1339 | Angle $longitudeOfNaturalOrigin, |
||||||
| 1340 | Length $falseEasting, |
||||||
| 1341 | Length $falseNorthing |
||||||
| 1342 | 9 | ): GeographicPoint { |
|||||
| 1343 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
| 1344 | 9 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
| 1345 | 9 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
| 1346 | 9 | $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
|||||
| 1347 | 9 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
| 1348 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||||||
| 1349 | 9 | ||||||
| 1350 | 9 | $latitude = self::asin(($northing / $a) * cos($latitudeFirstParallel)); |
|||||
| 1351 | $longitude = $longitudeOrigin + $easting / ($a * cos($latitudeFirstParallel)); |
||||||
| 1352 | 9 | ||||||
| 1353 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
| 1354 | } |
||||||
| 1355 | |||||||
| 1356 | /** |
||||||
| 1357 | * Modified Azimuthal Equidistant |
||||||
| 1358 | * Modified form of Oblique Azimuthal Equidistant projection method developed for Polynesian islands. For the |
||||||
| 1359 | * distances over which these projections are used (under 800km) this modification introduces no significant error. |
||||||
| 1360 | 9 | */ |
|||||
| 1361 | public function modifiedAzimuthalEquidistant( |
||||||
| 1362 | Geographic2D|Geographic3D $to, |
||||||
| 1363 | Angle $latitudeOfNaturalOrigin, |
||||||
| 1364 | Angle $longitudeOfNaturalOrigin, |
||||||
| 1365 | Length $falseEasting, |
||||||
| 1366 | Length $falseNorthing |
||||||
| 1367 | 9 | ): GeographicPoint { |
|||||
| 1368 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
| 1369 | 9 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
| 1370 | 9 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
| 1371 | 9 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
| 1372 | 9 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
| 1373 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
| 1374 | $e2 = $ellipsoid->getEccentricitySquared(); |
||||||
| 1375 | 9 | ||||||
| 1376 | 9 | $nuO = $a / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2); |
|||||
| 1377 | 9 | $c = hypot($easting, $northing); |
|||||
| 1378 | 9 | $alpha = atan2($easting, $northing); |
|||||
| 1379 | 9 | $A = -$e2 * cos($latitudeOrigin) ** 2 * cos($alpha) ** 2 / (1 - $e2); |
|||||
| 1380 | 9 | $B = 3 * $e2 * (1 - $A) * sin($latitudeOrigin) * cos($latitudeOrigin) * cos($alpha) / (1 - $e2); |
|||||
| 1381 | 9 | $D = $c / $nuO; |
|||||
| 1382 | 9 | $J = $D - ($A * (1 + $A) * $D ** 3 / 6) - ($B * (1 + 3 * $A) * $D ** 4 / 24); |
|||||
| 1383 | 9 | $K = 1 - ($A * $J ** 2 / 2) - ($B * $J ** 3 / 6); |
|||||
| 1384 | $psi = self::asin(sin($latitudeOrigin) * cos($J) + cos($latitudeOrigin) * sin($J) * cos($alpha)); |
||||||
| 1385 | 9 | ||||||
| 1386 | 9 | $latitude = atan((1 - $e2 * $K * sin($latitudeOrigin) / sin($psi)) * tan($psi) / (1 - $e2)); |
|||||
| 1387 | $longitude = $longitudeOrigin + self::asin(sin($alpha) * sin($J) / cos($psi)); |
||||||
| 1388 | 9 | ||||||
| 1389 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
| 1390 | } |
||||||
| 1391 | |||||||
| 1392 | /** |
||||||
| 1393 | * Oblique Stereographic |
||||||
| 1394 | * This is not the same as the projection method of the same name in USGS Professional Paper no. 1395, "Map |
||||||
| 1395 | * Projections - A Working Manual" by John P. Snyder. |
||||||
| 1396 | 27 | */ |
|||||
| 1397 | public function obliqueStereographic( |
||||||
| 1398 | Geographic2D|Geographic3D $to, |
||||||
| 1399 | Angle $latitudeOfNaturalOrigin, |
||||||
| 1400 | Angle $longitudeOfNaturalOrigin, |
||||||
| 1401 | Scale $scaleFactorAtNaturalOrigin, |
||||||
| 1402 | Length $falseEasting, |
||||||
| 1403 | Length $falseNorthing |
||||||
| 1404 | 27 | ): GeographicPoint { |
|||||
| 1405 | 27 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
| 1406 | 27 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
| 1407 | 27 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
| 1408 | 27 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
| 1409 | 27 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
| 1410 | 27 | $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
|||||
| 1411 | 27 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
| 1412 | 27 | $e = $ellipsoid->getEccentricity(); |
|||||
| 1413 | $e2 = $ellipsoid->getEccentricitySquared(); |
||||||
| 1414 | 27 | ||||||
| 1415 | 27 | $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2); |
|||||
| 1416 | 27 | $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2)); |
|||||
| 1417 | $R = sqrt($rhoOrigin * $nuOrigin); |
||||||
| 1418 | 27 | ||||||
| 1419 | 27 | $n = sqrt(1 + ($e2 * cos($latitudeOrigin) ** 4 / (1 - $e2))); |
|||||
| 1420 | 27 | $S1 = (1 + sin($latitudeOrigin)) / (1 - sin($latitudeOrigin)); |
|||||
| 1421 | 27 | $S2 = (1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin)); |
|||||
| 1422 | 27 | $w1 = ($S1 * ($S2 ** $e)) ** $n; |
|||||
| 1423 | 27 | $c = (($n + sin($latitudeOrigin)) * (1 - ($w1 - 1) / ($w1 + 1))) / (($n - sin($latitudeOrigin)) * (1 + ($w1 - 1) / ($w1 + 1))); |
|||||
| 1424 | 27 | $w2 = $c * $w1; |
|||||
| 1425 | $chiOrigin = self::asin(($w2 - 1) / ($w2 + 1)); |
||||||
| 1426 | 27 | ||||||
| 1427 | 27 | $g = 2 * $R * $scaleFactorOrigin * tan(M_PI / 4 - $chiOrigin / 2); |
|||||
| 1428 | 27 | $h = 4 * $R * $scaleFactorOrigin * tan($chiOrigin) + $g; |
|||||
| 1429 | 27 | $i = atan2($easting, $h + $northing); |
|||||
| 1430 | 27 | $j = atan2($easting, $g - $northing) - $i; |
|||||
| 1431 | 27 | $chi = $chiOrigin + 2 * atan(($northing - $easting * tan($j / 2)) / (2 * $R * $scaleFactorOrigin)); |
|||||
| 1432 | $lambda = $j + 2 * $i + $longitudeOrigin; |
||||||
| 1433 | 27 | ||||||
| 1434 | $longitude = ($lambda - $longitudeOrigin) / $n + $longitudeOrigin; |
||||||
| 1435 | 27 | ||||||
| 1436 | $psi = 0.5 * log((1 + sin($chi)) / ($c * (1 - sin($chi)))) / $n; |
||||||
| 1437 | 27 | ||||||
| 1438 | $latitude = 2 * atan(M_E ** $psi) - M_PI / 2; |
||||||
| 1439 | 27 | do { |
|||||
| 1440 | 27 | $latitudeN = $latitude; |
|||||
| 1441 | 27 | $psiN = log(tan($latitudeN / 2 + M_PI / 4) * ((1 - $e * sin($latitudeN)) / (1 + $e * sin($latitudeN))) ** ($e / 2)); |
|||||
| 1442 | 27 | $latitude = $latitudeN - ($psiN - $psi) * cos($latitudeN) * (1 - $e2 * sin($latitudeN) ** 2) / (1 - $e2); |
|||||
| 1443 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||||||
| 1444 | 27 | ||||||
| 1445 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
| 1446 | } |
||||||
| 1447 | |||||||
| 1448 | /** |
||||||
| 1449 | * Polar Stereographic (variant A) |
||||||
| 1450 | * Latitude of natural origin must be either 90 degrees or -90 degrees (or equivalent in alternative angle unit). |
||||||
| 1451 | 9 | */ |
|||||
| 1452 | public function polarStereographicVariantA( |
||||||
| 1453 | Geographic2D|Geographic3D $to, |
||||||
| 1454 | Angle $latitudeOfNaturalOrigin, |
||||||
| 1455 | Angle $longitudeOfNaturalOrigin, |
||||||
| 1456 | Scale $scaleFactorAtNaturalOrigin, |
||||||
| 1457 | Length $falseEasting, |
||||||
| 1458 | Length $falseNorthing |
||||||
| 1459 | 9 | ): GeographicPoint { |
|||||
| 1460 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
| 1461 | 9 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
| 1462 | 9 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
| 1463 | 9 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
| 1464 | 9 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
| 1465 | 9 | $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
|||||
| 1466 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
| 1467 | 9 | $e = $ellipsoid->getEccentricity(); |
|||||
| 1468 | 9 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||||
| 1469 | 9 | $e4 = $e ** 4; |
|||||
| 1470 | 9 | $e6 = $e ** 6; |
|||||
| 1471 | $e8 = $e ** 8; |
||||||
| 1472 | 9 | ||||||
| 1473 | 9 | $rho = hypot($easting, $northing); |
|||||
| 1474 | $t = $rho * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $a * $scaleFactorOrigin); |
||||||
| 1475 | 9 | ||||||
| 1476 | if ($latitudeOrigin < 0) { |
||||||
| 1477 | $chi = 2 * atan($t) - M_PI / 2; |
||||||
| 1478 | 9 | } else { |
|||||
| 1479 | $chi = M_PI / 2 - 2 * atan($t); |
||||||
| 1480 | } |
||||||
| 1481 | 9 | ||||||
| 1482 | $latitude = $chi + ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) * sin(2 * $chi) + (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) * sin(4 * $chi) + (7 * $e6 / 120 + 81 * $e8 / 1120) * sin(6 * $chi) + (4279 * $e8 / 161280) * sin(8 * $chi); |
||||||
| 1483 | 9 | ||||||
| 1484 | if ($easting === 0.0) { |
||||||
|
0 ignored issues
–
show
|
|||||||
| 1485 | 9 | $longitude = $longitudeOrigin; |
|||||
| 1486 | } elseif ($latitudeOrigin < 0) { |
||||||
| 1487 | $longitude = $longitudeOrigin + atan2($easting, $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue()); |
||||||
| 1488 | 9 | } else { |
|||||
| 1489 | $longitude = $longitudeOrigin + atan2($easting, $falseNorthing->asMetres()->getValue() - $this->northing->asMetres()->getValue()); |
||||||
| 1490 | } |
||||||
| 1491 | 9 | ||||||
| 1492 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
| 1493 | } |
||||||
| 1494 | |||||||
| 1495 | /** |
||||||
| 1496 | * Polar Stereographic (variant B). |
||||||
| 1497 | 9 | */ |
|||||
| 1498 | public function polarStereographicVariantB( |
||||||
| 1499 | Geographic2D|Geographic3D $to, |
||||||
| 1500 | Angle $latitudeOfStandardParallel, |
||||||
| 1501 | Angle $longitudeOfOrigin, |
||||||
| 1502 | Length $falseEasting, |
||||||
| 1503 | Length $falseNorthing |
||||||
| 1504 | 9 | ): GeographicPoint { |
|||||
| 1505 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
| 1506 | 9 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
| 1507 | 9 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
| 1508 | 9 | $standardParallel = $latitudeOfStandardParallel->asRadians()->getValue(); |
|||||
| 1509 | 9 | $longitudeOrigin = $longitudeOfOrigin->asRadians()->getValue(); |
|||||
| 1510 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
| 1511 | 9 | $e = $ellipsoid->getEccentricity(); |
|||||
| 1512 | 9 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||||
| 1513 | 9 | $e4 = $e ** 4; |
|||||
| 1514 | 9 | $e6 = $e ** 6; |
|||||
| 1515 | $e8 = $e ** 8; |
||||||
| 1516 | 9 | ||||||
| 1517 | 9 | $rho = hypot($easting, $northing); |
|||||
| 1518 | 9 | if ($standardParallel < 0) { |
|||||
| 1519 | $tF = tan(M_PI / 4 + $standardParallel / 2) / (((1 + $e * sin($standardParallel)) / (1 - $e * sin($standardParallel))) ** ($e / 2)); |
||||||
| 1520 | } else { |
||||||
| 1521 | $tF = tan(M_PI / 4 - $standardParallel / 2) * (((1 + $e * sin($standardParallel)) / (1 - $e * sin($standardParallel))) ** ($e / 2)); |
||||||
| 1522 | 9 | } |
|||||
| 1523 | 9 | $mF = cos($standardParallel) / sqrt(1 - $e2 * sin($standardParallel) ** 2); |
|||||
| 1524 | 9 | $kO = $mF * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $tF); |
|||||
| 1525 | $t = $rho * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $a * $kO); |
||||||
| 1526 | 9 | ||||||
| 1527 | 9 | if ($standardParallel < 0) { |
|||||
| 1528 | $chi = 2 * atan($t) - M_PI / 2; |
||||||
| 1529 | } else { |
||||||
| 1530 | $chi = M_PI / 2 - 2 * atan($t); |
||||||
| 1531 | } |
||||||
| 1532 | 9 | ||||||
| 1533 | $latitude = $chi + ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) * sin(2 * $chi) + (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) * sin(4 * $chi) + (7 * $e6 / 120 + 81 * $e8 / 1120) * sin(6 * $chi) + (4279 * $e8 / 161280) * sin(8 * $chi); |
||||||
| 1534 | 9 | ||||||
| 1535 | if ($easting === 0.0) { |
||||||
|
0 ignored issues
–
show
|
|||||||
| 1536 | 9 | $longitude = $longitudeOrigin; |
|||||
| 1537 | 9 | } elseif ($standardParallel < 0) { |
|||||
| 1538 | $longitude = $longitudeOrigin + atan2($easting, $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue()); |
||||||
| 1539 | } else { |
||||||
| 1540 | $longitude = $longitudeOrigin + atan2($easting, $falseNorthing->asMetres()->getValue() - $this->northing->asMetres()->getValue()); |
||||||
| 1541 | } |
||||||
| 1542 | 9 | ||||||
| 1543 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
| 1544 | } |
||||||
| 1545 | |||||||
| 1546 | /** |
||||||
| 1547 | * Polar Stereographic (variant C). |
||||||
| 1548 | 9 | */ |
|||||
| 1549 | public function polarStereographicVariantC( |
||||||
| 1550 | Geographic2D|Geographic3D $to, |
||||||
| 1551 | Angle $latitudeOfStandardParallel, |
||||||
| 1552 | Angle $longitudeOfOrigin, |
||||||
| 1553 | Length $eastingAtFalseOrigin, |
||||||
| 1554 | Length $northingAtFalseOrigin |
||||||
| 1555 | 9 | ): GeographicPoint { |
|||||
| 1556 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
| 1557 | 9 | $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue(); |
|||||
| 1558 | 9 | $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue(); |
|||||
| 1559 | 9 | $standardParallel = $latitudeOfStandardParallel->asRadians()->getValue(); |
|||||
| 1560 | 9 | $longitudeOrigin = $longitudeOfOrigin->asRadians()->getValue(); |
|||||
| 1561 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
| 1562 | 9 | $e = $ellipsoid->getEccentricity(); |
|||||
| 1563 | 9 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||||
| 1564 | 9 | $e4 = $e ** 4; |
|||||
| 1565 | 9 | $e6 = $e ** 6; |
|||||
| 1566 | $e8 = $e ** 8; |
||||||
| 1567 | 9 | ||||||
| 1568 | 9 | if ($standardParallel < 0) { |
|||||
| 1569 | $tF = tan(M_PI / 4 + $standardParallel / 2) / (((1 + $e * sin($standardParallel)) / (1 - $e * sin($standardParallel))) ** ($e / 2)); |
||||||
| 1570 | } else { |
||||||
| 1571 | $tF = tan(M_PI / 4 - $standardParallel / 2) * (((1 + $e * sin($standardParallel)) / (1 - $e * sin($standardParallel))) ** ($e / 2)); |
||||||
| 1572 | 9 | } |
|||||
| 1573 | 9 | $mF = cos($standardParallel) / sqrt(1 - $e2 * sin($standardParallel) ** 2); |
|||||
| 1574 | 9 | $rhoF = $a * $mF; |
|||||
| 1575 | 9 | if ($standardParallel < 0) { |
|||||
| 1576 | 9 | $rho = hypot($easting, $northing + $rhoF); |
|||||
| 1577 | 9 | $t = $rho * $tF / $rhoF; |
|||||
| 1578 | $chi = 2 * atan($t) - M_PI / 2; |
||||||
| 1579 | } else { |
||||||
| 1580 | $rho = hypot($easting, $northing - $rhoF); |
||||||
| 1581 | $t = $rho * $tF / $rhoF; |
||||||
| 1582 | $chi = M_PI / 2 - 2 * atan($t); |
||||||
| 1583 | } |
||||||
| 1584 | 9 | ||||||
| 1585 | $latitude = $chi + ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) * sin(2 * $chi) + (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) * sin(4 * $chi) + (7 * $e6 / 120 + 81 * $e8 / 1120) * sin(6 * $chi) + (4279 * $e8 / 161280) * sin(8 * $chi); |
||||||
| 1586 | 9 | ||||||
| 1587 | if ($easting === 0.0) { |
||||||
|
0 ignored issues
–
show
|
|||||||
| 1588 | 9 | $longitude = $longitudeOrigin; |
|||||
| 1589 | 9 | } elseif ($standardParallel < 0) { |
|||||
| 1590 | $longitude = $longitudeOrigin + atan2($easting, $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue() + $rhoF); |
||||||
| 1591 | } else { |
||||||
| 1592 | $longitude = $longitudeOrigin + atan2($easting, $northingAtFalseOrigin->asMetres()->getValue() - $this->northing->asMetres()->getValue() + $rhoF); |
||||||
| 1593 | } |
||||||
| 1594 | 9 | ||||||
| 1595 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
| 1596 | } |
||||||
| 1597 | |||||||
| 1598 | /** |
||||||
| 1599 | * Popular Visualisation Pseudo Mercator |
||||||
| 1600 | * Applies spherical formulas to the ellipsoid. As such does not have the properties of a true Mercator projection. |
||||||
| 1601 | 18 | */ |
|||||
| 1602 | public function popularVisualisationPseudoMercator( |
||||||
| 1603 | Geographic2D|Geographic3D $to, |
||||||
| 1604 | Angle $latitudeOfNaturalOrigin, |
||||||
| 1605 | Angle $longitudeOfNaturalOrigin, |
||||||
| 1606 | Length $falseEasting, |
||||||
| 1607 | Length $falseNorthing |
||||||
| 1608 | 18 | ): GeographicPoint { |
|||||
| 1609 | 18 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
| 1610 | 18 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
| 1611 | 18 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
| 1612 | 18 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
|
0 ignored issues
–
show
|
|||||||
| 1613 | 18 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
| 1614 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||||||
| 1615 | 18 | ||||||
| 1616 | 18 | $D = -$northing / $a; |
|||||
| 1617 | 18 | $latitude = M_PI / 2 - 2 * atan(M_E ** $D); |
|||||
| 1618 | $longitude = $easting / $a + $longitudeOrigin; |
||||||
| 1619 | 18 | ||||||
| 1620 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
| 1621 | } |
||||||
| 1622 | |||||||
| 1623 | /** |
||||||
| 1624 | * Similarity transformation |
||||||
| 1625 | * Defined for two-dimensional coordinate systems. |
||||||
| 1626 | 9 | */ |
|||||
| 1627 | public function similarityTransformation( |
||||||
| 1628 | Projected $to, |
||||||
| 1629 | Length $ordinate1OfEvaluationPointInTargetCRS, |
||||||
| 1630 | Length $ordinate2OfEvaluationPointInTargetCRS, |
||||||
| 1631 | Scale $scaleFactorForSourceCRSAxes, |
||||||
| 1632 | Angle $rotationAngleOfSourceCRSAxes, |
||||||
| 1633 | bool $inReverse |
||||||
| 1634 | 9 | ): self { |
|||||
| 1635 | 9 | $xs = $this->easting->asMetres()->getValue(); |
|||||
| 1636 | 9 | $ys = $this->northing->asMetres()->getValue(); |
|||||
| 1637 | 9 | $xo = $ordinate1OfEvaluationPointInTargetCRS->asMetres()->getValue(); |
|||||
| 1638 | 9 | $yo = $ordinate2OfEvaluationPointInTargetCRS->asMetres()->getValue(); |
|||||
| 1639 | 9 | $M = $scaleFactorForSourceCRSAxes->asUnity()->getValue(); |
|||||
| 1640 | $theta = $rotationAngleOfSourceCRSAxes->asRadians()->getValue(); |
||||||
| 1641 | 9 | ||||||
| 1642 | if ($inReverse) { |
||||||
| 1643 | $easting = (($xs - $xo) * cos($theta) - ($ys - $yo) * sin($theta)) / $M; |
||||||
| 1644 | $northing = (($xs - $xo) * sin($theta) + ($ys - $yo) * cos($theta)) / $M; |
||||||
| 1645 | 9 | } else { |
|||||
| 1646 | 9 | $easting = $xo + $xs * $M * cos($theta) + $ys * $M * sin($theta); |
|||||
| 1647 | $northing = $yo - $xs * $M * sin($theta) + $ys * $M * cos($theta); |
||||||
| 1648 | } |
||||||
| 1649 | 9 | ||||||
| 1650 | return self::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||||||
| 1651 | } |
||||||
| 1652 | |||||||
| 1653 | /** |
||||||
| 1654 | * Mercator (variant A) |
||||||
| 1655 | * Note that in these formulas the parameter latitude of natural origin (latO) is not used. However for this |
||||||
| 1656 | * Mercator (variant A) method the EPSG dataset includes this parameter, which must have a value of zero, for |
||||||
| 1657 | * completeness in CRS labelling. |
||||||
| 1658 | 18 | */ |
|||||
| 1659 | public function mercatorVariantA( |
||||||
| 1660 | Geographic2D|Geographic3D $to, |
||||||
| 1661 | Angle $latitudeOfNaturalOrigin, |
||||||
| 1662 | Angle $longitudeOfNaturalOrigin, |
||||||
| 1663 | Scale $scaleFactorAtNaturalOrigin, |
||||||
| 1664 | Length $falseEasting, |
||||||
| 1665 | Length $falseNorthing |
||||||
| 1666 | 18 | ): GeographicPoint { |
|||||
| 1667 | 18 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
| 1668 | 18 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
| 1669 | 18 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
|
0 ignored issues
–
show
|
|||||||
| 1670 | 18 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
|
0 ignored issues
–
show
|
|||||||
| 1671 | 18 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
| 1672 | 18 | $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
|||||
| 1673 | 18 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
| 1674 | 18 | $e = $ellipsoid->getEccentricity(); |
|||||
| 1675 | 18 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||||
| 1676 | 18 | $e4 = $e ** 4; |
|||||
| 1677 | 18 | $e6 = $e ** 6; |
|||||
| 1678 | $e8 = $e ** 8; |
||||||
| 1679 | 18 | ||||||
| 1680 | 18 | $t = M_E ** (($falseNorthing->asMetres()->getValue() - $this->northing->asMetres()->getValue()) / ($a * $scaleFactorOrigin)); |
|||||
| 1681 | $chi = M_PI / 2 - 2 * atan($t); |
||||||
| 1682 | 18 | ||||||
| 1683 | 18 | $latitude = $chi + ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) * sin(2 * $chi) + (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) * sin(4 * $chi) + (7 * $e6 / 120 + 81 * $e8 / 1120) * sin(6 * $chi) + (4279 * $e8 / 161280) * sin(8 * $chi); |
|||||
| 1684 | $longitude = $easting / ($a * $scaleFactorOrigin) + $longitudeOrigin; |
||||||
| 1685 | 18 | ||||||
| 1686 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
| 1687 | } |
||||||
| 1688 | |||||||
| 1689 | /** |
||||||
| 1690 | * Mercator (variant B) |
||||||
| 1691 | * Used for most nautical charts. |
||||||
| 1692 | 9 | */ |
|||||
| 1693 | public function mercatorVariantB( |
||||||
| 1694 | Geographic2D|Geographic3D $to, |
||||||
| 1695 | Angle $latitudeOf1stStandardParallel, |
||||||
| 1696 | Angle $longitudeOfNaturalOrigin, |
||||||
| 1697 | Length $falseEasting, |
||||||
| 1698 | Length $falseNorthing |
||||||
| 1699 | 9 | ): GeographicPoint { |
|||||
| 1700 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
| 1701 | 9 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
| 1702 | 9 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
|
0 ignored issues
–
show
|
|||||||
| 1703 | 9 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
| 1704 | 9 | $firstStandardParallel = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
|||||
| 1705 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
| 1706 | 9 | $e = $ellipsoid->getEccentricity(); |
|||||
| 1707 | 9 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||||
| 1708 | 9 | $e4 = $e ** 4; |
|||||
| 1709 | 9 | $e6 = $e ** 6; |
|||||
| 1710 | $e8 = $e ** 8; |
||||||
| 1711 | 9 | ||||||
| 1712 | $scaleFactorOrigin = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2); |
||||||
| 1713 | 9 | ||||||
| 1714 | 9 | $t = M_E ** (($falseNorthing->asMetres()->getValue() - $this->northing->asMetres()->getValue()) / ($a * $scaleFactorOrigin)); |
|||||
| 1715 | $chi = M_PI / 2 - 2 * atan($t); |
||||||
| 1716 | 9 | ||||||
| 1717 | 9 | $latitude = $chi + ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) * sin(2 * $chi) + (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) * sin(4 * $chi) + (7 * $e6 / 120 + 81 * $e8 / 1120) * sin(6 * $chi) + (4279 * $e8 / 161280) * sin(8 * $chi); |
|||||
| 1718 | $longitude = $easting / ($a * $scaleFactorOrigin) + $longitudeOrigin; |
||||||
| 1719 | 9 | ||||||
| 1720 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
| 1721 | } |
||||||
| 1722 | |||||||
| 1723 | /** |
||||||
| 1724 | * Hotine Oblique Mercator (variant A). |
||||||
| 1725 | 9 | */ |
|||||
| 1726 | public function obliqueMercatorHotineVariantA( |
||||||
| 1727 | Geographic2D|Geographic3D $to, |
||||||
| 1728 | Angle $latitudeOfProjectionCentre, |
||||||
| 1729 | Angle $longitudeOfProjectionCentre, |
||||||
| 1730 | Angle $azimuthAtProjectionCentre, |
||||||
| 1731 | Angle $angleFromRectifiedToSkewGrid, |
||||||
| 1732 | Scale $scaleFactorAtProjectionCentre, |
||||||
| 1733 | Length $falseEasting, |
||||||
| 1734 | Length $falseNorthing |
||||||
| 1735 | 9 | ): GeographicPoint { |
|||||
| 1736 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
| 1737 | 9 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
| 1738 | 9 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
| 1739 | 9 | $latC = $latitudeOfProjectionCentre->asRadians()->getValue(); |
|||||
| 1740 | 9 | $lonC = $longitudeOfProjectionCentre->asRadians()->getValue(); |
|||||
| 1741 | 9 | $alphaC = $azimuthAtProjectionCentre->asRadians()->getValue(); |
|||||
| 1742 | 9 | $kC = $scaleFactorAtProjectionCentre->asUnity()->getValue(); |
|||||
| 1743 | 9 | $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue(); |
|||||
| 1744 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
| 1745 | 9 | $e = $ellipsoid->getEccentricity(); |
|||||
| 1746 | 9 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||||
| 1747 | 9 | $e4 = $e ** 4; |
|||||
| 1748 | 9 | $e6 = $e ** 6; |
|||||
| 1749 | $e8 = $e ** 8; |
||||||
| 1750 | 9 | ||||||
| 1751 | 9 | $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2))); |
|||||
| 1752 | 9 | $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2); |
|||||
| 1753 | 9 | $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2); |
|||||
| 1754 | 9 | $D = $B * sqrt(1 - $e2) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2)); |
|||||
| 1755 | 9 | $DD = max(1, $D ** 2); |
|||||
| 1756 | 9 | $F = $D + sqrt($DD - 1) * static::sign($latC); |
|||||
| 1757 | 9 | $H = $F * $tO ** $B; |
|||||
| 1758 | 9 | $G = ($F - 1 / $F) / 2; |
|||||
| 1759 | 9 | $gammaO = self::asin(sin($alphaC) / $D); |
|||||
| 1760 | $lonO = $lonC - self::asin($G * tan($gammaO)) / $B; |
||||||
| 1761 | 9 | ||||||
| 1762 | 9 | $v = $easting * cos($gammaC) - $northing * sin($gammaC); |
|||||
| 1763 | $u = $northing * cos($gammaC) + $easting * sin($gammaC); |
||||||
| 1764 | 9 | ||||||
| 1765 | 9 | $Q = M_E ** -($B * $v / $A); |
|||||
| 1766 | 9 | $S = ($Q - 1 / $Q) / 2; |
|||||
| 1767 | 9 | $T = ($Q + 1 / $Q) / 2; |
|||||
| 1768 | 9 | $V = sin($B * $u / $A); |
|||||
| 1769 | 9 | $U = ($V * cos($gammaO) + $S * sin($gammaO)) / $T; |
|||||
| 1770 | $t = ($H / sqrt((1 + $U) / (1 - $U))) ** (1 / $B); |
||||||
| 1771 | 9 | ||||||
| 1772 | $chi = M_PI / 2 - 2 * atan($t); |
||||||
| 1773 | 9 | ||||||
| 1774 | 9 | $latitude = $chi + sin(2 * $chi) * ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) + sin(4 * $chi) * (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) + sin(6 * $chi) * (7 * $e6 / 120 + 81 * $e8 / 1120) + sin(8 * $chi) * (4279 * $e8 / 161280); |
|||||
| 1775 | $longitude = $lonO - atan2($S * cos($gammaO) - $V * sin($gammaO), cos($B * $u / $A)) / $B; |
||||||
| 1776 | 9 | ||||||
| 1777 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
| 1778 | } |
||||||
| 1779 | |||||||
| 1780 | /** |
||||||
| 1781 | * Hotine Oblique Mercator (variant B). |
||||||
| 1782 | 9 | */ |
|||||
| 1783 | public function obliqueMercatorHotineVariantB( |
||||||
| 1784 | Geographic2D|Geographic3D $to, |
||||||
| 1785 | Angle $latitudeOfProjectionCentre, |
||||||
| 1786 | Angle $longitudeOfProjectionCentre, |
||||||
| 1787 | Angle $azimuthAtProjectionCentre, |
||||||
| 1788 | Angle $angleFromRectifiedToSkewGrid, |
||||||
| 1789 | Scale $scaleFactorAtProjectionCentre, |
||||||
| 1790 | Length $eastingAtProjectionCentre, |
||||||
| 1791 | Length $northingAtProjectionCentre |
||||||
| 1792 | 9 | ): GeographicPoint { |
|||||
| 1793 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
| 1794 | 9 | $easting = $this->easting->asMetres()->getValue() - $eastingAtProjectionCentre->asMetres()->getValue(); |
|||||
| 1795 | 9 | $northing = $this->northing->asMetres()->getValue() - $northingAtProjectionCentre->asMetres()->getValue(); |
|||||
| 1796 | 9 | $latC = $latitudeOfProjectionCentre->asRadians()->getValue(); |
|||||
| 1797 | 9 | $lonC = $longitudeOfProjectionCentre->asRadians()->getValue(); |
|||||
| 1798 | 9 | $alphaC = $azimuthAtProjectionCentre->asRadians()->getValue(); |
|||||
| 1799 | 9 | $kC = $scaleFactorAtProjectionCentre->asUnity()->getValue(); |
|||||
| 1800 | 9 | $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue(); |
|||||
| 1801 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
| 1802 | 9 | $e = $ellipsoid->getEccentricity(); |
|||||
| 1803 | 9 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||||
| 1804 | 9 | $e4 = $e ** 4; |
|||||
| 1805 | 9 | $e6 = $e ** 6; |
|||||
| 1806 | $e8 = $e ** 8; |
||||||
| 1807 | 9 | ||||||
| 1808 | 9 | $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2))); |
|||||
| 1809 | 9 | $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2); |
|||||
| 1810 | 9 | $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2); |
|||||
| 1811 | 9 | $D = $B * sqrt(1 - $e2) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2)); |
|||||
| 1812 | 9 | $DD = max(1, $D ** 2); |
|||||
| 1813 | 9 | $F = $D + sqrt($DD - 1) * static::sign($latC); |
|||||
| 1814 | 9 | $H = $F * $tO ** $B; |
|||||
| 1815 | 9 | $G = ($F - 1 / $F) / 2; |
|||||
| 1816 | 9 | $gammaO = self::asin(sin($alphaC) / $D); |
|||||
| 1817 | 9 | $lonO = $lonC - self::asin($G * tan($gammaO)) / $B; |
|||||
| 1818 | 9 | $vC = 0; |
|||||
|
0 ignored issues
–
show
|
|||||||
| 1819 | if ($alphaC === M_PI / 2) { |
||||||
| 1820 | $uC = $A * ($lonC - $lonO); |
||||||
| 1821 | 9 | } else { |
|||||
| 1822 | $uC = ($A / $B) * atan2(sqrt($DD - 1), cos($alphaC)) * static::sign($latC); |
||||||
| 1823 | } |
||||||
| 1824 | 9 | ||||||
| 1825 | 9 | $v = $easting * cos($gammaC) - $northing * sin($gammaC); |
|||||
| 1826 | $u = $northing * cos($gammaC) + $easting * sin($gammaC) + (abs($uC) * static::sign($latC)); |
||||||
| 1827 | 9 | ||||||
| 1828 | 9 | $Q = M_E ** -($B * $v / $A); |
|||||
| 1829 | 9 | $S = ($Q - 1 / $Q) / 2; |
|||||
| 1830 | 9 | $T = ($Q + 1 / $Q) / 2; |
|||||
| 1831 | 9 | $V = sin($B * $u / $A); |
|||||
| 1832 | 9 | $U = ($V * cos($gammaO) + $S * sin($gammaO)) / $T; |
|||||
| 1833 | $t = ($H / sqrt((1 + $U) / (1 - $U))) ** (1 / $B); |
||||||
| 1834 | 9 | ||||||
| 1835 | $chi = M_PI / 2 - 2 * atan($t); |
||||||
| 1836 | 9 | ||||||
| 1837 | 9 | $latitude = $chi + sin(2 * $chi) * ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) + sin(4 * $chi) * (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) + sin(6 * $chi) * (7 * $e6 / 120 + 81 * $e8 / 1120) + sin(8 * $chi) * (4279 * $e8 / 161280); |
|||||
| 1838 | $longitude = $lonO - atan2($S * cos($gammaO) - $V * sin($gammaO), cos($B * $u / $A)) / $B; |
||||||
| 1839 | 9 | ||||||
| 1840 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
| 1841 | } |
||||||
| 1842 | |||||||
| 1843 | /** |
||||||
| 1844 | * Laborde Oblique Mercator. |
||||||
| 1845 | 9 | */ |
|||||
| 1846 | public function obliqueMercatorLaborde( |
||||||
| 1847 | Geographic2D|Geographic3D $to, |
||||||
| 1848 | Angle $latitudeOfProjectionCentre, |
||||||
| 1849 | Angle $longitudeOfProjectionCentre, |
||||||
| 1850 | Angle $azimuthAtProjectionCentre, |
||||||
| 1851 | Scale $scaleFactorAtProjectionCentre, |
||||||
| 1852 | Length $falseEasting, |
||||||
| 1853 | Length $falseNorthing |
||||||
| 1854 | 9 | ): GeographicPoint { |
|||||
| 1855 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
| 1856 | 9 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
| 1857 | 9 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
| 1858 | 9 | $latC = $latitudeOfProjectionCentre->asRadians()->getValue(); |
|||||
| 1859 | 9 | $lonC = $longitudeOfProjectionCentre->asRadians()->getValue(); |
|||||
| 1860 | 9 | $alphaC = $azimuthAtProjectionCentre->asRadians()->getValue(); |
|||||
| 1861 | 9 | $kC = $scaleFactorAtProjectionCentre->asUnity()->getValue(); |
|||||
| 1862 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
| 1863 | 9 | $e = $ellipsoid->getEccentricity(); |
|||||
| 1864 | $e2 = $ellipsoid->getEccentricitySquared(); |
||||||
| 1865 | 9 | ||||||
| 1866 | 9 | $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2))); |
|||||
| 1867 | 9 | $latS = self::asin(sin($latC) / $B); |
|||||
| 1868 | 9 | $R = $a * $kC * (sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2)); |
|||||
| 1869 | $C = log(tan(M_PI / 4 + $latS / 2)) - $B * log(tan(M_PI / 4 + $latC / 2) * ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2)); |
||||||
| 1870 | 9 | ||||||
| 1871 | $G = (new ComplexNumber(1 - cos(2 * $alphaC), sin(2 * $alphaC)))->divide(new ComplexNumber(12, 0)); |
||||||
| 1872 | 9 | ||||||
| 1873 | 9 | $H0 = new ComplexNumber($northing / $R, $easting / $R); |
|||||
| 1874 | $H = $H0->divide($H0->pow(3)->multiply($G)->add($H0)); |
||||||
| 1875 | 9 | do { |
|||||
| 1876 | 9 | $HN = $H; |
|||||
| 1877 | 9 | $H = $HN->pow(3)->multiply($G)->multiply(new ComplexNumber(2, 0))->add($H0)->divide($HN->pow(2)->multiply($G)->multiply(new ComplexNumber(3, 0))->add(new ComplexNumber(1, 0))); |
|||||
| 1878 | } while (abs($H0->subtract($H)->subtract($H->pow(3)->multiply($G))->getReal()) >= static::ITERATION_CONVERGENCE_FORMULA); |
||||||
| 1879 | 9 | ||||||
| 1880 | 9 | $LPrime = -1 * $H->getReal(); |
|||||
| 1881 | 9 | $PPrime = 2 * atan(M_E ** $H->getImaginary()) - M_PI / 2; |
|||||
| 1882 | 9 | $U = cos($PPrime) * cos($LPrime) * cos($latS) + cos($PPrime) * sin($LPrime) * sin($latS); |
|||||
| 1883 | 9 | $V = sin($PPrime); |
|||||
| 1884 | $W = cos($PPrime) * cos($LPrime) * sin($latS) - cos($PPrime) * sin($LPrime) * cos($latS); |
||||||
| 1885 | 9 | ||||||
| 1886 | 9 | $d = hypot($U, $V); |
|||||
| 1887 | if ($d === 0.0) { |
||||||
| 1888 | $L = 0; |
||||||
| 1889 | $P = static::sign($W) * M_PI / 2; |
||||||
| 1890 | 9 | } else { |
|||||
| 1891 | 9 | $L = 2 * atan($V / ($U + $d)); |
|||||
| 1892 | $P = atan($W / $d); |
||||||
| 1893 | } |
||||||
| 1894 | 9 | ||||||
| 1895 | $longitude = $lonC + ($L / $B); |
||||||
| 1896 | 9 | ||||||
| 1897 | $q = (log(tan(M_PI / 4 + $P / 2)) - $C) / $B; |
||||||
| 1898 | 9 | ||||||
| 1899 | $latitude = 2 * atan(M_E ** $q) - M_PI / 2; |
||||||
| 1900 | 9 | do { |
|||||
| 1901 | 9 | $latitudeN = $latitude; |
|||||
| 1902 | 9 | $latitude = 2 * atan(((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2) * M_E ** $q) - M_PI / 2; |
|||||
| 1903 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||||||
| 1904 | 9 | ||||||
| 1905 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
| 1906 | } |
||||||
| 1907 | |||||||
| 1908 | /** |
||||||
| 1909 | * Transverse Mercator. |
||||||
| 1910 | 144 | */ |
|||||
| 1911 | public function transverseMercator( |
||||||
| 1912 | Geographic2D|Geographic3D $to, |
||||||
| 1913 | Angle $latitudeOfNaturalOrigin, |
||||||
| 1914 | Angle $longitudeOfNaturalOrigin, |
||||||
| 1915 | Scale $scaleFactorAtNaturalOrigin, |
||||||
| 1916 | Length $falseEasting, |
||||||
| 1917 | Length $falseNorthing |
||||||
| 1918 | 144 | ): GeographicPoint { |
|||||
| 1919 | 144 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
| 1920 | 144 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
| 1921 | 144 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
| 1922 | 144 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
| 1923 | 144 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
| 1924 | 144 | $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
|||||
| 1925 | 144 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
| 1926 | 144 | $e = $ellipsoid->getEccentricity(); |
|||||
| 1927 | $f = $ellipsoid->getFlattening(); |
||||||
| 1928 | 144 | ||||||
| 1929 | 144 | $n = $f / (2 - $f); |
|||||
| 1930 | $B = ($a / (1 + $n)) * (1 + $n ** 2 / 4 + $n ** 4 / 64 + $n ** 6 / 256 + (25 / 16384) * $n ** 8); |
||||||
| 1931 | 144 | ||||||
| 1932 | 144 | $h1 = $n / 2 - (2 / 3) * $n ** 2 + (5 / 16) * $n ** 3 + (41 / 180) * $n ** 4 - (127 / 288) * $n ** 5 + (7891 / 37800) * $n ** 6 + (72161 / 387072) * $n ** 7 - (18975107 / 50803200) * $n ** 8; |
|||||
| 1933 | 144 | $h2 = (13 / 48) * $n ** 2 - (3 / 5) * $n ** 3 + (557 / 1440) * $n ** 4 + (281 / 630) * $n ** 5 - (1983433 / 1935360) * $n ** 6 + (13769 / 28800) * $n ** 7 + (148003883 / 174182400) * $n ** 8; |
|||||
| 1934 | 144 | $h3 = (61 / 240) * $n ** 3 - (103 / 140) * $n ** 4 + (15061 / 26880) * $n ** 5 + (167603 / 181440) * $n ** 6 - (67102379 / 29030400) * $n ** 7 + (79682431 / 79833600) * $n ** 8; |
|||||
| 1935 | 144 | $h4 = (49561 / 161280) * $n ** 4 - (179 / 168) * $n ** 5 + (6601661 / 7257600) * $n ** 6 + (97445 / 49896) * $n ** 7 - (40176129013 / 7664025600) * $n ** 8; |
|||||
| 1936 | 144 | $h5 = (34729 / 80640) * $n ** 5 - (3418889 / 1995840) * $n ** 6 + (14644087 / 9123840) * $n ** 7 + (2605413599 / 622702080) * $n ** 8; |
|||||
| 1937 | 144 | $h6 = (212378941 / 319334400) * $n ** 6 - (30705481 / 10378368) * $n ** 7 + (175214326799 / 58118860800) * $n ** 8; |
|||||
| 1938 | 144 | $h7 = (1522256789 / 1383782400) * $n ** 7 - (16759934899 / 3113510400) * $n ** 8; |
|||||
| 1939 | $h8 = (1424729850961 / 743921418240) * $n ** 8; |
||||||
| 1940 | 144 | ||||||
| 1941 | 90 | if ($latitudeOrigin === 0.0) { |
|||||
|
0 ignored issues
–
show
|
|||||||
| 1942 | 63 | $mO = 0; |
|||||
| 1943 | } elseif ($latitudeOrigin === M_PI / 2) { |
||||||
| 1944 | 63 | $mO = $B * M_PI / 2; |
|||||
| 1945 | } elseif ($latitudeOrigin === -M_PI / 2) { |
||||||
| 1946 | $mO = $B * -M_PI / 2; |
||||||
| 1947 | 63 | } else { |
|||||
| 1948 | 63 | $qO = asinh(tan($latitudeOrigin)) - ($e * atanh($e * sin($latitudeOrigin))); |
|||||
| 1949 | 63 | $betaO = atan(sinh($qO)); |
|||||
| 1950 | 63 | $xiO0 = self::asin(sin($betaO)); |
|||||
| 1951 | 63 | $xiO1 = $h1 * sin(2 * $xiO0); |
|||||
| 1952 | 63 | $xiO2 = $h2 * sin(4 * $xiO0); |
|||||
| 1953 | 63 | $xiO3 = $h3 * sin(6 * $xiO0); |
|||||
| 1954 | 63 | $xiO4 = $h4 * sin(8 * $xiO0); |
|||||
| 1955 | 63 | $xiO5 = $h5 * sin(10 * $xiO0); |
|||||
| 1956 | 63 | $xiO6 = $h6 * sin(12 * $xiO0); |
|||||
| 1957 | 63 | $xiO7 = $h7 * sin(14 * $xiO0); |
|||||
| 1958 | 63 | $xiO8 = $h8 * sin(16 * $xiO0); |
|||||
| 1959 | 63 | $xiO = $xiO0 + $xiO1 + $xiO2 + $xiO3 + $xiO4 + $xiO5 + $xiO6 + $xiO7 + $xiO8; |
|||||
| 1960 | $mO = $B * $xiO; |
||||||
| 1961 | } |
||||||
| 1962 | 144 | ||||||
| 1963 | 144 | $h1 = $n / 2 - (2 / 3) * $n ** 2 + (37 / 96) * $n ** 3 - (1 / 360) * $n ** 4 - (81 / 512) * $n ** 5 + (96199 / 604800) * $n ** 6 - (5406467 / 38707200) * $n ** 7 + (7944359 / 67737600) * $n ** 8; |
|||||
| 1964 | 144 | $h2 = (1 / 48) * $n ** 2 + (1 / 15) * $n ** 3 - (437 / 1440) * $n ** 4 + (46 / 105) * $n ** 5 - (1118711 / 3870720) * $n ** 6 + (51841 / 1209600) * $n ** 7 + (24749483 / 348364800) * $n ** 8; |
|||||
| 1965 | 144 | $h3 = (17 / 480) * $n ** 3 - (37 / 840) * $n ** 4 - (209 / 4480) * $n ** 5 + (5569 / 90720) * $n ** 6 + (9261899 / 58060800) * $n ** 7 - (6457463 / 17740800) * $n ** 8; |
|||||
| 1966 | 144 | $h4 = (4397 / 161280) * $n ** 4 - (11 / 504) * $n ** 5 - (830251 / 7257600) * $n ** 6 + (466511 / 2494800) * $n ** 7 + (324154477 / 7664025600) * $n ** 8; |
|||||
| 1967 | 144 | $h5 = (4583 / 161280) * $n ** 5 - (108847 / 3991680) * $n ** 6 - (8005831 / 63866880) * $n ** 7 + (22894433 / 124540416) * $n ** 8; |
|||||
| 1968 | 144 | $h6 = (20648693 / 638668800) * $n ** 6 - (16363163 / 518918400) * $n ** 7 - (2204645983 / 12915302400) * $n ** 8; |
|||||
| 1969 | 144 | $h7 = (219941297 / 5535129600) * $n ** 7 - (497323811 / 12454041600) * $n ** 8; |
|||||
| 1970 | $h8 = (191773887257 / 3719607091200) * $n ** 8; |
||||||
| 1971 | 144 | ||||||
| 1972 | 144 | $eta = $easting / ($B * $kO); |
|||||
| 1973 | 144 | $xi = ($northing + $kO * $mO) / ($B * $kO); |
|||||
| 1974 | 144 | $xi1 = $h1 * sin(2 * $xi) * cosh(2 * $eta); |
|||||
| 1975 | 144 | $eta1 = $h1 * cos(2 * $xi) * sinh(2 * $eta); |
|||||
| 1976 | 144 | $xi2 = $h2 * sin(4 * $xi) * cosh(4 * $eta); |
|||||
| 1977 | 144 | $eta2 = $h2 * cos(4 * $xi) * sinh(4 * $eta); |
|||||
| 1978 | 144 | $xi3 = $h3 * sin(6 * $xi) * cosh(6 * $eta); |
|||||
| 1979 | 144 | $eta3 = $h3 * cos(6 * $xi) * sinh(6 * $eta); |
|||||
| 1980 | 144 | $xi4 = $h4 * sin(8 * $xi) * cosh(8 * $eta); |
|||||
| 1981 | 144 | $eta4 = $h4 * cos(8 * $xi) * sinh(8 * $eta); |
|||||
| 1982 | 144 | $xi5 = $h5 * sin(10 * $xi) * cosh(10 * $eta); |
|||||
| 1983 | 144 | $eta5 = $h5 * cos(10 * $xi) * sinh(10 * $eta); |
|||||
| 1984 | 144 | $xi6 = $h6 * sin(12 * $xi) * cosh(12 * $eta); |
|||||
| 1985 | 144 | $eta6 = $h6 * cos(12 * $xi) * sinh(12 * $eta); |
|||||
| 1986 | 144 | $xi7 = $h7 * sin(14 * $xi) * cosh(14 * $eta); |
|||||
| 1987 | 144 | $eta7 = $h7 * cos(14 * $xi) * sinh(14 * $eta); |
|||||
| 1988 | 144 | $xi8 = $h8 * sin(16 * $xi) * cosh(16 * $eta); |
|||||
| 1989 | 144 | $eta8 = $h8 * cos(16 * $xi) * sinh(16 * $eta); |
|||||
| 1990 | 144 | $xi0 = $xi - $xi1 - $xi2 - $xi3 - $xi4 - $xi5 - $xi6 - $xi7 - $xi8; |
|||||
| 1991 | $eta0 = $eta - $eta1 - $eta2 - $eta3 - $eta4 - $eta5 - $eta6 - $eta7 - $eta8; |
||||||
| 1992 | 144 | ||||||
| 1993 | $beta = self::asin(sin($xi0) / cosh($eta0)); |
||||||
| 1994 | 144 | ||||||
| 1995 | 144 | $QPrime = asinh(tan($beta)); |
|||||
| 1996 | $Q = asinh(tan($beta)); |
||||||
| 1997 | 144 | do { |
|||||
| 1998 | 144 | $QN = $Q; |
|||||
| 1999 | 144 | $Q = $QPrime + ($e * atanh($e * tanh($Q))); |
|||||
| 2000 | } while (abs($Q - $QN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||||||
| 2001 | 144 | ||||||
| 2002 | 144 | $latitude = atan(sinh($Q)); |
|||||
| 2003 | $longitude = $longitudeOrigin + self::asin(tanh($eta0) / cos($beta)); |
||||||
| 2004 | 144 | ||||||
| 2005 | $height = $this->height && $to instanceof Geographic3D ? $this->height : null; |
||||||
| 2006 | 144 | ||||||
| 2007 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), $height, $this->epoch); |
||||||
| 2008 | } |
||||||
| 2009 | |||||||
| 2010 | /** |
||||||
| 2011 | * Transverse Mercator Zoned Grid System |
||||||
| 2012 | * If locations fall outwith the fixed zones the general Transverse Mercator method (code 9807) must be used for |
||||||
| 2013 | * each zone. |
||||||
| 2014 | 18 | */ |
|||||
| 2015 | public function transverseMercatorZonedGrid( |
||||||
| 2016 | Geographic2D|Geographic3D $to, |
||||||
| 2017 | Angle $latitudeOfNaturalOrigin, |
||||||
| 2018 | Angle $initialLongitude, |
||||||
| 2019 | Angle $zoneWidth, |
||||||
| 2020 | Scale $scaleFactorAtNaturalOrigin, |
||||||
| 2021 | Length $falseEasting, |
||||||
| 2022 | Length $falseNorthing |
||||||
| 2023 | 18 | ): GeographicPoint { |
|||||
| 2024 | 18 | $Z = (int) substr((string) $this->easting->asMetres()->getValue(), 0, 2); |
|||||
| 2025 | $falseEasting = $falseEasting->add(new Metre($Z * 1000000)); |
||||||
| 2026 | 18 | ||||||
| 2027 | 18 | $W = $zoneWidth->asDegrees()->getValue(); |
|||||
| 2028 | $longitudeOrigin = $initialLongitude->add(new Degree($Z * $W - $W / 2)); |
||||||
| 2029 | 18 | ||||||
| 2030 | return $this->transverseMercator($to, $latitudeOfNaturalOrigin, $longitudeOrigin, $scaleFactorAtNaturalOrigin, $falseEasting, $falseNorthing); |
||||||
| 2031 | } |
||||||
| 2032 | |||||||
| 2033 | /** |
||||||
| 2034 | * General polynomial. |
||||||
| 2035 | * @param Coefficient[] $powerCoefficients |
||||||
| 2036 | */ |
||||||
| 2037 | public function generalPolynomial( |
||||||
| 2038 | Projected $to, |
||||||
| 2039 | Length $ordinate1OfEvaluationPointInSourceCRS, |
||||||
| 2040 | Length $ordinate2OfEvaluationPointInSourceCRS, |
||||||
| 2041 | Length $ordinate1OfEvaluationPointInTargetCRS, |
||||||
| 2042 | Length $ordinate2OfEvaluationPointInTargetCRS, |
||||||
| 2043 | Scale $scalingFactorForSourceCRSCoordDifferences, |
||||||
| 2044 | Scale $scalingFactorForTargetCRSCoordDifferences, |
||||||
| 2045 | Scale $A0, |
||||||
| 2046 | Scale $B0, |
||||||
| 2047 | array $powerCoefficients, |
||||||
| 2048 | bool $inReverse |
||||||
| 2049 | ): self { |
||||||
| 2050 | $xs = $this->easting->getValue(); |
||||||
| 2051 | $ys = $this->northing->getValue(); |
||||||
| 2052 | |||||||
| 2053 | $t = $this->generalPolynomialUnitless( |
||||||
| 2054 | $xs, |
||||||
| 2055 | $ys, |
||||||
| 2056 | $ordinate1OfEvaluationPointInSourceCRS, |
||||||
| 2057 | $ordinate2OfEvaluationPointInSourceCRS, |
||||||
| 2058 | $ordinate1OfEvaluationPointInTargetCRS, |
||||||
| 2059 | $ordinate2OfEvaluationPointInTargetCRS, |
||||||
| 2060 | $scalingFactorForSourceCRSCoordDifferences, |
||||||
| 2061 | $scalingFactorForTargetCRSCoordDifferences, |
||||||
| 2062 | $A0, |
||||||
| 2063 | $B0, |
||||||
| 2064 | $powerCoefficients, |
||||||
| 2065 | $inReverse |
||||||
| 2066 | ); |
||||||
| 2067 | |||||||
| 2068 | $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId(); |
||||||
| 2069 | $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId(); |
||||||
| 2070 | |||||||
| 2071 | return static::createFromEastingNorthing( |
||||||
| 2072 | $to, |
||||||
| 2073 | Length::makeUnit($t['xt'], $xtUnit), |
||||||
| 2074 | Length::makeUnit($t['yt'], $ytUnit), |
||||||
| 2075 | $this->epoch |
||||||
| 2076 | ); |
||||||
| 2077 | } |
||||||
| 2078 | |||||||
| 2079 | /** |
||||||
| 2080 | * New Zealand Map Grid. |
||||||
| 2081 | 27 | */ |
|||||
| 2082 | public function newZealandMapGrid( |
||||||
| 2083 | Geographic2D|Geographic3D $to, |
||||||
| 2084 | Angle $latitudeOfNaturalOrigin, |
||||||
| 2085 | Angle $longitudeOfNaturalOrigin, |
||||||
| 2086 | Length $falseEasting, |
||||||
| 2087 | Length $falseNorthing |
||||||
| 2088 | 27 | ): GeographicPoint { |
|||||
| 2089 | 27 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
| 2090 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||||||
| 2091 | 27 | ||||||
| 2092 | 27 | $z = new ComplexNumber( |
|||||
| 2093 | 27 | $this->northing->subtract($falseNorthing)->divide($a)->asMetres()->getValue(), |
|||||
| 2094 | 27 | $this->easting->subtract($falseEasting)->divide($a)->asMetres()->getValue(), |
|||||
| 2095 | ); |
||||||
| 2096 | 27 | ||||||
| 2097 | 27 | $B1 = new ComplexNumber(0.7557853228, 0.0); |
|||||
| 2098 | 27 | $B2 = new ComplexNumber(0.249204646, 0.003371507); |
|||||
| 2099 | 27 | $B3 = new ComplexNumber(-0.001541739, 0.041058560); |
|||||
| 2100 | 27 | $B4 = new ComplexNumber(-0.10162907, 0.01727609); |
|||||
| 2101 | 27 | $B5 = new ComplexNumber(-0.26623489, -0.36249218); |
|||||
| 2102 | 27 | $B6 = new ComplexNumber(-0.6870983, -1.1651967); |
|||||
| 2103 | 27 | $b1 = new ComplexNumber(1.3231270439, 0.0); |
|||||
| 2104 | 27 | $b2 = new ComplexNumber(-0.577245789, -0.007809598); |
|||||
| 2105 | 27 | $b3 = new ComplexNumber(0.508307513, -0.112208952); |
|||||
| 2106 | 27 | $b4 = new ComplexNumber(-0.15094762, 0.18200602); |
|||||
| 2107 | 27 | $b5 = new ComplexNumber(1.01418179, 1.64497696); |
|||||
| 2108 | $b6 = new ComplexNumber(1.9660549, 2.5127645); |
||||||
| 2109 | 27 | ||||||
| 2110 | 27 | $zeta = new ComplexNumber(0, 0); |
|||||
| 2111 | 27 | $zeta = $zeta->add($b1->multiply($z->pow(1))); |
|||||
| 2112 | 27 | $zeta = $zeta->add($b2->multiply($z->pow(2))); |
|||||
| 2113 | 27 | $zeta = $zeta->add($b3->multiply($z->pow(3))); |
|||||
| 2114 | 27 | $zeta = $zeta->add($b4->multiply($z->pow(4))); |
|||||
| 2115 | 27 | $zeta = $zeta->add($b5->multiply($z->pow(5))); |
|||||
| 2116 | $zeta = $zeta->add($b6->multiply($z->pow(6))); |
||||||
| 2117 | 27 | ||||||
| 2118 | 27 | for ($iterations = 0; $iterations < 2; ++$iterations) { |
|||||
| 2119 | 27 | $numerator = $z; |
|||||
| 2120 | 27 | $numerator = $numerator->add($B2->multiply($zeta->pow(2))->multiply(new ComplexNumber(1, 0))); |
|||||
| 2121 | 27 | $numerator = $numerator->add($B3->multiply($zeta->pow(3))->multiply(new ComplexNumber(2, 0))); |
|||||
| 2122 | 27 | $numerator = $numerator->add($B4->multiply($zeta->pow(4))->multiply(new ComplexNumber(3, 0))); |
|||||
| 2123 | 27 | $numerator = $numerator->add($B5->multiply($zeta->pow(5))->multiply(new ComplexNumber(4, 0))); |
|||||
| 2124 | $numerator = $numerator->add($B6->multiply($zeta->pow(6))->multiply(new ComplexNumber(5, 0))); |
||||||
| 2125 | 27 | ||||||
| 2126 | 27 | $denominator = $B1; |
|||||
| 2127 | 27 | $denominator = $denominator->add($B2->multiply($zeta->pow(1))->multiply(new ComplexNumber(2, 0))); |
|||||
| 2128 | 27 | $denominator = $denominator->add($B3->multiply($zeta->pow(2))->multiply(new ComplexNumber(3, 0))); |
|||||
| 2129 | 27 | $denominator = $denominator->add($B4->multiply($zeta->pow(3))->multiply(new ComplexNumber(4, 0))); |
|||||
| 2130 | 27 | $denominator = $denominator->add($B5->multiply($zeta->pow(4))->multiply(new ComplexNumber(5, 0))); |
|||||
| 2131 | $denominator = $denominator->add($B6->multiply($zeta->pow(5))->multiply(new ComplexNumber(6, 0))); |
||||||
| 2132 | 27 | ||||||
| 2133 | $zeta = $numerator->divide($denominator); |
||||||
| 2134 | } |
||||||
| 2135 | 27 | ||||||
| 2136 | 27 | $deltaPsi = $zeta->getReal(); |
|||||
| 2137 | 27 | $deltaLatitudeToOrigin = 0; |
|||||
| 2138 | 27 | $deltaLatitudeToOrigin += 1.5627014243 * $deltaPsi ** 1; |
|||||
| 2139 | 27 | $deltaLatitudeToOrigin += 0.5185406398 * $deltaPsi ** 2; |
|||||
| 2140 | 27 | $deltaLatitudeToOrigin += -0.03333098 * $deltaPsi ** 3; |
|||||
| 2141 | 27 | $deltaLatitudeToOrigin += -0.1052906 * $deltaPsi ** 4; |
|||||
| 2142 | 27 | $deltaLatitudeToOrigin += -0.0368594 * $deltaPsi ** 5; |
|||||
| 2143 | 27 | $deltaLatitudeToOrigin += 0.007317 * $deltaPsi ** 6; |
|||||
| 2144 | 27 | $deltaLatitudeToOrigin += 0.01220 * $deltaPsi ** 7; |
|||||
| 2145 | 27 | $deltaLatitudeToOrigin += 0.00394 * $deltaPsi ** 8; |
|||||
| 2146 | $deltaLatitudeToOrigin += -0.0013 * $deltaPsi ** 9; |
||||||
| 2147 | 27 | ||||||
| 2148 | 27 | $latitude = $latitudeOfNaturalOrigin->add(new ArcSecond($deltaLatitudeToOrigin / 0.00001)); |
|||||
| 2149 | $longitude = $longitudeOfNaturalOrigin->add(new Radian($zeta->getImaginary())); |
||||||
| 2150 | 27 | ||||||
| 2151 | return GeographicPoint::create($to, $latitude, $longitude, null, $this->epoch); |
||||||
| 2152 | } |
||||||
| 2153 | |||||||
| 2154 | /** |
||||||
| 2155 | * Complex polynomial. |
||||||
| 2156 | * Coordinate pairs treated as complex numbers. This exploits the correlation between the polynomial coefficients |
||||||
| 2157 | * and leads to a smaller number of coefficients than the general polynomials. |
||||||
| 2158 | 9 | */ |
|||||
| 2159 | public function complexPolynomial( |
||||||
| 2160 | Projected $to, |
||||||
| 2161 | Length $ordinate1OfEvaluationPointInSourceCRS, |
||||||
| 2162 | Length $ordinate2OfEvaluationPointInSourceCRS, |
||||||
| 2163 | Length $ordinate1OfEvaluationPointInTargetCRS, |
||||||
| 2164 | Length $ordinate2OfEvaluationPointInTargetCRS, |
||||||
| 2165 | Scale $scalingFactorForSourceCRSCoordDifferences, |
||||||
| 2166 | Scale $scalingFactorForTargetCRSCoordDifferences, |
||||||
| 2167 | Scale $A1, |
||||||
| 2168 | Scale $A2, |
||||||
| 2169 | Scale $A3, |
||||||
| 2170 | Scale $A4, |
||||||
| 2171 | Scale $A5, |
||||||
| 2172 | Scale $A6, |
||||||
| 2173 | ?Scale $A7 = null, |
||||||
| 2174 | ?Scale $A8 = null |
||||||
| 2175 | 9 | ): self { |
|||||
| 2176 | 9 | $xs = $this->easting->getValue(); |
|||||
| 2177 | 9 | $ys = $this->northing->getValue(); |
|||||
| 2178 | 9 | $xso = $ordinate1OfEvaluationPointInSourceCRS->getValue(); |
|||||
| 2179 | 9 | $yso = $ordinate2OfEvaluationPointInSourceCRS->getValue(); |
|||||
| 2180 | 9 | $xto = $ordinate1OfEvaluationPointInTargetCRS->getValue(); |
|||||
| 2181 | $yto = $ordinate2OfEvaluationPointInTargetCRS->getValue(); |
||||||
| 2182 | 9 | ||||||
| 2183 | 9 | $U = $scalingFactorForSourceCRSCoordDifferences->asUnity()->getValue() * ($xs - $xso); |
|||||
| 2184 | $V = $scalingFactorForSourceCRSCoordDifferences->asUnity()->getValue() * ($ys - $yso); |
||||||
| 2185 | 9 | ||||||
| 2186 | 9 | $mTdXdY = new ComplexNumber(0, 0); |
|||||
| 2187 | 9 | $mTdXdY = $mTdXdY->add((new ComplexNumber($A1->getValue(), $A2->getValue()))->multiply(new ComplexNumber($U, $V))->pow(1)); |
|||||
| 2188 | 9 | $mTdXdY = $mTdXdY->add((new ComplexNumber($A3->getValue(), $A4->getValue()))->multiply((new ComplexNumber($U, $V))->pow(2))); |
|||||
| 2189 | 9 | $mTdXdY = $mTdXdY->add((new ComplexNumber($A5->getValue(), $A6->getValue()))->multiply((new ComplexNumber($U, $V))->pow(3))); |
|||||
| 2190 | $mTdXdY = $mTdXdY->add((new ComplexNumber($A7 ? $A7->getValue() : 0, $A8 ? $A8->getValue() : 0))->multiply((new ComplexNumber($U, $V))->pow(4))); |
||||||
| 2191 | 9 | ||||||
| 2192 | 9 | $xt = $xs - $xso + $xto + $mTdXdY->getReal() / $scalingFactorForTargetCRSCoordDifferences->asUnity()->getValue(); |
|||||
| 2193 | $yt = $ys - $yso + $yto + $mTdXdY->getImaginary() / $scalingFactorForTargetCRSCoordDifferences->asUnity()->getValue(); |
||||||
| 2194 | 9 | ||||||
| 2195 | 9 | $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId(); |
|||||
| 2196 | $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId(); |
||||||
| 2197 | 9 | ||||||
| 2198 | 9 | return static::createFromEastingNorthing( |
|||||
| 2199 | 9 | $to, |
|||||
| 2200 | 9 | Length::makeUnit($xt, $xtUnit), |
|||||
| 2201 | 9 | Length::makeUnit($yt, $ytUnit), |
|||||
| 2202 | 9 | $this->epoch |
|||||
| 2203 | ); |
||||||
| 2204 | } |
||||||
| 2205 | |||||||
| 2206 | /** |
||||||
| 2207 | * Ordnance Survey National Transformation |
||||||
| 2208 | * Geodetic transformation between ETRS89 (or WGS 84) and OSGB36 / National Grid. Uses ETRS89 / National Grid as |
||||||
| 2209 | * an intermediate coordinate system for bi-linear interpolation of gridded grid coordinate differences. |
||||||
| 2210 | */ |
||||||
| 2211 | public function OSTN15( |
||||||
| 2212 | Geographic2D $to, |
||||||
| 2213 | OSTNOSGM15Grid $eastingAndNorthingDifferenceFile |
||||||
| 2214 | ): GeographicPoint { |
||||||
| 2215 | $asETRS89 = $eastingAndNorthingDifferenceFile->applyReverseHorizontalAdjustment($this); |
||||||
| 2216 | |||||||
| 2217 | return $asETRS89->transverseMercator($to, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000)); |
||||||
| 2218 | } |
||||||
| 2219 | 9 | ||||||
| 2220 | public function localOrthographic( |
||||||
| 2221 | Geographic2D $to, |
||||||
| 2222 | Angle $latitudeOfProjectionCentre, |
||||||
| 2223 | Angle $longitudeOfProjectionCentre, |
||||||
| 2224 | Angle $azimuthAtProjectionCentre, |
||||||
| 2225 | Scale $scaleFactorAtProjectionCentre, |
||||||
| 2226 | Length $eastingAtProjectionCentre, |
||||||
| 2227 | Length $northingAtProjectionCentre |
||||||
| 2228 | 9 | ): GeographicPoint { |
|||||
| 2229 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
| 2230 | 9 | $latitudeCentre = $latitudeOfProjectionCentre->asRadians()->getValue(); |
|||||
| 2231 | 9 | $longitudeCentre = $longitudeOfProjectionCentre->asRadians()->getValue(); |
|||||
| 2232 | 9 | $azimuthCentre = $azimuthAtProjectionCentre->asRadians()->getValue(); |
|||||
| 2233 | $scaleFactorCentre = $scaleFactorAtProjectionCentre->asUnity()->getValue(); |
||||||
| 2234 | 9 | ||||||
| 2235 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
| 2236 | 9 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||||
| 2237 | $vc = $a / sqrt(1 - $e2 * sin($latitudeCentre) ** 2); |
||||||
| 2238 | 9 | ||||||
| 2239 | 9 | $easting = $this->easting->subtract($eastingAtProjectionCentre)->asMetres()->getValue(); |
|||||
| 2240 | $northing = $this->northing->subtract($northingAtProjectionCentre)->asMetres()->getValue(); |
||||||
| 2241 | 9 | ||||||
| 2242 | 9 | $xp = cos($azimuthCentre) * $easting / $scaleFactorCentre + sin($azimuthCentre) * $northing / $scaleFactorCentre; |
|||||
| 2243 | $yp = -sin($azimuthCentre) * $easting / $scaleFactorCentre + cos($azimuthCentre) * $northing / $scaleFactorCentre; |
||||||
| 2244 | 9 | ||||||
| 2245 | 9 | $B = 1 - $e2 * cos($latitudeCentre) ** 2; |
|||||
| 2246 | 9 | $C = $yp - $vc * sin($latitudeCentre) * cos($latitudeCentre) + $vc * (1 - $e2) * cos($latitudeCentre) * sin($latitudeCentre); |
|||||
| 2247 | 9 | $D = sqrt((1 - $e2) * ($a ** 2 - $xp ** 2) * (1 - $e2 * cos($latitudeCentre) ** 2) - $C ** 2); |
|||||
| 2248 | 9 | $xg = (-$C * sin($latitudeCentre) + $D * cos($latitudeCentre)) / $B; |
|||||
| 2249 | 9 | $yg = $xp; |
|||||
| 2250 | $zg = ($C * cos($latitudeCentre) * (1 - $e2) + $D * sin($latitudeCentre)) / $B; |
||||||
| 2251 | 9 | ||||||
| 2252 | 9 | $latitude = atan2($zg, (1 - $e2) * sqrt($xg ** 2 + $yg ** 2)); |
|||||
| 2253 | $longitude = $longitudeCentre + atan2($yg, $xg); |
||||||
| 2254 | 9 | ||||||
| 2255 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
| 2256 | } |
||||||
| 2257 | } |
||||||
| 2258 |