1 | <?php |
||||||
2 | |||||||
3 | /** |
||||||
4 | * PHPCoord. |
||||||
5 | * |
||||||
6 | * @author Doug Wright |
||||||
7 | */ |
||||||
8 | declare(strict_types=1); |
||||||
9 | |||||||
10 | namespace PHPCoord\Point; |
||||||
11 | |||||||
12 | use DateTime; |
||||||
13 | use DateTimeImmutable; |
||||||
14 | use DateTimeInterface; |
||||||
15 | use PHPCoord\CoordinateOperation\AutoConversion; |
||||||
16 | use PHPCoord\CoordinateOperation\ComplexNumber; |
||||||
17 | use PHPCoord\CoordinateOperation\ConvertiblePoint; |
||||||
18 | use PHPCoord\CoordinateOperation\OSTNOSGM15Grid; |
||||||
19 | use PHPCoord\CoordinateReferenceSystem\Compound; |
||||||
20 | use PHPCoord\CoordinateReferenceSystem\Geocentric; |
||||||
21 | use PHPCoord\CoordinateReferenceSystem\Geographic2D; |
||||||
22 | use PHPCoord\CoordinateReferenceSystem\Geographic3D; |
||||||
23 | use PHPCoord\CoordinateReferenceSystem\Projected; |
||||||
24 | use PHPCoord\CoordinateReferenceSystem\Vertical; |
||||||
25 | use PHPCoord\CoordinateSystem\Axis; |
||||||
26 | use PHPCoord\CoordinateSystem\Cartesian; |
||||||
27 | use PHPCoord\Exception\InvalidAxesException; |
||||||
28 | use PHPCoord\Exception\InvalidCoordinateReferenceSystemException; |
||||||
29 | use PHPCoord\Exception\UnknownAxisException; |
||||||
30 | use PHPCoord\UnitOfMeasure\Angle\Angle; |
||||||
31 | use PHPCoord\UnitOfMeasure\Angle\ArcSecond; |
||||||
32 | use PHPCoord\UnitOfMeasure\Angle\Degree; |
||||||
33 | use PHPCoord\UnitOfMeasure\Angle\Radian; |
||||||
34 | use PHPCoord\UnitOfMeasure\Length\Length; |
||||||
35 | use PHPCoord\UnitOfMeasure\Length\Metre; |
||||||
36 | use PHPCoord\UnitOfMeasure\Scale\Coefficient; |
||||||
37 | use PHPCoord\UnitOfMeasure\Scale\Scale; |
||||||
38 | use PHPCoord\UnitOfMeasure\Scale\Unity; |
||||||
39 | |||||||
40 | use function abs; |
||||||
41 | use function asinh; |
||||||
42 | use function atan; |
||||||
43 | use function atan2; |
||||||
44 | use function atanh; |
||||||
45 | use function cos; |
||||||
46 | use function cosh; |
||||||
47 | use function count; |
||||||
48 | use function hypot; |
||||||
49 | use function implode; |
||||||
50 | use function is_nan; |
||||||
51 | use function log; |
||||||
52 | use function max; |
||||||
53 | use function sin; |
||||||
54 | use function sinh; |
||||||
55 | use function sqrt; |
||||||
56 | use function substr; |
||||||
57 | use function tan; |
||||||
58 | use function tanh; |
||||||
59 | use function assert; |
||||||
60 | |||||||
61 | use const M_E; |
||||||
62 | use const M_PI; |
||||||
63 | use const M_PI_2; |
||||||
64 | |||||||
65 | /** |
||||||
66 | * Coordinate representing a point on a map projection. |
||||||
67 | */ |
||||||
68 | class ProjectedPoint extends Point implements ConvertiblePoint |
||||||
69 | { |
||||||
70 | use AutoConversion { |
||||||
71 | convert as protected autoConvert; |
||||||
72 | } |
||||||
73 | |||||||
74 | /** |
||||||
75 | * Easting. |
||||||
76 | */ |
||||||
77 | protected Length $easting; |
||||||
78 | |||||||
79 | /** |
||||||
80 | * Northing. |
||||||
81 | */ |
||||||
82 | protected Length $northing; |
||||||
83 | |||||||
84 | /** |
||||||
85 | * Westing. |
||||||
86 | */ |
||||||
87 | protected Length $westing; |
||||||
88 | |||||||
89 | /** |
||||||
90 | * Southing. |
||||||
91 | */ |
||||||
92 | protected Length $southing; |
||||||
93 | |||||||
94 | /** |
||||||
95 | * Height. |
||||||
96 | */ |
||||||
97 | protected ?Length $height; |
||||||
98 | |||||||
99 | /** |
||||||
100 | * Coordinate reference system. |
||||||
101 | */ |
||||||
102 | protected Projected $crs; |
||||||
103 | |||||||
104 | /** |
||||||
105 | * Coordinate epoch (date for which the specified coordinates represented this point). |
||||||
106 | */ |
||||||
107 | protected ?DateTimeImmutable $epoch; |
||||||
108 | 1441 | ||||||
109 | protected function __construct(Projected $crs, ?Length $easting, ?Length $northing, ?Length $westing, ?Length $southing, ?DateTimeInterface $epoch, ?Length $height) |
||||||
110 | 1441 | { |
|||||
111 | if (count($crs->getCoordinateSystem()->getAxes()) === 2 && $height !== null) { |
||||||
112 | throw new InvalidCoordinateReferenceSystemException('A 2D projected point must not include a height'); |
||||||
113 | } |
||||||
114 | 1441 | ||||||
115 | if (count($crs->getCoordinateSystem()->getAxes()) === 3 && $height === null) { |
||||||
116 | throw new InvalidCoordinateReferenceSystemException('A 3D projected point must include a height, none given'); |
||||||
117 | } |
||||||
118 | 1441 | ||||||
119 | 1441 | $this->crs = $crs; |
|||||
120 | $cs = $this->crs->getCoordinateSystem(); |
||||||
121 | 1441 | ||||||
122 | 1441 | $eastingAxis = $cs->hasAxisByName(Axis::EASTING) ? $cs->getAxisByName(Axis::EASTING) : null; |
|||||
123 | 1441 | $westingAxis = $cs->hasAxisByName(Axis::WESTING) ? $cs->getAxisByName(Axis::WESTING) : null; |
|||||
124 | 1441 | $northingAxis = $cs->hasAxisByName(Axis::NORTHING) ? $cs->getAxisByName(Axis::NORTHING) : null; |
|||||
125 | $southingAxis = $cs->hasAxisByName(Axis::SOUTHING) ? $cs->getAxisByName(Axis::SOUTHING) : null; |
||||||
126 | 1441 | ||||||
127 | 1315 | if ($easting && $eastingAxis) { |
|||||
128 | 1315 | $this->easting = $easting::convert($easting, $eastingAxis->getUnitOfMeasureId()); |
|||||
129 | 126 | $this->westing = $this->easting->multiply(-1); |
|||||
130 | 117 | } elseif ($westing && $westingAxis) { |
|||||
131 | 117 | $this->westing = $westing::convert($westing, $westingAxis->getUnitOfMeasureId()); |
|||||
132 | $this->easting = $this->westing->multiply(-1); |
||||||
133 | 9 | } else { |
|||||
134 | throw new InvalidAxesException($crs->getCoordinateSystem()->getAxes()); |
||||||
135 | } |
||||||
136 | 1432 | ||||||
137 | 1342 | if ($northing && $northingAxis) { |
|||||
138 | 1342 | $this->northing = $northing::convert($northing, $northingAxis->getUnitOfMeasureId()); |
|||||
139 | 90 | $this->southing = $this->northing->multiply(-1); |
|||||
140 | 81 | } elseif ($southing && $southingAxis) { |
|||||
141 | 81 | $this->southing = $southing::convert($southing, $southingAxis->getUnitOfMeasureId()); |
|||||
142 | $this->northing = $this->southing->multiply(-1); |
||||||
143 | 9 | } else { |
|||||
144 | throw new InvalidAxesException($crs->getCoordinateSystem()->getAxes()); |
||||||
145 | } |
||||||
146 | 1423 | ||||||
147 | 36 | if ($epoch instanceof DateTime) { |
|||||
148 | $epoch = DateTimeImmutable::createFromMutable($epoch); |
||||||
149 | 1423 | } |
|||||
150 | $this->epoch = $epoch; |
||||||
151 | 1423 | ||||||
152 | $this->height = $height; |
||||||
153 | } |
||||||
154 | 1198 | ||||||
155 | public static function create(Projected $crs, ?Length $easting, ?Length $northing, ?Length $westing, ?Length $southing, ?DateTimeInterface $epoch = null, ?Length $height = null): self |
||||||
156 | 1198 | { |
|||||
157 | 1198 | return match ($crs->getSRID()) { |
|||||
158 | 1144 | Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID => new BritishNationalGridPoint($easting, $northing, $epoch), |
|||||
0 ignored issues
–
show
Bug
introduced
by
![]() It seems like
$easting can also be of type null ; however, parameter $easting of PHPCoord\Point\BritishNa...ridPoint::__construct() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length , maybe add an additional type check?
(
Ignorable by Annotation
)
If this is a false-positive, you can also ignore this issue in your code via the
![]() |
|||||||
159 | 1108 | Projected::EPSG_TM75_IRISH_GRID => new IrishGridPoint($easting, $northing, $epoch), |
|||||
0 ignored issues
–
show
It seems like
$easting can also be of type null ; however, parameter $easting of PHPCoord\Point\IrishGridPoint::__construct() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length , maybe add an additional type check?
(
Ignorable by Annotation
)
If this is a false-positive, you can also ignore this issue in your code via the
![]() It seems like
$northing can also be of type null ; however, parameter $northing of PHPCoord\Point\IrishGridPoint::__construct() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length , maybe add an additional type check?
(
Ignorable by Annotation
)
If this is a false-positive, you can also ignore this issue in your code via the
![]() |
|||||||
160 | 1198 | Projected::EPSG_IRENET95_IRISH_TRANSVERSE_MERCATOR => new IrishTransverseMercatorPoint($easting, $northing, $epoch), |
|||||
0 ignored issues
–
show
It seems like
$northing can also be of type null ; however, parameter $northing of PHPCoord\Point\IrishTran...torPoint::__construct() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length , maybe add an additional type check?
(
Ignorable by Annotation
)
If this is a false-positive, you can also ignore this issue in your code via the
![]() It seems like
$easting can also be of type null ; however, parameter $easting of PHPCoord\Point\IrishTran...torPoint::__construct() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length , maybe add an additional type check?
(
Ignorable by Annotation
)
If this is a false-positive, you can also ignore this issue in your code via the
![]() |
|||||||
161 | 1198 | default => new self($crs, $easting, $northing, $westing, $southing, $epoch, $height), |
|||||
162 | }; |
||||||
163 | } |
||||||
164 | 532 | ||||||
165 | public static function createFromEastingNorthing(Projected $crs, Length $easting, Length $northing, ?DateTimeInterface $epoch = null, ?Length $height = null): self |
||||||
166 | 532 | { |
|||||
167 | return static::create($crs, $easting, $northing, null, null, $epoch, $height); |
||||||
168 | } |
||||||
169 | 27 | ||||||
170 | public static function createFromWestingNorthing(Projected $crs, Length $westing, Length $northing, ?DateTimeInterface $epoch = null, ?Length $height = null): self |
||||||
171 | 27 | { |
|||||
172 | return static::create($crs, null, $northing, $westing, null, $epoch, $height); |
||||||
173 | } |
||||||
174 | 54 | ||||||
175 | public static function createFromWestingSouthing(Projected $crs, Length $westing, Length $southing, ?DateTimeInterface $epoch = null, ?Length $height = null): self |
||||||
176 | 54 | { |
|||||
177 | return static::create($crs, null, null, $westing, $southing, $epoch, $height); |
||||||
178 | } |
||||||
179 | 640 | ||||||
180 | public function getEasting(): Length |
||||||
181 | 640 | { |
|||||
182 | return $this->easting; |
||||||
183 | } |
||||||
184 | 658 | ||||||
185 | public function getNorthing(): Length |
||||||
186 | 658 | { |
|||||
187 | return $this->northing; |
||||||
188 | } |
||||||
189 | 90 | ||||||
190 | public function getWesting(): Length |
||||||
191 | 90 | { |
|||||
192 | return $this->westing; |
||||||
193 | } |
||||||
194 | 72 | ||||||
195 | public function getSouthing(): Length |
||||||
196 | 72 | { |
|||||
197 | return $this->southing; |
||||||
198 | } |
||||||
199 | 9 | ||||||
200 | public function getHeight(): ?Length |
||||||
201 | 9 | { |
|||||
202 | return $this->height; |
||||||
203 | } |
||||||
204 | 289 | ||||||
205 | public function getCRS(): Projected |
||||||
206 | 289 | { |
|||||
207 | return $this->crs; |
||||||
208 | } |
||||||
209 | 27 | ||||||
210 | public function getCoordinateEpoch(): ?DateTimeImmutable |
||||||
211 | 27 | { |
|||||
212 | return $this->epoch; |
||||||
213 | } |
||||||
214 | |||||||
215 | /** |
||||||
216 | * Calculate distance between two points. |
||||||
217 | * Because this is a simple grid, we can use Pythagoras. |
||||||
218 | 63 | */ |
|||||
219 | public function calculateDistance(Point $to): Length |
||||||
220 | { |
||||||
221 | 63 | try { |
|||||
222 | 63 | if ($to instanceof ConvertiblePoint) { |
|||||
223 | $to = $to->convert($this->crs); |
||||||
224 | } |
||||||
225 | 63 | } finally { |
|||||
226 | 9 | if ($to->getCRS()->getSRID() !== $this->crs->getSRID()) { |
|||||
227 | throw new InvalidCoordinateReferenceSystemException('Can only calculate distances between two points in the same CRS'); |
||||||
228 | } |
||||||
229 | |||||||
230 | 54 | /** @var ProjectedPoint $to */ |
|||||
231 | 54 | return new Metre( |
|||||
232 | 54 | sqrt( |
|||||
233 | 54 | ($to->getEasting()->getValue() - $this->getEasting()->getValue()) ** 2 + |
|||||
234 | 54 | ($to->getNorthing()->getValue() - $this->getNorthing()->getValue()) ** 2 |
|||||
235 | 54 | ) |
|||||
236 | ); |
||||||
237 | } |
||||||
238 | } |
||||||
239 | 54 | ||||||
240 | public function asGeographicPoint(): GeographicPoint |
||||||
241 | 54 | { |
|||||
242 | 54 | $geographicPoint = $this->performOperation($this->crs->getDerivingConversion(), $this->crs->getBaseCRS(), true); |
|||||
243 | assert($geographicPoint instanceof GeographicPoint); |
||||||
244 | 54 | ||||||
245 | return $geographicPoint; |
||||||
246 | } |
||||||
247 | 118 | ||||||
248 | public function convert(Compound|Geocentric|Geographic2D|Geographic3D|Projected|Vertical $to, bool $ignoreBoundaryRestrictions = false): Point |
||||||
249 | 118 | { |
|||||
250 | 45 | if ($to->getSRID() === $this->crs->getBaseCRS()->getSRID()) { |
|||||
251 | return $this->performOperation($this->crs->getDerivingConversion(), $this->crs->getBaseCRS(), true); |
||||||
252 | } |
||||||
253 | 100 | ||||||
254 | return $this->autoConvert($to, $ignoreBoundaryRestrictions); |
||||||
255 | } |
||||||
256 | 162 | ||||||
257 | public function __toString(): string |
||||||
258 | 162 | { |
|||||
259 | 162 | $values = []; |
|||||
260 | 162 | foreach ($this->getCRS()->getCoordinateSystem()->getAxes() as $axis) { |
|||||
261 | 144 | if ($axis->getName() === Axis::EASTING) { |
|||||
262 | 162 | $values[] = $this->easting; |
|||||
263 | 153 | } elseif ($axis->getName() === Axis::NORTHING) { |
|||||
264 | 18 | $values[] = $this->northing; |
|||||
265 | 18 | } elseif ($axis->getName() === Axis::WESTING) { |
|||||
266 | 9 | $values[] = $this->westing; |
|||||
267 | 9 | } elseif ($axis->getName() === Axis::SOUTHING) { |
|||||
268 | $values[] = $this->southing; |
||||||
269 | } elseif ($axis->getName() === Axis::ELLIPSOIDAL_HEIGHT) { |
||||||
270 | $values[] = $this->height; |
||||||
271 | } else { |
||||||
272 | throw new UnknownAxisException(); // @codeCoverageIgnore |
||||||
273 | } |
||||||
274 | } |
||||||
275 | 162 | ||||||
276 | return '(' . implode(', ', $values) . ')'; |
||||||
277 | } |
||||||
278 | |||||||
279 | /** |
||||||
280 | * Affine parametric transformation. |
||||||
281 | 9 | */ |
|||||
282 | public function affineParametricTransform( |
||||||
283 | Projected $to, |
||||||
284 | Length $A0, |
||||||
285 | Coefficient $A1, |
||||||
286 | Coefficient $A2, |
||||||
287 | Length $B0, |
||||||
288 | Coefficient $B1, |
||||||
289 | Coefficient $B2, |
||||||
290 | bool $inReverse |
||||||
291 | 9 | ): self { |
|||||
292 | 9 | $xs = $this->easting->getValue(); // native unit to metre conversion already embedded in the scale factor |
|||||
293 | $ys = $this->northing->getValue(); // native unit to metre conversion already embedded in the scale factor |
||||||
294 | 9 | ||||||
295 | if ($inReverse) { |
||||||
296 | $D = ($A1->getValue() * $B2->getValue()) - ($A2->getValue() * $B1->getValue()); |
||||||
297 | $a0 = (($A2->getValue() * $B0->asMetres()->getValue()) - ($B2->getValue() * $A0->asMetres()->getValue())) / $D; |
||||||
298 | $b0 = (($B1->getValue() * $A0->asMetres()->getValue()) - ($A1->getValue() * $B0->asMetres()->getValue())) / $D; |
||||||
299 | $a1 = $B2->getValue() / $D; |
||||||
300 | $a2 = -$A2->getValue() / $D; |
||||||
301 | $b1 = -$B1->getValue() / $D; |
||||||
302 | $b2 = $A1->getValue() / $D; |
||||||
303 | 9 | } else { |
|||||
304 | 9 | $a0 = $A0->asMetres()->getValue(); |
|||||
305 | 9 | $a1 = $A1->getValue(); |
|||||
306 | 9 | $a2 = $A2->getValue(); |
|||||
307 | 9 | $b0 = $B0->asMetres()->getValue(); |
|||||
308 | 9 | $b1 = $B1->getValue(); |
|||||
309 | $b2 = $B2->getValue(); |
||||||
310 | } |
||||||
311 | 9 | ||||||
312 | 9 | $xt = $a0 + ($a1 * $xs) + ($a2 * $ys); |
|||||
313 | $yt = $b0 + ($b1 * $xs) + ($b2 * $ys); |
||||||
314 | 9 | ||||||
315 | return static::create($to, new Metre($xt), new Metre($yt), new Metre(-$xt), new Metre(-$yt), $this->epoch); |
||||||
316 | } |
||||||
317 | |||||||
318 | /** |
||||||
319 | * Albers Equal Area. |
||||||
320 | 18 | */ |
|||||
321 | public function albersEqualArea( |
||||||
322 | Geographic2D|Geographic3D $to, |
||||||
323 | Angle $latitudeOfFalseOrigin, |
||||||
324 | Angle $longitudeOfFalseOrigin, |
||||||
325 | Angle $latitudeOf1stStandardParallel, |
||||||
326 | Angle $latitudeOf2ndStandardParallel, |
||||||
327 | Length $eastingAtFalseOrigin, |
||||||
328 | Length $northingAtFalseOrigin |
||||||
329 | 18 | ): GeographicPoint { |
|||||
330 | 18 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
331 | 18 | $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue(); |
|||||
332 | 18 | $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue(); |
|||||
333 | 18 | $phiOrigin = $latitudeOfFalseOrigin->asRadians()->getValue(); |
|||||
334 | 18 | $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
|||||
335 | 18 | $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue(); |
|||||
336 | 18 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
337 | 18 | $e = $ellipsoid->getEccentricity(); |
|||||
338 | 18 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||||
339 | 18 | $e4 = $e ** 4; |
|||||
340 | $e6 = $e ** 6; |
||||||
341 | 18 | ||||||
342 | 18 | $centralMeridianFirstParallel = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2); |
|||||
343 | $centralMeridianSecondParallel = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2); |
||||||
344 | 18 | ||||||
345 | 18 | $alphaOrigin = (1 - $e2) * (sin($phiOrigin) / (1 - $e2 * sin($phiOrigin) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phiOrigin)) / (1 + $e * sin($phiOrigin)))); |
|||||
346 | 18 | $alphaFirstParallel = (1 - $e2) * (sin($phi1) / (1 - $e2 * sin($phi1) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi1)) / (1 + $e * sin($phi1)))); |
|||||
347 | $alphaSecondParallel = (1 - $e2) * (sin($phi2) / (1 - $e2 * sin($phi2) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi2)) / (1 + $e * sin($phi2)))); |
||||||
348 | 18 | ||||||
349 | 18 | $n = ($centralMeridianFirstParallel ** 2 - $centralMeridianSecondParallel ** 2) / ($alphaSecondParallel - $alphaFirstParallel); |
|||||
350 | 18 | $C = $centralMeridianFirstParallel ** 2 + $n * $alphaFirstParallel; |
|||||
351 | 18 | $rhoOrigin = $a * sqrt($C - $n * $alphaOrigin) / $n; |
|||||
352 | 18 | $rhoPrime = hypot($easting, $rhoOrigin - $northing); |
|||||
353 | 18 | $alphaPrime = ($C - $rhoPrime ** 2 * $n ** 2 / $a ** 2) / $n; |
|||||
354 | 18 | $betaPrime = self::asin($alphaPrime / (1 - (1 - $e2) / 2 / $e * log((1 - $e) / (1 + $e)))); |
|||||
355 | 9 | if ($n > 0) { |
|||||
356 | $theta = atan2($easting, $rhoOrigin - $northing); |
||||||
357 | 9 | } else { |
|||||
358 | $theta = atan2(-$easting, $northing - $rhoOrigin); |
||||||
359 | } |
||||||
360 | 18 | ||||||
361 | 18 | $latitude = $betaPrime + (($e2 / 3 + 31 * $e4 / 180 + 517 * $e6 / 5040) * sin(2 * $betaPrime)) + ((23 * $e4 / 360 + 251 * $e6 / 3780) * sin(4 * $betaPrime)) + ((761 * $e6 / 45360) * sin(6 * $betaPrime)); |
|||||
362 | $longitude = $longitudeOfFalseOrigin->asRadians()->getValue() + ($theta / $n); |
||||||
363 | 18 | ||||||
364 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
365 | } |
||||||
366 | |||||||
367 | /** |
||||||
368 | * American Polyconic. |
||||||
369 | 9 | */ |
|||||
370 | public function americanPolyconic( |
||||||
371 | Geographic2D|Geographic3D $to, |
||||||
372 | Angle $latitudeOfNaturalOrigin, |
||||||
373 | Angle $longitudeOfNaturalOrigin, |
||||||
374 | Length $falseEasting, |
||||||
375 | Length $falseNorthing |
||||||
376 | 9 | ): GeographicPoint { |
|||||
377 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
378 | 9 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
379 | 9 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
380 | 9 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
381 | 9 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
382 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
383 | 9 | $e = $ellipsoid->getEccentricity(); |
|||||
384 | 9 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||||
385 | 9 | $e4 = $e ** 4; |
|||||
386 | $e6 = $e ** 6; |
||||||
387 | 9 | ||||||
388 | 9 | $i = (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256); |
|||||
389 | 9 | $ii = (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024); |
|||||
390 | 9 | $iii = (15 * $e4 / 256 + 45 * $e6 / 1024); |
|||||
391 | $iv = (35 * $e6 / 3072); |
||||||
392 | 9 | ||||||
393 | $MO = $a * ($i * $latitudeOrigin - $ii * sin(2 * $latitudeOrigin) + $iii * sin(4 * $latitudeOrigin) - $iv * sin(6 * $latitudeOrigin)); |
||||||
394 | 9 | ||||||
395 | if ($MO === $northing) { |
||||||
396 | $latitude = 0; |
||||||
397 | $longitude = $longitudeOrigin + $easting / $a; |
||||||
398 | 9 | } else { |
|||||
399 | 9 | $A = ($MO + $northing) / $a; |
|||||
400 | $B = $A ** 2 + $easting ** 2 / $a ** 2; |
||||||
401 | 9 | ||||||
402 | 9 | $latitude = $A; |
|||||
403 | $C = sqrt(1 - $e2 * sin($latitude) ** 2) * tan($latitude); |
||||||
404 | 9 | do { |
|||||
405 | 9 | $latitudeN = $latitude; |
|||||
406 | 9 | $Ma = $i * $latitude - $ii * sin(2 * $latitude) + $iii * sin(4 * $latitude) - $iv * sin(6 * $latitude); |
|||||
407 | 9 | $MnPrime = $i - 2 * $ii * cos(2 * $latitude) + 4 * $iii * cos(4 * $latitude) - 6 * $iv * cos(6 * $latitude); |
|||||
408 | 9 | $latitude = $latitude - ($A * ($C * $Ma + 1) - $Ma - $C * ($Ma ** 2 + $B) / 2) / ($e2 * sin(2 * $latitude) * ($Ma ** 2 + $B - 2 * $A * $Ma) / 4 * $C + ($A - $Ma) * ($C * $MnPrime - (2 / sin(2 * $latitude))) - $MnPrime); |
|||||
409 | 9 | $C = sqrt(1 - $e2 * sin($latitude) ** 2) * tan($latitude); |
|||||
410 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||||||
411 | 9 | ||||||
412 | $longitude = $longitudeOrigin + self::asin($easting * $C / $a) / sin($latitude); |
||||||
413 | } |
||||||
414 | 9 | ||||||
415 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
416 | } |
||||||
417 | |||||||
418 | /** |
||||||
419 | * Bonne. |
||||||
420 | 9 | */ |
|||||
421 | public function bonne( |
||||||
422 | Geographic2D|Geographic3D $to, |
||||||
423 | Angle $latitudeOfNaturalOrigin, |
||||||
424 | Angle $longitudeOfNaturalOrigin, |
||||||
425 | Length $falseEasting, |
||||||
426 | Length $falseNorthing |
||||||
427 | 9 | ): GeographicPoint { |
|||||
428 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
429 | 9 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
430 | 9 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
431 | 9 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
432 | 9 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
433 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
434 | 9 | $e = $ellipsoid->getEccentricity(); |
|||||
435 | 9 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||||
436 | 9 | $e4 = $e ** 4; |
|||||
437 | $e6 = $e ** 6; |
||||||
438 | 9 | ||||||
439 | 9 | $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2); |
|||||
440 | 9 | $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
|||||
441 | $rho = hypot($easting, $a * $mO / sin($latitudeOrigin) - $northing) * static::sign($latitudeOrigin); |
||||||
442 | 9 | ||||||
443 | 9 | $M = $a * $mO / sin($latitudeOrigin) + $MO - $rho; |
|||||
444 | 9 | $mu = $M / ($a * (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256)); |
|||||
445 | $e1 = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2)); |
||||||
446 | 9 | ||||||
447 | 9 | $latitude = $mu + ((3 * $e1 / 2) - (27 * $e1 ** 3 / 32)) * sin(2 * $mu) + ((21 * $e1 ** 2 / 16) - (55 * $e1 ** 4 / 32)) * sin(4 * $mu) + (151 * $e1 ** 3 / 96) * sin(6 * $mu) + (1097 * $e1 ** 4 / 512) * sin(8 * $mu); |
|||||
448 | $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2); |
||||||
449 | 9 | ||||||
450 | if ($m === 0.0) { |
||||||
451 | 9 | $longitude = $longitudeOrigin; // pole |
|||||
452 | 9 | } elseif ($latitudeOrigin >= 0) { |
|||||
453 | $longitude = $longitudeOrigin + $rho * atan2($easting, $a * $mO / sin($latitudeOrigin) - $northing) / $a / $m; |
||||||
454 | } else { |
||||||
455 | $longitude = $longitudeOrigin + $rho * atan2(-$easting, -($a * $mO / sin($latitudeOrigin) - $northing)) / $a / $m; |
||||||
456 | } |
||||||
457 | 9 | ||||||
458 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
459 | } |
||||||
460 | |||||||
461 | /** |
||||||
462 | * Bonne South Orientated. |
||||||
463 | 9 | */ |
|||||
464 | public function bonneSouthOrientated( |
||||||
465 | Geographic2D|Geographic3D $to, |
||||||
466 | Angle $latitudeOfNaturalOrigin, |
||||||
467 | Angle $longitudeOfNaturalOrigin, |
||||||
468 | Length $falseEasting, |
||||||
469 | Length $falseNorthing |
||||||
470 | 9 | ): GeographicPoint { |
|||||
471 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
472 | 9 | $westing = $falseEasting->asMetres()->getValue() - $this->westing->asMetres()->getValue(); |
|||||
473 | 9 | $southing = $falseNorthing->asMetres()->getValue() - $this->southing->asMetres()->getValue(); |
|||||
474 | 9 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
475 | 9 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
476 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
477 | 9 | $e = $ellipsoid->getEccentricity(); |
|||||
478 | 9 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||||
479 | 9 | $e4 = $e ** 4; |
|||||
480 | $e6 = $e ** 6; |
||||||
481 | 9 | ||||||
482 | 9 | $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2); |
|||||
483 | 9 | $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
|||||
484 | $rho = hypot($westing, $a * $mO / sin($latitudeOrigin) - $southing) * static::sign($latitudeOrigin); |
||||||
485 | 9 | ||||||
486 | 9 | $M = $a * $mO / sin($latitudeOrigin) + $MO - $rho; |
|||||
487 | 9 | $mu = $M / ($a * (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256)); |
|||||
488 | $e1 = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2)); |
||||||
489 | 9 | ||||||
490 | 9 | $latitude = $mu + ((3 * $e1 / 2) - (27 * $e1 ** 3 / 32)) * sin(2 * $mu) + ((21 * $e1 ** 2 / 16) - (55 * $e1 ** 4 / 32)) * sin(4 * $mu) + (151 * $e1 ** 3 / 96) * sin(6 * $mu) + (1097 * $e1 ** 4 / 512) * sin(8 * $mu); |
|||||
491 | $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2); |
||||||
492 | 9 | ||||||
493 | if ($m === 0.0) { |
||||||
494 | 9 | $longitude = $longitudeOrigin; // pole |
|||||
495 | 9 | } elseif ($latitudeOrigin >= 0) { |
|||||
496 | $longitude = $longitudeOrigin + $rho * atan2($westing, $a * $mO / sin($latitudeOrigin) - $southing) / $a / $m; |
||||||
497 | } else { |
||||||
498 | $longitude = $longitudeOrigin + $rho * atan2(-$westing, -($a * $mO / sin($latitudeOrigin) - $southing)) / $a / $m; |
||||||
499 | } |
||||||
500 | 9 | ||||||
501 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
502 | } |
||||||
503 | |||||||
504 | /** |
||||||
505 | * Cartesian Grid Offsets |
||||||
506 | * This transformation allows calculation of coordinates in the target system by adding the parameter value to the |
||||||
507 | * coordinate values of the point in the source system. |
||||||
508 | 9 | */ |
|||||
509 | public function offsets( |
||||||
510 | Projected $to, |
||||||
511 | Length $eastingOffset, |
||||||
512 | Length $northingOffset |
||||||
513 | 9 | ): self { |
|||||
514 | 9 | $easting = $this->easting->asMetres()->getValue() + $eastingOffset->asMetres()->getValue(); |
|||||
515 | $northing = $this->northing->asMetres()->getValue() + $northingOffset->asMetres()->getValue(); |
||||||
516 | 9 | ||||||
517 | return static::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||||||
518 | } |
||||||
519 | |||||||
520 | /** |
||||||
521 | * Cassini-Soldner. |
||||||
522 | 9 | */ |
|||||
523 | public function cassiniSoldner( |
||||||
524 | Geographic2D|Geographic3D $to, |
||||||
525 | Angle $latitudeOfNaturalOrigin, |
||||||
526 | Angle $longitudeOfNaturalOrigin, |
||||||
527 | Length $falseEasting, |
||||||
528 | Length $falseNorthing |
||||||
529 | 9 | ): GeographicPoint { |
|||||
530 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
531 | 9 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
532 | 9 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
533 | 9 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
534 | 9 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
535 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
536 | 9 | $e = $ellipsoid->getEccentricity(); |
|||||
537 | 9 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||||
538 | 9 | $e4 = $e ** 4; |
|||||
539 | $e6 = $e ** 6; |
||||||
540 | 9 | ||||||
541 | $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
||||||
542 | 9 | ||||||
543 | 9 | $e1 = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2)); |
|||||
544 | 9 | $M = $MO + $northing; |
|||||
545 | 9 | $mu = $M / ($a * (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256)); |
|||||
546 | $latitudeCentralMeridian = $mu + (3 * $e1 / 2 - 27 * $e1 ** 3 / 32) * sin(2 * $mu) + (21 * $e1 ** 2 / 16 - 55 * $e1 ** 4 / 32) * sin(4 * $mu) + (151 * $e1 ** 3 / 96) * sin(6 * $mu) + (1097 * $e1 ** 4 / 512) * sin(8 * $mu); |
||||||
547 | 9 | ||||||
548 | 9 | $nu = $a / sqrt(1 - $e2 * sin($latitudeCentralMeridian) ** 2); |
|||||
549 | $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitudeCentralMeridian) ** 2) ** 1.5; |
||||||
550 | 9 | ||||||
551 | 9 | $T = tan($latitudeCentralMeridian) ** 2; |
|||||
552 | $D = $easting / $nu; |
||||||
553 | 9 | ||||||
554 | 9 | $latitude = $latitudeCentralMeridian - ($nu * tan($latitudeCentralMeridian) / $rho) * ($D ** 2 / 2 - (1 + 3 * $T) * $D ** 4 / 24); |
|||||
555 | $longitude = $longitudeOrigin + ($D - $T * $D ** 3 / 3 + (1 + 3 * $T) * $T * $D ** 5 / 15) / cos($latitudeCentralMeridian); |
||||||
556 | 9 | ||||||
557 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
558 | } |
||||||
559 | |||||||
560 | /** |
||||||
561 | * Hyperbolic Cassini-Soldner. |
||||||
562 | 9 | */ |
|||||
563 | public function hyperbolicCassiniSoldner( |
||||||
564 | Geographic2D|Geographic3D $to, |
||||||
565 | Angle $latitudeOfNaturalOrigin, |
||||||
566 | Angle $longitudeOfNaturalOrigin, |
||||||
567 | Length $falseEasting, |
||||||
568 | Length $falseNorthing |
||||||
569 | 9 | ): GeographicPoint { |
|||||
570 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
571 | 9 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
572 | 9 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
573 | 9 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
574 | 9 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
575 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
576 | 9 | $e = $ellipsoid->getEccentricity(); |
|||||
577 | 9 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||||
578 | 9 | $e4 = $e ** 4; |
|||||
579 | $e6 = $e ** 6; |
||||||
580 | 9 | ||||||
581 | 9 | $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
|||||
582 | $e1 = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2)); |
||||||
583 | 9 | ||||||
584 | $latitude1 = $latitudeOrigin + $northing / 1567446; |
||||||
585 | 9 | ||||||
586 | 9 | $nu = $a / sqrt(1 - $e2 * sin($latitude1) ** 2); |
|||||
587 | $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude1) ** 2) ** 1.5; |
||||||
588 | 9 | ||||||
589 | 9 | $qPrime = $northing ** 3 / (6 * $rho * $nu); |
|||||
590 | 9 | $q = ($northing + $qPrime) ** 3 / (6 * $rho * $nu); |
|||||
591 | $M = $MO + $northing + $q; |
||||||
592 | 9 | ||||||
593 | 9 | $mu = $M / ($a * (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256)); |
|||||
594 | $latitudeCentralMeridian = $mu + (3 * $e1 / 2 - 27 * $e1 ** 3 / 32) * sin(2 * $mu) + (21 * $e1 ** 2 / 16 - 55 * $e1 ** 4 / 32) * sin(4 * $mu) + (151 * $e1 ** 3 / 96) * sin(6 * $mu) + (1097 * $e1 ** 4 / 512) * sin(8 * $mu); |
||||||
595 | 9 | ||||||
596 | 9 | $T = tan($latitudeCentralMeridian) ** 2; |
|||||
597 | $D = $easting / $nu; |
||||||
598 | 9 | ||||||
599 | 9 | $latitude = $latitudeCentralMeridian - ($nu * tan($latitudeCentralMeridian) / $rho) * ($D ** 2 / 2 - (1 + 3 * $T) * $D ** 4 / 24); |
|||||
600 | $longitude = $longitudeOrigin + ($D - $T * $D ** 3 / 3 + (1 + 3 * $T) * $T * $D ** 5 / 15) / cos($latitudeCentralMeridian); |
||||||
601 | 9 | ||||||
602 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
603 | } |
||||||
604 | |||||||
605 | /** |
||||||
606 | * Colombia Urban. |
||||||
607 | 9 | */ |
|||||
608 | public function columbiaUrban( |
||||||
609 | Geographic2D|Geographic3D $to, |
||||||
610 | Angle $latitudeOfNaturalOrigin, |
||||||
611 | Angle $longitudeOfNaturalOrigin, |
||||||
612 | Length $falseEasting, |
||||||
613 | Length $falseNorthing, |
||||||
614 | Length $projectionPlaneOriginHeight |
||||||
615 | 9 | ): GeographicPoint { |
|||||
616 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
617 | 9 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
618 | 9 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
619 | 9 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
620 | 9 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
621 | 9 | $heightOrigin = $projectionPlaneOriginHeight->asMetres()->getValue(); |
|||||
622 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
623 | $e2 = $ellipsoid->getEccentricitySquared(); |
||||||
624 | 9 | ||||||
625 | $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** 1.5; |
||||||
626 | 9 | ||||||
627 | $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2)); |
||||||
628 | 9 | ||||||
629 | 9 | $B = tan($latitudeOrigin) / (2 * $rhoOrigin * $nuOrigin); |
|||||
630 | 9 | $C = 1 + $heightOrigin / $a; |
|||||
631 | $D = $rhoOrigin * (1 + $heightOrigin / ($a * (1 - $e2))); |
||||||
632 | 9 | ||||||
633 | 9 | $latitude = $latitudeOrigin + ($northing / $D) - $B * ($easting / $C) ** 2; |
|||||
634 | 9 | $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2)); |
|||||
635 | $longitude = $longitudeOrigin + $easting / ($C * $nu * cos($latitude)); |
||||||
636 | 9 | ||||||
637 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
638 | } |
||||||
639 | |||||||
640 | /** |
||||||
641 | * Equal Earth. |
||||||
642 | 9 | */ |
|||||
643 | public function equalEarth( |
||||||
644 | Geographic2D|Geographic3D $to, |
||||||
645 | Angle $longitudeOfNaturalOrigin, |
||||||
646 | Length $falseEasting, |
||||||
647 | Length $falseNorthing |
||||||
648 | 9 | ): GeographicPoint { |
|||||
649 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
650 | 9 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
651 | 9 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
652 | 9 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
653 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
654 | 9 | $e = $ellipsoid->getEccentricity(); |
|||||
655 | 9 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||||
656 | 9 | $e4 = $e ** 4; |
|||||
657 | $e6 = $e ** 6; |
||||||
658 | 9 | ||||||
659 | 9 | $qP = (1 - $e2) * ((1 / (1 - $e2)) - (1 / (2 * $e) * log((1 - $e) / (1 + $e)))); |
|||||
660 | $Rq = $a * sqrt($qP / 2); |
||||||
661 | 9 | ||||||
662 | $theta = $northing / $Rq; |
||||||
663 | 9 | do { |
|||||
664 | 9 | $thetaN = $theta; |
|||||
665 | 9 | $correctionFactor = ($theta * (1.340264 - 0.081106 * $theta ** 2 + $theta ** 6 * (0.000893 + 0.003796 * $theta ** 2)) - $northing / $Rq) / (1.340264 - 0.243318 * $theta ** 2 + $theta ** 6 * (0.006251 + 0.034164 * $theta ** 2)); |
|||||
666 | 9 | $theta -= $correctionFactor; |
|||||
667 | } while (abs($theta - $thetaN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||||||
668 | 9 | ||||||
669 | $beta = self::asin(2 * sin($theta) / sqrt(3)); |
||||||
670 | 9 | ||||||
671 | 9 | $latitude = $beta + (($e2 / 3 + 31 * $e4 / 180 + 517 * $e6 / 5040) * sin(2 * $beta)) + ((23 * $e4 / 360 + 251 * $e6 / 3780) * sin(4 * $beta)) + ((761 * $e6 / 45360) * sin(6 * $beta)); |
|||||
672 | $longitude = $longitudeOrigin + sqrt(3) * $easting * (1.340264 - 0.243318 * $theta ** 2 + $theta ** 6 * (0.006251 + 0.034164 * $theta ** 2)) / (2 * $Rq * cos($theta)); |
||||||
673 | 9 | ||||||
674 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
675 | } |
||||||
676 | |||||||
677 | /** |
||||||
678 | * Equidistant Cylindrical |
||||||
679 | * See method code 1029 for spherical development. See also Pseudo Plate Carree, method code 9825. |
||||||
680 | 9 | */ |
|||||
681 | public function equidistantCylindrical( |
||||||
682 | Geographic2D|Geographic3D $to, |
||||||
683 | Angle $latitudeOf1stStandardParallel, |
||||||
684 | Angle $longitudeOfNaturalOrigin, |
||||||
685 | Length $falseEasting, |
||||||
686 | Length $falseNorthing |
||||||
687 | 9 | ): GeographicPoint { |
|||||
688 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
689 | 9 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
690 | 9 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
691 | 9 | $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
|||||
692 | 9 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
693 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
694 | 9 | $e = $ellipsoid->getEccentricity(); |
|||||
695 | 9 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||||
696 | 9 | $e4 = $e ** 4; |
|||||
697 | 9 | $e6 = $e ** 6; |
|||||
698 | 9 | $e8 = $e ** 8; |
|||||
699 | 9 | $e10 = $e ** 10; |
|||||
700 | 9 | $e12 = $e ** 12; |
|||||
701 | $e14 = $e ** 14; |
||||||
702 | 9 | ||||||
703 | 9 | $n = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2)); |
|||||
704 | 9 | $n2 = $n ** 2; |
|||||
705 | 9 | $n3 = $n ** 3; |
|||||
706 | 9 | $n4 = $n ** 4; |
|||||
707 | 9 | $n5 = $n ** 5; |
|||||
708 | 9 | $n6 = $n ** 6; |
|||||
709 | 9 | $n7 = $n ** 7; |
|||||
710 | $mu = $northing / ($a * (1 - 1 / 4 * $e2 - 3 / 64 * $e4 - 5 / 256 * $e6 - 175 / 16384 * $e8 - 441 / 65536 * $e10 - 4851 / 1048576 * $e12 - 14157 / 4194304 * $e14)); |
||||||
711 | 9 | ||||||
712 | 9 | $latitude = $mu + (3 / 2 * $n - 27 / 32 * $n3 + 269 / 512 * $n5 - 6607 / 24576 * $n7) * sin(2 * $mu) |
|||||
713 | 9 | + (21 / 16 * $n2 - 55 / 32 * $n4 + 6759 / 4096 * $n6) * sin(4 * $mu) |
|||||
714 | 9 | + (151 / 96 * $n3 - 417 / 128 * $n5 + 87963 / 20480 * $n7) * sin(6 * $mu) |
|||||
715 | 9 | + (1097 / 512 * $n4 - 15543 / 2560 * $n6) * sin(8 * $mu) |
|||||
716 | 9 | + (8011 / 2560 * $n5 - 69119 / 6144 * $n7) * sin(10 * $mu) |
|||||
717 | 9 | + (293393 / 61440 * $n6) * sin(12 * $mu) |
|||||
718 | + (6845701 / 860160 * $n7) * sin(14 * $mu); |
||||||
719 | 9 | ||||||
720 | $longitude = $longitudeOrigin + $easting * sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2) / ($a * cos($latitudeFirstParallel)); |
||||||
721 | 9 | ||||||
722 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
723 | } |
||||||
724 | |||||||
725 | /** |
||||||
726 | * Guam Projection |
||||||
727 | * Simplified form of Oblique Azimuthal Equidistant projection method. |
||||||
728 | 9 | */ |
|||||
729 | public function guamProjection( |
||||||
730 | Geographic2D|Geographic3D $to, |
||||||
731 | Angle $latitudeOfNaturalOrigin, |
||||||
732 | Angle $longitudeOfNaturalOrigin, |
||||||
733 | Length $falseEasting, |
||||||
734 | Length $falseNorthing |
||||||
735 | 9 | ): GeographicPoint { |
|||||
736 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
737 | 9 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
738 | 9 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
739 | 9 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
740 | 9 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
741 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
742 | 9 | $e = $ellipsoid->getEccentricity(); |
|||||
743 | 9 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||||
744 | 9 | $e4 = $e ** 4; |
|||||
745 | $e6 = $e ** 6; |
||||||
746 | 9 | ||||||
747 | 9 | $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
|||||
748 | 9 | $e1 = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2)); |
|||||
749 | $i = (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256); |
||||||
750 | 9 | ||||||
751 | $latitude = $latitudeOrigin; |
||||||
752 | 9 | do { |
|||||
753 | 9 | $latitudeN = $latitude; |
|||||
754 | 9 | $M = $MO + $northing - ($easting ** 2 * tan($latitude) * sqrt(1 - $e2 * sin($latitude) ** 2) / (2 * $a)); |
|||||
755 | 9 | $mu = $M / ($a * $i); |
|||||
756 | 9 | $latitude = $mu + (3 * $e1 / 2 - 27 * $e1 ** 3 / 32) * sin(2 * $mu) + (21 * $e1 ** 2 / 16 - 55 * $e1 ** 4 / 32) * sin(4 * $mu) + (151 * $e1 ** 3 / 96) * sin(6 * $mu) + (1097 * $e1 ** 4 / 512) * sin(8 * $mu); |
|||||
757 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||||||
758 | 9 | ||||||
759 | $longitude = $longitudeOrigin + $easting * sqrt(1 - $e2 * sin($latitude) ** 2) / ($a * cos($latitude)); |
||||||
760 | 9 | ||||||
761 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
762 | } |
||||||
763 | |||||||
764 | /** |
||||||
765 | * Krovak. |
||||||
766 | 36 | */ |
|||||
767 | public function krovak( |
||||||
768 | Geographic2D|Geographic3D $to, |
||||||
769 | Angle $latitudeOfProjectionCentre, |
||||||
770 | Angle $longitudeOfOrigin, |
||||||
771 | Angle $coLatitudeOfConeAxis, |
||||||
772 | Angle $latitudeOfPseudoStandardParallel, |
||||||
773 | Scale $scaleFactorOnPseudoStandardParallel, |
||||||
774 | Length $falseEasting, |
||||||
775 | Length $falseNorthing |
||||||
776 | 36 | ): GeographicPoint { |
|||||
777 | 36 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
778 | 36 | $longitudeOffset = $this->crs->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue() - $to->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue(); |
|||||
779 | 36 | $westing = $this->westing->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
780 | 36 | $southing = $this->southing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
781 | 36 | $latitudeC = $latitudeOfProjectionCentre->asRadians()->getValue(); |
|||||
782 | 36 | $longitudeO = $longitudeOfOrigin->asRadians()->getValue(); |
|||||
783 | 36 | $alphaC = $coLatitudeOfConeAxis->asRadians()->getValue(); |
|||||
784 | 36 | $latitudeP = $latitudeOfPseudoStandardParallel->asRadians()->getValue(); |
|||||
785 | 36 | $kP = $scaleFactorOnPseudoStandardParallel->asUnity()->getValue(); |
|||||
786 | 36 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
787 | 36 | $e = $ellipsoid->getEccentricity(); |
|||||
788 | $e2 = $ellipsoid->getEccentricitySquared(); |
||||||
789 | 36 | ||||||
790 | 36 | $A = $a * sqrt(1 - $e2) / (1 - $e2 * sin($latitudeC) ** 2); |
|||||
791 | 36 | $B = sqrt(1 + $e2 * cos($latitudeC) ** 4 / (1 - $e2)); |
|||||
792 | 36 | $upsilonO = self::asin(sin($latitudeC) / $B); |
|||||
793 | 36 | $tO = tan(M_PI / 4 + $upsilonO / 2) * ((1 + $e * sin($latitudeC)) / (1 - $e * sin($latitudeC))) ** ($e * $B / 2) / (tan(M_PI / 4 + $latitudeC / 2) ** $B); |
|||||
794 | 36 | $n = sin($latitudeP); |
|||||
795 | $rO = $kP * $A / tan($latitudeP); |
||||||
796 | 36 | ||||||
797 | 36 | $r = hypot($southing, $westing) ?: 1; |
|||||
798 | 36 | $theta = atan2($westing, $southing); |
|||||
799 | 36 | $D = $theta / sin($latitudeP); |
|||||
800 | 36 | $T = 2 * (atan(($rO / $r) ** (1 / $n) * tan(M_PI / 4 + $latitudeP / 2)) - M_PI / 4); |
|||||
801 | 36 | $U = self::asin(cos($alphaC) * sin($T) - sin($alphaC) * cos($T) * cos($D)); |
|||||
802 | $V = self::asin(cos($T) * sin($D) / cos($U)); |
||||||
803 | 36 | ||||||
804 | $latitude = $U; |
||||||
805 | 36 | do { |
|||||
806 | 36 | $latitudeN = $latitude; |
|||||
807 | 36 | $latitude = 2 * (atan($tO ** (-1 / $B) * tan($U / 2 + M_PI / 4) ** (1 / $B) * ((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2)) - M_PI / 4); |
|||||
808 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||||||
809 | 36 | ||||||
810 | $longitude = $longitudeO + $longitudeOffset - $V / $B; |
||||||
811 | 36 | ||||||
812 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
813 | } |
||||||
814 | |||||||
815 | /** |
||||||
816 | * Krovak Modified |
||||||
817 | * Incorporates a polynomial transformation which is defined to be exact and for practical purposes is considered |
||||||
818 | * to be a map projection. |
||||||
819 | 18 | */ |
|||||
820 | public function krovakModified( |
||||||
821 | Geographic2D|Geographic3D $to, |
||||||
822 | Angle $latitudeOfProjectionCentre, |
||||||
823 | Angle $longitudeOfOrigin, |
||||||
824 | Angle $coLatitudeOfConeAxis, |
||||||
825 | Angle $latitudeOfPseudoStandardParallel, |
||||||
826 | Scale $scaleFactorOnPseudoStandardParallel, |
||||||
827 | Length $falseEasting, |
||||||
828 | Length $falseNorthing, |
||||||
829 | Length $ordinate1OfEvaluationPoint, |
||||||
830 | Length $ordinate2OfEvaluationPoint, |
||||||
831 | Coefficient $C1, |
||||||
832 | Coefficient $C2, |
||||||
833 | Coefficient $C3, |
||||||
834 | Coefficient $C4, |
||||||
835 | Coefficient $C5, |
||||||
836 | Coefficient $C6, |
||||||
837 | Coefficient $C7, |
||||||
838 | Coefficient $C8, |
||||||
839 | Coefficient $C9, |
||||||
840 | Coefficient $C10 |
||||||
841 | 18 | ): GeographicPoint { |
|||||
842 | 18 | $Xr = $this->getSouthing()->asMetres()->getValue() - $falseNorthing->asMetres()->getValue() - $ordinate1OfEvaluationPoint->asMetres()->getValue(); |
|||||
843 | 18 | $Yr = $this->getWesting()->asMetres()->getValue() - $falseEasting->asMetres()->getValue() - $ordinate2OfEvaluationPoint->asMetres()->getValue(); |
|||||
844 | 18 | $c1 = $C1->asUnity()->getValue(); |
|||||
845 | 18 | $c2 = $C2->asUnity()->getValue(); |
|||||
846 | 18 | $c3 = $C3->asUnity()->getValue(); |
|||||
847 | 18 | $c4 = $C4->asUnity()->getValue(); |
|||||
848 | 18 | $c5 = $C5->asUnity()->getValue(); |
|||||
849 | 18 | $c6 = $C6->asUnity()->getValue(); |
|||||
850 | 18 | $c7 = $C7->asUnity()->getValue(); |
|||||
851 | 18 | $c8 = $C8->asUnity()->getValue(); |
|||||
852 | 18 | $c9 = $C9->asUnity()->getValue(); |
|||||
853 | $c10 = $C10->asUnity()->getValue(); |
||||||
854 | 18 | ||||||
855 | 18 | $dX = $c1 + $c3 * $Xr - $c4 * $Yr - 2 * $c6 * $Xr * $Yr + $c5 * ($Xr ** 2 - $Yr ** 2) + $c7 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) - $c8 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) + 4 * $c9 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c10 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2); |
|||||
856 | $dY = $c2 + $c3 * $Yr + $c4 * $Xr + 2 * $c5 * $Xr * $Yr + $c6 * ($Xr ** 2 - $Yr ** 2) + $c8 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) + $c7 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) - 4 * $c10 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c9 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2); |
||||||
857 | 18 | ||||||
858 | 18 | $Xp = $this->getSouthing()->asMetres()->getValue() - $falseNorthing->asMetres()->getValue() + $dX; |
|||||
859 | $Yp = $this->getWesting()->asMetres()->getValue() - $falseEasting->asMetres()->getValue() + $dY; |
||||||
860 | 18 | ||||||
861 | $asKrovak = self::create($this->crs, new Metre(-$Yp), new Metre(-$Xp), new Metre($Yp), new Metre($Xp), $this->epoch); |
||||||
862 | 18 | ||||||
863 | return $asKrovak->krovak($to, $latitudeOfProjectionCentre, $longitudeOfOrigin, $coLatitudeOfConeAxis, $latitudeOfPseudoStandardParallel, $scaleFactorOnPseudoStandardParallel, new Metre(0), new Metre(0)); |
||||||
864 | } |
||||||
865 | |||||||
866 | /** |
||||||
867 | * Lambert Azimuthal Equal Area |
||||||
868 | * This is the ellipsoidal form of the projection. |
||||||
869 | 9 | */ |
|||||
870 | public function lambertAzimuthalEqualArea( |
||||||
871 | Geographic2D|Geographic3D $to, |
||||||
872 | Angle $latitudeOfNaturalOrigin, |
||||||
873 | Angle $longitudeOfNaturalOrigin, |
||||||
874 | Length $falseEasting, |
||||||
875 | Length $falseNorthing |
||||||
876 | 9 | ): GeographicPoint { |
|||||
877 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
878 | 9 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
879 | 9 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
880 | 9 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
881 | 9 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
882 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
883 | 9 | $e = $ellipsoid->getEccentricity(); |
|||||
884 | 9 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||||
885 | 9 | $e4 = $e ** 4; |
|||||
886 | $e6 = $e ** 6; |
||||||
887 | 9 | ||||||
888 | 9 | $qO = (1 - $e2) * ((sin($latitudeOrigin) / (1 - $e2 * sin($latitudeOrigin) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))))); |
|||||
889 | 9 | $qP = (1 - $e2) * ((1 / (1 - $e2)) - ((1 / (2 * $e)) * log((1 - $e) / (1 + $e)))); |
|||||
890 | 9 | $betaO = self::asin($qO / $qP); |
|||||
891 | 9 | $Rq = $a * sqrt($qP / 2); |
|||||
892 | 9 | $D = $a * (cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2)) / ($Rq * cos($betaO)); |
|||||
893 | 9 | $rho = hypot($easting / $D, $D * $northing) ?: 1; |
|||||
894 | 9 | $C = 2 * self::asin($rho / (2 * $Rq)); |
|||||
895 | $beta = self::asin(cos($C) * sin($betaO) + ($D * $northing * sin($C) * cos($betaO)) / $rho); |
||||||
896 | 9 | ||||||
897 | 9 | $latitude = $beta + (($e2 / 3 + 31 * $e4 / 180 + 517 * $e6 / 5040) * sin(2 * $beta)) + ((23 * $e4 / 360 + 251 * $e6 / 3780) * sin(4 * $beta)) + ((761 * $e6 / 45360) * sin(6 * $beta)); |
|||||
898 | $longitude = $longitudeOrigin + atan2($easting * sin($C), $D * $rho * cos($betaO) * cos($C) - $D ** 2 * $northing * sin($betaO) * sin($C)); |
||||||
899 | 9 | ||||||
900 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
901 | } |
||||||
902 | |||||||
903 | /** |
||||||
904 | * Lambert Azimuthal Equal Area (Spherical) |
||||||
905 | * This is the spherical form of the projection. See coordinate operation method Lambert Azimuthal Equal Area |
||||||
906 | * (code 9820) for ellipsoidal form. Differences of several tens of metres result from comparison of the two |
||||||
907 | * methods. |
||||||
908 | 9 | */ |
|||||
909 | public function lambertAzimuthalEqualAreaSpherical( |
||||||
910 | Geographic2D|Geographic3D $to, |
||||||
911 | Angle $latitudeOfNaturalOrigin, |
||||||
912 | Angle $longitudeOfNaturalOrigin, |
||||||
913 | Length $falseEasting, |
||||||
914 | Length $falseNorthing |
||||||
915 | 9 | ): GeographicPoint { |
|||||
916 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
917 | 9 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
918 | 9 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
919 | 9 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
920 | 9 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
921 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||||||
922 | 9 | ||||||
923 | 9 | $rho = hypot($easting, $northing) ?: 1; |
|||||
924 | $c = 2 * self::asin($rho / (2 * $a)); |
||||||
925 | 9 | ||||||
926 | $latitude = self::asin(cos($c) * sin($latitudeOrigin) + ($northing * sin($c) * cos($latitudeOrigin) / $rho)); |
||||||
927 | 9 | ||||||
928 | if ($latitudeOrigin === 90.0) { |
||||||
0 ignored issues
–
show
|
|||||||
929 | 9 | $longitude = $longitudeOrigin + atan($easting / -$northing); |
|||||
930 | } elseif ($latitudeOrigin === -90.0) { |
||||||
0 ignored issues
–
show
|
|||||||
931 | $longitude = $longitudeOrigin + atan($easting / $northing); |
||||||
932 | 9 | } else { |
|||||
933 | 9 | $longitudeDenominator = ($rho * cos($latitudeOrigin) * cos($c) - $northing * sin($latitudeOrigin) * sin($c)); |
|||||
934 | 9 | $longitude = $longitudeOrigin + atan($easting * sin($c) / $longitudeDenominator); |
|||||
935 | 9 | if ($longitudeDenominator < 0) { |
|||||
936 | $longitude += M_PI; |
||||||
937 | } |
||||||
938 | } |
||||||
939 | 9 | ||||||
940 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
941 | } |
||||||
942 | |||||||
943 | /** |
||||||
944 | * Lambert Conic Conformal (1SP). |
||||||
945 | 9 | */ |
|||||
946 | public function lambertConicConformal1SP( |
||||||
947 | Geographic2D|Geographic3D $to, |
||||||
948 | Angle $latitudeOfNaturalOrigin, |
||||||
949 | Angle $longitudeOfNaturalOrigin, |
||||||
950 | Scale $scaleFactorAtNaturalOrigin, |
||||||
951 | Length $falseEasting, |
||||||
952 | Length $falseNorthing |
||||||
953 | 9 | ): GeographicPoint { |
|||||
954 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
955 | 9 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
956 | 9 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
957 | 9 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
958 | 9 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
959 | 9 | $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
|||||
960 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
961 | 9 | $e = $ellipsoid->getEccentricity(); |
|||||
962 | $e2 = $ellipsoid->getEccentricitySquared(); |
||||||
963 | 9 | ||||||
964 | 9 | $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2); |
|||||
965 | 9 | $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2); |
|||||
966 | 9 | $n = sin($latitudeOrigin); |
|||||
967 | 9 | $F = $mO / ($n * $tO ** $n); |
|||||
968 | 9 | $rO = $a * $F * $tO ** $n * $scaleFactorOrigin; |
|||||
969 | 9 | $r = hypot($easting, $rO - $northing); |
|||||
970 | 9 | if ($n >= 0) { |
|||||
971 | $theta = atan2($easting, $rO - $northing); |
||||||
972 | } else { |
||||||
973 | $r = -$r; |
||||||
974 | $theta = atan2(-$easting, -($rO - $northing)); |
||||||
975 | } |
||||||
976 | 9 | ||||||
977 | $t = ($r / ($a * $scaleFactorOrigin * $F)) ** (1 / $n); |
||||||
978 | 9 | ||||||
979 | $latitude = M_PI / (2 - 2 * atan($t)); |
||||||
980 | 9 | do { |
|||||
981 | 9 | $latitudeN = $latitude; |
|||||
982 | 9 | $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2)); |
|||||
983 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||||||
984 | 9 | ||||||
985 | $longitude = $theta / $n + $longitudeOrigin; |
||||||
986 | 9 | ||||||
987 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
988 | } |
||||||
989 | |||||||
990 | /** |
||||||
991 | * Lambert Conic Conformal (west orientated). |
||||||
992 | */ |
||||||
993 | public function lambertConicConformalWestOrientated( |
||||||
994 | Geographic2D|Geographic3D $to, |
||||||
995 | Angle $latitudeOfNaturalOrigin, |
||||||
996 | Angle $longitudeOfNaturalOrigin, |
||||||
997 | Scale $scaleFactorAtNaturalOrigin, |
||||||
998 | Length $falseEasting, |
||||||
999 | Length $falseNorthing |
||||||
1000 | ): GeographicPoint { |
||||||
1001 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||||||
1002 | $westing = $falseEasting->asMetres()->getValue() - $this->westing->asMetres()->getValue(); |
||||||
1003 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||||||
1004 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||||||
1005 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||||||
1006 | $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
||||||
1007 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||||||
1008 | $e = $ellipsoid->getEccentricity(); |
||||||
1009 | $e2 = $ellipsoid->getEccentricitySquared(); |
||||||
1010 | |||||||
1011 | $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2); |
||||||
1012 | $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2); |
||||||
1013 | $n = sin($latitudeOrigin); |
||||||
1014 | $F = $mO / ($n * $tO ** $n); |
||||||
1015 | $rO = $a * $F * $tO ** $n ** $scaleFactorOrigin; |
||||||
1016 | $r = hypot($westing, $rO - $northing); |
||||||
1017 | if ($n >= 0) { |
||||||
1018 | $theta = atan2($westing, $rO - $northing); |
||||||
1019 | } else { |
||||||
1020 | $r = -$r; |
||||||
1021 | $theta = atan2(-$westing, -($rO - $northing)); |
||||||
1022 | } |
||||||
1023 | |||||||
1024 | $t = ($r / ($a * $scaleFactorOrigin * $F)) ** (1 / $n); |
||||||
1025 | |||||||
1026 | $latitude = M_PI / (2 - 2 * atan($t)); |
||||||
1027 | do { |
||||||
1028 | $latitudeN = $latitude; |
||||||
1029 | $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2)); |
||||||
1030 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||||||
1031 | |||||||
1032 | $longitude = $theta / $n + $longitudeOrigin; |
||||||
1033 | |||||||
1034 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
1035 | } |
||||||
1036 | |||||||
1037 | /** |
||||||
1038 | * Lambert Conic Conformal (1SP) Variant B. |
||||||
1039 | */ |
||||||
1040 | public function lambertConicConformal1SPVariantB( |
||||||
1041 | Geographic2D|Geographic3D $to, |
||||||
1042 | Angle $latitudeOfNaturalOrigin, |
||||||
1043 | Scale $scaleFactorAtNaturalOrigin, |
||||||
1044 | Angle $latitudeOfFalseOrigin, |
||||||
1045 | Angle $longitudeOfFalseOrigin, |
||||||
1046 | Length $eastingAtFalseOrigin, |
||||||
1047 | Length $northingAtFalseOrigin |
||||||
1048 | ): GeographicPoint { |
||||||
1049 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||||||
1050 | $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue(); |
||||||
1051 | $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue(); |
||||||
1052 | $latitudeNaturalOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||||||
1053 | $latitudeFalseOrigin = $latitudeOfFalseOrigin->asRadians()->getValue(); |
||||||
1054 | $longitudeFalseOrigin = $longitudeOfFalseOrigin->asRadians()->getValue(); |
||||||
1055 | $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
||||||
1056 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||||||
1057 | $e = $ellipsoid->getEccentricity(); |
||||||
1058 | $e2 = $ellipsoid->getEccentricitySquared(); |
||||||
1059 | |||||||
1060 | $mO = cos($latitudeNaturalOrigin) / sqrt(1 - $e2 * sin($latitudeNaturalOrigin) ** 2); |
||||||
1061 | $tO = tan(M_PI / 4 - $latitudeNaturalOrigin / 2) / ((1 - $e * sin($latitudeNaturalOrigin)) / (1 + $e * sin($latitudeNaturalOrigin))) ** ($e / 2); |
||||||
1062 | $tF = tan(M_PI / 4 - $latitudeFalseOrigin / 2) / ((1 - $e * sin($latitudeFalseOrigin)) / (1 + $e * sin($latitudeFalseOrigin))) ** ($e / 2); |
||||||
1063 | $n = sin($latitudeNaturalOrigin); |
||||||
1064 | $F = $mO / ($n * $tO ** $n); |
||||||
1065 | $rF = $a * $F * $tF ** $n * $scaleFactorOrigin; |
||||||
1066 | $r = hypot($easting, $rF - $northing); |
||||||
1067 | if ($n >= 0) { |
||||||
1068 | $theta = atan2($easting, $rF - $northing); |
||||||
1069 | } else { |
||||||
1070 | $r = -$r; |
||||||
1071 | $theta = atan2(-$easting, -($rF - $northing)); |
||||||
1072 | } |
||||||
1073 | |||||||
1074 | $t = ($r / ($a * $scaleFactorOrigin * $F)) ** (1 / $n); |
||||||
1075 | |||||||
1076 | $latitude = M_PI / (2 - 2 * atan($t)); |
||||||
1077 | do { |
||||||
1078 | $latitudeN = $latitude; |
||||||
1079 | $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2)); |
||||||
1080 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||||||
1081 | |||||||
1082 | $longitude = $theta / $n + $longitudeFalseOrigin; |
||||||
1083 | |||||||
1084 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
1085 | } |
||||||
1086 | |||||||
1087 | /** |
||||||
1088 | * Lambert Conic Conformal (2SP). |
||||||
1089 | 19 | */ |
|||||
1090 | public function lambertConicConformal2SP( |
||||||
1091 | Geographic2D|Geographic3D $to, |
||||||
1092 | Angle $latitudeOfFalseOrigin, |
||||||
1093 | Angle $longitudeOfFalseOrigin, |
||||||
1094 | Angle $latitudeOf1stStandardParallel, |
||||||
1095 | Angle $latitudeOf2ndStandardParallel, |
||||||
1096 | Length $eastingAtFalseOrigin, |
||||||
1097 | Length $northingAtFalseOrigin |
||||||
1098 | 19 | ): GeographicPoint { |
|||||
1099 | 19 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
1100 | 19 | $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue(); |
|||||
1101 | 19 | $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue(); |
|||||
1102 | 19 | $lambdaOrigin = $longitudeOfFalseOrigin->asRadians()->getValue(); |
|||||
1103 | 19 | $phiF = $latitudeOfFalseOrigin->asRadians()->getValue(); |
|||||
1104 | 19 | $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
|||||
1105 | 19 | $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue(); |
|||||
1106 | 19 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
1107 | 19 | $e = $ellipsoid->getEccentricity(); |
|||||
1108 | $e2 = $ellipsoid->getEccentricitySquared(); |
||||||
1109 | 19 | ||||||
1110 | 19 | $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2); |
|||||
1111 | 19 | $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2); |
|||||
1112 | 19 | $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2); |
|||||
1113 | 19 | $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2); |
|||||
1114 | 19 | $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2); |
|||||
1115 | 19 | $n = (log($m1) - log($m2)) / (log($t1) - log($t2)); |
|||||
1116 | 19 | $F = $m1 / ($n * $t1 ** $n); |
|||||
1117 | 19 | $rF = $a * $F * $tF ** $n; |
|||||
1118 | 19 | $r = hypot($easting, $rF - $northing) * static::sign($n); |
|||||
1119 | 19 | $t = ($r / ($a * $F)) ** (1 / $n); |
|||||
1120 | 19 | if ($n >= 0) { |
|||||
1121 | $theta = atan2($easting, $rF - $northing); |
||||||
1122 | } else { |
||||||
1123 | $theta = atan2(-$easting, -($rF - $northing)); |
||||||
1124 | } |
||||||
1125 | 19 | ||||||
1126 | $latitude = M_PI / 2 - 2 * atan($t); |
||||||
1127 | 19 | do { |
|||||
1128 | 19 | $latitudeN = $latitude; |
|||||
1129 | 19 | $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2)); |
|||||
1130 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||||||
1131 | 19 | ||||||
1132 | $longitude = $theta / $n + $lambdaOrigin; |
||||||
1133 | 19 | ||||||
1134 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
1135 | } |
||||||
1136 | |||||||
1137 | /** |
||||||
1138 | * Lambert Conic Conformal (2SP Michigan). |
||||||
1139 | 9 | */ |
|||||
1140 | public function lambertConicConformal2SPMichigan( |
||||||
1141 | Geographic2D|Geographic3D $to, |
||||||
1142 | Angle $latitudeOfFalseOrigin, |
||||||
1143 | Angle $longitudeOfFalseOrigin, |
||||||
1144 | Angle $latitudeOf1stStandardParallel, |
||||||
1145 | Angle $latitudeOf2ndStandardParallel, |
||||||
1146 | Length $eastingAtFalseOrigin, |
||||||
1147 | Length $northingAtFalseOrigin, |
||||||
1148 | Scale $ellipsoidScalingFactor |
||||||
1149 | 9 | ): GeographicPoint { |
|||||
1150 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
1151 | 9 | $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue(); |
|||||
1152 | 9 | $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue(); |
|||||
1153 | 9 | $lambdaOrigin = $longitudeOfFalseOrigin->asRadians()->getValue(); |
|||||
1154 | 9 | $phiF = $latitudeOfFalseOrigin->asRadians()->getValue(); |
|||||
1155 | 9 | $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
|||||
1156 | 9 | $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue(); |
|||||
1157 | 9 | $K = $ellipsoidScalingFactor->asUnity()->getValue(); |
|||||
1158 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
1159 | 9 | $e = $ellipsoid->getEccentricity(); |
|||||
1160 | $e2 = $ellipsoid->getEccentricitySquared(); |
||||||
1161 | 9 | ||||||
1162 | 9 | $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2); |
|||||
1163 | 9 | $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2); |
|||||
1164 | 9 | $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2); |
|||||
1165 | 9 | $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2); |
|||||
1166 | 9 | $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2); |
|||||
1167 | 9 | $n = (log($m1) - log($m2)) / (log($t1) - log($t2)); |
|||||
1168 | 9 | $F = $m1 / ($n * $t1 ** $n); |
|||||
1169 | 9 | $rF = $a * $K * $F * $tF ** $n; |
|||||
1170 | 9 | $r = sqrt($easting ** 2 + ($rF - $northing) ** 2) * static::sign($n); |
|||||
1171 | 9 | $t = ($r / ($a * $K * $F)) ** (1 / $n); |
|||||
1172 | 9 | if ($n >= 0) { |
|||||
1173 | $theta = atan2($easting, $rF - $northing); |
||||||
1174 | } else { |
||||||
1175 | $theta = atan2(-$easting, -($rF - $northing)); |
||||||
1176 | } |
||||||
1177 | 9 | ||||||
1178 | $latitude = M_PI / 2 - 2 * atan($t); |
||||||
1179 | 9 | do { |
|||||
1180 | 9 | $latitudeN = $latitude; |
|||||
1181 | 9 | $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2)); |
|||||
1182 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||||||
1183 | 9 | ||||||
1184 | $longitude = $theta / $n + $lambdaOrigin; |
||||||
1185 | 9 | ||||||
1186 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
1187 | } |
||||||
1188 | |||||||
1189 | /** |
||||||
1190 | * Lambert Conic Conformal (2SP Belgium) |
||||||
1191 | * In 2000 this modification was replaced through use of the regular Lambert Conic Conformal (2SP) method [9802] |
||||||
1192 | * with appropriately modified parameter values. |
||||||
1193 | 9 | */ |
|||||
1194 | public function lambertConicConformal2SPBelgium( |
||||||
1195 | Geographic2D|Geographic3D $to, |
||||||
1196 | Angle $latitudeOfFalseOrigin, |
||||||
1197 | Angle $longitudeOfFalseOrigin, |
||||||
1198 | Angle $latitudeOf1stStandardParallel, |
||||||
1199 | Angle $latitudeOf2ndStandardParallel, |
||||||
1200 | Length $eastingAtFalseOrigin, |
||||||
1201 | Length $northingAtFalseOrigin |
||||||
1202 | 9 | ): GeographicPoint { |
|||||
1203 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
1204 | 9 | $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue(); |
|||||
1205 | 9 | $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue(); |
|||||
1206 | 9 | $lambdaOrigin = $longitudeOfFalseOrigin->asRadians()->getValue(); |
|||||
1207 | 9 | $phiF = $latitudeOfFalseOrigin->asRadians()->getValue(); |
|||||
1208 | 9 | $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
|||||
1209 | 9 | $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue(); |
|||||
1210 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
1211 | 9 | $e = $ellipsoid->getEccentricity(); |
|||||
1212 | $e2 = $ellipsoid->getEccentricitySquared(); |
||||||
1213 | 9 | ||||||
1214 | 9 | $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2); |
|||||
1215 | 9 | $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2); |
|||||
1216 | 9 | $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2); |
|||||
1217 | 9 | $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2); |
|||||
1218 | 9 | $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2); |
|||||
1219 | 9 | $n = (log($m1) - log($m2)) / (log($t1) - log($t2)); |
|||||
1220 | 9 | $F = $m1 / ($n * $t1 ** $n); |
|||||
1221 | 9 | $rF = $a * $F * $tF ** $n; |
|||||
1222 | 9 | if (is_nan($rF)) { |
|||||
1223 | $rF = 0; |
||||||
1224 | 9 | } |
|||||
1225 | 9 | $r = hypot($easting, $rF - $northing) * static::sign($n); |
|||||
1226 | 9 | $t = ($r / ($a * $F)) ** (1 / $n); |
|||||
1227 | 9 | if ($n >= 0) { |
|||||
1228 | $theta = atan2($easting, $rF - $northing); |
||||||
1229 | } else { |
||||||
1230 | $theta = atan2(-$easting, -($rF - $northing)); |
||||||
1231 | } |
||||||
1232 | 9 | ||||||
1233 | $latitude = M_PI / 2 - 2 * atan($t); |
||||||
1234 | 9 | do { |
|||||
1235 | 9 | $latitudeN = $latitude; |
|||||
1236 | 9 | $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2)); |
|||||
1237 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||||||
1238 | 9 | ||||||
1239 | $longitude = ($theta + (new ArcSecond(29.2985))->asRadians()->getValue()) / $n + $lambdaOrigin; |
||||||
1240 | 9 | ||||||
1241 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
1242 | } |
||||||
1243 | |||||||
1244 | /** |
||||||
1245 | * Lambert Conic Near-Conformal |
||||||
1246 | * The Lambert Near-Conformal projection is derived from the Lambert Conformal Conic projection by truncating the |
||||||
1247 | * series expansion of the projection formulae. |
||||||
1248 | 9 | */ |
|||||
1249 | public function lambertConicNearConformal( |
||||||
1250 | Geographic2D|Geographic3D $to, |
||||||
1251 | Angle $latitudeOfNaturalOrigin, |
||||||
1252 | Angle $longitudeOfNaturalOrigin, |
||||||
1253 | Scale $scaleFactorAtNaturalOrigin, |
||||||
1254 | Length $falseEasting, |
||||||
1255 | Length $falseNorthing |
||||||
1256 | 9 | ): GeographicPoint { |
|||||
1257 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
1258 | 9 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
1259 | 9 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
1260 | 9 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
1261 | 9 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
1262 | 9 | $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
|||||
1263 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
1264 | 9 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||||
1265 | $f = $ellipsoid->getFlattening(); |
||||||
1266 | 9 | ||||||
1267 | 9 | $n = $f / (2 - $f); |
|||||
1268 | 9 | $rhoO = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2); |
|||||
1269 | 9 | $nuO = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2)); |
|||||
1270 | 9 | $A = 1 / (6 * $rhoO * $nuO); |
|||||
1271 | 9 | $APrime = $a * (1 - $n + 5 * ($n ** 2 - $n ** 3) / 4 + 81 * ($n ** 4 - $n ** 5) / 64); |
|||||
1272 | 9 | $BPrime = 3 * $a * ($n - $n ** 2 + 7 * ($n ** 3 - $n ** 4) / 8 + 55 * $n ** 5 / 64) / 2; |
|||||
1273 | 9 | $CPrime = 15 * $a * ($n ** 2 - $n ** 3 + 3 * ($n ** 4 - $n ** 5) / 4) / 16; |
|||||
1274 | 9 | $DPrime = 35 * $a * ($n ** 3 - $n ** 4 + 11 * $n ** 5 / 16) / 48; |
|||||
1275 | 9 | $EPrime = 315 * $a * ($n ** 4 - $n ** 5) / 512; |
|||||
1276 | 9 | $rO = $scaleFactorOrigin * $nuO / tan($latitudeOrigin); |
|||||
1277 | $sO = $APrime * $latitudeOrigin - $BPrime * sin(2 * $latitudeOrigin) + $CPrime * sin(4 * $latitudeOrigin) - $DPrime * sin(6 * $latitudeOrigin) + $EPrime * sin(8 * $latitudeOrigin); |
||||||
1278 | 9 | ||||||
1279 | 9 | $theta = atan2($easting, $rO - $northing); |
|||||
1280 | 9 | $r = hypot($easting, $rO - $northing) * static::sign($latitudeOrigin); |
|||||
1281 | $M = $rO - $r; |
||||||
1282 | 9 | ||||||
1283 | $m = $M; |
||||||
1284 | 9 | do { |
|||||
1285 | 9 | $mN = $m; |
|||||
1286 | 9 | $m = $m - ($M - $scaleFactorOrigin * $m - $scaleFactorOrigin * $A * $m ** 3) / (-$scaleFactorOrigin - 3 * $scaleFactorOrigin * $A * $m ** 2); |
|||||
1287 | } while (abs($m - $mN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||||||
1288 | 9 | ||||||
1289 | $latitude = $latitudeOrigin + $m / $A; |
||||||
1290 | 9 | do { |
|||||
1291 | 9 | $latitudeN = $latitude; |
|||||
1292 | 9 | $latitude = $latitude + ($m + $sO - ($APrime * $latitude - $BPrime * sin(2 * $latitude) + $CPrime * sin(4 * $latitude) - $DPrime * sin(6 * $latitude) + $EPrime * sin(8 * $latitude))) / $APrime; |
|||||
1293 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||||||
1294 | 9 | ||||||
1295 | $longitude = $longitudeOrigin + $theta / sin($latitudeOrigin); |
||||||
1296 | 9 | ||||||
1297 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
1298 | } |
||||||
1299 | |||||||
1300 | /** |
||||||
1301 | * Lambert Cylindrical Equal Area |
||||||
1302 | * This is the ellipsoidal form of the projection. |
||||||
1303 | 9 | */ |
|||||
1304 | public function lambertCylindricalEqualArea( |
||||||
1305 | Geographic2D|Geographic3D $to, |
||||||
1306 | Angle $latitudeOf1stStandardParallel, |
||||||
1307 | Angle $longitudeOfNaturalOrigin, |
||||||
1308 | Length $falseEasting, |
||||||
1309 | Length $falseNorthing |
||||||
1310 | 9 | ): GeographicPoint { |
|||||
1311 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
1312 | 9 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
1313 | 9 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
1314 | 9 | $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
|||||
1315 | 9 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
1316 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
1317 | 9 | $e = $ellipsoid->getEccentricity(); |
|||||
1318 | 9 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||||
1319 | 9 | $e4 = $e ** 4; |
|||||
1320 | $e6 = $e ** 6; |
||||||
1321 | 9 | ||||||
1322 | 9 | $k = cos($latitudeFirstParallel) / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2); |
|||||
1323 | 9 | $qP = (1 - $e2) * ((sin(M_PI_2) / (1 - $e2 * sin(M_PI_2) ** 2)) - (1 / (2 * $e)) * log((1 - $e * sin(M_PI_2)) / (1 + $e * sin(M_PI_2)))); |
|||||
1324 | $beta = self::asin(2 * $northing * $k / ($a * $qP)); |
||||||
1325 | 9 | ||||||
1326 | 9 | $latitude = $beta + (($e2 / 3 + 31 * $e4 / 180 + 517 * $e6 / 5040) * sin(2 * $beta)) + ((23 * $e4 / 360 + 251 * $e6 / 3780) * sin(4 * $beta)) + ((761 * $e6 / 45360) * sin(6 * $beta)); |
|||||
1327 | $longitude = $longitudeOrigin + $easting / ($a * $k); |
||||||
1328 | 9 | ||||||
1329 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
1330 | } |
||||||
1331 | |||||||
1332 | /** |
||||||
1333 | * Lambert Cylindrical Equal Area |
||||||
1334 | * This is the spherical form of the projection. |
||||||
1335 | 9 | */ |
|||||
1336 | public function lambertCylindricalEqualAreaSpherical( |
||||||
1337 | Geographic2D|Geographic3D $to, |
||||||
1338 | Angle $latitudeOf1stStandardParallel, |
||||||
1339 | Angle $longitudeOfNaturalOrigin, |
||||||
1340 | Length $falseEasting, |
||||||
1341 | Length $falseNorthing |
||||||
1342 | 9 | ): GeographicPoint { |
|||||
1343 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
1344 | 9 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
1345 | 9 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
1346 | 9 | $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
|||||
1347 | 9 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
1348 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||||||
1349 | 9 | ||||||
1350 | 9 | $latitude = self::asin(($northing / $a) * cos($latitudeFirstParallel)); |
|||||
1351 | $longitude = $longitudeOrigin + $easting / ($a * cos($latitudeFirstParallel)); |
||||||
1352 | 9 | ||||||
1353 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
1354 | } |
||||||
1355 | |||||||
1356 | /** |
||||||
1357 | * Modified Azimuthal Equidistant |
||||||
1358 | * Modified form of Oblique Azimuthal Equidistant projection method developed for Polynesian islands. For the |
||||||
1359 | * distances over which these projections are used (under 800km) this modification introduces no significant error. |
||||||
1360 | 9 | */ |
|||||
1361 | public function modifiedAzimuthalEquidistant( |
||||||
1362 | Geographic2D|Geographic3D $to, |
||||||
1363 | Angle $latitudeOfNaturalOrigin, |
||||||
1364 | Angle $longitudeOfNaturalOrigin, |
||||||
1365 | Length $falseEasting, |
||||||
1366 | Length $falseNorthing |
||||||
1367 | 9 | ): GeographicPoint { |
|||||
1368 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
1369 | 9 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
1370 | 9 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
1371 | 9 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
1372 | 9 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
1373 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
1374 | $e2 = $ellipsoid->getEccentricitySquared(); |
||||||
1375 | 9 | ||||||
1376 | 9 | $nuO = $a / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2); |
|||||
1377 | 9 | $c = hypot($easting, $northing); |
|||||
1378 | 9 | $alpha = atan2($easting, $northing); |
|||||
1379 | 9 | $A = -$e2 * cos($latitudeOrigin) ** 2 * cos($alpha) ** 2 / (1 - $e2); |
|||||
1380 | 9 | $B = 3 * $e2 * (1 - $A) * sin($latitudeOrigin) * cos($latitudeOrigin) * cos($alpha) / (1 - $e2); |
|||||
1381 | 9 | $D = $c / $nuO; |
|||||
1382 | 9 | $J = $D - ($A * (1 + $A) * $D ** 3 / 6) - ($B * (1 + 3 * $A) * $D ** 4 / 24); |
|||||
1383 | 9 | $K = 1 - ($A * $J ** 2 / 2) - ($B * $J ** 3 / 6); |
|||||
1384 | $psi = self::asin(sin($latitudeOrigin) * cos($J) + cos($latitudeOrigin) * sin($J) * cos($alpha)); |
||||||
1385 | 9 | ||||||
1386 | 9 | $latitude = atan((1 - $e2 * $K * sin($latitudeOrigin) / sin($psi)) * tan($psi) / (1 - $e2)); |
|||||
1387 | $longitude = $longitudeOrigin + self::asin(sin($alpha) * sin($J) / cos($psi)); |
||||||
1388 | 9 | ||||||
1389 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
1390 | } |
||||||
1391 | |||||||
1392 | /** |
||||||
1393 | * Oblique Stereographic |
||||||
1394 | * This is not the same as the projection method of the same name in USGS Professional Paper no. 1395, "Map |
||||||
1395 | * Projections - A Working Manual" by John P. Snyder. |
||||||
1396 | 27 | */ |
|||||
1397 | public function obliqueStereographic( |
||||||
1398 | Geographic2D|Geographic3D $to, |
||||||
1399 | Angle $latitudeOfNaturalOrigin, |
||||||
1400 | Angle $longitudeOfNaturalOrigin, |
||||||
1401 | Scale $scaleFactorAtNaturalOrigin, |
||||||
1402 | Length $falseEasting, |
||||||
1403 | Length $falseNorthing |
||||||
1404 | 27 | ): GeographicPoint { |
|||||
1405 | 27 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
1406 | 27 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
1407 | 27 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
1408 | 27 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
1409 | 27 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
1410 | 27 | $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
|||||
1411 | 27 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
1412 | 27 | $e = $ellipsoid->getEccentricity(); |
|||||
1413 | $e2 = $ellipsoid->getEccentricitySquared(); |
||||||
1414 | 27 | ||||||
1415 | 27 | $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2); |
|||||
1416 | 27 | $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2)); |
|||||
1417 | $R = sqrt($rhoOrigin * $nuOrigin); |
||||||
1418 | 27 | ||||||
1419 | 27 | $n = sqrt(1 + ($e2 * cos($latitudeOrigin) ** 4 / (1 - $e2))); |
|||||
1420 | 27 | $S1 = (1 + sin($latitudeOrigin)) / (1 - sin($latitudeOrigin)); |
|||||
1421 | 27 | $S2 = (1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin)); |
|||||
1422 | 27 | $w1 = ($S1 * ($S2 ** $e)) ** $n; |
|||||
1423 | 27 | $c = (($n + sin($latitudeOrigin)) * (1 - ($w1 - 1) / ($w1 + 1))) / (($n - sin($latitudeOrigin)) * (1 + ($w1 - 1) / ($w1 + 1))); |
|||||
1424 | 27 | $w2 = $c * $w1; |
|||||
1425 | $chiOrigin = self::asin(($w2 - 1) / ($w2 + 1)); |
||||||
1426 | 27 | ||||||
1427 | 27 | $g = 2 * $R * $scaleFactorOrigin * tan(M_PI / 4 - $chiOrigin / 2); |
|||||
1428 | 27 | $h = 4 * $R * $scaleFactorOrigin * tan($chiOrigin) + $g; |
|||||
1429 | 27 | $i = atan2($easting, $h + $northing); |
|||||
1430 | 27 | $j = atan2($easting, $g - $northing) - $i; |
|||||
1431 | 27 | $chi = $chiOrigin + 2 * atan(($northing - $easting * tan($j / 2)) / (2 * $R * $scaleFactorOrigin)); |
|||||
1432 | $lambda = $j + 2 * $i + $longitudeOrigin; |
||||||
1433 | 27 | ||||||
1434 | $longitude = ($lambda - $longitudeOrigin) / $n + $longitudeOrigin; |
||||||
1435 | 27 | ||||||
1436 | $psi = 0.5 * log((1 + sin($chi)) / ($c * (1 - sin($chi)))) / $n; |
||||||
1437 | 27 | ||||||
1438 | $latitude = 2 * atan(M_E ** $psi) - M_PI / 2; |
||||||
1439 | 27 | do { |
|||||
1440 | 27 | $latitudeN = $latitude; |
|||||
1441 | 27 | $psiN = log(tan($latitudeN / 2 + M_PI / 4) * ((1 - $e * sin($latitudeN)) / (1 + $e * sin($latitudeN))) ** ($e / 2)); |
|||||
1442 | 27 | $latitude = $latitudeN - ($psiN - $psi) * cos($latitudeN) * (1 - $e2 * sin($latitudeN) ** 2) / (1 - $e2); |
|||||
1443 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||||||
1444 | 27 | ||||||
1445 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
1446 | } |
||||||
1447 | |||||||
1448 | /** |
||||||
1449 | * Polar Stereographic (variant A) |
||||||
1450 | * Latitude of natural origin must be either 90 degrees or -90 degrees (or equivalent in alternative angle unit). |
||||||
1451 | 9 | */ |
|||||
1452 | public function polarStereographicVariantA( |
||||||
1453 | Geographic2D|Geographic3D $to, |
||||||
1454 | Angle $latitudeOfNaturalOrigin, |
||||||
1455 | Angle $longitudeOfNaturalOrigin, |
||||||
1456 | Scale $scaleFactorAtNaturalOrigin, |
||||||
1457 | Length $falseEasting, |
||||||
1458 | Length $falseNorthing |
||||||
1459 | 9 | ): GeographicPoint { |
|||||
1460 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
1461 | 9 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
1462 | 9 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
1463 | 9 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
1464 | 9 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
1465 | 9 | $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
|||||
1466 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
1467 | 9 | $e = $ellipsoid->getEccentricity(); |
|||||
1468 | 9 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||||
1469 | 9 | $e4 = $e ** 4; |
|||||
1470 | 9 | $e6 = $e ** 6; |
|||||
1471 | $e8 = $e ** 8; |
||||||
1472 | 9 | ||||||
1473 | 9 | $rho = hypot($easting, $northing); |
|||||
1474 | $t = $rho * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $a * $scaleFactorOrigin); |
||||||
1475 | 9 | ||||||
1476 | if ($latitudeOrigin < 0) { |
||||||
1477 | $chi = 2 * atan($t) - M_PI / 2; |
||||||
1478 | 9 | } else { |
|||||
1479 | $chi = M_PI / 2 - 2 * atan($t); |
||||||
1480 | } |
||||||
1481 | 9 | ||||||
1482 | $latitude = $chi + ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) * sin(2 * $chi) + (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) * sin(4 * $chi) + (7 * $e6 / 120 + 81 * $e8 / 1120) * sin(6 * $chi) + (4279 * $e8 / 161280) * sin(8 * $chi); |
||||||
1483 | 9 | ||||||
1484 | if ($easting === 0.0) { |
||||||
0 ignored issues
–
show
|
|||||||
1485 | 9 | $longitude = $longitudeOrigin; |
|||||
1486 | } elseif ($latitudeOrigin < 0) { |
||||||
1487 | $longitude = $longitudeOrigin + atan2($easting, $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue()); |
||||||
1488 | 9 | } else { |
|||||
1489 | $longitude = $longitudeOrigin + atan2($easting, $falseNorthing->asMetres()->getValue() - $this->northing->asMetres()->getValue()); |
||||||
1490 | } |
||||||
1491 | 9 | ||||||
1492 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
1493 | } |
||||||
1494 | |||||||
1495 | /** |
||||||
1496 | * Polar Stereographic (variant B). |
||||||
1497 | 9 | */ |
|||||
1498 | public function polarStereographicVariantB( |
||||||
1499 | Geographic2D|Geographic3D $to, |
||||||
1500 | Angle $latitudeOfStandardParallel, |
||||||
1501 | Angle $longitudeOfOrigin, |
||||||
1502 | Length $falseEasting, |
||||||
1503 | Length $falseNorthing |
||||||
1504 | 9 | ): GeographicPoint { |
|||||
1505 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
1506 | 9 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
1507 | 9 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
1508 | 9 | $standardParallel = $latitudeOfStandardParallel->asRadians()->getValue(); |
|||||
1509 | 9 | $longitudeOrigin = $longitudeOfOrigin->asRadians()->getValue(); |
|||||
1510 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
1511 | 9 | $e = $ellipsoid->getEccentricity(); |
|||||
1512 | 9 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||||
1513 | 9 | $e4 = $e ** 4; |
|||||
1514 | 9 | $e6 = $e ** 6; |
|||||
1515 | $e8 = $e ** 8; |
||||||
1516 | 9 | ||||||
1517 | 9 | $rho = hypot($easting, $northing); |
|||||
1518 | 9 | if ($standardParallel < 0) { |
|||||
1519 | $tF = tan(M_PI / 4 + $standardParallel / 2) / (((1 + $e * sin($standardParallel)) / (1 - $e * sin($standardParallel))) ** ($e / 2)); |
||||||
1520 | } else { |
||||||
1521 | $tF = tan(M_PI / 4 - $standardParallel / 2) * (((1 + $e * sin($standardParallel)) / (1 - $e * sin($standardParallel))) ** ($e / 2)); |
||||||
1522 | 9 | } |
|||||
1523 | 9 | $mF = cos($standardParallel) / sqrt(1 - $e2 * sin($standardParallel) ** 2); |
|||||
1524 | 9 | $kO = $mF * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $tF); |
|||||
1525 | $t = $rho * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $a * $kO); |
||||||
1526 | 9 | ||||||
1527 | 9 | if ($standardParallel < 0) { |
|||||
1528 | $chi = 2 * atan($t) - M_PI / 2; |
||||||
1529 | } else { |
||||||
1530 | $chi = M_PI / 2 - 2 * atan($t); |
||||||
1531 | } |
||||||
1532 | 9 | ||||||
1533 | $latitude = $chi + ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) * sin(2 * $chi) + (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) * sin(4 * $chi) + (7 * $e6 / 120 + 81 * $e8 / 1120) * sin(6 * $chi) + (4279 * $e8 / 161280) * sin(8 * $chi); |
||||||
1534 | 9 | ||||||
1535 | if ($easting === 0.0) { |
||||||
0 ignored issues
–
show
|
|||||||
1536 | 9 | $longitude = $longitudeOrigin; |
|||||
1537 | 9 | } elseif ($standardParallel < 0) { |
|||||
1538 | $longitude = $longitudeOrigin + atan2($easting, $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue()); |
||||||
1539 | } else { |
||||||
1540 | $longitude = $longitudeOrigin + atan2($easting, $falseNorthing->asMetres()->getValue() - $this->northing->asMetres()->getValue()); |
||||||
1541 | } |
||||||
1542 | 9 | ||||||
1543 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
1544 | } |
||||||
1545 | |||||||
1546 | /** |
||||||
1547 | * Polar Stereographic (variant C). |
||||||
1548 | 9 | */ |
|||||
1549 | public function polarStereographicVariantC( |
||||||
1550 | Geographic2D|Geographic3D $to, |
||||||
1551 | Angle $latitudeOfStandardParallel, |
||||||
1552 | Angle $longitudeOfOrigin, |
||||||
1553 | Length $eastingAtFalseOrigin, |
||||||
1554 | Length $northingAtFalseOrigin |
||||||
1555 | 9 | ): GeographicPoint { |
|||||
1556 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
1557 | 9 | $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue(); |
|||||
1558 | 9 | $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue(); |
|||||
1559 | 9 | $standardParallel = $latitudeOfStandardParallel->asRadians()->getValue(); |
|||||
1560 | 9 | $longitudeOrigin = $longitudeOfOrigin->asRadians()->getValue(); |
|||||
1561 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
1562 | 9 | $e = $ellipsoid->getEccentricity(); |
|||||
1563 | 9 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||||
1564 | 9 | $e4 = $e ** 4; |
|||||
1565 | 9 | $e6 = $e ** 6; |
|||||
1566 | $e8 = $e ** 8; |
||||||
1567 | 9 | ||||||
1568 | 9 | if ($standardParallel < 0) { |
|||||
1569 | $tF = tan(M_PI / 4 + $standardParallel / 2) / (((1 + $e * sin($standardParallel)) / (1 - $e * sin($standardParallel))) ** ($e / 2)); |
||||||
1570 | } else { |
||||||
1571 | $tF = tan(M_PI / 4 - $standardParallel / 2) * (((1 + $e * sin($standardParallel)) / (1 - $e * sin($standardParallel))) ** ($e / 2)); |
||||||
1572 | 9 | } |
|||||
1573 | 9 | $mF = cos($standardParallel) / sqrt(1 - $e2 * sin($standardParallel) ** 2); |
|||||
1574 | 9 | $rhoF = $a * $mF; |
|||||
1575 | 9 | if ($standardParallel < 0) { |
|||||
1576 | 9 | $rho = hypot($easting, $northing + $rhoF); |
|||||
1577 | 9 | $t = $rho * $tF / $rhoF; |
|||||
1578 | $chi = 2 * atan($t) - M_PI / 2; |
||||||
1579 | } else { |
||||||
1580 | $rho = hypot($easting, $northing - $rhoF); |
||||||
1581 | $t = $rho * $tF / $rhoF; |
||||||
1582 | $chi = M_PI / 2 - 2 * atan($t); |
||||||
1583 | } |
||||||
1584 | 9 | ||||||
1585 | $latitude = $chi + ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) * sin(2 * $chi) + (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) * sin(4 * $chi) + (7 * $e6 / 120 + 81 * $e8 / 1120) * sin(6 * $chi) + (4279 * $e8 / 161280) * sin(8 * $chi); |
||||||
1586 | 9 | ||||||
1587 | if ($easting === 0.0) { |
||||||
0 ignored issues
–
show
|
|||||||
1588 | 9 | $longitude = $longitudeOrigin; |
|||||
1589 | 9 | } elseif ($standardParallel < 0) { |
|||||
1590 | $longitude = $longitudeOrigin + atan2($easting, $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue() + $rhoF); |
||||||
1591 | } else { |
||||||
1592 | $longitude = $longitudeOrigin + atan2($easting, $northingAtFalseOrigin->asMetres()->getValue() - $this->northing->asMetres()->getValue() + $rhoF); |
||||||
1593 | } |
||||||
1594 | 9 | ||||||
1595 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
1596 | } |
||||||
1597 | |||||||
1598 | /** |
||||||
1599 | * Popular Visualisation Pseudo Mercator |
||||||
1600 | * Applies spherical formulas to the ellipsoid. As such does not have the properties of a true Mercator projection. |
||||||
1601 | 18 | */ |
|||||
1602 | public function popularVisualisationPseudoMercator( |
||||||
1603 | Geographic2D|Geographic3D $to, |
||||||
1604 | Angle $latitudeOfNaturalOrigin, |
||||||
1605 | Angle $longitudeOfNaturalOrigin, |
||||||
1606 | Length $falseEasting, |
||||||
1607 | Length $falseNorthing |
||||||
1608 | 18 | ): GeographicPoint { |
|||||
1609 | 18 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
1610 | 18 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
1611 | 18 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
1612 | 18 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
0 ignored issues
–
show
|
|||||||
1613 | 18 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
1614 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||||||
1615 | 18 | ||||||
1616 | 18 | $D = -$northing / $a; |
|||||
1617 | 18 | $latitude = M_PI / 2 - 2 * atan(M_E ** $D); |
|||||
1618 | $longitude = $easting / $a + $longitudeOrigin; |
||||||
1619 | 18 | ||||||
1620 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
1621 | } |
||||||
1622 | |||||||
1623 | /** |
||||||
1624 | * Similarity transformation |
||||||
1625 | * Defined for two-dimensional coordinate systems. |
||||||
1626 | 9 | */ |
|||||
1627 | public function similarityTransformation( |
||||||
1628 | Projected $to, |
||||||
1629 | Length $ordinate1OfEvaluationPointInTargetCRS, |
||||||
1630 | Length $ordinate2OfEvaluationPointInTargetCRS, |
||||||
1631 | Scale $scaleFactorForSourceCRSAxes, |
||||||
1632 | Angle $rotationAngleOfSourceCRSAxes, |
||||||
1633 | bool $inReverse |
||||||
1634 | 9 | ): self { |
|||||
1635 | 9 | $xs = $this->easting->asMetres()->getValue(); |
|||||
1636 | 9 | $ys = $this->northing->asMetres()->getValue(); |
|||||
1637 | 9 | $xo = $ordinate1OfEvaluationPointInTargetCRS->asMetres()->getValue(); |
|||||
1638 | 9 | $yo = $ordinate2OfEvaluationPointInTargetCRS->asMetres()->getValue(); |
|||||
1639 | 9 | $M = $scaleFactorForSourceCRSAxes->asUnity()->getValue(); |
|||||
1640 | $theta = $rotationAngleOfSourceCRSAxes->asRadians()->getValue(); |
||||||
1641 | 9 | ||||||
1642 | if ($inReverse) { |
||||||
1643 | $easting = (($xs - $xo) * cos($theta) - ($ys - $yo) * sin($theta)) / $M; |
||||||
1644 | $northing = (($xs - $xo) * sin($theta) + ($ys - $yo) * cos($theta)) / $M; |
||||||
1645 | 9 | } else { |
|||||
1646 | 9 | $easting = $xo + $xs * $M * cos($theta) + $ys * $M * sin($theta); |
|||||
1647 | $northing = $yo - $xs * $M * sin($theta) + $ys * $M * cos($theta); |
||||||
1648 | } |
||||||
1649 | 9 | ||||||
1650 | return self::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||||||
1651 | } |
||||||
1652 | |||||||
1653 | /** |
||||||
1654 | * Mercator (variant A) |
||||||
1655 | * Note that in these formulas the parameter latitude of natural origin (latO) is not used. However for this |
||||||
1656 | * Mercator (variant A) method the EPSG dataset includes this parameter, which must have a value of zero, for |
||||||
1657 | * completeness in CRS labelling. |
||||||
1658 | 18 | */ |
|||||
1659 | public function mercatorVariantA( |
||||||
1660 | Geographic2D|Geographic3D $to, |
||||||
1661 | Angle $latitudeOfNaturalOrigin, |
||||||
1662 | Angle $longitudeOfNaturalOrigin, |
||||||
1663 | Scale $scaleFactorAtNaturalOrigin, |
||||||
1664 | Length $falseEasting, |
||||||
1665 | Length $falseNorthing |
||||||
1666 | 18 | ): GeographicPoint { |
|||||
1667 | 18 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
1668 | 18 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
1669 | 18 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
0 ignored issues
–
show
|
|||||||
1670 | 18 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
0 ignored issues
–
show
|
|||||||
1671 | 18 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
1672 | 18 | $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
|||||
1673 | 18 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
1674 | 18 | $e = $ellipsoid->getEccentricity(); |
|||||
1675 | 18 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||||
1676 | 18 | $e4 = $e ** 4; |
|||||
1677 | 18 | $e6 = $e ** 6; |
|||||
1678 | $e8 = $e ** 8; |
||||||
1679 | 18 | ||||||
1680 | 18 | $t = M_E ** (($falseNorthing->asMetres()->getValue() - $this->northing->asMetres()->getValue()) / ($a * $scaleFactorOrigin)); |
|||||
1681 | $chi = M_PI / 2 - 2 * atan($t); |
||||||
1682 | 18 | ||||||
1683 | 18 | $latitude = $chi + ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) * sin(2 * $chi) + (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) * sin(4 * $chi) + (7 * $e6 / 120 + 81 * $e8 / 1120) * sin(6 * $chi) + (4279 * $e8 / 161280) * sin(8 * $chi); |
|||||
1684 | $longitude = $easting / ($a * $scaleFactorOrigin) + $longitudeOrigin; |
||||||
1685 | 18 | ||||||
1686 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
1687 | } |
||||||
1688 | |||||||
1689 | /** |
||||||
1690 | * Mercator (variant B) |
||||||
1691 | * Used for most nautical charts. |
||||||
1692 | 9 | */ |
|||||
1693 | public function mercatorVariantB( |
||||||
1694 | Geographic2D|Geographic3D $to, |
||||||
1695 | Angle $latitudeOf1stStandardParallel, |
||||||
1696 | Angle $longitudeOfNaturalOrigin, |
||||||
1697 | Length $falseEasting, |
||||||
1698 | Length $falseNorthing |
||||||
1699 | 9 | ): GeographicPoint { |
|||||
1700 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
1701 | 9 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
1702 | 9 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
0 ignored issues
–
show
|
|||||||
1703 | 9 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
1704 | 9 | $firstStandardParallel = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
|||||
1705 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
1706 | 9 | $e = $ellipsoid->getEccentricity(); |
|||||
1707 | 9 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||||
1708 | 9 | $e4 = $e ** 4; |
|||||
1709 | 9 | $e6 = $e ** 6; |
|||||
1710 | $e8 = $e ** 8; |
||||||
1711 | 9 | ||||||
1712 | $scaleFactorOrigin = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2); |
||||||
1713 | 9 | ||||||
1714 | 9 | $t = M_E ** (($falseNorthing->asMetres()->getValue() - $this->northing->asMetres()->getValue()) / ($a * $scaleFactorOrigin)); |
|||||
1715 | $chi = M_PI / 2 - 2 * atan($t); |
||||||
1716 | 9 | ||||||
1717 | 9 | $latitude = $chi + ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) * sin(2 * $chi) + (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) * sin(4 * $chi) + (7 * $e6 / 120 + 81 * $e8 / 1120) * sin(6 * $chi) + (4279 * $e8 / 161280) * sin(8 * $chi); |
|||||
1718 | $longitude = $easting / ($a * $scaleFactorOrigin) + $longitudeOrigin; |
||||||
1719 | 9 | ||||||
1720 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
1721 | } |
||||||
1722 | |||||||
1723 | /** |
||||||
1724 | * Hotine Oblique Mercator (variant A). |
||||||
1725 | 9 | */ |
|||||
1726 | public function obliqueMercatorHotineVariantA( |
||||||
1727 | Geographic2D|Geographic3D $to, |
||||||
1728 | Angle $latitudeOfProjectionCentre, |
||||||
1729 | Angle $longitudeOfProjectionCentre, |
||||||
1730 | Angle $azimuthAtProjectionCentre, |
||||||
1731 | Angle $angleFromRectifiedToSkewGrid, |
||||||
1732 | Scale $scaleFactorAtProjectionCentre, |
||||||
1733 | Length $falseEasting, |
||||||
1734 | Length $falseNorthing |
||||||
1735 | 9 | ): GeographicPoint { |
|||||
1736 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
1737 | 9 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
1738 | 9 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
1739 | 9 | $latC = $latitudeOfProjectionCentre->asRadians()->getValue(); |
|||||
1740 | 9 | $lonC = $longitudeOfProjectionCentre->asRadians()->getValue(); |
|||||
1741 | 9 | $alphaC = $azimuthAtProjectionCentre->asRadians()->getValue(); |
|||||
1742 | 9 | $kC = $scaleFactorAtProjectionCentre->asUnity()->getValue(); |
|||||
1743 | 9 | $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue(); |
|||||
1744 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
1745 | 9 | $e = $ellipsoid->getEccentricity(); |
|||||
1746 | 9 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||||
1747 | 9 | $e4 = $e ** 4; |
|||||
1748 | 9 | $e6 = $e ** 6; |
|||||
1749 | $e8 = $e ** 8; |
||||||
1750 | 9 | ||||||
1751 | 9 | $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2))); |
|||||
1752 | 9 | $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2); |
|||||
1753 | 9 | $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2); |
|||||
1754 | 9 | $D = $B * sqrt(1 - $e2) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2)); |
|||||
1755 | 9 | $DD = max(1, $D ** 2); |
|||||
1756 | 9 | $F = $D + sqrt($DD - 1) * static::sign($latC); |
|||||
1757 | 9 | $H = $F * $tO ** $B; |
|||||
1758 | 9 | $G = ($F - 1 / $F) / 2; |
|||||
1759 | 9 | $gammaO = self::asin(sin($alphaC) / $D); |
|||||
1760 | $lonO = $lonC - self::asin($G * tan($gammaO)) / $B; |
||||||
1761 | 9 | ||||||
1762 | 9 | $v = $easting * cos($gammaC) - $northing * sin($gammaC); |
|||||
1763 | $u = $northing * cos($gammaC) + $easting * sin($gammaC); |
||||||
1764 | 9 | ||||||
1765 | 9 | $Q = M_E ** -($B * $v / $A); |
|||||
1766 | 9 | $S = ($Q - 1 / $Q) / 2; |
|||||
1767 | 9 | $T = ($Q + 1 / $Q) / 2; |
|||||
1768 | 9 | $V = sin($B * $u / $A); |
|||||
1769 | 9 | $U = ($V * cos($gammaO) + $S * sin($gammaO)) / $T; |
|||||
1770 | $t = ($H / sqrt((1 + $U) / (1 - $U))) ** (1 / $B); |
||||||
1771 | 9 | ||||||
1772 | $chi = M_PI / 2 - 2 * atan($t); |
||||||
1773 | 9 | ||||||
1774 | 9 | $latitude = $chi + sin(2 * $chi) * ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) + sin(4 * $chi) * (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) + sin(6 * $chi) * (7 * $e6 / 120 + 81 * $e8 / 1120) + sin(8 * $chi) * (4279 * $e8 / 161280); |
|||||
1775 | $longitude = $lonO - atan2($S * cos($gammaO) - $V * sin($gammaO), cos($B * $u / $A)) / $B; |
||||||
1776 | 9 | ||||||
1777 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
1778 | } |
||||||
1779 | |||||||
1780 | /** |
||||||
1781 | * Hotine Oblique Mercator (variant B). |
||||||
1782 | 9 | */ |
|||||
1783 | public function obliqueMercatorHotineVariantB( |
||||||
1784 | Geographic2D|Geographic3D $to, |
||||||
1785 | Angle $latitudeOfProjectionCentre, |
||||||
1786 | Angle $longitudeOfProjectionCentre, |
||||||
1787 | Angle $azimuthAtProjectionCentre, |
||||||
1788 | Angle $angleFromRectifiedToSkewGrid, |
||||||
1789 | Scale $scaleFactorAtProjectionCentre, |
||||||
1790 | Length $eastingAtProjectionCentre, |
||||||
1791 | Length $northingAtProjectionCentre |
||||||
1792 | 9 | ): GeographicPoint { |
|||||
1793 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
1794 | 9 | $easting = $this->easting->asMetres()->getValue() - $eastingAtProjectionCentre->asMetres()->getValue(); |
|||||
1795 | 9 | $northing = $this->northing->asMetres()->getValue() - $northingAtProjectionCentre->asMetres()->getValue(); |
|||||
1796 | 9 | $latC = $latitudeOfProjectionCentre->asRadians()->getValue(); |
|||||
1797 | 9 | $lonC = $longitudeOfProjectionCentre->asRadians()->getValue(); |
|||||
1798 | 9 | $alphaC = $azimuthAtProjectionCentre->asRadians()->getValue(); |
|||||
1799 | 9 | $kC = $scaleFactorAtProjectionCentre->asUnity()->getValue(); |
|||||
1800 | 9 | $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue(); |
|||||
1801 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
1802 | 9 | $e = $ellipsoid->getEccentricity(); |
|||||
1803 | 9 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||||
1804 | 9 | $e4 = $e ** 4; |
|||||
1805 | 9 | $e6 = $e ** 6; |
|||||
1806 | $e8 = $e ** 8; |
||||||
1807 | 9 | ||||||
1808 | 9 | $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2))); |
|||||
1809 | 9 | $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2); |
|||||
1810 | 9 | $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2); |
|||||
1811 | 9 | $D = $B * sqrt(1 - $e2) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2)); |
|||||
1812 | 9 | $DD = max(1, $D ** 2); |
|||||
1813 | 9 | $F = $D + sqrt($DD - 1) * static::sign($latC); |
|||||
1814 | 9 | $H = $F * $tO ** $B; |
|||||
1815 | 9 | $G = ($F - 1 / $F) / 2; |
|||||
1816 | 9 | $gammaO = self::asin(sin($alphaC) / $D); |
|||||
1817 | 9 | $lonO = $lonC - self::asin($G * tan($gammaO)) / $B; |
|||||
1818 | 9 | $vC = 0; |
|||||
0 ignored issues
–
show
|
|||||||
1819 | if ($alphaC === M_PI / 2) { |
||||||
1820 | $uC = $A * ($lonC - $lonO); |
||||||
1821 | 9 | } else { |
|||||
1822 | $uC = ($A / $B) * atan2(sqrt($DD - 1), cos($alphaC)) * static::sign($latC); |
||||||
1823 | } |
||||||
1824 | 9 | ||||||
1825 | 9 | $v = $easting * cos($gammaC) - $northing * sin($gammaC); |
|||||
1826 | $u = $northing * cos($gammaC) + $easting * sin($gammaC) + (abs($uC) * static::sign($latC)); |
||||||
1827 | 9 | ||||||
1828 | 9 | $Q = M_E ** -($B * $v / $A); |
|||||
1829 | 9 | $S = ($Q - 1 / $Q) / 2; |
|||||
1830 | 9 | $T = ($Q + 1 / $Q) / 2; |
|||||
1831 | 9 | $V = sin($B * $u / $A); |
|||||
1832 | 9 | $U = ($V * cos($gammaO) + $S * sin($gammaO)) / $T; |
|||||
1833 | $t = ($H / sqrt((1 + $U) / (1 - $U))) ** (1 / $B); |
||||||
1834 | 9 | ||||||
1835 | $chi = M_PI / 2 - 2 * atan($t); |
||||||
1836 | 9 | ||||||
1837 | 9 | $latitude = $chi + sin(2 * $chi) * ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) + sin(4 * $chi) * (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) + sin(6 * $chi) * (7 * $e6 / 120 + 81 * $e8 / 1120) + sin(8 * $chi) * (4279 * $e8 / 161280); |
|||||
1838 | $longitude = $lonO - atan2($S * cos($gammaO) - $V * sin($gammaO), cos($B * $u / $A)) / $B; |
||||||
1839 | 9 | ||||||
1840 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
1841 | } |
||||||
1842 | |||||||
1843 | /** |
||||||
1844 | * Laborde Oblique Mercator. |
||||||
1845 | 9 | */ |
|||||
1846 | public function obliqueMercatorLaborde( |
||||||
1847 | Geographic2D|Geographic3D $to, |
||||||
1848 | Angle $latitudeOfProjectionCentre, |
||||||
1849 | Angle $longitudeOfProjectionCentre, |
||||||
1850 | Angle $azimuthAtProjectionCentre, |
||||||
1851 | Scale $scaleFactorAtProjectionCentre, |
||||||
1852 | Length $falseEasting, |
||||||
1853 | Length $falseNorthing |
||||||
1854 | 9 | ): GeographicPoint { |
|||||
1855 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
1856 | 9 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
1857 | 9 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
1858 | 9 | $latC = $latitudeOfProjectionCentre->asRadians()->getValue(); |
|||||
1859 | 9 | $lonC = $longitudeOfProjectionCentre->asRadians()->getValue(); |
|||||
1860 | 9 | $alphaC = $azimuthAtProjectionCentre->asRadians()->getValue(); |
|||||
1861 | 9 | $kC = $scaleFactorAtProjectionCentre->asUnity()->getValue(); |
|||||
1862 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
1863 | 9 | $e = $ellipsoid->getEccentricity(); |
|||||
1864 | $e2 = $ellipsoid->getEccentricitySquared(); |
||||||
1865 | 9 | ||||||
1866 | 9 | $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2))); |
|||||
1867 | 9 | $latS = self::asin(sin($latC) / $B); |
|||||
1868 | 9 | $R = $a * $kC * (sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2)); |
|||||
1869 | $C = log(tan(M_PI / 4 + $latS / 2)) - $B * log(tan(M_PI / 4 + $latC / 2) * ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2)); |
||||||
1870 | 9 | ||||||
1871 | $G = (new ComplexNumber(1 - cos(2 * $alphaC), sin(2 * $alphaC)))->divide(new ComplexNumber(12, 0)); |
||||||
1872 | 9 | ||||||
1873 | 9 | $H0 = new ComplexNumber($northing / $R, $easting / $R); |
|||||
1874 | $H = $H0->divide($H0->pow(3)->multiply($G)->add($H0)); |
||||||
1875 | 9 | do { |
|||||
1876 | 9 | $HN = $H; |
|||||
1877 | 9 | $H = $HN->pow(3)->multiply($G)->multiply(new ComplexNumber(2, 0))->add($H0)->divide($HN->pow(2)->multiply($G)->multiply(new ComplexNumber(3, 0))->add(new ComplexNumber(1, 0))); |
|||||
1878 | } while (abs($H0->subtract($H)->subtract($H->pow(3)->multiply($G))->getReal()) >= static::ITERATION_CONVERGENCE_FORMULA); |
||||||
1879 | 9 | ||||||
1880 | 9 | $LPrime = -1 * $H->getReal(); |
|||||
1881 | 9 | $PPrime = 2 * atan(M_E ** $H->getImaginary()) - M_PI / 2; |
|||||
1882 | 9 | $U = cos($PPrime) * cos($LPrime) * cos($latS) + cos($PPrime) * sin($LPrime) * sin($latS); |
|||||
1883 | 9 | $V = sin($PPrime); |
|||||
1884 | $W = cos($PPrime) * cos($LPrime) * sin($latS) - cos($PPrime) * sin($LPrime) * cos($latS); |
||||||
1885 | 9 | ||||||
1886 | 9 | $d = hypot($U, $V); |
|||||
1887 | if ($d === 0.0) { |
||||||
1888 | $L = 0; |
||||||
1889 | $P = static::sign($W) * M_PI / 2; |
||||||
1890 | 9 | } else { |
|||||
1891 | 9 | $L = 2 * atan($V / ($U + $d)); |
|||||
1892 | $P = atan($W / $d); |
||||||
1893 | } |
||||||
1894 | 9 | ||||||
1895 | $longitude = $lonC + ($L / $B); |
||||||
1896 | 9 | ||||||
1897 | $q = (log(tan(M_PI / 4 + $P / 2)) - $C) / $B; |
||||||
1898 | 9 | ||||||
1899 | $latitude = 2 * atan(M_E ** $q) - M_PI / 2; |
||||||
1900 | 9 | do { |
|||||
1901 | 9 | $latitudeN = $latitude; |
|||||
1902 | 9 | $latitude = 2 * atan(((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2) * M_E ** $q) - M_PI / 2; |
|||||
1903 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||||||
1904 | 9 | ||||||
1905 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
1906 | } |
||||||
1907 | |||||||
1908 | /** |
||||||
1909 | * Transverse Mercator. |
||||||
1910 | 144 | */ |
|||||
1911 | public function transverseMercator( |
||||||
1912 | Geographic2D|Geographic3D $to, |
||||||
1913 | Angle $latitudeOfNaturalOrigin, |
||||||
1914 | Angle $longitudeOfNaturalOrigin, |
||||||
1915 | Scale $scaleFactorAtNaturalOrigin, |
||||||
1916 | Length $falseEasting, |
||||||
1917 | Length $falseNorthing |
||||||
1918 | 144 | ): GeographicPoint { |
|||||
1919 | 144 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
1920 | 144 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
|||||
1921 | 144 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|||||
1922 | 144 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
1923 | 144 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
|||||
1924 | 144 | $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
|||||
1925 | 144 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
1926 | 144 | $e = $ellipsoid->getEccentricity(); |
|||||
1927 | $f = $ellipsoid->getFlattening(); |
||||||
1928 | 144 | ||||||
1929 | 144 | $n = $f / (2 - $f); |
|||||
1930 | $B = ($a / (1 + $n)) * (1 + $n ** 2 / 4 + $n ** 4 / 64 + $n ** 6 / 256 + (25 / 16384) * $n ** 8); |
||||||
1931 | 144 | ||||||
1932 | 144 | $h1 = $n / 2 - (2 / 3) * $n ** 2 + (5 / 16) * $n ** 3 + (41 / 180) * $n ** 4 - (127 / 288) * $n ** 5 + (7891 / 37800) * $n ** 6 + (72161 / 387072) * $n ** 7 - (18975107 / 50803200) * $n ** 8; |
|||||
1933 | 144 | $h2 = (13 / 48) * $n ** 2 - (3 / 5) * $n ** 3 + (557 / 1440) * $n ** 4 + (281 / 630) * $n ** 5 - (1983433 / 1935360) * $n ** 6 + (13769 / 28800) * $n ** 7 + (148003883 / 174182400) * $n ** 8; |
|||||
1934 | 144 | $h3 = (61 / 240) * $n ** 3 - (103 / 140) * $n ** 4 + (15061 / 26880) * $n ** 5 + (167603 / 181440) * $n ** 6 - (67102379 / 29030400) * $n ** 7 + (79682431 / 79833600) * $n ** 8; |
|||||
1935 | 144 | $h4 = (49561 / 161280) * $n ** 4 - (179 / 168) * $n ** 5 + (6601661 / 7257600) * $n ** 6 + (97445 / 49896) * $n ** 7 - (40176129013 / 7664025600) * $n ** 8; |
|||||
1936 | 144 | $h5 = (34729 / 80640) * $n ** 5 - (3418889 / 1995840) * $n ** 6 + (14644087 / 9123840) * $n ** 7 + (2605413599 / 622702080) * $n ** 8; |
|||||
1937 | 144 | $h6 = (212378941 / 319334400) * $n ** 6 - (30705481 / 10378368) * $n ** 7 + (175214326799 / 58118860800) * $n ** 8; |
|||||
1938 | 144 | $h7 = (1522256789 / 1383782400) * $n ** 7 - (16759934899 / 3113510400) * $n ** 8; |
|||||
1939 | $h8 = (1424729850961 / 743921418240) * $n ** 8; |
||||||
1940 | 144 | ||||||
1941 | 90 | if ($latitudeOrigin === 0.0) { |
|||||
0 ignored issues
–
show
|
|||||||
1942 | 63 | $mO = 0; |
|||||
1943 | } elseif ($latitudeOrigin === M_PI / 2) { |
||||||
1944 | 63 | $mO = $B * M_PI / 2; |
|||||
1945 | } elseif ($latitudeOrigin === -M_PI / 2) { |
||||||
1946 | $mO = $B * -M_PI / 2; |
||||||
1947 | 63 | } else { |
|||||
1948 | 63 | $qO = asinh(tan($latitudeOrigin)) - ($e * atanh($e * sin($latitudeOrigin))); |
|||||
1949 | 63 | $betaO = atan(sinh($qO)); |
|||||
1950 | 63 | $xiO0 = self::asin(sin($betaO)); |
|||||
1951 | 63 | $xiO1 = $h1 * sin(2 * $xiO0); |
|||||
1952 | 63 | $xiO2 = $h2 * sin(4 * $xiO0); |
|||||
1953 | 63 | $xiO3 = $h3 * sin(6 * $xiO0); |
|||||
1954 | 63 | $xiO4 = $h4 * sin(8 * $xiO0); |
|||||
1955 | 63 | $xiO5 = $h5 * sin(10 * $xiO0); |
|||||
1956 | 63 | $xiO6 = $h6 * sin(12 * $xiO0); |
|||||
1957 | 63 | $xiO7 = $h7 * sin(14 * $xiO0); |
|||||
1958 | 63 | $xiO8 = $h8 * sin(16 * $xiO0); |
|||||
1959 | 63 | $xiO = $xiO0 + $xiO1 + $xiO2 + $xiO3 + $xiO4 + $xiO5 + $xiO6 + $xiO7 + $xiO8; |
|||||
1960 | $mO = $B * $xiO; |
||||||
1961 | } |
||||||
1962 | 144 | ||||||
1963 | 144 | $h1 = $n / 2 - (2 / 3) * $n ** 2 + (37 / 96) * $n ** 3 - (1 / 360) * $n ** 4 - (81 / 512) * $n ** 5 + (96199 / 604800) * $n ** 6 - (5406467 / 38707200) * $n ** 7 + (7944359 / 67737600) * $n ** 8; |
|||||
1964 | 144 | $h2 = (1 / 48) * $n ** 2 + (1 / 15) * $n ** 3 - (437 / 1440) * $n ** 4 + (46 / 105) * $n ** 5 - (1118711 / 3870720) * $n ** 6 + (51841 / 1209600) * $n ** 7 + (24749483 / 348364800) * $n ** 8; |
|||||
1965 | 144 | $h3 = (17 / 480) * $n ** 3 - (37 / 840) * $n ** 4 - (209 / 4480) * $n ** 5 + (5569 / 90720) * $n ** 6 + (9261899 / 58060800) * $n ** 7 - (6457463 / 17740800) * $n ** 8; |
|||||
1966 | 144 | $h4 = (4397 / 161280) * $n ** 4 - (11 / 504) * $n ** 5 - (830251 / 7257600) * $n ** 6 + (466511 / 2494800) * $n ** 7 + (324154477 / 7664025600) * $n ** 8; |
|||||
1967 | 144 | $h5 = (4583 / 161280) * $n ** 5 - (108847 / 3991680) * $n ** 6 - (8005831 / 63866880) * $n ** 7 + (22894433 / 124540416) * $n ** 8; |
|||||
1968 | 144 | $h6 = (20648693 / 638668800) * $n ** 6 - (16363163 / 518918400) * $n ** 7 - (2204645983 / 12915302400) * $n ** 8; |
|||||
1969 | 144 | $h7 = (219941297 / 5535129600) * $n ** 7 - (497323811 / 12454041600) * $n ** 8; |
|||||
1970 | $h8 = (191773887257 / 3719607091200) * $n ** 8; |
||||||
1971 | 144 | ||||||
1972 | 144 | $eta = $easting / ($B * $kO); |
|||||
1973 | 144 | $xi = ($northing + $kO * $mO) / ($B * $kO); |
|||||
1974 | 144 | $xi1 = $h1 * sin(2 * $xi) * cosh(2 * $eta); |
|||||
1975 | 144 | $eta1 = $h1 * cos(2 * $xi) * sinh(2 * $eta); |
|||||
1976 | 144 | $xi2 = $h2 * sin(4 * $xi) * cosh(4 * $eta); |
|||||
1977 | 144 | $eta2 = $h2 * cos(4 * $xi) * sinh(4 * $eta); |
|||||
1978 | 144 | $xi3 = $h3 * sin(6 * $xi) * cosh(6 * $eta); |
|||||
1979 | 144 | $eta3 = $h3 * cos(6 * $xi) * sinh(6 * $eta); |
|||||
1980 | 144 | $xi4 = $h4 * sin(8 * $xi) * cosh(8 * $eta); |
|||||
1981 | 144 | $eta4 = $h4 * cos(8 * $xi) * sinh(8 * $eta); |
|||||
1982 | 144 | $xi5 = $h5 * sin(10 * $xi) * cosh(10 * $eta); |
|||||
1983 | 144 | $eta5 = $h5 * cos(10 * $xi) * sinh(10 * $eta); |
|||||
1984 | 144 | $xi6 = $h6 * sin(12 * $xi) * cosh(12 * $eta); |
|||||
1985 | 144 | $eta6 = $h6 * cos(12 * $xi) * sinh(12 * $eta); |
|||||
1986 | 144 | $xi7 = $h7 * sin(14 * $xi) * cosh(14 * $eta); |
|||||
1987 | 144 | $eta7 = $h7 * cos(14 * $xi) * sinh(14 * $eta); |
|||||
1988 | 144 | $xi8 = $h8 * sin(16 * $xi) * cosh(16 * $eta); |
|||||
1989 | 144 | $eta8 = $h8 * cos(16 * $xi) * sinh(16 * $eta); |
|||||
1990 | 144 | $xi0 = $xi - $xi1 - $xi2 - $xi3 - $xi4 - $xi5 - $xi6 - $xi7 - $xi8; |
|||||
1991 | $eta0 = $eta - $eta1 - $eta2 - $eta3 - $eta4 - $eta5 - $eta6 - $eta7 - $eta8; |
||||||
1992 | 144 | ||||||
1993 | $beta = self::asin(sin($xi0) / cosh($eta0)); |
||||||
1994 | 144 | ||||||
1995 | 144 | $QPrime = asinh(tan($beta)); |
|||||
1996 | $Q = asinh(tan($beta)); |
||||||
1997 | 144 | do { |
|||||
1998 | 144 | $QN = $Q; |
|||||
1999 | 144 | $Q = $QPrime + ($e * atanh($e * tanh($Q))); |
|||||
2000 | } while (abs($Q - $QN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||||||
2001 | 144 | ||||||
2002 | 144 | $latitude = atan(sinh($Q)); |
|||||
2003 | $longitude = $longitudeOrigin + self::asin(tanh($eta0) / cos($beta)); |
||||||
2004 | 144 | ||||||
2005 | $height = $this->height && $to instanceof Geographic3D ? $this->height : null; |
||||||
2006 | 144 | ||||||
2007 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), $height, $this->epoch); |
||||||
2008 | } |
||||||
2009 | |||||||
2010 | /** |
||||||
2011 | * Transverse Mercator Zoned Grid System |
||||||
2012 | * If locations fall outwith the fixed zones the general Transverse Mercator method (code 9807) must be used for |
||||||
2013 | * each zone. |
||||||
2014 | 18 | */ |
|||||
2015 | public function transverseMercatorZonedGrid( |
||||||
2016 | Geographic2D|Geographic3D $to, |
||||||
2017 | Angle $latitudeOfNaturalOrigin, |
||||||
2018 | Angle $initialLongitude, |
||||||
2019 | Angle $zoneWidth, |
||||||
2020 | Scale $scaleFactorAtNaturalOrigin, |
||||||
2021 | Length $falseEasting, |
||||||
2022 | Length $falseNorthing |
||||||
2023 | 18 | ): GeographicPoint { |
|||||
2024 | 18 | $Z = (int) substr((string) $this->easting->asMetres()->getValue(), 0, 2); |
|||||
2025 | $falseEasting = $falseEasting->add(new Metre($Z * 1000000)); |
||||||
2026 | 18 | ||||||
2027 | 18 | $W = $zoneWidth->asDegrees()->getValue(); |
|||||
2028 | $longitudeOrigin = $initialLongitude->add(new Degree($Z * $W - $W / 2)); |
||||||
2029 | 18 | ||||||
2030 | return $this->transverseMercator($to, $latitudeOfNaturalOrigin, $longitudeOrigin, $scaleFactorAtNaturalOrigin, $falseEasting, $falseNorthing); |
||||||
2031 | } |
||||||
2032 | |||||||
2033 | /** |
||||||
2034 | * General polynomial. |
||||||
2035 | * @param Coefficient[] $powerCoefficients |
||||||
2036 | */ |
||||||
2037 | public function generalPolynomial( |
||||||
2038 | Projected $to, |
||||||
2039 | Length $ordinate1OfEvaluationPointInSourceCRS, |
||||||
2040 | Length $ordinate2OfEvaluationPointInSourceCRS, |
||||||
2041 | Length $ordinate1OfEvaluationPointInTargetCRS, |
||||||
2042 | Length $ordinate2OfEvaluationPointInTargetCRS, |
||||||
2043 | Scale $scalingFactorForSourceCRSCoordDifferences, |
||||||
2044 | Scale $scalingFactorForTargetCRSCoordDifferences, |
||||||
2045 | Scale $A0, |
||||||
2046 | Scale $B0, |
||||||
2047 | array $powerCoefficients, |
||||||
2048 | bool $inReverse |
||||||
2049 | ): self { |
||||||
2050 | $xs = $this->easting->getValue(); |
||||||
2051 | $ys = $this->northing->getValue(); |
||||||
2052 | |||||||
2053 | $t = $this->generalPolynomialUnitless( |
||||||
2054 | $xs, |
||||||
2055 | $ys, |
||||||
2056 | $ordinate1OfEvaluationPointInSourceCRS, |
||||||
2057 | $ordinate2OfEvaluationPointInSourceCRS, |
||||||
2058 | $ordinate1OfEvaluationPointInTargetCRS, |
||||||
2059 | $ordinate2OfEvaluationPointInTargetCRS, |
||||||
2060 | $scalingFactorForSourceCRSCoordDifferences, |
||||||
2061 | $scalingFactorForTargetCRSCoordDifferences, |
||||||
2062 | $A0, |
||||||
2063 | $B0, |
||||||
2064 | $powerCoefficients, |
||||||
2065 | $inReverse |
||||||
2066 | ); |
||||||
2067 | |||||||
2068 | $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId(); |
||||||
2069 | $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId(); |
||||||
2070 | |||||||
2071 | return static::createFromEastingNorthing( |
||||||
2072 | $to, |
||||||
2073 | Length::makeUnit($t['xt'], $xtUnit), |
||||||
2074 | Length::makeUnit($t['yt'], $ytUnit), |
||||||
2075 | $this->epoch |
||||||
2076 | ); |
||||||
2077 | } |
||||||
2078 | |||||||
2079 | /** |
||||||
2080 | * New Zealand Map Grid. |
||||||
2081 | 27 | */ |
|||||
2082 | public function newZealandMapGrid( |
||||||
2083 | Geographic2D|Geographic3D $to, |
||||||
2084 | Angle $latitudeOfNaturalOrigin, |
||||||
2085 | Angle $longitudeOfNaturalOrigin, |
||||||
2086 | Length $falseEasting, |
||||||
2087 | Length $falseNorthing |
||||||
2088 | 27 | ): GeographicPoint { |
|||||
2089 | 27 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
2090 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||||||
2091 | 27 | ||||||
2092 | 27 | $z = new ComplexNumber( |
|||||
2093 | 27 | $this->northing->subtract($falseNorthing)->divide($a)->asMetres()->getValue(), |
|||||
2094 | 27 | $this->easting->subtract($falseEasting)->divide($a)->asMetres()->getValue(), |
|||||
2095 | ); |
||||||
2096 | 27 | ||||||
2097 | 27 | $B1 = new ComplexNumber(0.7557853228, 0.0); |
|||||
2098 | 27 | $B2 = new ComplexNumber(0.249204646, 0.003371507); |
|||||
2099 | 27 | $B3 = new ComplexNumber(-0.001541739, 0.041058560); |
|||||
2100 | 27 | $B4 = new ComplexNumber(-0.10162907, 0.01727609); |
|||||
2101 | 27 | $B5 = new ComplexNumber(-0.26623489, -0.36249218); |
|||||
2102 | 27 | $B6 = new ComplexNumber(-0.6870983, -1.1651967); |
|||||
2103 | 27 | $b1 = new ComplexNumber(1.3231270439, 0.0); |
|||||
2104 | 27 | $b2 = new ComplexNumber(-0.577245789, -0.007809598); |
|||||
2105 | 27 | $b3 = new ComplexNumber(0.508307513, -0.112208952); |
|||||
2106 | 27 | $b4 = new ComplexNumber(-0.15094762, 0.18200602); |
|||||
2107 | 27 | $b5 = new ComplexNumber(1.01418179, 1.64497696); |
|||||
2108 | $b6 = new ComplexNumber(1.9660549, 2.5127645); |
||||||
2109 | 27 | ||||||
2110 | 27 | $zeta = new ComplexNumber(0, 0); |
|||||
2111 | 27 | $zeta = $zeta->add($b1->multiply($z->pow(1))); |
|||||
2112 | 27 | $zeta = $zeta->add($b2->multiply($z->pow(2))); |
|||||
2113 | 27 | $zeta = $zeta->add($b3->multiply($z->pow(3))); |
|||||
2114 | 27 | $zeta = $zeta->add($b4->multiply($z->pow(4))); |
|||||
2115 | 27 | $zeta = $zeta->add($b5->multiply($z->pow(5))); |
|||||
2116 | $zeta = $zeta->add($b6->multiply($z->pow(6))); |
||||||
2117 | 27 | ||||||
2118 | 27 | for ($iterations = 0; $iterations < 2; ++$iterations) { |
|||||
2119 | 27 | $numerator = $z; |
|||||
2120 | 27 | $numerator = $numerator->add($B2->multiply($zeta->pow(2))->multiply(new ComplexNumber(1, 0))); |
|||||
2121 | 27 | $numerator = $numerator->add($B3->multiply($zeta->pow(3))->multiply(new ComplexNumber(2, 0))); |
|||||
2122 | 27 | $numerator = $numerator->add($B4->multiply($zeta->pow(4))->multiply(new ComplexNumber(3, 0))); |
|||||
2123 | 27 | $numerator = $numerator->add($B5->multiply($zeta->pow(5))->multiply(new ComplexNumber(4, 0))); |
|||||
2124 | $numerator = $numerator->add($B6->multiply($zeta->pow(6))->multiply(new ComplexNumber(5, 0))); |
||||||
2125 | 27 | ||||||
2126 | 27 | $denominator = $B1; |
|||||
2127 | 27 | $denominator = $denominator->add($B2->multiply($zeta->pow(1))->multiply(new ComplexNumber(2, 0))); |
|||||
2128 | 27 | $denominator = $denominator->add($B3->multiply($zeta->pow(2))->multiply(new ComplexNumber(3, 0))); |
|||||
2129 | 27 | $denominator = $denominator->add($B4->multiply($zeta->pow(3))->multiply(new ComplexNumber(4, 0))); |
|||||
2130 | 27 | $denominator = $denominator->add($B5->multiply($zeta->pow(4))->multiply(new ComplexNumber(5, 0))); |
|||||
2131 | $denominator = $denominator->add($B6->multiply($zeta->pow(5))->multiply(new ComplexNumber(6, 0))); |
||||||
2132 | 27 | ||||||
2133 | $zeta = $numerator->divide($denominator); |
||||||
2134 | } |
||||||
2135 | 27 | ||||||
2136 | 27 | $deltaPsi = $zeta->getReal(); |
|||||
2137 | 27 | $deltaLatitudeToOrigin = 0; |
|||||
2138 | 27 | $deltaLatitudeToOrigin += 1.5627014243 * $deltaPsi ** 1; |
|||||
2139 | 27 | $deltaLatitudeToOrigin += 0.5185406398 * $deltaPsi ** 2; |
|||||
2140 | 27 | $deltaLatitudeToOrigin += -0.03333098 * $deltaPsi ** 3; |
|||||
2141 | 27 | $deltaLatitudeToOrigin += -0.1052906 * $deltaPsi ** 4; |
|||||
2142 | 27 | $deltaLatitudeToOrigin += -0.0368594 * $deltaPsi ** 5; |
|||||
2143 | 27 | $deltaLatitudeToOrigin += 0.007317 * $deltaPsi ** 6; |
|||||
2144 | 27 | $deltaLatitudeToOrigin += 0.01220 * $deltaPsi ** 7; |
|||||
2145 | 27 | $deltaLatitudeToOrigin += 0.00394 * $deltaPsi ** 8; |
|||||
2146 | $deltaLatitudeToOrigin += -0.0013 * $deltaPsi ** 9; |
||||||
2147 | 27 | ||||||
2148 | 27 | $latitude = $latitudeOfNaturalOrigin->add(new ArcSecond($deltaLatitudeToOrigin / 0.00001)); |
|||||
2149 | $longitude = $longitudeOfNaturalOrigin->add(new Radian($zeta->getImaginary())); |
||||||
2150 | 27 | ||||||
2151 | return GeographicPoint::create($to, $latitude, $longitude, null, $this->epoch); |
||||||
2152 | } |
||||||
2153 | |||||||
2154 | /** |
||||||
2155 | * Complex polynomial. |
||||||
2156 | * Coordinate pairs treated as complex numbers. This exploits the correlation between the polynomial coefficients |
||||||
2157 | * and leads to a smaller number of coefficients than the general polynomials. |
||||||
2158 | 9 | */ |
|||||
2159 | public function complexPolynomial( |
||||||
2160 | Projected $to, |
||||||
2161 | Length $ordinate1OfEvaluationPointInSourceCRS, |
||||||
2162 | Length $ordinate2OfEvaluationPointInSourceCRS, |
||||||
2163 | Length $ordinate1OfEvaluationPointInTargetCRS, |
||||||
2164 | Length $ordinate2OfEvaluationPointInTargetCRS, |
||||||
2165 | Scale $scalingFactorForSourceCRSCoordDifferences, |
||||||
2166 | Scale $scalingFactorForTargetCRSCoordDifferences, |
||||||
2167 | Scale $A1, |
||||||
2168 | Scale $A2, |
||||||
2169 | Scale $A3, |
||||||
2170 | Scale $A4, |
||||||
2171 | Scale $A5, |
||||||
2172 | Scale $A6, |
||||||
2173 | ?Scale $A7 = null, |
||||||
2174 | ?Scale $A8 = null |
||||||
2175 | 9 | ): self { |
|||||
2176 | 9 | $xs = $this->easting->getValue(); |
|||||
2177 | 9 | $ys = $this->northing->getValue(); |
|||||
2178 | 9 | $xso = $ordinate1OfEvaluationPointInSourceCRS->getValue(); |
|||||
2179 | 9 | $yso = $ordinate2OfEvaluationPointInSourceCRS->getValue(); |
|||||
2180 | 9 | $xto = $ordinate1OfEvaluationPointInTargetCRS->getValue(); |
|||||
2181 | $yto = $ordinate2OfEvaluationPointInTargetCRS->getValue(); |
||||||
2182 | 9 | ||||||
2183 | 9 | $U = $scalingFactorForSourceCRSCoordDifferences->asUnity()->getValue() * ($xs - $xso); |
|||||
2184 | $V = $scalingFactorForSourceCRSCoordDifferences->asUnity()->getValue() * ($ys - $yso); |
||||||
2185 | 9 | ||||||
2186 | 9 | $mTdXdY = new ComplexNumber(0, 0); |
|||||
2187 | 9 | $mTdXdY = $mTdXdY->add((new ComplexNumber($A1->getValue(), $A2->getValue()))->multiply(new ComplexNumber($U, $V))->pow(1)); |
|||||
2188 | 9 | $mTdXdY = $mTdXdY->add((new ComplexNumber($A3->getValue(), $A4->getValue()))->multiply((new ComplexNumber($U, $V))->pow(2))); |
|||||
2189 | 9 | $mTdXdY = $mTdXdY->add((new ComplexNumber($A5->getValue(), $A6->getValue()))->multiply((new ComplexNumber($U, $V))->pow(3))); |
|||||
2190 | $mTdXdY = $mTdXdY->add((new ComplexNumber($A7 ? $A7->getValue() : 0, $A8 ? $A8->getValue() : 0))->multiply((new ComplexNumber($U, $V))->pow(4))); |
||||||
2191 | 9 | ||||||
2192 | 9 | $xt = $xs - $xso + $xto + $mTdXdY->getReal() / $scalingFactorForTargetCRSCoordDifferences->asUnity()->getValue(); |
|||||
2193 | $yt = $ys - $yso + $yto + $mTdXdY->getImaginary() / $scalingFactorForTargetCRSCoordDifferences->asUnity()->getValue(); |
||||||
2194 | 9 | ||||||
2195 | 9 | $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId(); |
|||||
2196 | $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId(); |
||||||
2197 | 9 | ||||||
2198 | 9 | return static::createFromEastingNorthing( |
|||||
2199 | 9 | $to, |
|||||
2200 | 9 | Length::makeUnit($xt, $xtUnit), |
|||||
2201 | 9 | Length::makeUnit($yt, $ytUnit), |
|||||
2202 | 9 | $this->epoch |
|||||
2203 | ); |
||||||
2204 | } |
||||||
2205 | |||||||
2206 | /** |
||||||
2207 | * Ordnance Survey National Transformation |
||||||
2208 | * Geodetic transformation between ETRS89 (or WGS 84) and OSGB36 / National Grid. Uses ETRS89 / National Grid as |
||||||
2209 | * an intermediate coordinate system for bi-linear interpolation of gridded grid coordinate differences. |
||||||
2210 | */ |
||||||
2211 | public function OSTN15( |
||||||
2212 | Geographic2D $to, |
||||||
2213 | OSTNOSGM15Grid $eastingAndNorthingDifferenceFile |
||||||
2214 | ): GeographicPoint { |
||||||
2215 | $asETRS89 = $eastingAndNorthingDifferenceFile->applyReverseHorizontalAdjustment($this); |
||||||
2216 | |||||||
2217 | return $asETRS89->transverseMercator($to, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000)); |
||||||
2218 | } |
||||||
2219 | 9 | ||||||
2220 | public function localOrthographic( |
||||||
2221 | Geographic2D $to, |
||||||
2222 | Angle $latitudeOfProjectionCentre, |
||||||
2223 | Angle $longitudeOfProjectionCentre, |
||||||
2224 | Angle $azimuthAtProjectionCentre, |
||||||
2225 | Scale $scaleFactorAtProjectionCentre, |
||||||
2226 | Length $eastingAtProjectionCentre, |
||||||
2227 | Length $northingAtProjectionCentre |
||||||
2228 | 9 | ): GeographicPoint { |
|||||
2229 | 9 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
|||||
2230 | 9 | $latitudeCentre = $latitudeOfProjectionCentre->asRadians()->getValue(); |
|||||
2231 | 9 | $longitudeCentre = $longitudeOfProjectionCentre->asRadians()->getValue(); |
|||||
2232 | 9 | $azimuthCentre = $azimuthAtProjectionCentre->asRadians()->getValue(); |
|||||
2233 | $scaleFactorCentre = $scaleFactorAtProjectionCentre->asUnity()->getValue(); |
||||||
2234 | 9 | ||||||
2235 | 9 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
|||||
2236 | 9 | $e2 = $ellipsoid->getEccentricitySquared(); |
|||||
2237 | $vc = $a / sqrt(1 - $e2 * sin($latitudeCentre) ** 2); |
||||||
2238 | 9 | ||||||
2239 | 9 | $easting = $this->easting->subtract($eastingAtProjectionCentre)->asMetres()->getValue(); |
|||||
2240 | $northing = $this->northing->subtract($northingAtProjectionCentre)->asMetres()->getValue(); |
||||||
2241 | 9 | ||||||
2242 | 9 | $xp = cos($azimuthCentre) * $easting / $scaleFactorCentre + sin($azimuthCentre) * $northing / $scaleFactorCentre; |
|||||
2243 | $yp = -sin($azimuthCentre) * $easting / $scaleFactorCentre + cos($azimuthCentre) * $northing / $scaleFactorCentre; |
||||||
2244 | 9 | ||||||
2245 | 9 | $B = 1 - $e2 * cos($latitudeCentre) ** 2; |
|||||
2246 | 9 | $C = $yp - $vc * sin($latitudeCentre) * cos($latitudeCentre) + $vc * (1 - $e2) * cos($latitudeCentre) * sin($latitudeCentre); |
|||||
2247 | 9 | $D = sqrt((1 - $e2) * ($a ** 2 - $xp ** 2) * (1 - $e2 * cos($latitudeCentre) ** 2) - $C ** 2); |
|||||
2248 | 9 | $xg = (-$C * sin($latitudeCentre) + $D * cos($latitudeCentre)) / $B; |
|||||
2249 | 9 | $yg = $xp; |
|||||
2250 | $zg = ($C * cos($latitudeCentre) * (1 - $e2) + $D * sin($latitudeCentre)) / $B; |
||||||
2251 | 9 | ||||||
2252 | 9 | $latitude = atan2($zg, (1 - $e2) * sqrt($xg ** 2 + $yg ** 2)); |
|||||
2253 | $longitude = $longitudeCentre + atan2($yg, $xg); |
||||||
2254 | 9 | ||||||
2255 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||||||
2256 | } |
||||||
2257 | } |
||||||
2258 |