ProjectedPoint   F
last analyzed

Complexity

Total Complexity 144

Size/Duplication

Total Lines 2188
Duplicated Lines 0 %

Test Coverage

Coverage 89.51%

Importance

Changes 0
Metric Value
eloc 1208
dl 0
loc 2188
ccs 1092
cts 1220
cp 0.8951
rs 0.8
c 0
b 0
f 0
wmc 144

60 Methods

Rating   Name   Duplication   Size   Complexity  
A getEasting() 0 3 1
A hyperbolicCassiniSoldner() 0 40 1
A getCoordinateEpoch() 0 3 1
A bonneSouthOrientated() 0 38 3
A obliqueMercatorHotineVariantB() 0 58 2
A lambertConicNearConformal() 0 49 3
D __construct() 0 44 18
A albersEqualArea() 0 44 2
A popularVisualisationPseudoMercator() 0 19 1
A createFromWestingNorthing() 0 3 1
A affineParametricTransform() 0 34 2
A obliqueMercatorLaborde() 0 60 4
A lambertAzimuthalEqualAreaSpherical() 0 32 5
A americanPolyconic() 0 46 3
A krovak() 0 46 3
A getWesting() 0 3 1
A columbiaUrban() 0 30 1
A obliqueStereographic() 0 49 2
A getHeight() 0 3 1
B __toString() 0 20 7
A newZealandMapGrid() 0 70 2
A localOrthographic() 0 36 1
A lambertCylindricalEqualArea() 0 26 1
A lambertConicConformal1SPVariantB() 0 45 3
A polarStereographicVariantC() 0 47 5
A mercatorVariantB() 0 28 1
B transverseMercator() 0 97 7
A equidistantCylindrical() 0 42 1
A complexPolynomial() 0 44 3
A bonne() 0 38 3
A lambertConicConformalWestOrientated() 0 42 3
A similarityTransformation() 0 24 2
A guamProjection() 0 33 2
A createFromWestingSouthing() 0 3 1
A asGeographicPoint() 0 6 1
A mercatorVariantA() 0 28 1
A offsets() 0 9 1
A lambertConicConformal2SP() 0 45 3
A transverseMercatorZonedGrid() 0 16 1
A lambertCylindricalEqualAreaSpherical() 0 18 1
A calculateDistance() 0 16 3
A krovakModified() 0 44 1
A polarStereographicVariantA() 0 41 4
A equalEarth() 0 32 2
A lambertAzimuthalEqualArea() 0 31 2
A polarStereographicVariantB() 0 46 5
A modifiedAzimuthalEquidistant() 0 29 1
A getSouthing() 0 3 1
A getCRS() 0 3 1
A OSTN15() 0 7 1
A lambertConicConformal1SP() 0 42 3
A lambertConicConformal2SPBelgium() 0 48 4
A createFromEastingNorthing() 0 3 1
A obliqueMercatorHotineVariantA() 0 52 1
A cassiniSoldner() 0 35 1
A lambertConicConformal2SPMichigan() 0 47 3
A create() 0 7 1
A getNorthing() 0 3 1
A generalPolynomial() 0 39 1
A convert() 0 7 2

How to fix   Complexity   

Complex Class

Complex classes like ProjectedPoint often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.

Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.

While breaking up the class, it is a good idea to analyze how other classes use ProjectedPoint, and based on these observations, apply Extract Interface, too.

1
<?php
2
3
/**
4
 * PHPCoord.
5
 *
6
 * @author Doug Wright
7
 */
8
declare(strict_types=1);
9
10
namespace PHPCoord\Point;
11
12
use DateTime;
13
use DateTimeImmutable;
14
use DateTimeInterface;
15
use PHPCoord\CoordinateOperation\AutoConversion;
16
use PHPCoord\CoordinateOperation\ComplexNumber;
17
use PHPCoord\CoordinateOperation\ConvertiblePoint;
18
use PHPCoord\CoordinateOperation\OSTNOSGM15Grid;
19
use PHPCoord\CoordinateReferenceSystem\Compound;
20
use PHPCoord\CoordinateReferenceSystem\Geocentric;
21
use PHPCoord\CoordinateReferenceSystem\Geographic2D;
22
use PHPCoord\CoordinateReferenceSystem\Geographic3D;
23
use PHPCoord\CoordinateReferenceSystem\Projected;
24
use PHPCoord\CoordinateReferenceSystem\Vertical;
25
use PHPCoord\CoordinateSystem\Axis;
26
use PHPCoord\CoordinateSystem\Cartesian;
27
use PHPCoord\Exception\InvalidAxesException;
28
use PHPCoord\Exception\InvalidCoordinateReferenceSystemException;
29
use PHPCoord\Exception\UnknownAxisException;
30
use PHPCoord\UnitOfMeasure\Angle\Angle;
31
use PHPCoord\UnitOfMeasure\Angle\ArcSecond;
32
use PHPCoord\UnitOfMeasure\Angle\Degree;
33
use PHPCoord\UnitOfMeasure\Angle\Radian;
34
use PHPCoord\UnitOfMeasure\Length\Length;
35
use PHPCoord\UnitOfMeasure\Length\Metre;
36
use PHPCoord\UnitOfMeasure\Scale\Coefficient;
37
use PHPCoord\UnitOfMeasure\Scale\Scale;
38
use PHPCoord\UnitOfMeasure\Scale\Unity;
39
40
use function abs;
41
use function asinh;
42
use function atan;
43
use function atan2;
44
use function atanh;
45
use function cos;
46
use function cosh;
47
use function count;
48
use function hypot;
49
use function implode;
50
use function is_nan;
51
use function log;
52
use function max;
53
use function sin;
54
use function sinh;
55
use function sqrt;
56
use function substr;
57
use function tan;
58
use function tanh;
59
use function assert;
60
61
use const M_E;
62
use const M_PI;
63
use const M_PI_2;
64
65
/**
66
 * Coordinate representing a point on a map projection.
67
 */
68
class ProjectedPoint extends Point implements ConvertiblePoint
69
{
70
    use AutoConversion {
71
        convert as protected autoConvert;
72
    }
73
74
    /**
75
     * Easting.
76
     */
77
    protected Length $easting;
78
79
    /**
80
     * Northing.
81
     */
82
    protected Length $northing;
83
84
    /**
85
     * Westing.
86
     */
87
    protected Length $westing;
88
89
    /**
90
     * Southing.
91
     */
92
    protected Length $southing;
93
94
    /**
95
     * Height.
96
     */
97
    protected ?Length $height;
98
99
    /**
100
     * Coordinate reference system.
101
     */
102
    protected Projected $crs;
103
104
    /**
105
     * Coordinate epoch (date for which the specified coordinates represented this point).
106
     */
107
    protected ?DateTimeImmutable $epoch;
108 1441
109
    protected function __construct(Projected $crs, ?Length $easting, ?Length $northing, ?Length $westing, ?Length $southing, ?DateTimeInterface $epoch, ?Length $height)
110 1441
    {
111
        if (count($crs->getCoordinateSystem()->getAxes()) === 2 && $height !== null) {
112
            throw new InvalidCoordinateReferenceSystemException('A 2D projected point must not include a height');
113
        }
114 1441
115
        if (count($crs->getCoordinateSystem()->getAxes()) === 3 && $height === null) {
116
            throw new InvalidCoordinateReferenceSystemException('A 3D projected point must include a height, none given');
117
        }
118 1441
119 1441
        $this->crs = $crs;
120
        $cs = $this->crs->getCoordinateSystem();
121 1441
122 1441
        $eastingAxis = $cs->hasAxisByName(Axis::EASTING) ? $cs->getAxisByName(Axis::EASTING) : null;
123 1441
        $westingAxis = $cs->hasAxisByName(Axis::WESTING) ? $cs->getAxisByName(Axis::WESTING) : null;
124 1441
        $northingAxis = $cs->hasAxisByName(Axis::NORTHING) ? $cs->getAxisByName(Axis::NORTHING) : null;
125
        $southingAxis = $cs->hasAxisByName(Axis::SOUTHING) ? $cs->getAxisByName(Axis::SOUTHING) : null;
126 1441
127 1315
        if ($easting && $eastingAxis) {
128 1315
            $this->easting = $easting::convert($easting, $eastingAxis->getUnitOfMeasureId());
129 126
            $this->westing = $this->easting->multiply(-1);
130 117
        } elseif ($westing && $westingAxis) {
131 117
            $this->westing = $westing::convert($westing, $westingAxis->getUnitOfMeasureId());
132
            $this->easting = $this->westing->multiply(-1);
133 9
        } else {
134
            throw new InvalidAxesException($crs->getCoordinateSystem()->getAxes());
135
        }
136 1432
137 1342
        if ($northing && $northingAxis) {
138 1342
            $this->northing = $northing::convert($northing, $northingAxis->getUnitOfMeasureId());
139 90
            $this->southing = $this->northing->multiply(-1);
140 81
        } elseif ($southing && $southingAxis) {
141 81
            $this->southing = $southing::convert($southing, $southingAxis->getUnitOfMeasureId());
142
            $this->northing = $this->southing->multiply(-1);
143 9
        } else {
144
            throw new InvalidAxesException($crs->getCoordinateSystem()->getAxes());
145
        }
146 1423
147 36
        if ($epoch instanceof DateTime) {
148
            $epoch = DateTimeImmutable::createFromMutable($epoch);
149 1423
        }
150
        $this->epoch = $epoch;
151 1423
152
        $this->height = $height;
153
    }
154 1198
155
    public static function create(Projected $crs, ?Length $easting, ?Length $northing, ?Length $westing, ?Length $southing, ?DateTimeInterface $epoch = null, ?Length $height = null): self
156 1198
    {
157 1198
        return match ($crs->getSRID()) {
158 1144
            Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID => new BritishNationalGridPoint($easting, $northing, $epoch),
0 ignored issues
show
Bug introduced by
It seems like $northing can also be of type null; however, parameter $northing of PHPCoord\Point\BritishNa...ridPoint::__construct() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

158
            Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID => new BritishNationalGridPoint($easting, /** @scrutinizer ignore-type */ $northing, $epoch),
Loading history...
Bug introduced by
It seems like $easting can also be of type null; however, parameter $easting of PHPCoord\Point\BritishNa...ridPoint::__construct() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

158
            Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID => new BritishNationalGridPoint(/** @scrutinizer ignore-type */ $easting, $northing, $epoch),
Loading history...
159 1108
            Projected::EPSG_TM75_IRISH_GRID => new IrishGridPoint($easting, $northing, $epoch),
0 ignored issues
show
Bug introduced by
It seems like $easting can also be of type null; however, parameter $easting of PHPCoord\Point\IrishGridPoint::__construct() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

159
            Projected::EPSG_TM75_IRISH_GRID => new IrishGridPoint(/** @scrutinizer ignore-type */ $easting, $northing, $epoch),
Loading history...
Bug introduced by
It seems like $northing can also be of type null; however, parameter $northing of PHPCoord\Point\IrishGridPoint::__construct() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

159
            Projected::EPSG_TM75_IRISH_GRID => new IrishGridPoint($easting, /** @scrutinizer ignore-type */ $northing, $epoch),
Loading history...
160 1198
            Projected::EPSG_IRENET95_IRISH_TRANSVERSE_MERCATOR => new IrishTransverseMercatorPoint($easting, $northing, $epoch),
0 ignored issues
show
Bug introduced by
It seems like $northing can also be of type null; however, parameter $northing of PHPCoord\Point\IrishTran...torPoint::__construct() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

160
            Projected::EPSG_IRENET95_IRISH_TRANSVERSE_MERCATOR => new IrishTransverseMercatorPoint($easting, /** @scrutinizer ignore-type */ $northing, $epoch),
Loading history...
Bug introduced by
It seems like $easting can also be of type null; however, parameter $easting of PHPCoord\Point\IrishTran...torPoint::__construct() does only seem to accept PHPCoord\UnitOfMeasure\Length\Length, maybe add an additional type check? ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-type  annotation

160
            Projected::EPSG_IRENET95_IRISH_TRANSVERSE_MERCATOR => new IrishTransverseMercatorPoint(/** @scrutinizer ignore-type */ $easting, $northing, $epoch),
Loading history...
161 1198
            default => new self($crs, $easting, $northing, $westing, $southing, $epoch, $height),
162
        };
163
    }
164 532
165
    public static function createFromEastingNorthing(Projected $crs, Length $easting, Length $northing, ?DateTimeInterface $epoch = null, ?Length $height = null): self
166 532
    {
167
        return static::create($crs, $easting, $northing, null, null, $epoch, $height);
168
    }
169 27
170
    public static function createFromWestingNorthing(Projected $crs, Length $westing, Length $northing, ?DateTimeInterface $epoch = null, ?Length $height = null): self
171 27
    {
172
        return static::create($crs, null, $northing, $westing, null, $epoch, $height);
173
    }
174 54
175
    public static function createFromWestingSouthing(Projected $crs, Length $westing, Length $southing, ?DateTimeInterface $epoch = null, ?Length $height = null): self
176 54
    {
177
        return static::create($crs, null, null, $westing, $southing, $epoch, $height);
178
    }
179 640
180
    public function getEasting(): Length
181 640
    {
182
        return $this->easting;
183
    }
184 658
185
    public function getNorthing(): Length
186 658
    {
187
        return $this->northing;
188
    }
189 90
190
    public function getWesting(): Length
191 90
    {
192
        return $this->westing;
193
    }
194 72
195
    public function getSouthing(): Length
196 72
    {
197
        return $this->southing;
198
    }
199 9
200
    public function getHeight(): ?Length
201 9
    {
202
        return $this->height;
203
    }
204 289
205
    public function getCRS(): Projected
206 289
    {
207
        return $this->crs;
208
    }
209 27
210
    public function getCoordinateEpoch(): ?DateTimeImmutable
211 27
    {
212
        return $this->epoch;
213
    }
214
215
    /**
216
     * Calculate distance between two points.
217
     * Because this is a simple grid, we can use Pythagoras.
218 63
     */
219
    public function calculateDistance(Point $to): Length
220
    {
221 63
        try {
222 63
            if ($to instanceof ConvertiblePoint) {
223
                $to = $to->convert($this->crs);
224
            }
225 63
        } finally {
226 9
            if ($to->getCRS()->getSRID() !== $this->crs->getSRID()) {
227
                throw new InvalidCoordinateReferenceSystemException('Can only calculate distances between two points in the same CRS');
228
            }
229
230 54
            /** @var ProjectedPoint $to */
231 54
            return new Metre(
232 54
                sqrt(
233 54
                    ($to->getEasting()->getValue() - $this->getEasting()->getValue()) ** 2 +
234 54
                    ($to->getNorthing()->getValue() - $this->getNorthing()->getValue()) ** 2
235 54
                )
236
            );
237
        }
238
    }
239 54
240
    public function asGeographicPoint(): GeographicPoint
241 54
    {
242 54
        $geographicPoint = $this->performOperation($this->crs->getDerivingConversion(), $this->crs->getBaseCRS(), true);
243
        assert($geographicPoint instanceof GeographicPoint);
244 54
245
        return $geographicPoint;
246
    }
247 118
248
    public function convert(Compound|Geocentric|Geographic2D|Geographic3D|Projected|Vertical $to, bool $ignoreBoundaryRestrictions = false): Point
249 118
    {
250 45
        if ($to->getSRID() === $this->crs->getBaseCRS()->getSRID()) {
251
            return $this->performOperation($this->crs->getDerivingConversion(), $this->crs->getBaseCRS(), true);
252
        }
253 100
254
        return $this->autoConvert($to, $ignoreBoundaryRestrictions);
255
    }
256 162
257
    public function __toString(): string
258 162
    {
259 162
        $values = [];
260 162
        foreach ($this->getCRS()->getCoordinateSystem()->getAxes() as $axis) {
261 144
            if ($axis->getName() === Axis::EASTING) {
262 162
                $values[] = $this->easting;
263 153
            } elseif ($axis->getName() === Axis::NORTHING) {
264 18
                $values[] = $this->northing;
265 18
            } elseif ($axis->getName() === Axis::WESTING) {
266 9
                $values[] = $this->westing;
267 9
            } elseif ($axis->getName() === Axis::SOUTHING) {
268
                $values[] = $this->southing;
269
            } elseif ($axis->getName() === Axis::ELLIPSOIDAL_HEIGHT) {
270
                $values[] = $this->height;
271
            } else {
272
                throw new UnknownAxisException(); // @codeCoverageIgnore
273
            }
274
        }
275 162
276
        return '(' . implode(', ', $values) . ')';
277
    }
278
279
    /**
280
     * Affine parametric transformation.
281 9
     */
282
    public function affineParametricTransform(
283
        Projected $to,
284
        Length $A0,
285
        Coefficient $A1,
286
        Coefficient $A2,
287
        Length $B0,
288
        Coefficient $B1,
289
        Coefficient $B2,
290
        bool $inReverse
291 9
    ): self {
292 9
        $xs = $this->easting->getValue(); // native unit to metre conversion already embedded in the scale factor
293
        $ys = $this->northing->getValue(); // native unit to metre conversion already embedded in the scale factor
294 9
295
        if ($inReverse) {
296
            $D = ($A1->getValue() * $B2->getValue()) - ($A2->getValue() * $B1->getValue());
297
            $a0 = (($A2->getValue() * $B0->asMetres()->getValue()) - ($B2->getValue() * $A0->asMetres()->getValue())) / $D;
298
            $b0 = (($B1->getValue() * $A0->asMetres()->getValue()) - ($A1->getValue() * $B0->asMetres()->getValue())) / $D;
299
            $a1 = $B2->getValue() / $D;
300
            $a2 = -$A2->getValue() / $D;
301
            $b1 = -$B1->getValue() / $D;
302
            $b2 = $A1->getValue() / $D;
303 9
        } else {
304 9
            $a0 = $A0->asMetres()->getValue();
305 9
            $a1 = $A1->getValue();
306 9
            $a2 = $A2->getValue();
307 9
            $b0 = $B0->asMetres()->getValue();
308 9
            $b1 = $B1->getValue();
309
            $b2 = $B2->getValue();
310
        }
311 9
312 9
        $xt = $a0 + ($a1 * $xs) + ($a2 * $ys);
313
        $yt = $b0 + ($b1 * $xs) + ($b2 * $ys);
314 9
315
        return static::create($to, new Metre($xt), new Metre($yt), new Metre(-$xt), new Metre(-$yt), $this->epoch);
316
    }
317
318
    /**
319
     * Albers Equal Area.
320 18
     */
321
    public function albersEqualArea(
322
        Geographic2D|Geographic3D $to,
323
        Angle $latitudeOfFalseOrigin,
324
        Angle $longitudeOfFalseOrigin,
325
        Angle $latitudeOf1stStandardParallel,
326
        Angle $latitudeOf2ndStandardParallel,
327
        Length $eastingAtFalseOrigin,
328
        Length $northingAtFalseOrigin
329 18
    ): GeographicPoint {
330 18
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
331 18
        $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue();
332 18
        $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue();
333 18
        $phiOrigin = $latitudeOfFalseOrigin->asRadians()->getValue();
334 18
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
335 18
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
336 18
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
337 18
        $e = $ellipsoid->getEccentricity();
338 18
        $e2 = $ellipsoid->getEccentricitySquared();
339 18
        $e4 = $e ** 4;
340
        $e6 = $e ** 6;
341 18
342 18
        $centralMeridianFirstParallel = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
343
        $centralMeridianSecondParallel = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
344 18
345 18
        $alphaOrigin = (1 - $e2) * (sin($phiOrigin) / (1 - $e2 * sin($phiOrigin) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phiOrigin)) / (1 + $e * sin($phiOrigin))));
346 18
        $alphaFirstParallel = (1 - $e2) * (sin($phi1) / (1 - $e2 * sin($phi1) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))));
347
        $alphaSecondParallel = (1 - $e2) * (sin($phi2) / (1 - $e2 * sin($phi2) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))));
348 18
349 18
        $n = ($centralMeridianFirstParallel ** 2 - $centralMeridianSecondParallel ** 2) / ($alphaSecondParallel - $alphaFirstParallel);
350 18
        $C = $centralMeridianFirstParallel ** 2 + $n * $alphaFirstParallel;
351 18
        $rhoOrigin = $a * sqrt($C - $n * $alphaOrigin) / $n;
352 18
        $rhoPrime = hypot($easting, $rhoOrigin - $northing);
353 18
        $alphaPrime = ($C - $rhoPrime ** 2 * $n ** 2 / $a ** 2) / $n;
354 18
        $betaPrime = self::asin($alphaPrime / (1 - (1 - $e2) / 2 / $e * log((1 - $e) / (1 + $e))));
355 9
        if ($n > 0) {
356
            $theta = atan2($easting, $rhoOrigin - $northing);
357 9
        } else {
358
            $theta = atan2(-$easting, $northing - $rhoOrigin);
359
        }
360 18
361 18
        $latitude = $betaPrime + (($e2 / 3 + 31 * $e4 / 180 + 517 * $e6 / 5040) * sin(2 * $betaPrime)) + ((23 * $e4 / 360 + 251 * $e6 / 3780) * sin(4 * $betaPrime)) + ((761 * $e6 / 45360) * sin(6 * $betaPrime));
362
        $longitude = $longitudeOfFalseOrigin->asRadians()->getValue() + ($theta / $n);
363 18
364
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
365
    }
366
367
    /**
368
     * American Polyconic.
369 9
     */
370
    public function americanPolyconic(
371
        Geographic2D|Geographic3D $to,
372
        Angle $latitudeOfNaturalOrigin,
373
        Angle $longitudeOfNaturalOrigin,
374
        Length $falseEasting,
375
        Length $falseNorthing
376 9
    ): GeographicPoint {
377 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
378 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
379 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
380 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
381 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
382 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
383 9
        $e = $ellipsoid->getEccentricity();
384 9
        $e2 = $ellipsoid->getEccentricitySquared();
385 9
        $e4 = $e ** 4;
386
        $e6 = $e ** 6;
387 9
388 9
        $i = (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256);
389 9
        $ii = (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024);
390 9
        $iii = (15 * $e4 / 256 + 45 * $e6 / 1024);
391
        $iv = (35 * $e6 / 3072);
392 9
393
        $MO = $a * ($i * $latitudeOrigin - $ii * sin(2 * $latitudeOrigin) + $iii * sin(4 * $latitudeOrigin) - $iv * sin(6 * $latitudeOrigin));
394 9
395
        if ($MO === $northing) {
396
            $latitude = 0;
397
            $longitude = $longitudeOrigin + $easting / $a;
398 9
        } else {
399 9
            $A = ($MO + $northing) / $a;
400
            $B = $A ** 2 + $easting ** 2 / $a ** 2;
401 9
402 9
            $latitude = $A;
403
            $C = sqrt(1 - $e2 * sin($latitude) ** 2) * tan($latitude);
404 9
            do {
405 9
                $latitudeN = $latitude;
406 9
                $Ma = $i * $latitude - $ii * sin(2 * $latitude) + $iii * sin(4 * $latitude) - $iv * sin(6 * $latitude);
407 9
                $MnPrime = $i - 2 * $ii * cos(2 * $latitude) + 4 * $iii * cos(4 * $latitude) - 6 * $iv * cos(6 * $latitude);
408 9
                $latitude = $latitude - ($A * ($C * $Ma + 1) - $Ma - $C * ($Ma ** 2 + $B) / 2) / ($e2 * sin(2 * $latitude) * ($Ma ** 2 + $B - 2 * $A * $Ma) / 4 * $C + ($A - $Ma) * ($C * $MnPrime - (2 / sin(2 * $latitude))) - $MnPrime);
409 9
                $C = sqrt(1 - $e2 * sin($latitude) ** 2) * tan($latitude);
410
            } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
411 9
412
            $longitude = $longitudeOrigin + self::asin($easting * $C / $a) / sin($latitude);
413
        }
414 9
415
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
416
    }
417
418
    /**
419
     * Bonne.
420 9
     */
421
    public function bonne(
422
        Geographic2D|Geographic3D $to,
423
        Angle $latitudeOfNaturalOrigin,
424
        Angle $longitudeOfNaturalOrigin,
425
        Length $falseEasting,
426
        Length $falseNorthing
427 9
    ): GeographicPoint {
428 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
429 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
430 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
431 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
432 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
433 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
434 9
        $e = $ellipsoid->getEccentricity();
435 9
        $e2 = $ellipsoid->getEccentricitySquared();
436 9
        $e4 = $e ** 4;
437
        $e6 = $e ** 6;
438 9
439 9
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
440 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
441
        $rho = hypot($easting, $a * $mO / sin($latitudeOrigin) - $northing) * static::sign($latitudeOrigin);
442 9
443 9
        $M = $a * $mO / sin($latitudeOrigin) + $MO - $rho;
444 9
        $mu = $M / ($a * (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256));
445
        $e1 = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2));
446 9
447 9
        $latitude = $mu + ((3 * $e1 / 2) - (27 * $e1 ** 3 / 32)) * sin(2 * $mu) + ((21 * $e1 ** 2 / 16) - (55 * $e1 ** 4 / 32)) * sin(4 * $mu) + (151 * $e1 ** 3 / 96) * sin(6 * $mu) + (1097 * $e1 ** 4 / 512) * sin(8 * $mu);
448
        $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2);
449 9
450
        if ($m === 0.0) {
451 9
            $longitude = $longitudeOrigin; // pole
452 9
        } elseif ($latitudeOrigin >= 0) {
453
            $longitude = $longitudeOrigin + $rho * atan2($easting, $a * $mO / sin($latitudeOrigin) - $northing) / $a / $m;
454
        } else {
455
            $longitude = $longitudeOrigin + $rho * atan2(-$easting, -($a * $mO / sin($latitudeOrigin) - $northing)) / $a / $m;
456
        }
457 9
458
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
459
    }
460
461
    /**
462
     * Bonne South Orientated.
463 9
     */
464
    public function bonneSouthOrientated(
465
        Geographic2D|Geographic3D $to,
466
        Angle $latitudeOfNaturalOrigin,
467
        Angle $longitudeOfNaturalOrigin,
468
        Length $falseEasting,
469
        Length $falseNorthing
470 9
    ): GeographicPoint {
471 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
472 9
        $westing = $falseEasting->asMetres()->getValue() - $this->westing->asMetres()->getValue();
473 9
        $southing = $falseNorthing->asMetres()->getValue() - $this->southing->asMetres()->getValue();
474 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
475 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
476 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
477 9
        $e = $ellipsoid->getEccentricity();
478 9
        $e2 = $ellipsoid->getEccentricitySquared();
479 9
        $e4 = $e ** 4;
480
        $e6 = $e ** 6;
481 9
482 9
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
483 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
484
        $rho = hypot($westing, $a * $mO / sin($latitudeOrigin) - $southing) * static::sign($latitudeOrigin);
485 9
486 9
        $M = $a * $mO / sin($latitudeOrigin) + $MO - $rho;
487 9
        $mu = $M / ($a * (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256));
488
        $e1 = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2));
489 9
490 9
        $latitude = $mu + ((3 * $e1 / 2) - (27 * $e1 ** 3 / 32)) * sin(2 * $mu) + ((21 * $e1 ** 2 / 16) - (55 * $e1 ** 4 / 32)) * sin(4 * $mu) + (151 * $e1 ** 3 / 96) * sin(6 * $mu) + (1097 * $e1 ** 4 / 512) * sin(8 * $mu);
491
        $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2);
492 9
493
        if ($m === 0.0) {
494 9
            $longitude = $longitudeOrigin; // pole
495 9
        } elseif ($latitudeOrigin >= 0) {
496
            $longitude = $longitudeOrigin + $rho * atan2($westing, $a * $mO / sin($latitudeOrigin) - $southing) / $a / $m;
497
        } else {
498
            $longitude = $longitudeOrigin + $rho * atan2(-$westing, -($a * $mO / sin($latitudeOrigin) - $southing)) / $a / $m;
499
        }
500 9
501
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
502
    }
503
504
    /**
505
     * Cartesian Grid Offsets
506
     * This transformation allows calculation of coordinates in the target system by adding the parameter value to the
507
     * coordinate values of the point in the source system.
508 9
     */
509
    public function offsets(
510
        Projected $to,
511
        Length $eastingOffset,
512
        Length $northingOffset
513 9
    ): self {
514 9
        $easting = $this->easting->asMetres()->getValue() + $eastingOffset->asMetres()->getValue();
515
        $northing = $this->northing->asMetres()->getValue() + $northingOffset->asMetres()->getValue();
516 9
517
        return static::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
518
    }
519
520
    /**
521
     * Cassini-Soldner.
522 9
     */
523
    public function cassiniSoldner(
524
        Geographic2D|Geographic3D $to,
525
        Angle $latitudeOfNaturalOrigin,
526
        Angle $longitudeOfNaturalOrigin,
527
        Length $falseEasting,
528
        Length $falseNorthing
529 9
    ): GeographicPoint {
530 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
531 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
532 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
533 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
534 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
535 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
536 9
        $e = $ellipsoid->getEccentricity();
537 9
        $e2 = $ellipsoid->getEccentricitySquared();
538 9
        $e4 = $e ** 4;
539
        $e6 = $e ** 6;
540 9
541
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
542 9
543 9
        $e1 = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2));
544 9
        $M = $MO + $northing;
545 9
        $mu = $M / ($a * (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256));
546
        $latitudeCentralMeridian = $mu + (3 * $e1 / 2 - 27 * $e1 ** 3 / 32) * sin(2 * $mu) + (21 * $e1 ** 2 / 16 - 55 * $e1 ** 4 / 32) * sin(4 * $mu) + (151 * $e1 ** 3 / 96) * sin(6 * $mu) + (1097 * $e1 ** 4 / 512) * sin(8 * $mu);
547 9
548 9
        $nu = $a / sqrt(1 - $e2 * sin($latitudeCentralMeridian) ** 2);
549
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitudeCentralMeridian) ** 2) ** 1.5;
550 9
551 9
        $T = tan($latitudeCentralMeridian) ** 2;
552
        $D = $easting / $nu;
553 9
554 9
        $latitude = $latitudeCentralMeridian - ($nu * tan($latitudeCentralMeridian) / $rho) * ($D ** 2 / 2 - (1 + 3 * $T) * $D ** 4 / 24);
555
        $longitude = $longitudeOrigin + ($D - $T * $D ** 3 / 3 + (1 + 3 * $T) * $T * $D ** 5 / 15) / cos($latitudeCentralMeridian);
556 9
557
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
558
    }
559
560
    /**
561
     * Hyperbolic Cassini-Soldner.
562 9
     */
563
    public function hyperbolicCassiniSoldner(
564
        Geographic2D|Geographic3D $to,
565
        Angle $latitudeOfNaturalOrigin,
566
        Angle $longitudeOfNaturalOrigin,
567
        Length $falseEasting,
568
        Length $falseNorthing
569 9
    ): GeographicPoint {
570 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
571 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
572 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
573 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
574 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
575 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
576 9
        $e = $ellipsoid->getEccentricity();
577 9
        $e2 = $ellipsoid->getEccentricitySquared();
578 9
        $e4 = $e ** 4;
579
        $e6 = $e ** 6;
580 9
581 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
582
        $e1 = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2));
583 9
584
        $latitude1 = $latitudeOrigin + $northing / 1567446;
585 9
586 9
        $nu = $a / sqrt(1 - $e2 * sin($latitude1) ** 2);
587
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude1) ** 2) ** 1.5;
588 9
589 9
        $qPrime = $northing ** 3 / (6 * $rho * $nu);
590 9
        $q = ($northing + $qPrime) ** 3 / (6 * $rho * $nu);
591
        $M = $MO + $northing + $q;
592 9
593 9
        $mu = $M / ($a * (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256));
594
        $latitudeCentralMeridian = $mu + (3 * $e1 / 2 - 27 * $e1 ** 3 / 32) * sin(2 * $mu) + (21 * $e1 ** 2 / 16 - 55 * $e1 ** 4 / 32) * sin(4 * $mu) + (151 * $e1 ** 3 / 96) * sin(6 * $mu) + (1097 * $e1 ** 4 / 512) * sin(8 * $mu);
595 9
596 9
        $T = tan($latitudeCentralMeridian) ** 2;
597
        $D = $easting / $nu;
598 9
599 9
        $latitude = $latitudeCentralMeridian - ($nu * tan($latitudeCentralMeridian) / $rho) * ($D ** 2 / 2 - (1 + 3 * $T) * $D ** 4 / 24);
600
        $longitude = $longitudeOrigin + ($D - $T * $D ** 3 / 3 + (1 + 3 * $T) * $T * $D ** 5 / 15) / cos($latitudeCentralMeridian);
601 9
602
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
603
    }
604
605
    /**
606
     * Colombia Urban.
607 9
     */
608
    public function columbiaUrban(
609
        Geographic2D|Geographic3D $to,
610
        Angle $latitudeOfNaturalOrigin,
611
        Angle $longitudeOfNaturalOrigin,
612
        Length $falseEasting,
613
        Length $falseNorthing,
614
        Length $projectionPlaneOriginHeight
615 9
    ): GeographicPoint {
616 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
617 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
618 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
619 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
620 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
621 9
        $heightOrigin = $projectionPlaneOriginHeight->asMetres()->getValue();
622 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
623
        $e2 = $ellipsoid->getEccentricitySquared();
624 9
625
        $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** 1.5;
626 9
627
        $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
628 9
629 9
        $B = tan($latitudeOrigin) / (2 * $rhoOrigin * $nuOrigin);
630 9
        $C = 1 + $heightOrigin / $a;
631
        $D = $rhoOrigin * (1 + $heightOrigin / ($a * (1 - $e2)));
632 9
633 9
        $latitude = $latitudeOrigin + ($northing / $D) - $B * ($easting / $C) ** 2;
634 9
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
635
        $longitude = $longitudeOrigin + $easting / ($C * $nu * cos($latitude));
636 9
637
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
638
    }
639
640
    /**
641
     * Equal Earth.
642 9
     */
643
    public function equalEarth(
644
        Geographic2D|Geographic3D $to,
645
        Angle $longitudeOfNaturalOrigin,
646
        Length $falseEasting,
647
        Length $falseNorthing
648 9
    ): GeographicPoint {
649 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
650 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
651 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
652 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
653 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
654 9
        $e = $ellipsoid->getEccentricity();
655 9
        $e2 = $ellipsoid->getEccentricitySquared();
656 9
        $e4 = $e ** 4;
657
        $e6 = $e ** 6;
658 9
659 9
        $qP = (1 - $e2) * ((1 / (1 - $e2)) - (1 / (2 * $e) * log((1 - $e) / (1 + $e))));
660
        $Rq = $a * sqrt($qP / 2);
661 9
662
        $theta = $northing / $Rq;
663 9
        do {
664 9
            $thetaN = $theta;
665 9
            $correctionFactor = ($theta * (1.340264 - 0.081106 * $theta ** 2 + $theta ** 6 * (0.000893 + 0.003796 * $theta ** 2)) - $northing / $Rq) / (1.340264 - 0.243318 * $theta ** 2 + $theta ** 6 * (0.006251 + 0.034164 * $theta ** 2));
666 9
            $theta -= $correctionFactor;
667
        } while (abs($theta - $thetaN) >= static::ITERATION_CONVERGENCE_FORMULA);
668 9
669
        $beta = self::asin(2 * sin($theta) / sqrt(3));
670 9
671 9
        $latitude = $beta + (($e2 / 3 + 31 * $e4 / 180 + 517 * $e6 / 5040) * sin(2 * $beta)) + ((23 * $e4 / 360 + 251 * $e6 / 3780) * sin(4 * $beta)) + ((761 * $e6 / 45360) * sin(6 * $beta));
672
        $longitude = $longitudeOrigin + sqrt(3) * $easting * (1.340264 - 0.243318 * $theta ** 2 + $theta ** 6 * (0.006251 + 0.034164 * $theta ** 2)) / (2 * $Rq * cos($theta));
673 9
674
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
675
    }
676
677
    /**
678
     * Equidistant Cylindrical
679
     * See method code 1029 for spherical development. See also Pseudo Plate Carree, method code 9825.
680 9
     */
681
    public function equidistantCylindrical(
682
        Geographic2D|Geographic3D $to,
683
        Angle $latitudeOf1stStandardParallel,
684
        Angle $longitudeOfNaturalOrigin,
685
        Length $falseEasting,
686
        Length $falseNorthing
687 9
    ): GeographicPoint {
688 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
689 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
690 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
691 9
        $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
692 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
693 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
694 9
        $e = $ellipsoid->getEccentricity();
695 9
        $e2 = $ellipsoid->getEccentricitySquared();
696 9
        $e4 = $e ** 4;
697 9
        $e6 = $e ** 6;
698 9
        $e8 = $e ** 8;
699 9
        $e10 = $e ** 10;
700 9
        $e12 = $e ** 12;
701
        $e14 = $e ** 14;
702 9
703 9
        $n = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2));
704 9
        $n2 = $n ** 2;
705 9
        $n3 = $n ** 3;
706 9
        $n4 = $n ** 4;
707 9
        $n5 = $n ** 5;
708 9
        $n6 = $n ** 6;
709 9
        $n7 = $n ** 7;
710
        $mu = $northing / ($a * (1 - 1 / 4 * $e2 - 3 / 64 * $e4 - 5 / 256 * $e6 - 175 / 16384 * $e8 - 441 / 65536 * $e10 - 4851 / 1048576 * $e12 - 14157 / 4194304 * $e14));
711 9
712 9
        $latitude = $mu + (3 / 2 * $n - 27 / 32 * $n3 + 269 / 512 * $n5 - 6607 / 24576 * $n7) * sin(2 * $mu)
713 9
            + (21 / 16 * $n2 - 55 / 32 * $n4 + 6759 / 4096 * $n6) * sin(4 * $mu)
714 9
            + (151 / 96 * $n3 - 417 / 128 * $n5 + 87963 / 20480 * $n7) * sin(6 * $mu)
715 9
            + (1097 / 512 * $n4 - 15543 / 2560 * $n6) * sin(8 * $mu)
716 9
            + (8011 / 2560 * $n5 - 69119 / 6144 * $n7) * sin(10 * $mu)
717 9
            + (293393 / 61440 * $n6) * sin(12 * $mu)
718
            + (6845701 / 860160 * $n7) * sin(14 * $mu);
719 9
720
        $longitude = $longitudeOrigin + $easting * sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2) / ($a * cos($latitudeFirstParallel));
721 9
722
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
723
    }
724
725
    /**
726
     * Guam Projection
727
     * Simplified form of Oblique Azimuthal Equidistant projection method.
728 9
     */
729
    public function guamProjection(
730
        Geographic2D|Geographic3D $to,
731
        Angle $latitudeOfNaturalOrigin,
732
        Angle $longitudeOfNaturalOrigin,
733
        Length $falseEasting,
734
        Length $falseNorthing
735 9
    ): GeographicPoint {
736 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
737 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
738 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
739 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
740 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
741 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
742 9
        $e = $ellipsoid->getEccentricity();
743 9
        $e2 = $ellipsoid->getEccentricitySquared();
744 9
        $e4 = $e ** 4;
745
        $e6 = $e ** 6;
746 9
747 9
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
748 9
        $e1 = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2));
749
        $i = (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256);
750 9
751
        $latitude = $latitudeOrigin;
752 9
        do {
753 9
            $latitudeN = $latitude;
754 9
            $M = $MO + $northing - ($easting ** 2 * tan($latitude) * sqrt(1 - $e2 * sin($latitude) ** 2) / (2 * $a));
755 9
            $mu = $M / ($a * $i);
756 9
            $latitude = $mu + (3 * $e1 / 2 - 27 * $e1 ** 3 / 32) * sin(2 * $mu) + (21 * $e1 ** 2 / 16 - 55 * $e1 ** 4 / 32) * sin(4 * $mu) + (151 * $e1 ** 3 / 96) * sin(6 * $mu) + (1097 * $e1 ** 4 / 512) * sin(8 * $mu);
757
        } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
758 9
759
        $longitude = $longitudeOrigin + $easting * sqrt(1 - $e2 * sin($latitude) ** 2) / ($a * cos($latitude));
760 9
761
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
762
    }
763
764
    /**
765
     * Krovak.
766 36
     */
767
    public function krovak(
768
        Geographic2D|Geographic3D $to,
769
        Angle $latitudeOfProjectionCentre,
770
        Angle $longitudeOfOrigin,
771
        Angle $coLatitudeOfConeAxis,
772
        Angle $latitudeOfPseudoStandardParallel,
773
        Scale $scaleFactorOnPseudoStandardParallel,
774
        Length $falseEasting,
775
        Length $falseNorthing
776 36
    ): GeographicPoint {
777 36
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
778 36
        $longitudeOffset = $this->crs->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue() - $to->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue();
779 36
        $westing = $this->westing->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
780 36
        $southing = $this->southing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
781 36
        $latitudeC = $latitudeOfProjectionCentre->asRadians()->getValue();
782 36
        $longitudeO = $longitudeOfOrigin->asRadians()->getValue();
783 36
        $alphaC = $coLatitudeOfConeAxis->asRadians()->getValue();
784 36
        $latitudeP = $latitudeOfPseudoStandardParallel->asRadians()->getValue();
785 36
        $kP = $scaleFactorOnPseudoStandardParallel->asUnity()->getValue();
786 36
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
787 36
        $e = $ellipsoid->getEccentricity();
788
        $e2 = $ellipsoid->getEccentricitySquared();
789 36
790 36
        $A = $a * sqrt(1 - $e2) / (1 - $e2 * sin($latitudeC) ** 2);
791 36
        $B = sqrt(1 + $e2 * cos($latitudeC) ** 4 / (1 - $e2));
792 36
        $upsilonO = self::asin(sin($latitudeC) / $B);
793 36
        $tO = tan(M_PI / 4 + $upsilonO / 2) * ((1 + $e * sin($latitudeC)) / (1 - $e * sin($latitudeC))) ** ($e * $B / 2) / (tan(M_PI / 4 + $latitudeC / 2) ** $B);
794 36
        $n = sin($latitudeP);
795
        $rO = $kP * $A / tan($latitudeP);
796 36
797 36
        $r = hypot($southing, $westing) ?: 1;
798 36
        $theta = atan2($westing, $southing);
799 36
        $D = $theta / sin($latitudeP);
800 36
        $T = 2 * (atan(($rO / $r) ** (1 / $n) * tan(M_PI / 4 + $latitudeP / 2)) - M_PI / 4);
801 36
        $U = self::asin(cos($alphaC) * sin($T) - sin($alphaC) * cos($T) * cos($D));
802
        $V = self::asin(cos($T) * sin($D) / cos($U));
803 36
804
        $latitude = $U;
805 36
        do {
806 36
            $latitudeN = $latitude;
807 36
            $latitude = 2 * (atan($tO ** (-1 / $B) * tan($U / 2 + M_PI / 4) ** (1 / $B) * ((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2)) - M_PI / 4);
808
        } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
809 36
810
        $longitude = $longitudeO + $longitudeOffset - $V / $B;
811 36
812
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
813
    }
814
815
    /**
816
     * Krovak Modified
817
     * Incorporates a polynomial transformation which is defined to be exact and for practical purposes is considered
818
     * to be a map projection.
819 18
     */
820
    public function krovakModified(
821
        Geographic2D|Geographic3D $to,
822
        Angle $latitudeOfProjectionCentre,
823
        Angle $longitudeOfOrigin,
824
        Angle $coLatitudeOfConeAxis,
825
        Angle $latitudeOfPseudoStandardParallel,
826
        Scale $scaleFactorOnPseudoStandardParallel,
827
        Length $falseEasting,
828
        Length $falseNorthing,
829
        Length $ordinate1OfEvaluationPoint,
830
        Length $ordinate2OfEvaluationPoint,
831
        Coefficient $C1,
832
        Coefficient $C2,
833
        Coefficient $C3,
834
        Coefficient $C4,
835
        Coefficient $C5,
836
        Coefficient $C6,
837
        Coefficient $C7,
838
        Coefficient $C8,
839
        Coefficient $C9,
840
        Coefficient $C10
841 18
    ): GeographicPoint {
842 18
        $Xr = $this->getSouthing()->asMetres()->getValue() - $falseNorthing->asMetres()->getValue() - $ordinate1OfEvaluationPoint->asMetres()->getValue();
843 18
        $Yr = $this->getWesting()->asMetres()->getValue() - $falseEasting->asMetres()->getValue() - $ordinate2OfEvaluationPoint->asMetres()->getValue();
844 18
        $c1 = $C1->asUnity()->getValue();
845 18
        $c2 = $C2->asUnity()->getValue();
846 18
        $c3 = $C3->asUnity()->getValue();
847 18
        $c4 = $C4->asUnity()->getValue();
848 18
        $c5 = $C5->asUnity()->getValue();
849 18
        $c6 = $C6->asUnity()->getValue();
850 18
        $c7 = $C7->asUnity()->getValue();
851 18
        $c8 = $C8->asUnity()->getValue();
852 18
        $c9 = $C9->asUnity()->getValue();
853
        $c10 = $C10->asUnity()->getValue();
854 18
855 18
        $dX = $c1 + $c3 * $Xr - $c4 * $Yr - 2 * $c6 * $Xr * $Yr + $c5 * ($Xr ** 2 - $Yr ** 2) + $c7 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) - $c8 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) + 4 * $c9 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c10 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2);
856
        $dY = $c2 + $c3 * $Yr + $c4 * $Xr + 2 * $c5 * $Xr * $Yr + $c6 * ($Xr ** 2 - $Yr ** 2) + $c8 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) + $c7 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) - 4 * $c10 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c9 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2);
857 18
858 18
        $Xp = $this->getSouthing()->asMetres()->getValue() - $falseNorthing->asMetres()->getValue() + $dX;
859
        $Yp = $this->getWesting()->asMetres()->getValue() - $falseEasting->asMetres()->getValue() + $dY;
860 18
861
        $asKrovak = self::create($this->crs, new Metre(-$Yp), new Metre(-$Xp), new Metre($Yp), new Metre($Xp), $this->epoch);
862 18
863
        return $asKrovak->krovak($to, $latitudeOfProjectionCentre, $longitudeOfOrigin, $coLatitudeOfConeAxis, $latitudeOfPseudoStandardParallel, $scaleFactorOnPseudoStandardParallel, new Metre(0), new Metre(0));
864
    }
865
866
    /**
867
     * Lambert Azimuthal Equal Area
868
     * This is the ellipsoidal form of the projection.
869 9
     */
870
    public function lambertAzimuthalEqualArea(
871
        Geographic2D|Geographic3D $to,
872
        Angle $latitudeOfNaturalOrigin,
873
        Angle $longitudeOfNaturalOrigin,
874
        Length $falseEasting,
875
        Length $falseNorthing
876 9
    ): GeographicPoint {
877 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
878 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
879 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
880 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
881 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
882 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
883 9
        $e = $ellipsoid->getEccentricity();
884 9
        $e2 = $ellipsoid->getEccentricitySquared();
885 9
        $e4 = $e ** 4;
886
        $e6 = $e ** 6;
887 9
888 9
        $qO = (1 - $e2) * ((sin($latitudeOrigin) / (1 - $e2 * sin($latitudeOrigin) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin)))));
889 9
        $qP = (1 - $e2) * ((1 / (1 - $e2)) - ((1 / (2 * $e)) * log((1 - $e) / (1 + $e))));
890 9
        $betaO = self::asin($qO / $qP);
891 9
        $Rq = $a * sqrt($qP / 2);
892 9
        $D = $a * (cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2)) / ($Rq * cos($betaO));
893 9
        $rho = hypot($easting / $D, $D * $northing) ?: 1;
894 9
        $C = 2 * self::asin($rho / (2 * $Rq));
895
        $beta = self::asin(cos($C) * sin($betaO) + ($D * $northing * sin($C) * cos($betaO)) / $rho);
896 9
897 9
        $latitude = $beta + (($e2 / 3 + 31 * $e4 / 180 + 517 * $e6 / 5040) * sin(2 * $beta)) + ((23 * $e4 / 360 + 251 * $e6 / 3780) * sin(4 * $beta)) + ((761 * $e6 / 45360) * sin(6 * $beta));
898
        $longitude = $longitudeOrigin + atan2($easting * sin($C), $D * $rho * cos($betaO) * cos($C) - $D ** 2 * $northing * sin($betaO) * sin($C));
899 9
900
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
901
    }
902
903
    /**
904
     * Lambert Azimuthal Equal Area (Spherical)
905
     * This is the spherical form of the projection.  See coordinate operation method Lambert Azimuthal Equal Area
906
     * (code 9820) for ellipsoidal form.  Differences of several tens of metres result from comparison of the two
907
     * methods.
908 9
     */
909
    public function lambertAzimuthalEqualAreaSpherical(
910
        Geographic2D|Geographic3D $to,
911
        Angle $latitudeOfNaturalOrigin,
912
        Angle $longitudeOfNaturalOrigin,
913
        Length $falseEasting,
914
        Length $falseNorthing
915 9
    ): GeographicPoint {
916 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
917 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
918 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
919 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
920 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
921
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
922 9
923 9
        $rho = hypot($easting, $northing) ?: 1;
924
        $c = 2 * self::asin($rho / (2 * $a));
925 9
926
        $latitude = self::asin(cos($c) * sin($latitudeOrigin) + ($northing * sin($c) * cos($latitudeOrigin) / $rho));
927 9
928
        if ($latitudeOrigin === 90.0) {
0 ignored issues
show
introduced by
The condition $latitudeOrigin === 90.0 is always false.
Loading history...
929 9
            $longitude = $longitudeOrigin + atan($easting / -$northing);
930
        } elseif ($latitudeOrigin === -90.0) {
0 ignored issues
show
introduced by
The condition $latitudeOrigin === -90.0 is always false.
Loading history...
931
            $longitude = $longitudeOrigin + atan($easting / $northing);
932 9
        } else {
933 9
            $longitudeDenominator = ($rho * cos($latitudeOrigin) * cos($c) - $northing * sin($latitudeOrigin) * sin($c));
934 9
            $longitude = $longitudeOrigin + atan($easting * sin($c) / $longitudeDenominator);
935 9
            if ($longitudeDenominator < 0) {
936
                $longitude += M_PI;
937
            }
938
        }
939 9
940
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
941
    }
942
943
    /**
944
     * Lambert Conic Conformal (1SP).
945 9
     */
946
    public function lambertConicConformal1SP(
947
        Geographic2D|Geographic3D $to,
948
        Angle $latitudeOfNaturalOrigin,
949
        Angle $longitudeOfNaturalOrigin,
950
        Scale $scaleFactorAtNaturalOrigin,
951
        Length $falseEasting,
952
        Length $falseNorthing
953 9
    ): GeographicPoint {
954 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
955 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
956 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
957 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
958 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
959 9
        $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
960 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
961 9
        $e = $ellipsoid->getEccentricity();
962
        $e2 = $ellipsoid->getEccentricitySquared();
963 9
964 9
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
965 9
        $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2);
966 9
        $n = sin($latitudeOrigin);
967 9
        $F = $mO / ($n * $tO ** $n);
968 9
        $rO = $a * $F * $tO ** $n * $scaleFactorOrigin;
969 9
        $r = hypot($easting, $rO - $northing);
970 9
        if ($n >= 0) {
971
            $theta = atan2($easting, $rO - $northing);
972
        } else {
973
            $r = -$r;
974
            $theta = atan2(-$easting, -($rO - $northing));
975
        }
976 9
977
        $t = ($r / ($a * $scaleFactorOrigin * $F)) ** (1 / $n);
978 9
979
        $latitude = M_PI / (2 - 2 * atan($t));
980 9
        do {
981 9
            $latitudeN = $latitude;
982 9
            $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
983
        } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
984 9
985
        $longitude = $theta / $n + $longitudeOrigin;
986 9
987
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
988
    }
989
990
    /**
991
     * Lambert Conic Conformal (west orientated).
992
     */
993
    public function lambertConicConformalWestOrientated(
994
        Geographic2D|Geographic3D $to,
995
        Angle $latitudeOfNaturalOrigin,
996
        Angle $longitudeOfNaturalOrigin,
997
        Scale $scaleFactorAtNaturalOrigin,
998
        Length $falseEasting,
999
        Length $falseNorthing
1000
    ): GeographicPoint {
1001
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1002
        $westing = $falseEasting->asMetres()->getValue() - $this->westing->asMetres()->getValue();
1003
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
1004
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1005
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1006
        $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1007
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1008
        $e = $ellipsoid->getEccentricity();
1009
        $e2 = $ellipsoid->getEccentricitySquared();
1010
1011
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1012
        $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2);
1013
        $n = sin($latitudeOrigin);
1014
        $F = $mO / ($n * $tO ** $n);
1015
        $rO = $a * $F * $tO ** $n ** $scaleFactorOrigin;
1016
        $r = hypot($westing, $rO - $northing);
1017
        if ($n >= 0) {
1018
            $theta = atan2($westing, $rO - $northing);
1019
        } else {
1020
            $r = -$r;
1021
            $theta = atan2(-$westing, -($rO - $northing));
1022
        }
1023
1024
        $t = ($r / ($a * $scaleFactorOrigin * $F)) ** (1 / $n);
1025
1026
        $latitude = M_PI / (2 - 2 * atan($t));
1027
        do {
1028
            $latitudeN = $latitude;
1029
            $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1030
        } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
1031
1032
        $longitude = $theta / $n + $longitudeOrigin;
1033
1034
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1035
    }
1036
1037
    /**
1038
     * Lambert Conic Conformal (1SP) Variant B.
1039
     */
1040
    public function lambertConicConformal1SPVariantB(
1041
        Geographic2D|Geographic3D $to,
1042
        Angle $latitudeOfNaturalOrigin,
1043
        Scale $scaleFactorAtNaturalOrigin,
1044
        Angle $latitudeOfFalseOrigin,
1045
        Angle $longitudeOfFalseOrigin,
1046
        Length $eastingAtFalseOrigin,
1047
        Length $northingAtFalseOrigin
1048
    ): GeographicPoint {
1049
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1050
        $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue();
1051
        $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue();
1052
        $latitudeNaturalOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1053
        $latitudeFalseOrigin = $latitudeOfFalseOrigin->asRadians()->getValue();
1054
        $longitudeFalseOrigin = $longitudeOfFalseOrigin->asRadians()->getValue();
1055
        $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1056
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1057
        $e = $ellipsoid->getEccentricity();
1058
        $e2 = $ellipsoid->getEccentricitySquared();
1059
1060
        $mO = cos($latitudeNaturalOrigin) / sqrt(1 - $e2 * sin($latitudeNaturalOrigin) ** 2);
1061
        $tO = tan(M_PI / 4 - $latitudeNaturalOrigin / 2) / ((1 - $e * sin($latitudeNaturalOrigin)) / (1 + $e * sin($latitudeNaturalOrigin))) ** ($e / 2);
1062
        $tF = tan(M_PI / 4 - $latitudeFalseOrigin / 2) / ((1 - $e * sin($latitudeFalseOrigin)) / (1 + $e * sin($latitudeFalseOrigin))) ** ($e / 2);
1063
        $n = sin($latitudeNaturalOrigin);
1064
        $F = $mO / ($n * $tO ** $n);
1065
        $rF = $a * $F * $tF ** $n * $scaleFactorOrigin;
1066
        $r = hypot($easting, $rF - $northing);
1067
        if ($n >= 0) {
1068
            $theta = atan2($easting, $rF - $northing);
1069
        } else {
1070
            $r = -$r;
1071
            $theta = atan2(-$easting, -($rF - $northing));
1072
        }
1073
1074
        $t = ($r / ($a * $scaleFactorOrigin * $F)) ** (1 / $n);
1075
1076
        $latitude = M_PI / (2 - 2 * atan($t));
1077
        do {
1078
            $latitudeN = $latitude;
1079
            $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1080
        } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
1081
1082
        $longitude = $theta / $n + $longitudeFalseOrigin;
1083
1084
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1085
    }
1086
1087
    /**
1088
     * Lambert Conic Conformal (2SP).
1089 19
     */
1090
    public function lambertConicConformal2SP(
1091
        Geographic2D|Geographic3D $to,
1092
        Angle $latitudeOfFalseOrigin,
1093
        Angle $longitudeOfFalseOrigin,
1094
        Angle $latitudeOf1stStandardParallel,
1095
        Angle $latitudeOf2ndStandardParallel,
1096
        Length $eastingAtFalseOrigin,
1097
        Length $northingAtFalseOrigin
1098 19
    ): GeographicPoint {
1099 19
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1100 19
        $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue();
1101 19
        $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue();
1102 19
        $lambdaOrigin = $longitudeOfFalseOrigin->asRadians()->getValue();
1103 19
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1104 19
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1105 19
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1106 19
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1107 19
        $e = $ellipsoid->getEccentricity();
1108
        $e2 = $ellipsoid->getEccentricitySquared();
1109 19
1110 19
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1111 19
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1112 19
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1113 19
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1114 19
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1115 19
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1116 19
        $F = $m1 / ($n * $t1 ** $n);
1117 19
        $rF = $a * $F * $tF ** $n;
1118 19
        $r = hypot($easting, $rF - $northing) * static::sign($n);
1119 19
        $t = ($r / ($a * $F)) ** (1 / $n);
1120 19
        if ($n >= 0) {
1121
            $theta = atan2($easting, $rF - $northing);
1122
        } else {
1123
            $theta = atan2(-$easting, -($rF - $northing));
1124
        }
1125 19
1126
        $latitude = M_PI / 2 - 2 * atan($t);
1127 19
        do {
1128 19
            $latitudeN = $latitude;
1129 19
            $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1130
        } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
1131 19
1132
        $longitude = $theta / $n + $lambdaOrigin;
1133 19
1134
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1135
    }
1136
1137
    /**
1138
     * Lambert Conic Conformal (2SP Michigan).
1139 9
     */
1140
    public function lambertConicConformal2SPMichigan(
1141
        Geographic2D|Geographic3D $to,
1142
        Angle $latitudeOfFalseOrigin,
1143
        Angle $longitudeOfFalseOrigin,
1144
        Angle $latitudeOf1stStandardParallel,
1145
        Angle $latitudeOf2ndStandardParallel,
1146
        Length $eastingAtFalseOrigin,
1147
        Length $northingAtFalseOrigin,
1148
        Scale $ellipsoidScalingFactor
1149 9
    ): GeographicPoint {
1150 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1151 9
        $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue();
1152 9
        $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue();
1153 9
        $lambdaOrigin = $longitudeOfFalseOrigin->asRadians()->getValue();
1154 9
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1155 9
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1156 9
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1157 9
        $K = $ellipsoidScalingFactor->asUnity()->getValue();
1158 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1159 9
        $e = $ellipsoid->getEccentricity();
1160
        $e2 = $ellipsoid->getEccentricitySquared();
1161 9
1162 9
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1163 9
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1164 9
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1165 9
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1166 9
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1167 9
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1168 9
        $F = $m1 / ($n * $t1 ** $n);
1169 9
        $rF = $a * $K * $F * $tF ** $n;
1170 9
        $r = sqrt($easting ** 2 + ($rF - $northing) ** 2) * static::sign($n);
1171 9
        $t = ($r / ($a * $K * $F)) ** (1 / $n);
1172 9
        if ($n >= 0) {
1173
            $theta = atan2($easting, $rF - $northing);
1174
        } else {
1175
            $theta = atan2(-$easting, -($rF - $northing));
1176
        }
1177 9
1178
        $latitude = M_PI / 2 - 2 * atan($t);
1179 9
        do {
1180 9
            $latitudeN = $latitude;
1181 9
            $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1182
        } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
1183 9
1184
        $longitude = $theta / $n + $lambdaOrigin;
1185 9
1186
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1187
    }
1188
1189
    /**
1190
     * Lambert Conic Conformal (2SP Belgium)
1191
     * In 2000 this modification was replaced through use of the regular Lambert Conic Conformal (2SP) method [9802]
1192
     * with appropriately modified parameter values.
1193 9
     */
1194
    public function lambertConicConformal2SPBelgium(
1195
        Geographic2D|Geographic3D $to,
1196
        Angle $latitudeOfFalseOrigin,
1197
        Angle $longitudeOfFalseOrigin,
1198
        Angle $latitudeOf1stStandardParallel,
1199
        Angle $latitudeOf2ndStandardParallel,
1200
        Length $eastingAtFalseOrigin,
1201
        Length $northingAtFalseOrigin
1202 9
    ): GeographicPoint {
1203 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1204 9
        $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue();
1205 9
        $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue();
1206 9
        $lambdaOrigin = $longitudeOfFalseOrigin->asRadians()->getValue();
1207 9
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1208 9
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1209 9
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1210 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1211 9
        $e = $ellipsoid->getEccentricity();
1212
        $e2 = $ellipsoid->getEccentricitySquared();
1213 9
1214 9
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1215 9
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1216 9
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1217 9
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1218 9
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1219 9
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1220 9
        $F = $m1 / ($n * $t1 ** $n);
1221 9
        $rF = $a * $F * $tF ** $n;
1222 9
        if (is_nan($rF)) {
1223
            $rF = 0;
1224 9
        }
1225 9
        $r = hypot($easting, $rF - $northing) * static::sign($n);
1226 9
        $t = ($r / ($a * $F)) ** (1 / $n);
1227 9
        if ($n >= 0) {
1228
            $theta = atan2($easting, $rF - $northing);
1229
        } else {
1230
            $theta = atan2(-$easting, -($rF - $northing));
1231
        }
1232 9
1233
        $latitude = M_PI / 2 - 2 * atan($t);
1234 9
        do {
1235 9
            $latitudeN = $latitude;
1236 9
            $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1237
        } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
1238 9
1239
        $longitude = ($theta + (new ArcSecond(29.2985))->asRadians()->getValue()) / $n + $lambdaOrigin;
1240 9
1241
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1242
    }
1243
1244
    /**
1245
     * Lambert Conic Near-Conformal
1246
     * The Lambert Near-Conformal projection is derived from the Lambert Conformal Conic projection by truncating the
1247
     * series expansion of the projection formulae.
1248 9
     */
1249
    public function lambertConicNearConformal(
1250
        Geographic2D|Geographic3D $to,
1251
        Angle $latitudeOfNaturalOrigin,
1252
        Angle $longitudeOfNaturalOrigin,
1253
        Scale $scaleFactorAtNaturalOrigin,
1254
        Length $falseEasting,
1255
        Length $falseNorthing
1256 9
    ): GeographicPoint {
1257 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1258 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1259 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
1260 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1261 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1262 9
        $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1263 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1264 9
        $e2 = $ellipsoid->getEccentricitySquared();
1265
        $f = $ellipsoid->getFlattening();
1266 9
1267 9
        $n = $f / (2 - $f);
1268 9
        $rhoO = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
1269 9
        $nuO = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
1270 9
        $A = 1 / (6 * $rhoO * $nuO);
1271 9
        $APrime = $a * (1 - $n + 5 * ($n ** 2 - $n ** 3) / 4 + 81 * ($n ** 4 - $n ** 5) / 64);
1272 9
        $BPrime = 3 * $a * ($n - $n ** 2 + 7 * ($n ** 3 - $n ** 4) / 8 + 55 * $n ** 5 / 64) / 2;
1273 9
        $CPrime = 15 * $a * ($n ** 2 - $n ** 3 + 3 * ($n ** 4 - $n ** 5) / 4) / 16;
1274 9
        $DPrime = 35 * $a * ($n ** 3 - $n ** 4 + 11 * $n ** 5 / 16) / 48;
1275 9
        $EPrime = 315 * $a * ($n ** 4 - $n ** 5) / 512;
1276 9
        $rO = $scaleFactorOrigin * $nuO / tan($latitudeOrigin);
1277
        $sO = $APrime * $latitudeOrigin - $BPrime * sin(2 * $latitudeOrigin) + $CPrime * sin(4 * $latitudeOrigin) - $DPrime * sin(6 * $latitudeOrigin) + $EPrime * sin(8 * $latitudeOrigin);
1278 9
1279 9
        $theta = atan2($easting, $rO - $northing);
1280 9
        $r = hypot($easting, $rO - $northing) * static::sign($latitudeOrigin);
1281
        $M = $rO - $r;
1282 9
1283
        $m = $M;
1284 9
        do {
1285 9
            $mN = $m;
1286 9
            $m = $m - ($M - $scaleFactorOrigin * $m - $scaleFactorOrigin * $A * $m ** 3) / (-$scaleFactorOrigin - 3 * $scaleFactorOrigin * $A * $m ** 2);
1287
        } while (abs($m - $mN) >= static::ITERATION_CONVERGENCE_FORMULA);
1288 9
1289
        $latitude = $latitudeOrigin + $m / $A;
1290 9
        do {
1291 9
            $latitudeN = $latitude;
1292 9
            $latitude = $latitude + ($m + $sO - ($APrime * $latitude - $BPrime * sin(2 * $latitude) + $CPrime * sin(4 * $latitude) - $DPrime * sin(6 * $latitude) + $EPrime * sin(8 * $latitude))) / $APrime;
1293
        } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
1294 9
1295
        $longitude = $longitudeOrigin + $theta / sin($latitudeOrigin);
1296 9
1297
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1298
    }
1299
1300
    /**
1301
     * Lambert Cylindrical Equal Area
1302
     * This is the ellipsoidal form of the projection.
1303 9
     */
1304
    public function lambertCylindricalEqualArea(
1305
        Geographic2D|Geographic3D $to,
1306
        Angle $latitudeOf1stStandardParallel,
1307
        Angle $longitudeOfNaturalOrigin,
1308
        Length $falseEasting,
1309
        Length $falseNorthing
1310 9
    ): GeographicPoint {
1311 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1312 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1313 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
1314 9
        $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
1315 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1316 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1317 9
        $e = $ellipsoid->getEccentricity();
1318 9
        $e2 = $ellipsoid->getEccentricitySquared();
1319 9
        $e4 = $e ** 4;
1320
        $e6 = $e ** 6;
1321 9
1322 9
        $k = cos($latitudeFirstParallel) / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2);
1323 9
        $qP = (1 - $e2) * ((sin(M_PI_2) / (1 - $e2 * sin(M_PI_2) ** 2)) - (1 / (2 * $e)) * log((1 - $e * sin(M_PI_2)) / (1 + $e * sin(M_PI_2))));
1324
        $beta = self::asin(2 * $northing * $k / ($a * $qP));
1325 9
1326 9
        $latitude = $beta + (($e2 / 3 + 31 * $e4 / 180 + 517 * $e6 / 5040) * sin(2 * $beta)) + ((23 * $e4 / 360 + 251 * $e6 / 3780) * sin(4 * $beta)) + ((761 * $e6 / 45360) * sin(6 * $beta));
1327
        $longitude = $longitudeOrigin + $easting / ($a * $k);
1328 9
1329
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1330
    }
1331
1332
    /**
1333
     * Lambert Cylindrical Equal Area
1334
     * This is the spherical form of the projection.
1335 9
     */
1336
    public function lambertCylindricalEqualAreaSpherical(
1337
        Geographic2D|Geographic3D $to,
1338
        Angle $latitudeOf1stStandardParallel,
1339
        Angle $longitudeOfNaturalOrigin,
1340
        Length $falseEasting,
1341
        Length $falseNorthing
1342 9
    ): GeographicPoint {
1343 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1344 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1345 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
1346 9
        $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
1347 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1348
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1349 9
1350 9
        $latitude = self::asin(($northing / $a) * cos($latitudeFirstParallel));
1351
        $longitude = $longitudeOrigin + $easting / ($a * cos($latitudeFirstParallel));
1352 9
1353
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1354
    }
1355
1356
    /**
1357
     * Modified Azimuthal Equidistant
1358
     * Modified form of Oblique Azimuthal Equidistant projection method developed for Polynesian islands. For the
1359
     * distances over which these projections are used (under 800km) this modification introduces no significant error.
1360 9
     */
1361
    public function modifiedAzimuthalEquidistant(
1362
        Geographic2D|Geographic3D $to,
1363
        Angle $latitudeOfNaturalOrigin,
1364
        Angle $longitudeOfNaturalOrigin,
1365
        Length $falseEasting,
1366
        Length $falseNorthing
1367 9
    ): GeographicPoint {
1368 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1369 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1370 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
1371 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1372 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1373 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1374
        $e2 = $ellipsoid->getEccentricitySquared();
1375 9
1376 9
        $nuO = $a / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1377 9
        $c = hypot($easting, $northing);
1378 9
        $alpha = atan2($easting, $northing);
1379 9
        $A = -$e2 * cos($latitudeOrigin) ** 2 * cos($alpha) ** 2 / (1 - $e2);
1380 9
        $B = 3 * $e2 * (1 - $A) * sin($latitudeOrigin) * cos($latitudeOrigin) * cos($alpha) / (1 - $e2);
1381 9
        $D = $c / $nuO;
1382 9
        $J = $D - ($A * (1 + $A) * $D ** 3 / 6) - ($B * (1 + 3 * $A) * $D ** 4 / 24);
1383 9
        $K = 1 - ($A * $J ** 2 / 2) - ($B * $J ** 3 / 6);
1384
        $psi = self::asin(sin($latitudeOrigin) * cos($J) + cos($latitudeOrigin) * sin($J) * cos($alpha));
1385 9
1386 9
        $latitude = atan((1 - $e2 * $K * sin($latitudeOrigin) / sin($psi)) * tan($psi) / (1 - $e2));
1387
        $longitude = $longitudeOrigin + self::asin(sin($alpha) * sin($J) / cos($psi));
1388 9
1389
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1390
    }
1391
1392
    /**
1393
     * Oblique Stereographic
1394
     * This is not the same as the projection method of the same name in USGS Professional Paper no. 1395, "Map
1395
     * Projections - A Working Manual" by John P. Snyder.
1396 27
     */
1397
    public function obliqueStereographic(
1398
        Geographic2D|Geographic3D $to,
1399
        Angle $latitudeOfNaturalOrigin,
1400
        Angle $longitudeOfNaturalOrigin,
1401
        Scale $scaleFactorAtNaturalOrigin,
1402
        Length $falseEasting,
1403
        Length $falseNorthing
1404 27
    ): GeographicPoint {
1405 27
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1406 27
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1407 27
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
1408 27
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1409 27
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1410 27
        $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1411 27
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1412 27
        $e = $ellipsoid->getEccentricity();
1413
        $e2 = $ellipsoid->getEccentricitySquared();
1414 27
1415 27
        $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
1416 27
        $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
1417
        $R = sqrt($rhoOrigin * $nuOrigin);
1418 27
1419 27
        $n = sqrt(1 + ($e2 * cos($latitudeOrigin) ** 4 / (1 - $e2)));
1420 27
        $S1 = (1 + sin($latitudeOrigin)) / (1 - sin($latitudeOrigin));
1421 27
        $S2 = (1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin));
1422 27
        $w1 = ($S1 * ($S2 ** $e)) ** $n;
1423 27
        $c = (($n + sin($latitudeOrigin)) * (1 - ($w1 - 1) / ($w1 + 1))) / (($n - sin($latitudeOrigin)) * (1 + ($w1 - 1) / ($w1 + 1)));
1424 27
        $w2 = $c * $w1;
1425
        $chiOrigin = self::asin(($w2 - 1) / ($w2 + 1));
1426 27
1427 27
        $g = 2 * $R * $scaleFactorOrigin * tan(M_PI / 4 - $chiOrigin / 2);
1428 27
        $h = 4 * $R * $scaleFactorOrigin * tan($chiOrigin) + $g;
1429 27
        $i = atan2($easting, $h + $northing);
1430 27
        $j = atan2($easting, $g - $northing) - $i;
1431 27
        $chi = $chiOrigin + 2 * atan(($northing - $easting * tan($j / 2)) / (2 * $R * $scaleFactorOrigin));
1432
        $lambda = $j + 2 * $i + $longitudeOrigin;
1433 27
1434
        $longitude = ($lambda - $longitudeOrigin) / $n + $longitudeOrigin;
1435 27
1436
        $psi = 0.5 * log((1 + sin($chi)) / ($c * (1 - sin($chi)))) / $n;
1437 27
1438
        $latitude = 2 * atan(M_E ** $psi) - M_PI / 2;
1439 27
        do {
1440 27
            $latitudeN = $latitude;
1441 27
            $psiN = log(tan($latitudeN / 2 + M_PI / 4) * ((1 - $e * sin($latitudeN)) / (1 + $e * sin($latitudeN))) ** ($e / 2));
1442 27
            $latitude = $latitudeN - ($psiN - $psi) * cos($latitudeN) * (1 - $e2 * sin($latitudeN) ** 2) / (1 - $e2);
1443
        } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
1444 27
1445
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1446
    }
1447
1448
    /**
1449
     * Polar Stereographic (variant A)
1450
     * Latitude of natural origin must be either 90 degrees or -90 degrees (or equivalent in alternative angle unit).
1451 9
     */
1452
    public function polarStereographicVariantA(
1453
        Geographic2D|Geographic3D $to,
1454
        Angle $latitudeOfNaturalOrigin,
1455
        Angle $longitudeOfNaturalOrigin,
1456
        Scale $scaleFactorAtNaturalOrigin,
1457
        Length $falseEasting,
1458
        Length $falseNorthing
1459 9
    ): GeographicPoint {
1460 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1461 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1462 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
1463 9
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1464 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1465 9
        $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1466 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1467 9
        $e = $ellipsoid->getEccentricity();
1468 9
        $e2 = $ellipsoid->getEccentricitySquared();
1469 9
        $e4 = $e ** 4;
1470 9
        $e6 = $e ** 6;
1471
        $e8 = $e ** 8;
1472 9
1473 9
        $rho = hypot($easting, $northing);
1474
        $t = $rho * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $a * $scaleFactorOrigin);
1475 9
1476
        if ($latitudeOrigin < 0) {
1477
            $chi = 2 * atan($t) - M_PI / 2;
1478 9
        } else {
1479
            $chi = M_PI / 2 - 2 * atan($t);
1480
        }
1481 9
1482
        $latitude = $chi + ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) * sin(2 * $chi) + (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) * sin(4 * $chi) + (7 * $e6 / 120 + 81 * $e8 / 1120) * sin(6 * $chi) + (4279 * $e8 / 161280) * sin(8 * $chi);
1483 9
1484
        if ($easting === 0.0) {
0 ignored issues
show
introduced by
The condition $easting === 0.0 is always false.
Loading history...
1485 9
            $longitude = $longitudeOrigin;
1486
        } elseif ($latitudeOrigin < 0) {
1487
            $longitude = $longitudeOrigin + atan2($easting, $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue());
1488 9
        } else {
1489
            $longitude = $longitudeOrigin + atan2($easting, $falseNorthing->asMetres()->getValue() - $this->northing->asMetres()->getValue());
1490
        }
1491 9
1492
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1493
    }
1494
1495
    /**
1496
     * Polar Stereographic (variant B).
1497 9
     */
1498
    public function polarStereographicVariantB(
1499
        Geographic2D|Geographic3D $to,
1500
        Angle $latitudeOfStandardParallel,
1501
        Angle $longitudeOfOrigin,
1502
        Length $falseEasting,
1503
        Length $falseNorthing
1504 9
    ): GeographicPoint {
1505 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1506 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1507 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
1508 9
        $standardParallel = $latitudeOfStandardParallel->asRadians()->getValue();
1509 9
        $longitudeOrigin = $longitudeOfOrigin->asRadians()->getValue();
1510 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1511 9
        $e = $ellipsoid->getEccentricity();
1512 9
        $e2 = $ellipsoid->getEccentricitySquared();
1513 9
        $e4 = $e ** 4;
1514 9
        $e6 = $e ** 6;
1515
        $e8 = $e ** 8;
1516 9
1517 9
        $rho = hypot($easting, $northing);
1518 9
        if ($standardParallel < 0) {
1519
            $tF = tan(M_PI / 4 + $standardParallel / 2) / (((1 + $e * sin($standardParallel)) / (1 - $e * sin($standardParallel))) ** ($e / 2));
1520
        } else {
1521
            $tF = tan(M_PI / 4 - $standardParallel / 2) * (((1 + $e * sin($standardParallel)) / (1 - $e * sin($standardParallel))) ** ($e / 2));
1522 9
        }
1523 9
        $mF = cos($standardParallel) / sqrt(1 - $e2 * sin($standardParallel) ** 2);
1524 9
        $kO = $mF * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $tF);
1525
        $t = $rho * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $a * $kO);
1526 9
1527 9
        if ($standardParallel < 0) {
1528
            $chi = 2 * atan($t) - M_PI / 2;
1529
        } else {
1530
            $chi = M_PI / 2 - 2 * atan($t);
1531
        }
1532 9
1533
        $latitude = $chi + ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) * sin(2 * $chi) + (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) * sin(4 * $chi) + (7 * $e6 / 120 + 81 * $e8 / 1120) * sin(6 * $chi) + (4279 * $e8 / 161280) * sin(8 * $chi);
1534 9
1535
        if ($easting === 0.0) {
0 ignored issues
show
introduced by
The condition $easting === 0.0 is always false.
Loading history...
1536 9
            $longitude = $longitudeOrigin;
1537 9
        } elseif ($standardParallel < 0) {
1538
            $longitude = $longitudeOrigin + atan2($easting, $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue());
1539
        } else {
1540
            $longitude = $longitudeOrigin + atan2($easting, $falseNorthing->asMetres()->getValue() - $this->northing->asMetres()->getValue());
1541
        }
1542 9
1543
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1544
    }
1545
1546
    /**
1547
     * Polar Stereographic (variant C).
1548 9
     */
1549
    public function polarStereographicVariantC(
1550
        Geographic2D|Geographic3D $to,
1551
        Angle $latitudeOfStandardParallel,
1552
        Angle $longitudeOfOrigin,
1553
        Length $eastingAtFalseOrigin,
1554
        Length $northingAtFalseOrigin
1555 9
    ): GeographicPoint {
1556 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1557 9
        $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue();
1558 9
        $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue();
1559 9
        $standardParallel = $latitudeOfStandardParallel->asRadians()->getValue();
1560 9
        $longitudeOrigin = $longitudeOfOrigin->asRadians()->getValue();
1561 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1562 9
        $e = $ellipsoid->getEccentricity();
1563 9
        $e2 = $ellipsoid->getEccentricitySquared();
1564 9
        $e4 = $e ** 4;
1565 9
        $e6 = $e ** 6;
1566
        $e8 = $e ** 8;
1567 9
1568 9
        if ($standardParallel < 0) {
1569
            $tF = tan(M_PI / 4 + $standardParallel / 2) / (((1 + $e * sin($standardParallel)) / (1 - $e * sin($standardParallel))) ** ($e / 2));
1570
        } else {
1571
            $tF = tan(M_PI / 4 - $standardParallel / 2) * (((1 + $e * sin($standardParallel)) / (1 - $e * sin($standardParallel))) ** ($e / 2));
1572 9
        }
1573 9
        $mF = cos($standardParallel) / sqrt(1 - $e2 * sin($standardParallel) ** 2);
1574 9
        $rhoF = $a * $mF;
1575 9
        if ($standardParallel < 0) {
1576 9
            $rho = hypot($easting, $northing + $rhoF);
1577 9
            $t = $rho * $tF / $rhoF;
1578
            $chi = 2 * atan($t) - M_PI / 2;
1579
        } else {
1580
            $rho = hypot($easting, $northing - $rhoF);
1581
            $t = $rho * $tF / $rhoF;
1582
            $chi = M_PI / 2 - 2 * atan($t);
1583
        }
1584 9
1585
        $latitude = $chi + ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) * sin(2 * $chi) + (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) * sin(4 * $chi) + (7 * $e6 / 120 + 81 * $e8 / 1120) * sin(6 * $chi) + (4279 * $e8 / 161280) * sin(8 * $chi);
1586 9
1587
        if ($easting === 0.0) {
0 ignored issues
show
introduced by
The condition $easting === 0.0 is always false.
Loading history...
1588 9
            $longitude = $longitudeOrigin;
1589 9
        } elseif ($standardParallel < 0) {
1590
            $longitude = $longitudeOrigin + atan2($easting, $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue() + $rhoF);
1591
        } else {
1592
            $longitude = $longitudeOrigin + atan2($easting, $northingAtFalseOrigin->asMetres()->getValue() - $this->northing->asMetres()->getValue() + $rhoF);
1593
        }
1594 9
1595
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1596
    }
1597
1598
    /**
1599
     * Popular Visualisation Pseudo Mercator
1600
     * Applies spherical formulas to the ellipsoid. As such does not have the properties of a true Mercator projection.
1601 18
     */
1602
    public function popularVisualisationPseudoMercator(
1603
        Geographic2D|Geographic3D $to,
1604
        Angle $latitudeOfNaturalOrigin,
1605
        Angle $longitudeOfNaturalOrigin,
1606
        Length $falseEasting,
1607
        Length $falseNorthing
1608 18
    ): GeographicPoint {
1609 18
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1610 18
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1611 18
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
1612 18
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
0 ignored issues
show
Unused Code introduced by
The assignment to $latitudeOrigin is dead and can be removed.
Loading history...
1613 18
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1614
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1615 18
1616 18
        $D = -$northing / $a;
1617 18
        $latitude = M_PI / 2 - 2 * atan(M_E ** $D);
1618
        $longitude = $easting / $a + $longitudeOrigin;
1619 18
1620
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1621
    }
1622
1623
    /**
1624
     * Similarity transformation
1625
     * Defined for two-dimensional coordinate systems.
1626 9
     */
1627
    public function similarityTransformation(
1628
        Projected $to,
1629
        Length $ordinate1OfEvaluationPointInTargetCRS,
1630
        Length $ordinate2OfEvaluationPointInTargetCRS,
1631
        Scale $scaleFactorForSourceCRSAxes,
1632
        Angle $rotationAngleOfSourceCRSAxes,
1633
        bool $inReverse
1634 9
    ): self {
1635 9
        $xs = $this->easting->asMetres()->getValue();
1636 9
        $ys = $this->northing->asMetres()->getValue();
1637 9
        $xo = $ordinate1OfEvaluationPointInTargetCRS->asMetres()->getValue();
1638 9
        $yo = $ordinate2OfEvaluationPointInTargetCRS->asMetres()->getValue();
1639 9
        $M = $scaleFactorForSourceCRSAxes->asUnity()->getValue();
1640
        $theta = $rotationAngleOfSourceCRSAxes->asRadians()->getValue();
1641 9
1642
        if ($inReverse) {
1643
            $easting = (($xs - $xo) * cos($theta) - ($ys - $yo) * sin($theta)) / $M;
1644
            $northing = (($xs - $xo) * sin($theta) + ($ys - $yo) * cos($theta)) / $M;
1645 9
        } else {
1646 9
            $easting = $xo + $xs * $M * cos($theta) + $ys * $M * sin($theta);
1647
            $northing = $yo - $xs * $M * sin($theta) + $ys * $M * cos($theta);
1648
        }
1649 9
1650
        return self::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1651
    }
1652
1653
    /**
1654
     * Mercator (variant A)
1655
     * Note that in these formulas the parameter latitude of natural origin (latO) is not used. However for this
1656
     * Mercator (variant A) method the EPSG dataset includes this parameter, which must have a value of zero, for
1657
     * completeness in CRS labelling.
1658 18
     */
1659
    public function mercatorVariantA(
1660
        Geographic2D|Geographic3D $to,
1661
        Angle $latitudeOfNaturalOrigin,
1662
        Angle $longitudeOfNaturalOrigin,
1663
        Scale $scaleFactorAtNaturalOrigin,
1664
        Length $falseEasting,
1665
        Length $falseNorthing
1666 18
    ): GeographicPoint {
1667 18
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1668 18
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1669 18
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
0 ignored issues
show
Unused Code introduced by
The assignment to $northing is dead and can be removed.
Loading history...
1670 18
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
0 ignored issues
show
Unused Code introduced by
The assignment to $latitudeOrigin is dead and can be removed.
Loading history...
1671 18
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1672 18
        $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1673 18
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1674 18
        $e = $ellipsoid->getEccentricity();
1675 18
        $e2 = $ellipsoid->getEccentricitySquared();
1676 18
        $e4 = $e ** 4;
1677 18
        $e6 = $e ** 6;
1678
        $e8 = $e ** 8;
1679 18
1680 18
        $t = M_E ** (($falseNorthing->asMetres()->getValue() - $this->northing->asMetres()->getValue()) / ($a * $scaleFactorOrigin));
1681
        $chi = M_PI / 2 - 2 * atan($t);
1682 18
1683 18
        $latitude = $chi + ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) * sin(2 * $chi) + (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) * sin(4 * $chi) + (7 * $e6 / 120 + 81 * $e8 / 1120) * sin(6 * $chi) + (4279 * $e8 / 161280) * sin(8 * $chi);
1684
        $longitude = $easting / ($a * $scaleFactorOrigin) + $longitudeOrigin;
1685 18
1686
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1687
    }
1688
1689
    /**
1690
     * Mercator (variant B)
1691
     * Used for most nautical charts.
1692 9
     */
1693
    public function mercatorVariantB(
1694
        Geographic2D|Geographic3D $to,
1695
        Angle $latitudeOf1stStandardParallel,
1696
        Angle $longitudeOfNaturalOrigin,
1697
        Length $falseEasting,
1698
        Length $falseNorthing
1699 9
    ): GeographicPoint {
1700 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1701 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1702 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
0 ignored issues
show
Unused Code introduced by
The assignment to $northing is dead and can be removed.
Loading history...
1703 9
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1704 9
        $firstStandardParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
1705 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1706 9
        $e = $ellipsoid->getEccentricity();
1707 9
        $e2 = $ellipsoid->getEccentricitySquared();
1708 9
        $e4 = $e ** 4;
1709 9
        $e6 = $e ** 6;
1710
        $e8 = $e ** 8;
1711 9
1712
        $scaleFactorOrigin = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1713 9
1714 9
        $t = M_E ** (($falseNorthing->asMetres()->getValue() - $this->northing->asMetres()->getValue()) / ($a * $scaleFactorOrigin));
1715
        $chi = M_PI / 2 - 2 * atan($t);
1716 9
1717 9
        $latitude = $chi + ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) * sin(2 * $chi) + (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) * sin(4 * $chi) + (7 * $e6 / 120 + 81 * $e8 / 1120) * sin(6 * $chi) + (4279 * $e8 / 161280) * sin(8 * $chi);
1718
        $longitude = $easting / ($a * $scaleFactorOrigin) + $longitudeOrigin;
1719 9
1720
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1721
    }
1722
1723
    /**
1724
     * Hotine Oblique Mercator (variant A).
1725 9
     */
1726
    public function obliqueMercatorHotineVariantA(
1727
        Geographic2D|Geographic3D $to,
1728
        Angle $latitudeOfProjectionCentre,
1729
        Angle $longitudeOfProjectionCentre,
1730
        Angle $azimuthAtProjectionCentre,
1731
        Angle $angleFromRectifiedToSkewGrid,
1732
        Scale $scaleFactorAtProjectionCentre,
1733
        Length $falseEasting,
1734
        Length $falseNorthing
1735 9
    ): GeographicPoint {
1736 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1737 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1738 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
1739 9
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1740 9
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1741 9
        $alphaC = $azimuthAtProjectionCentre->asRadians()->getValue();
1742 9
        $kC = $scaleFactorAtProjectionCentre->asUnity()->getValue();
1743 9
        $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue();
1744 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1745 9
        $e = $ellipsoid->getEccentricity();
1746 9
        $e2 = $ellipsoid->getEccentricitySquared();
1747 9
        $e4 = $e ** 4;
1748 9
        $e6 = $e ** 6;
1749
        $e8 = $e ** 8;
1750 9
1751 9
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1752 9
        $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2);
1753 9
        $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2);
1754 9
        $D = $B * sqrt(1 - $e2) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2));
1755 9
        $DD = max(1, $D ** 2);
1756 9
        $F = $D + sqrt($DD - 1) * static::sign($latC);
1757 9
        $H = $F * $tO ** $B;
1758 9
        $G = ($F - 1 / $F) / 2;
1759 9
        $gammaO = self::asin(sin($alphaC) / $D);
1760
        $lonO = $lonC - self::asin($G * tan($gammaO)) / $B;
1761 9
1762 9
        $v = $easting * cos($gammaC) - $northing * sin($gammaC);
1763
        $u = $northing * cos($gammaC) + $easting * sin($gammaC);
1764 9
1765 9
        $Q = M_E ** -($B * $v / $A);
1766 9
        $S = ($Q - 1 / $Q) / 2;
1767 9
        $T = ($Q + 1 / $Q) / 2;
1768 9
        $V = sin($B * $u / $A);
1769 9
        $U = ($V * cos($gammaO) + $S * sin($gammaO)) / $T;
1770
        $t = ($H / sqrt((1 + $U) / (1 - $U))) ** (1 / $B);
1771 9
1772
        $chi = M_PI / 2 - 2 * atan($t);
1773 9
1774 9
        $latitude = $chi + sin(2 * $chi) * ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) + sin(4 * $chi) * (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) + sin(6 * $chi) * (7 * $e6 / 120 + 81 * $e8 / 1120) + sin(8 * $chi) * (4279 * $e8 / 161280);
1775
        $longitude = $lonO - atan2($S * cos($gammaO) - $V * sin($gammaO), cos($B * $u / $A)) / $B;
1776 9
1777
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1778
    }
1779
1780
    /**
1781
     * Hotine Oblique Mercator (variant B).
1782 9
     */
1783
    public function obliqueMercatorHotineVariantB(
1784
        Geographic2D|Geographic3D $to,
1785
        Angle $latitudeOfProjectionCentre,
1786
        Angle $longitudeOfProjectionCentre,
1787
        Angle $azimuthAtProjectionCentre,
1788
        Angle $angleFromRectifiedToSkewGrid,
1789
        Scale $scaleFactorAtProjectionCentre,
1790
        Length $eastingAtProjectionCentre,
1791
        Length $northingAtProjectionCentre
1792 9
    ): GeographicPoint {
1793 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1794 9
        $easting = $this->easting->asMetres()->getValue() - $eastingAtProjectionCentre->asMetres()->getValue();
1795 9
        $northing = $this->northing->asMetres()->getValue() - $northingAtProjectionCentre->asMetres()->getValue();
1796 9
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1797 9
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1798 9
        $alphaC = $azimuthAtProjectionCentre->asRadians()->getValue();
1799 9
        $kC = $scaleFactorAtProjectionCentre->asUnity()->getValue();
1800 9
        $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue();
1801 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1802 9
        $e = $ellipsoid->getEccentricity();
1803 9
        $e2 = $ellipsoid->getEccentricitySquared();
1804 9
        $e4 = $e ** 4;
1805 9
        $e6 = $e ** 6;
1806
        $e8 = $e ** 8;
1807 9
1808 9
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1809 9
        $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2);
1810 9
        $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2);
1811 9
        $D = $B * sqrt(1 - $e2) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2));
1812 9
        $DD = max(1, $D ** 2);
1813 9
        $F = $D + sqrt($DD - 1) * static::sign($latC);
1814 9
        $H = $F * $tO ** $B;
1815 9
        $G = ($F - 1 / $F) / 2;
1816 9
        $gammaO = self::asin(sin($alphaC) / $D);
1817 9
        $lonO = $lonC - self::asin($G * tan($gammaO)) / $B;
1818 9
        $vC = 0;
0 ignored issues
show
Unused Code introduced by
The assignment to $vC is dead and can be removed.
Loading history...
1819
        if ($alphaC === M_PI / 2) {
1820
            $uC = $A * ($lonC - $lonO);
1821 9
        } else {
1822
            $uC = ($A / $B) * atan2(sqrt($DD - 1), cos($alphaC)) * static::sign($latC);
1823
        }
1824 9
1825 9
        $v = $easting * cos($gammaC) - $northing * sin($gammaC);
1826
        $u = $northing * cos($gammaC) + $easting * sin($gammaC) + (abs($uC) * static::sign($latC));
1827 9
1828 9
        $Q = M_E ** -($B * $v / $A);
1829 9
        $S = ($Q - 1 / $Q) / 2;
1830 9
        $T = ($Q + 1 / $Q) / 2;
1831 9
        $V = sin($B * $u / $A);
1832 9
        $U = ($V * cos($gammaO) + $S * sin($gammaO)) / $T;
1833
        $t = ($H / sqrt((1 + $U) / (1 - $U))) ** (1 / $B);
1834 9
1835
        $chi = M_PI / 2 - 2 * atan($t);
1836 9
1837 9
        $latitude = $chi + sin(2 * $chi) * ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) + sin(4 * $chi) * (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) + sin(6 * $chi) * (7 * $e6 / 120 + 81 * $e8 / 1120) + sin(8 * $chi) * (4279 * $e8 / 161280);
1838
        $longitude = $lonO - atan2($S * cos($gammaO) - $V * sin($gammaO), cos($B * $u / $A)) / $B;
1839 9
1840
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1841
    }
1842
1843
    /**
1844
     * Laborde Oblique Mercator.
1845 9
     */
1846
    public function obliqueMercatorLaborde(
1847
        Geographic2D|Geographic3D $to,
1848
        Angle $latitudeOfProjectionCentre,
1849
        Angle $longitudeOfProjectionCentre,
1850
        Angle $azimuthAtProjectionCentre,
1851
        Scale $scaleFactorAtProjectionCentre,
1852
        Length $falseEasting,
1853
        Length $falseNorthing
1854 9
    ): GeographicPoint {
1855 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1856 9
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1857 9
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
1858 9
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1859 9
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1860 9
        $alphaC = $azimuthAtProjectionCentre->asRadians()->getValue();
1861 9
        $kC = $scaleFactorAtProjectionCentre->asUnity()->getValue();
1862 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1863 9
        $e = $ellipsoid->getEccentricity();
1864
        $e2 = $ellipsoid->getEccentricitySquared();
1865 9
1866 9
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1867 9
        $latS = self::asin(sin($latC) / $B);
1868 9
        $R = $a * $kC * (sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2));
1869
        $C = log(tan(M_PI / 4 + $latS / 2)) - $B * log(tan(M_PI / 4 + $latC / 2) * ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2));
1870 9
1871
        $G = (new ComplexNumber(1 - cos(2 * $alphaC), sin(2 * $alphaC)))->divide(new ComplexNumber(12, 0));
1872 9
1873 9
        $H0 = new ComplexNumber($northing / $R, $easting / $R);
1874
        $H = $H0->divide($H0->pow(3)->multiply($G)->add($H0));
1875 9
        do {
1876 9
            $HN = $H;
1877 9
            $H = $HN->pow(3)->multiply($G)->multiply(new ComplexNumber(2, 0))->add($H0)->divide($HN->pow(2)->multiply($G)->multiply(new ComplexNumber(3, 0))->add(new ComplexNumber(1, 0)));
1878
        } while (abs($H0->subtract($H)->subtract($H->pow(3)->multiply($G))->getReal()) >= static::ITERATION_CONVERGENCE_FORMULA);
1879 9
1880 9
        $LPrime = -1 * $H->getReal();
1881 9
        $PPrime = 2 * atan(M_E ** $H->getImaginary()) - M_PI / 2;
1882 9
        $U = cos($PPrime) * cos($LPrime) * cos($latS) + cos($PPrime) * sin($LPrime) * sin($latS);
1883 9
        $V = sin($PPrime);
1884
        $W = cos($PPrime) * cos($LPrime) * sin($latS) - cos($PPrime) * sin($LPrime) * cos($latS);
1885 9
1886 9
        $d = hypot($U, $V);
1887
        if ($d === 0.0) {
1888
            $L = 0;
1889
            $P = static::sign($W) * M_PI / 2;
1890 9
        } else {
1891 9
            $L = 2 * atan($V / ($U + $d));
1892
            $P = atan($W / $d);
1893
        }
1894 9
1895
        $longitude = $lonC + ($L / $B);
1896 9
1897
        $q = (log(tan(M_PI / 4 + $P / 2)) - $C) / $B;
1898 9
1899
        $latitude = 2 * atan(M_E ** $q) - M_PI / 2;
1900 9
        do {
1901 9
            $latitudeN = $latitude;
1902 9
            $latitude = 2 * atan(((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2) * M_E ** $q) - M_PI / 2;
1903
        } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA);
1904 9
1905
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
1906
    }
1907
1908
    /**
1909
     * Transverse Mercator.
1910 144
     */
1911
    public function transverseMercator(
1912
        Geographic2D|Geographic3D $to,
1913
        Angle $latitudeOfNaturalOrigin,
1914
        Angle $longitudeOfNaturalOrigin,
1915
        Scale $scaleFactorAtNaturalOrigin,
1916
        Length $falseEasting,
1917
        Length $falseNorthing
1918 144
    ): GeographicPoint {
1919 144
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1920 144
        $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue();
1921 144
        $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue();
1922 144
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1923 144
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1924 144
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1925 144
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1926 144
        $e = $ellipsoid->getEccentricity();
1927
        $f = $ellipsoid->getFlattening();
1928 144
1929 144
        $n = $f / (2 - $f);
1930
        $B = ($a / (1 + $n)) * (1 + $n ** 2 / 4 + $n ** 4 / 64 + $n ** 6 / 256 + (25 / 16384) * $n ** 8);
1931 144
1932 144
        $h1 = $n / 2 - (2 / 3) * $n ** 2 + (5 / 16) * $n ** 3 + (41 / 180) * $n ** 4 - (127 / 288) * $n ** 5 + (7891 / 37800) * $n ** 6 + (72161 / 387072) * $n ** 7 - (18975107 / 50803200) * $n ** 8;
1933 144
        $h2 = (13 / 48) * $n ** 2 - (3 / 5) * $n ** 3 + (557 / 1440) * $n ** 4 + (281 / 630) * $n ** 5 - (1983433 / 1935360) * $n ** 6 + (13769 / 28800) * $n ** 7 + (148003883 / 174182400) * $n ** 8;
1934 144
        $h3 = (61 / 240) * $n ** 3 - (103 / 140) * $n ** 4 + (15061 / 26880) * $n ** 5 + (167603 / 181440) * $n ** 6 - (67102379 / 29030400) * $n ** 7 + (79682431 / 79833600) * $n ** 8;
1935 144
        $h4 = (49561 / 161280) * $n ** 4 - (179 / 168) * $n ** 5 + (6601661 / 7257600) * $n ** 6 + (97445 / 49896) * $n ** 7 - (40176129013 / 7664025600) * $n ** 8;
1936 144
        $h5 = (34729 / 80640) * $n ** 5 - (3418889 / 1995840) * $n ** 6 + (14644087 / 9123840) * $n ** 7 + (2605413599 / 622702080) * $n ** 8;
1937 144
        $h6 = (212378941 / 319334400) * $n ** 6 - (30705481 / 10378368) * $n ** 7 + (175214326799 / 58118860800) * $n ** 8;
1938 144
        $h7 = (1522256789 / 1383782400) * $n ** 7 - (16759934899 / 3113510400) * $n ** 8;
1939
        $h8 = (1424729850961 / 743921418240) * $n ** 8;
1940 144
1941 90
        if ($latitudeOrigin === 0.0) {
0 ignored issues
show
introduced by
The condition $latitudeOrigin === 0.0 is always false.
Loading history...
1942 63
            $mO = 0;
1943
        } elseif ($latitudeOrigin === M_PI / 2) {
1944 63
            $mO = $B * M_PI / 2;
1945
        } elseif ($latitudeOrigin === -M_PI / 2) {
1946
            $mO = $B * -M_PI / 2;
1947 63
        } else {
1948 63
            $qO = asinh(tan($latitudeOrigin)) - ($e * atanh($e * sin($latitudeOrigin)));
1949 63
            $betaO = atan(sinh($qO));
1950 63
            $xiO0 = self::asin(sin($betaO));
1951 63
            $xiO1 = $h1 * sin(2 * $xiO0);
1952 63
            $xiO2 = $h2 * sin(4 * $xiO0);
1953 63
            $xiO3 = $h3 * sin(6 * $xiO0);
1954 63
            $xiO4 = $h4 * sin(8 * $xiO0);
1955 63
            $xiO5 = $h5 * sin(10 * $xiO0);
1956 63
            $xiO6 = $h6 * sin(12 * $xiO0);
1957 63
            $xiO7 = $h7 * sin(14 * $xiO0);
1958 63
            $xiO8 = $h8 * sin(16 * $xiO0);
1959 63
            $xiO = $xiO0 + $xiO1 + $xiO2 + $xiO3 + $xiO4 + $xiO5 + $xiO6 + $xiO7 + $xiO8;
1960
            $mO = $B * $xiO;
1961
        }
1962 144
1963 144
        $h1 = $n / 2 - (2 / 3) * $n ** 2 + (37 / 96) * $n ** 3 - (1 / 360) * $n ** 4 - (81 / 512) * $n ** 5 + (96199 / 604800) * $n ** 6 - (5406467 / 38707200) * $n ** 7 + (7944359 / 67737600) * $n ** 8;
1964 144
        $h2 = (1 / 48) * $n ** 2 + (1 / 15) * $n ** 3 - (437 / 1440) * $n ** 4 + (46 / 105) * $n ** 5 - (1118711 / 3870720) * $n ** 6 + (51841 / 1209600) * $n ** 7 + (24749483 / 348364800) * $n ** 8;
1965 144
        $h3 = (17 / 480) * $n ** 3 - (37 / 840) * $n ** 4 - (209 / 4480) * $n ** 5 + (5569 / 90720) * $n ** 6 + (9261899 / 58060800) * $n ** 7 - (6457463 / 17740800) * $n ** 8;
1966 144
        $h4 = (4397 / 161280) * $n ** 4 - (11 / 504) * $n ** 5 - (830251 / 7257600) * $n ** 6 + (466511 / 2494800) * $n ** 7 + (324154477 / 7664025600) * $n ** 8;
1967 144
        $h5 = (4583 / 161280) * $n ** 5 - (108847 / 3991680) * $n ** 6 - (8005831 / 63866880) * $n ** 7 + (22894433 / 124540416) * $n ** 8;
1968 144
        $h6 = (20648693 / 638668800) * $n ** 6 - (16363163 / 518918400) * $n ** 7 - (2204645983 / 12915302400) * $n ** 8;
1969 144
        $h7 = (219941297 / 5535129600) * $n ** 7 - (497323811 / 12454041600) * $n ** 8;
1970
        $h8 = (191773887257 / 3719607091200) * $n ** 8;
1971 144
1972 144
        $eta = $easting / ($B * $kO);
1973 144
        $xi = ($northing + $kO * $mO) / ($B * $kO);
1974 144
        $xi1 = $h1 * sin(2 * $xi) * cosh(2 * $eta);
1975 144
        $eta1 = $h1 * cos(2 * $xi) * sinh(2 * $eta);
1976 144
        $xi2 = $h2 * sin(4 * $xi) * cosh(4 * $eta);
1977 144
        $eta2 = $h2 * cos(4 * $xi) * sinh(4 * $eta);
1978 144
        $xi3 = $h3 * sin(6 * $xi) * cosh(6 * $eta);
1979 144
        $eta3 = $h3 * cos(6 * $xi) * sinh(6 * $eta);
1980 144
        $xi4 = $h4 * sin(8 * $xi) * cosh(8 * $eta);
1981 144
        $eta4 = $h4 * cos(8 * $xi) * sinh(8 * $eta);
1982 144
        $xi5 = $h5 * sin(10 * $xi) * cosh(10 * $eta);
1983 144
        $eta5 = $h5 * cos(10 * $xi) * sinh(10 * $eta);
1984 144
        $xi6 = $h6 * sin(12 * $xi) * cosh(12 * $eta);
1985 144
        $eta6 = $h6 * cos(12 * $xi) * sinh(12 * $eta);
1986 144
        $xi7 = $h7 * sin(14 * $xi) * cosh(14 * $eta);
1987 144
        $eta7 = $h7 * cos(14 * $xi) * sinh(14 * $eta);
1988 144
        $xi8 = $h8 * sin(16 * $xi) * cosh(16 * $eta);
1989 144
        $eta8 = $h8 * cos(16 * $xi) * sinh(16 * $eta);
1990 144
        $xi0 = $xi - $xi1 - $xi2 - $xi3 - $xi4 - $xi5 - $xi6 - $xi7 - $xi8;
1991
        $eta0 = $eta - $eta1 - $eta2 - $eta3 - $eta4 - $eta5 - $eta6 - $eta7 - $eta8;
1992 144
1993
        $beta = self::asin(sin($xi0) / cosh($eta0));
1994 144
1995 144
        $QPrime = asinh(tan($beta));
1996
        $Q = asinh(tan($beta));
1997 144
        do {
1998 144
            $QN = $Q;
1999 144
            $Q = $QPrime + ($e * atanh($e * tanh($Q)));
2000
        } while (abs($Q - $QN) >= static::ITERATION_CONVERGENCE_FORMULA);
2001 144
2002 144
        $latitude = atan(sinh($Q));
2003
        $longitude = $longitudeOrigin + self::asin(tanh($eta0) / cos($beta));
2004 144
2005
        $height = $this->height && $to instanceof Geographic3D ? $this->height : null;
2006 144
2007
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), $height, $this->epoch);
2008
    }
2009
2010
    /**
2011
     * Transverse Mercator Zoned Grid System
2012
     * If locations fall outwith the fixed zones the general Transverse Mercator method (code 9807) must be used for
2013
     * each zone.
2014 18
     */
2015
    public function transverseMercatorZonedGrid(
2016
        Geographic2D|Geographic3D $to,
2017
        Angle $latitudeOfNaturalOrigin,
2018
        Angle $initialLongitude,
2019
        Angle $zoneWidth,
2020
        Scale $scaleFactorAtNaturalOrigin,
2021
        Length $falseEasting,
2022
        Length $falseNorthing
2023 18
    ): GeographicPoint {
2024 18
        $Z = (int) substr((string) $this->easting->asMetres()->getValue(), 0, 2);
2025
        $falseEasting = $falseEasting->add(new Metre($Z * 1000000));
2026 18
2027 18
        $W = $zoneWidth->asDegrees()->getValue();
2028
        $longitudeOrigin = $initialLongitude->add(new Degree($Z * $W - $W / 2));
2029 18
2030
        return $this->transverseMercator($to, $latitudeOfNaturalOrigin, $longitudeOrigin, $scaleFactorAtNaturalOrigin, $falseEasting, $falseNorthing);
2031
    }
2032
2033
    /**
2034
     * General polynomial.
2035
     * @param Coefficient[] $powerCoefficients
2036
     */
2037
    public function generalPolynomial(
2038
        Projected $to,
2039
        Length $ordinate1OfEvaluationPointInSourceCRS,
2040
        Length $ordinate2OfEvaluationPointInSourceCRS,
2041
        Length $ordinate1OfEvaluationPointInTargetCRS,
2042
        Length $ordinate2OfEvaluationPointInTargetCRS,
2043
        Scale $scalingFactorForSourceCRSCoordDifferences,
2044
        Scale $scalingFactorForTargetCRSCoordDifferences,
2045
        Scale $A0,
2046
        Scale $B0,
2047
        array $powerCoefficients,
2048
        bool $inReverse
2049
    ): self {
2050
        $xs = $this->easting->getValue();
2051
        $ys = $this->northing->getValue();
2052
2053
        $t = $this->generalPolynomialUnitless(
2054
            $xs,
2055
            $ys,
2056
            $ordinate1OfEvaluationPointInSourceCRS,
2057
            $ordinate2OfEvaluationPointInSourceCRS,
2058
            $ordinate1OfEvaluationPointInTargetCRS,
2059
            $ordinate2OfEvaluationPointInTargetCRS,
2060
            $scalingFactorForSourceCRSCoordDifferences,
2061
            $scalingFactorForTargetCRSCoordDifferences,
2062
            $A0,
2063
            $B0,
2064
            $powerCoefficients,
2065
            $inReverse
2066
        );
2067
2068
        $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId();
2069
        $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId();
2070
2071
        return static::createFromEastingNorthing(
2072
            $to,
2073
            Length::makeUnit($t['xt'], $xtUnit),
2074
            Length::makeUnit($t['yt'], $ytUnit),
2075
            $this->epoch
2076
        );
2077
    }
2078
2079
    /**
2080
     * New Zealand Map Grid.
2081 27
     */
2082
    public function newZealandMapGrid(
2083
        Geographic2D|Geographic3D $to,
2084
        Angle $latitudeOfNaturalOrigin,
2085
        Angle $longitudeOfNaturalOrigin,
2086
        Length $falseEasting,
2087
        Length $falseNorthing
2088 27
    ): GeographicPoint {
2089 27
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
2090
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
2091 27
2092 27
        $z = new ComplexNumber(
2093 27
            $this->northing->subtract($falseNorthing)->divide($a)->asMetres()->getValue(),
2094 27
            $this->easting->subtract($falseEasting)->divide($a)->asMetres()->getValue(),
2095
        );
2096 27
2097 27
        $B1 = new ComplexNumber(0.7557853228, 0.0);
2098 27
        $B2 = new ComplexNumber(0.249204646, 0.003371507);
2099 27
        $B3 = new ComplexNumber(-0.001541739, 0.041058560);
2100 27
        $B4 = new ComplexNumber(-0.10162907, 0.01727609);
2101 27
        $B5 = new ComplexNumber(-0.26623489, -0.36249218);
2102 27
        $B6 = new ComplexNumber(-0.6870983, -1.1651967);
2103 27
        $b1 = new ComplexNumber(1.3231270439, 0.0);
2104 27
        $b2 = new ComplexNumber(-0.577245789, -0.007809598);
2105 27
        $b3 = new ComplexNumber(0.508307513, -0.112208952);
2106 27
        $b4 = new ComplexNumber(-0.15094762, 0.18200602);
2107 27
        $b5 = new ComplexNumber(1.01418179, 1.64497696);
2108
        $b6 = new ComplexNumber(1.9660549, 2.5127645);
2109 27
2110 27
        $zeta = new ComplexNumber(0, 0);
2111 27
        $zeta = $zeta->add($b1->multiply($z->pow(1)));
2112 27
        $zeta = $zeta->add($b2->multiply($z->pow(2)));
2113 27
        $zeta = $zeta->add($b3->multiply($z->pow(3)));
2114 27
        $zeta = $zeta->add($b4->multiply($z->pow(4)));
2115 27
        $zeta = $zeta->add($b5->multiply($z->pow(5)));
2116
        $zeta = $zeta->add($b6->multiply($z->pow(6)));
2117 27
2118 27
        for ($iterations = 0; $iterations < 2; ++$iterations) {
2119 27
            $numerator = $z;
2120 27
            $numerator = $numerator->add($B2->multiply($zeta->pow(2))->multiply(new ComplexNumber(1, 0)));
2121 27
            $numerator = $numerator->add($B3->multiply($zeta->pow(3))->multiply(new ComplexNumber(2, 0)));
2122 27
            $numerator = $numerator->add($B4->multiply($zeta->pow(4))->multiply(new ComplexNumber(3, 0)));
2123 27
            $numerator = $numerator->add($B5->multiply($zeta->pow(5))->multiply(new ComplexNumber(4, 0)));
2124
            $numerator = $numerator->add($B6->multiply($zeta->pow(6))->multiply(new ComplexNumber(5, 0)));
2125 27
2126 27
            $denominator = $B1;
2127 27
            $denominator = $denominator->add($B2->multiply($zeta->pow(1))->multiply(new ComplexNumber(2, 0)));
2128 27
            $denominator = $denominator->add($B3->multiply($zeta->pow(2))->multiply(new ComplexNumber(3, 0)));
2129 27
            $denominator = $denominator->add($B4->multiply($zeta->pow(3))->multiply(new ComplexNumber(4, 0)));
2130 27
            $denominator = $denominator->add($B5->multiply($zeta->pow(4))->multiply(new ComplexNumber(5, 0)));
2131
            $denominator = $denominator->add($B6->multiply($zeta->pow(5))->multiply(new ComplexNumber(6, 0)));
2132 27
2133
            $zeta = $numerator->divide($denominator);
2134
        }
2135 27
2136 27
        $deltaPsi = $zeta->getReal();
2137 27
        $deltaLatitudeToOrigin = 0;
2138 27
        $deltaLatitudeToOrigin += 1.5627014243 * $deltaPsi ** 1;
2139 27
        $deltaLatitudeToOrigin += 0.5185406398 * $deltaPsi ** 2;
2140 27
        $deltaLatitudeToOrigin += -0.03333098 * $deltaPsi ** 3;
2141 27
        $deltaLatitudeToOrigin += -0.1052906 * $deltaPsi ** 4;
2142 27
        $deltaLatitudeToOrigin += -0.0368594 * $deltaPsi ** 5;
2143 27
        $deltaLatitudeToOrigin += 0.007317 * $deltaPsi ** 6;
2144 27
        $deltaLatitudeToOrigin += 0.01220 * $deltaPsi ** 7;
2145 27
        $deltaLatitudeToOrigin += 0.00394 * $deltaPsi ** 8;
2146
        $deltaLatitudeToOrigin += -0.0013 * $deltaPsi ** 9;
2147 27
2148 27
        $latitude = $latitudeOfNaturalOrigin->add(new ArcSecond($deltaLatitudeToOrigin / 0.00001));
2149
        $longitude = $longitudeOfNaturalOrigin->add(new Radian($zeta->getImaginary()));
2150 27
2151
        return GeographicPoint::create($to, $latitude, $longitude, null, $this->epoch);
2152
    }
2153
2154
    /**
2155
     * Complex polynomial.
2156
     * Coordinate pairs treated as complex numbers.  This exploits the correlation between the polynomial coefficients
2157
     * and leads to a smaller number of coefficients than the general polynomials.
2158 9
     */
2159
    public function complexPolynomial(
2160
        Projected $to,
2161
        Length $ordinate1OfEvaluationPointInSourceCRS,
2162
        Length $ordinate2OfEvaluationPointInSourceCRS,
2163
        Length $ordinate1OfEvaluationPointInTargetCRS,
2164
        Length $ordinate2OfEvaluationPointInTargetCRS,
2165
        Scale $scalingFactorForSourceCRSCoordDifferences,
2166
        Scale $scalingFactorForTargetCRSCoordDifferences,
2167
        Scale $A1,
2168
        Scale $A2,
2169
        Scale $A3,
2170
        Scale $A4,
2171
        Scale $A5,
2172
        Scale $A6,
2173
        ?Scale $A7 = null,
2174
        ?Scale $A8 = null
2175 9
    ): self {
2176 9
        $xs = $this->easting->getValue();
2177 9
        $ys = $this->northing->getValue();
2178 9
        $xso = $ordinate1OfEvaluationPointInSourceCRS->getValue();
2179 9
        $yso = $ordinate2OfEvaluationPointInSourceCRS->getValue();
2180 9
        $xto = $ordinate1OfEvaluationPointInTargetCRS->getValue();
2181
        $yto = $ordinate2OfEvaluationPointInTargetCRS->getValue();
2182 9
2183 9
        $U = $scalingFactorForSourceCRSCoordDifferences->asUnity()->getValue() * ($xs - $xso);
2184
        $V = $scalingFactorForSourceCRSCoordDifferences->asUnity()->getValue() * ($ys - $yso);
2185 9
2186 9
        $mTdXdY = new ComplexNumber(0, 0);
2187 9
        $mTdXdY = $mTdXdY->add((new ComplexNumber($A1->getValue(), $A2->getValue()))->multiply(new ComplexNumber($U, $V))->pow(1));
2188 9
        $mTdXdY = $mTdXdY->add((new ComplexNumber($A3->getValue(), $A4->getValue()))->multiply((new ComplexNumber($U, $V))->pow(2)));
2189 9
        $mTdXdY = $mTdXdY->add((new ComplexNumber($A5->getValue(), $A6->getValue()))->multiply((new ComplexNumber($U, $V))->pow(3)));
2190
        $mTdXdY = $mTdXdY->add((new ComplexNumber($A7 ? $A7->getValue() : 0, $A8 ? $A8->getValue() : 0))->multiply((new ComplexNumber($U, $V))->pow(4)));
2191 9
2192 9
        $xt = $xs - $xso + $xto + $mTdXdY->getReal() / $scalingFactorForTargetCRSCoordDifferences->asUnity()->getValue();
2193
        $yt = $ys - $yso + $yto + $mTdXdY->getImaginary() / $scalingFactorForTargetCRSCoordDifferences->asUnity()->getValue();
2194 9
2195 9
        $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId();
2196
        $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId();
2197 9
2198 9
        return static::createFromEastingNorthing(
2199 9
            $to,
2200 9
            Length::makeUnit($xt, $xtUnit),
2201 9
            Length::makeUnit($yt, $ytUnit),
2202 9
            $this->epoch
2203
        );
2204
    }
2205
2206
    /**
2207
     * Ordnance Survey National Transformation
2208
     * Geodetic transformation between ETRS89 (or WGS 84) and OSGB36 / National Grid.  Uses ETRS89 / National Grid as
2209
     * an intermediate coordinate system for bi-linear interpolation of gridded grid coordinate differences.
2210
     */
2211
    public function OSTN15(
2212
        Geographic2D $to,
2213
        OSTNOSGM15Grid $eastingAndNorthingDifferenceFile
2214
    ): GeographicPoint {
2215
        $asETRS89 = $eastingAndNorthingDifferenceFile->applyReverseHorizontalAdjustment($this);
2216
2217
        return $asETRS89->transverseMercator($to, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000));
2218
    }
2219 9
2220
    public function localOrthographic(
2221
        Geographic2D $to,
2222
        Angle $latitudeOfProjectionCentre,
2223
        Angle $longitudeOfProjectionCentre,
2224
        Angle $azimuthAtProjectionCentre,
2225
        Scale $scaleFactorAtProjectionCentre,
2226
        Length $eastingAtProjectionCentre,
2227
        Length $northingAtProjectionCentre
2228 9
    ): GeographicPoint {
2229 9
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
2230 9
        $latitudeCentre = $latitudeOfProjectionCentre->asRadians()->getValue();
2231 9
        $longitudeCentre = $longitudeOfProjectionCentre->asRadians()->getValue();
2232 9
        $azimuthCentre = $azimuthAtProjectionCentre->asRadians()->getValue();
2233
        $scaleFactorCentre = $scaleFactorAtProjectionCentre->asUnity()->getValue();
2234 9
2235 9
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
2236 9
        $e2 = $ellipsoid->getEccentricitySquared();
2237
        $vc = $a / sqrt(1 - $e2 * sin($latitudeCentre) ** 2);
2238 9
2239 9
        $easting = $this->easting->subtract($eastingAtProjectionCentre)->asMetres()->getValue();
2240
        $northing = $this->northing->subtract($northingAtProjectionCentre)->asMetres()->getValue();
2241 9
2242 9
        $xp = cos($azimuthCentre) * $easting / $scaleFactorCentre + sin($azimuthCentre) * $northing / $scaleFactorCentre;
2243
        $yp = -sin($azimuthCentre) * $easting / $scaleFactorCentre + cos($azimuthCentre) * $northing / $scaleFactorCentre;
2244 9
2245 9
        $B = 1 - $e2 * cos($latitudeCentre) ** 2;
2246 9
        $C = $yp - $vc * sin($latitudeCentre) * cos($latitudeCentre) + $vc * (1 - $e2) * cos($latitudeCentre) * sin($latitudeCentre);
2247 9
        $D = sqrt((1 - $e2) * ($a ** 2 - $xp ** 2) * (1 - $e2 * cos($latitudeCentre) ** 2) - $C ** 2);
2248 9
        $xg = (-$C * sin($latitudeCentre) + $D * cos($latitudeCentre)) / $B;
2249 9
        $yg = $xp;
2250
        $zg = ($C * cos($latitudeCentre) * (1 - $e2) + $D * sin($latitudeCentre)) / $B;
2251 9
2252 9
        $latitude = atan2($zg, (1 - $e2) * sqrt($xg ** 2 + $yg ** 2));
2253
        $longitude = $longitudeCentre + atan2($yg, $xg);
2254 9
2255
        return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch);
2256
    }
2257
}
2258