1
|
|
|
<?php |
2
|
|
|
/** |
3
|
|
|
* PHPCoord. |
4
|
|
|
* |
5
|
|
|
* @author Doug Wright |
6
|
|
|
*/ |
7
|
|
|
declare(strict_types=1); |
8
|
|
|
|
9
|
|
|
namespace PHPCoord\Point; |
10
|
|
|
|
11
|
|
|
use DateTime; |
12
|
|
|
use DateTimeImmutable; |
13
|
|
|
use DateTimeInterface; |
14
|
|
|
use PHPCoord\CoordinateOperation\AutoConversion; |
15
|
|
|
use PHPCoord\CoordinateOperation\ComplexNumber; |
16
|
|
|
use PHPCoord\CoordinateOperation\ConvertiblePoint; |
17
|
|
|
use PHPCoord\CoordinateOperation\OSTNOSGM15Grid; |
18
|
|
|
use PHPCoord\CoordinateReferenceSystem\Compound; |
19
|
|
|
use PHPCoord\CoordinateReferenceSystem\Geocentric; |
20
|
|
|
use PHPCoord\CoordinateReferenceSystem\Geographic2D; |
21
|
|
|
use PHPCoord\CoordinateReferenceSystem\Geographic3D; |
22
|
|
|
use PHPCoord\CoordinateReferenceSystem\Projected; |
23
|
|
|
use PHPCoord\CoordinateReferenceSystem\Vertical; |
24
|
|
|
use PHPCoord\CoordinateSystem\Axis; |
25
|
|
|
use PHPCoord\CoordinateSystem\Cartesian; |
26
|
|
|
use PHPCoord\Exception\InvalidAxesException; |
27
|
|
|
use PHPCoord\Exception\InvalidCoordinateReferenceSystemException; |
28
|
|
|
use PHPCoord\Exception\UnknownAxisException; |
29
|
|
|
use PHPCoord\UnitOfMeasure\Angle\Angle; |
30
|
|
|
use PHPCoord\UnitOfMeasure\Angle\ArcSecond; |
31
|
|
|
use PHPCoord\UnitOfMeasure\Angle\Degree; |
32
|
|
|
use PHPCoord\UnitOfMeasure\Angle\Radian; |
33
|
|
|
use PHPCoord\UnitOfMeasure\Length\Length; |
34
|
|
|
use PHPCoord\UnitOfMeasure\Length\Metre; |
35
|
|
|
use PHPCoord\UnitOfMeasure\Scale\Coefficient; |
36
|
|
|
use PHPCoord\UnitOfMeasure\Scale\Scale; |
37
|
|
|
use PHPCoord\UnitOfMeasure\Scale\Unity; |
38
|
|
|
|
39
|
|
|
use function abs; |
40
|
|
|
use function asinh; |
41
|
|
|
use function atan; |
42
|
|
|
use function atan2; |
43
|
|
|
use function atanh; |
44
|
|
|
use function cos; |
45
|
|
|
use function cosh; |
46
|
|
|
use function count; |
47
|
|
|
use function hypot; |
48
|
|
|
use function implode; |
49
|
|
|
use function is_nan; |
50
|
|
|
use function log; |
51
|
|
|
use function max; |
52
|
|
|
use function sin; |
53
|
|
|
use function sinh; |
54
|
|
|
use function sqrt; |
55
|
|
|
use function substr; |
56
|
|
|
use function tan; |
57
|
|
|
use function tanh; |
58
|
|
|
use function assert; |
59
|
|
|
|
60
|
|
|
use const M_E; |
61
|
|
|
use const M_PI; |
62
|
|
|
use const M_PI_2; |
63
|
|
|
|
64
|
|
|
/** |
65
|
|
|
* Coordinate representing a point on a map projection. |
66
|
|
|
*/ |
67
|
|
|
class ProjectedPoint extends Point implements ConvertiblePoint |
68
|
|
|
{ |
69
|
|
|
use AutoConversion { |
70
|
|
|
convert as protected autoConvert; |
71
|
|
|
} |
72
|
|
|
|
73
|
|
|
/** |
74
|
|
|
* Easting. |
75
|
|
|
*/ |
76
|
|
|
protected Length $easting; |
77
|
|
|
|
78
|
|
|
/** |
79
|
|
|
* Northing. |
80
|
|
|
*/ |
81
|
|
|
protected Length $northing; |
82
|
|
|
|
83
|
|
|
/** |
84
|
|
|
* Westing. |
85
|
|
|
*/ |
86
|
|
|
protected Length $westing; |
87
|
|
|
|
88
|
|
|
/** |
89
|
|
|
* Southing. |
90
|
|
|
*/ |
91
|
|
|
protected Length $southing; |
92
|
|
|
|
93
|
|
|
/** |
94
|
|
|
* Height. |
95
|
|
|
*/ |
96
|
|
|
protected ?Length $height; |
97
|
|
|
|
98
|
|
|
/** |
99
|
|
|
* Coordinate reference system. |
100
|
|
|
*/ |
101
|
|
|
protected Projected $crs; |
102
|
|
|
|
103
|
|
|
/** |
104
|
|
|
* Coordinate epoch (date for which the specified coordinates represented this point). |
105
|
|
|
*/ |
106
|
|
|
protected ?DateTimeImmutable $epoch; |
107
|
|
|
|
108
|
|
|
protected function __construct(Projected $crs, ?Length $easting, ?Length $northing, ?Length $westing, ?Length $southing, ?DateTimeInterface $epoch, ?Length $height) |
109
|
|
|
{ |
110
|
|
|
if (count($crs->getCoordinateSystem()->getAxes()) === 2 && $height !== null) { |
111
|
|
|
throw new InvalidCoordinateReferenceSystemException('A 2D projected point must not include a height'); |
112
|
|
|
} |
113
|
|
|
|
114
|
|
|
if (count($crs->getCoordinateSystem()->getAxes()) === 3 && $height === null) { |
115
|
|
|
throw new InvalidCoordinateReferenceSystemException('A 3D projected point must include a height, none given'); |
116
|
|
|
} |
117
|
|
|
|
118
|
|
|
$this->crs = $crs; |
119
|
|
|
$cs = $this->crs->getCoordinateSystem(); |
120
|
|
|
|
121
|
|
|
$eastingAxis = $cs->hasAxisByName(Axis::EASTING) ? $cs->getAxisByName(Axis::EASTING) : null; |
122
|
|
|
$westingAxis = $cs->hasAxisByName(Axis::WESTING) ? $cs->getAxisByName(Axis::WESTING) : null; |
123
|
|
|
$northingAxis = $cs->hasAxisByName(Axis::NORTHING) ? $cs->getAxisByName(Axis::NORTHING) : null; |
124
|
|
|
$southingAxis = $cs->hasAxisByName(Axis::SOUTHING) ? $cs->getAxisByName(Axis::SOUTHING) : null; |
125
|
|
|
|
126
|
|
|
if ($easting && $eastingAxis) { |
127
|
|
|
$this->easting = $easting::convert($easting, $eastingAxis->getUnitOfMeasureId()); |
128
|
|
|
$this->westing = $this->easting->multiply(-1); |
129
|
|
|
} elseif ($westing && $westingAxis) { |
130
|
|
|
$this->westing = $westing::convert($westing, $westingAxis->getUnitOfMeasureId()); |
131
|
|
|
$this->easting = $this->westing->multiply(-1); |
132
|
|
|
} else { |
133
|
|
|
throw new InvalidAxesException($crs->getCoordinateSystem()->getAxes()); |
134
|
|
|
} |
135
|
|
|
|
136
|
|
|
if ($northing && $northingAxis) { |
137
|
|
|
$this->northing = $northing::convert($northing, $northingAxis->getUnitOfMeasureId()); |
138
|
|
|
$this->southing = $this->northing->multiply(-1); |
139
|
|
|
} elseif ($southing && $southingAxis) { |
140
|
|
|
$this->southing = $southing::convert($southing, $southingAxis->getUnitOfMeasureId()); |
141
|
|
|
$this->northing = $this->southing->multiply(-1); |
142
|
|
|
} else { |
143
|
|
|
throw new InvalidAxesException($crs->getCoordinateSystem()->getAxes()); |
144
|
|
|
} |
145
|
|
|
|
146
|
|
|
if ($epoch instanceof DateTime) { |
147
|
|
|
$epoch = DateTimeImmutable::createFromMutable($epoch); |
148
|
|
|
} |
149
|
|
|
$this->epoch = $epoch; |
150
|
|
|
|
151
|
|
|
$this->height = $height; |
152
|
|
|
} |
153
|
|
|
|
154
|
|
|
public static function create(Projected $crs, ?Length $easting, ?Length $northing, ?Length $westing, ?Length $southing, ?DateTimeInterface $epoch = null, ?Length $height = null): self |
155
|
|
|
{ |
156
|
|
|
return match ($crs->getSRID()) { |
157
|
|
|
Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID => new BritishNationalGridPoint($easting, $northing, $epoch), |
|
|
|
|
158
|
|
|
Projected::EPSG_TM75_IRISH_GRID => new IrishGridPoint($easting, $northing, $epoch), |
|
|
|
|
159
|
|
|
Projected::EPSG_IRENET95_IRISH_TRANSVERSE_MERCATOR => new IrishTransverseMercatorPoint($easting, $northing, $epoch), |
|
|
|
|
160
|
|
|
default => new self($crs, $easting, $northing, $westing, $southing, $epoch, $height), |
161
|
|
|
}; |
162
|
|
|
} |
163
|
|
|
|
164
|
|
|
public static function createFromEastingNorthing(Projected $crs, Length $easting, Length $northing, ?DateTimeInterface $epoch = null, ?Length $height = null): self |
165
|
|
|
{ |
166
|
|
|
return static::create($crs, $easting, $northing, null, null, $epoch, $height); |
167
|
|
|
} |
168
|
|
|
|
169
|
|
|
public static function createFromWestingNorthing(Projected $crs, Length $westing, Length $northing, ?DateTimeInterface $epoch = null, ?Length $height = null): self |
170
|
|
|
{ |
171
|
|
|
return static::create($crs, null, $northing, $westing, null, $epoch, $height); |
172
|
|
|
} |
173
|
|
|
|
174
|
|
|
public static function createFromWestingSouthing(Projected $crs, Length $westing, Length $southing, ?DateTimeInterface $epoch = null, ?Length $height = null): self |
175
|
|
|
{ |
176
|
|
|
return static::create($crs, null, null, $westing, $southing, $epoch, $height); |
177
|
|
|
} |
178
|
|
|
|
179
|
|
|
public function getEasting(): Length |
180
|
|
|
{ |
181
|
|
|
return $this->easting; |
182
|
|
|
} |
183
|
|
|
|
184
|
|
|
public function getNorthing(): Length |
185
|
|
|
{ |
186
|
|
|
return $this->northing; |
187
|
|
|
} |
188
|
|
|
|
189
|
|
|
public function getWesting(): Length |
190
|
|
|
{ |
191
|
|
|
return $this->westing; |
192
|
|
|
} |
193
|
|
|
|
194
|
|
|
public function getSouthing(): Length |
195
|
|
|
{ |
196
|
|
|
return $this->southing; |
197
|
|
|
} |
198
|
|
|
|
199
|
|
|
public function getHeight(): ?Length |
200
|
|
|
{ |
201
|
|
|
return $this->height; |
202
|
|
|
} |
203
|
|
|
|
204
|
|
|
public function getCRS(): Projected |
205
|
|
|
{ |
206
|
|
|
return $this->crs; |
207
|
|
|
} |
208
|
|
|
|
209
|
|
|
public function getCoordinateEpoch(): ?DateTimeImmutable |
210
|
|
|
{ |
211
|
|
|
return $this->epoch; |
212
|
|
|
} |
213
|
|
|
|
214
|
|
|
/** |
215
|
|
|
* Calculate distance between two points. |
216
|
|
|
* Because this is a simple grid, we can use Pythagoras. |
217
|
|
|
*/ |
218
|
|
|
public function calculateDistance(Point $to): Length |
219
|
|
|
{ |
220
|
|
|
try { |
221
|
|
|
if ($to instanceof ConvertiblePoint) { |
222
|
|
|
$to = $to->convert($this->crs); |
223
|
|
|
} |
224
|
|
|
} finally { |
225
|
|
|
if ($to->getCRS()->getSRID() !== $this->crs->getSRID()) { |
226
|
|
|
throw new InvalidCoordinateReferenceSystemException('Can only calculate distances between two points in the same CRS'); |
227
|
|
|
} |
228
|
|
|
|
229
|
|
|
/** @var ProjectedPoint $to */ |
230
|
|
|
return new Metre( |
231
|
|
|
sqrt( |
232
|
|
|
($to->getEasting()->getValue() - $this->getEasting()->getValue()) ** 2 + |
233
|
|
|
($to->getNorthing()->getValue() - $this->getNorthing()->getValue()) ** 2 |
234
|
|
|
) |
235
|
|
|
); |
236
|
|
|
} |
237
|
|
|
} |
238
|
|
|
|
239
|
|
|
public function asGeographicPoint(): GeographicPoint |
240
|
|
|
{ |
241
|
|
|
$geographicPoint = $this->performOperation($this->crs->getDerivingConversion(), $this->crs->getBaseCRS(), true); |
242
|
|
|
assert($geographicPoint instanceof GeographicPoint); |
243
|
|
|
|
244
|
|
|
return $geographicPoint; |
245
|
|
|
} |
246
|
|
|
|
247
|
|
|
public function convert(Compound|Geocentric|Geographic2D|Geographic3D|Projected|Vertical $to, bool $ignoreBoundaryRestrictions = false): Point |
248
|
|
|
{ |
249
|
|
|
if ($to->getSRID() === $this->crs->getBaseCRS()->getSRID()) { |
250
|
|
|
return $this->performOperation($this->crs->getDerivingConversion(), $this->crs->getBaseCRS(), true); |
251
|
|
|
} |
252
|
|
|
|
253
|
|
|
return $this->autoConvert($to, $ignoreBoundaryRestrictions); |
254
|
|
|
} |
255
|
|
|
|
256
|
|
|
public function __toString(): string |
257
|
|
|
{ |
258
|
|
|
$values = []; |
259
|
|
|
foreach ($this->getCRS()->getCoordinateSystem()->getAxes() as $axis) { |
260
|
|
|
if ($axis->getName() === Axis::EASTING) { |
261
|
|
|
$values[] = $this->easting; |
262
|
|
|
} elseif ($axis->getName() === Axis::NORTHING) { |
263
|
|
|
$values[] = $this->northing; |
264
|
|
|
} elseif ($axis->getName() === Axis::WESTING) { |
265
|
|
|
$values[] = $this->westing; |
266
|
|
|
} elseif ($axis->getName() === Axis::SOUTHING) { |
267
|
|
|
$values[] = $this->southing; |
268
|
|
|
} elseif ($axis->getName() === Axis::ELLIPSOIDAL_HEIGHT) { |
269
|
|
|
$values[] = $this->height; |
270
|
|
|
} else { |
271
|
|
|
throw new UnknownAxisException(); // @codeCoverageIgnore |
272
|
|
|
} |
273
|
|
|
} |
274
|
|
|
|
275
|
|
|
return '(' . implode(', ', $values) . ')'; |
276
|
|
|
} |
277
|
|
|
|
278
|
|
|
/** |
279
|
|
|
* Affine parametric transformation. |
280
|
|
|
*/ |
281
|
|
|
public function affineParametricTransform( |
282
|
|
|
Projected $to, |
283
|
|
|
Length $A0, |
284
|
|
|
Coefficient $A1, |
285
|
|
|
Coefficient $A2, |
286
|
|
|
Length $B0, |
287
|
|
|
Coefficient $B1, |
288
|
|
|
Coefficient $B2, |
289
|
|
|
bool $inReverse |
290
|
|
|
): self { |
291
|
|
|
$xs = $this->easting->getValue(); // native unit to metre conversion already embedded in the scale factor |
292
|
|
|
$ys = $this->northing->getValue(); // native unit to metre conversion already embedded in the scale factor |
293
|
|
|
|
294
|
|
|
if ($inReverse) { |
295
|
|
|
$D = ($A1->getValue() * $B2->getValue()) - ($A2->getValue() * $B1->getValue()); |
296
|
|
|
$a0 = (($A2->getValue() * $B0->asMetres()->getValue()) - ($B2->getValue() * $A0->asMetres()->getValue())) / $D; |
297
|
|
|
$b0 = (($B1->getValue() * $A0->asMetres()->getValue()) - ($A1->getValue() * $B0->asMetres()->getValue())) / $D; |
298
|
|
|
$a1 = $B2->getValue() / $D; |
299
|
|
|
$a2 = -$A2->getValue() / $D; |
300
|
|
|
$b1 = -$B1->getValue() / $D; |
301
|
|
|
$b2 = $A1->getValue() / $D; |
302
|
|
|
} else { |
303
|
|
|
$a0 = $A0->asMetres()->getValue(); |
304
|
|
|
$a1 = $A1->getValue(); |
305
|
|
|
$a2 = $A2->getValue(); |
306
|
|
|
$b0 = $B0->asMetres()->getValue(); |
307
|
|
|
$b1 = $B1->getValue(); |
308
|
|
|
$b2 = $B2->getValue(); |
309
|
|
|
} |
310
|
|
|
|
311
|
|
|
$xt = $a0 + ($a1 * $xs) + ($a2 * $ys); |
312
|
|
|
$yt = $b0 + ($b1 * $xs) + ($b2 * $ys); |
313
|
|
|
|
314
|
|
|
return static::create($to, new Metre($xt), new Metre($yt), new Metre(-$xt), new Metre(-$yt), $this->epoch); |
315
|
|
|
} |
316
|
|
|
|
317
|
|
|
/** |
318
|
|
|
* Albers Equal Area. |
319
|
|
|
*/ |
320
|
|
|
public function albersEqualArea( |
321
|
|
|
Geographic2D|Geographic3D $to, |
322
|
|
|
Angle $latitudeOfFalseOrigin, |
323
|
|
|
Angle $longitudeOfFalseOrigin, |
324
|
|
|
Angle $latitudeOf1stStandardParallel, |
325
|
|
|
Angle $latitudeOf2ndStandardParallel, |
326
|
|
|
Length $eastingAtFalseOrigin, |
327
|
|
|
Length $northingAtFalseOrigin |
328
|
|
|
): GeographicPoint { |
329
|
|
|
$ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
330
|
|
|
$easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue(); |
331
|
|
|
$northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue(); |
332
|
|
|
$phiOrigin = $latitudeOfFalseOrigin->asRadians()->getValue(); |
333
|
|
|
$phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
334
|
|
|
$phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue(); |
335
|
|
|
$a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
336
|
|
|
$e = $ellipsoid->getEccentricity(); |
337
|
|
|
$e2 = $ellipsoid->getEccentricitySquared(); |
338
|
|
|
$e4 = $e ** 4; |
339
|
|
|
$e6 = $e ** 6; |
340
|
|
|
|
341
|
|
|
$centralMeridianFirstParallel = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2); |
342
|
|
|
$centralMeridianSecondParallel = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2); |
343
|
|
|
|
344
|
|
|
$alphaOrigin = (1 - $e2) * (sin($phiOrigin) / (1 - $e2 * sin($phiOrigin) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phiOrigin)) / (1 + $e * sin($phiOrigin)))); |
345
|
|
|
$alphaFirstParallel = (1 - $e2) * (sin($phi1) / (1 - $e2 * sin($phi1) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi1)) / (1 + $e * sin($phi1)))); |
346
|
|
|
$alphaSecondParallel = (1 - $e2) * (sin($phi2) / (1 - $e2 * sin($phi2) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi2)) / (1 + $e * sin($phi2)))); |
347
|
|
|
|
348
|
|
|
$n = ($centralMeridianFirstParallel ** 2 - $centralMeridianSecondParallel ** 2) / ($alphaSecondParallel - $alphaFirstParallel); |
349
|
|
|
$C = $centralMeridianFirstParallel ** 2 + $n * $alphaFirstParallel; |
350
|
|
|
$rhoOrigin = $a * sqrt($C - $n * $alphaOrigin) / $n; |
351
|
|
|
$rhoPrime = hypot($easting, $rhoOrigin - $northing); |
352
|
|
|
$alphaPrime = ($C - $rhoPrime ** 2 * $n ** 2 / $a ** 2) / $n; |
353
|
|
|
$betaPrime = self::asin($alphaPrime / (1 - (1 - $e2) / 2 / $e * log((1 - $e) / (1 + $e)))); |
354
|
|
|
if ($n > 0) { |
355
|
|
|
$theta = atan2($easting, $rhoOrigin - $northing); |
356
|
|
|
} else { |
357
|
|
|
$theta = atan2(-$easting, $northing - $rhoOrigin); |
358
|
|
|
} |
359
|
|
|
|
360
|
|
|
$latitude = $betaPrime + (($e2 / 3 + 31 * $e4 / 180 + 517 * $e6 / 5040) * sin(2 * $betaPrime)) + ((23 * $e4 / 360 + 251 * $e6 / 3780) * sin(4 * $betaPrime)) + ((761 * $e6 / 45360) * sin(6 * $betaPrime)); |
361
|
|
|
$longitude = $longitudeOfFalseOrigin->asRadians()->getValue() + ($theta / $n); |
362
|
|
|
|
363
|
|
|
return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
364
|
|
|
} |
365
|
|
|
|
366
|
|
|
/** |
367
|
|
|
* American Polyconic. |
368
|
|
|
*/ |
369
|
|
|
public function americanPolyconic( |
370
|
|
|
Geographic2D|Geographic3D $to, |
371
|
|
|
Angle $latitudeOfNaturalOrigin, |
372
|
|
|
Angle $longitudeOfNaturalOrigin, |
373
|
|
|
Length $falseEasting, |
374
|
|
|
Length $falseNorthing |
375
|
|
|
): GeographicPoint { |
376
|
|
|
$ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
377
|
|
|
$easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
378
|
|
|
$northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
379
|
|
|
$latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
380
|
|
|
$longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
381
|
|
|
$a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
382
|
|
|
$e = $ellipsoid->getEccentricity(); |
383
|
|
|
$e2 = $ellipsoid->getEccentricitySquared(); |
384
|
|
|
$e4 = $e ** 4; |
385
|
|
|
$e6 = $e ** 6; |
386
|
|
|
|
387
|
|
|
$i = (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256); |
388
|
|
|
$ii = (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024); |
389
|
|
|
$iii = (15 * $e4 / 256 + 45 * $e6 / 1024); |
390
|
|
|
$iv = (35 * $e6 / 3072); |
391
|
|
|
|
392
|
|
|
$MO = $a * ($i * $latitudeOrigin - $ii * sin(2 * $latitudeOrigin) + $iii * sin(4 * $latitudeOrigin) - $iv * sin(6 * $latitudeOrigin)); |
393
|
|
|
|
394
|
|
|
if ($MO === $northing) { |
395
|
|
|
$latitude = 0; |
396
|
|
|
$longitude = $longitudeOrigin + $easting / $a; |
397
|
|
|
} else { |
398
|
|
|
$A = ($MO + $northing) / $a; |
399
|
|
|
$B = $A ** 2 + $easting ** 2 / $a ** 2; |
400
|
|
|
|
401
|
|
|
$latitude = $A; |
402
|
|
|
$C = sqrt(1 - $e2 * sin($latitude) ** 2) * tan($latitude); |
403
|
|
|
do { |
404
|
|
|
$latitudeN = $latitude; |
405
|
|
|
$Ma = $i * $latitude - $ii * sin(2 * $latitude) + $iii * sin(4 * $latitude) - $iv * sin(6 * $latitude); |
406
|
|
|
$MnPrime = $i - 2 * $ii * cos(2 * $latitude) + 4 * $iii * cos(4 * $latitude) - 6 * $iv * cos(6 * $latitude); |
407
|
|
|
$latitude = $latitude - ($A * ($C * $Ma + 1) - $Ma - $C * ($Ma ** 2 + $B) / 2) / ($e2 * sin(2 * $latitude) * ($Ma ** 2 + $B - 2 * $A * $Ma) / 4 * $C + ($A - $Ma) * ($C * $MnPrime - (2 / sin(2 * $latitude))) - $MnPrime); |
408
|
|
|
$C = sqrt(1 - $e2 * sin($latitude) ** 2) * tan($latitude); |
409
|
|
|
} while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
410
|
|
|
|
411
|
|
|
$longitude = $longitudeOrigin + self::asin($easting * $C / $a) / sin($latitude); |
412
|
|
|
} |
413
|
|
|
|
414
|
|
|
return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
415
|
|
|
} |
416
|
|
|
|
417
|
|
|
/** |
418
|
|
|
* Bonne. |
419
|
|
|
*/ |
420
|
|
|
public function bonne( |
421
|
|
|
Geographic2D|Geographic3D $to, |
422
|
|
|
Angle $latitudeOfNaturalOrigin, |
423
|
|
|
Angle $longitudeOfNaturalOrigin, |
424
|
|
|
Length $falseEasting, |
425
|
|
|
Length $falseNorthing |
426
|
|
|
): GeographicPoint { |
427
|
|
|
$ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
428
|
|
|
$easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
429
|
|
|
$northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
430
|
|
|
$latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
431
|
|
|
$longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
432
|
|
|
$a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
433
|
|
|
$e = $ellipsoid->getEccentricity(); |
434
|
|
|
$e2 = $ellipsoid->getEccentricitySquared(); |
435
|
|
|
$e4 = $e ** 4; |
436
|
|
|
$e6 = $e ** 6; |
437
|
|
|
|
438
|
|
|
$mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2); |
439
|
|
|
$MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
440
|
|
|
$rho = hypot($easting, $a * $mO / sin($latitudeOrigin) - $northing) * static::sign($latitudeOrigin); |
441
|
|
|
|
442
|
|
|
$M = $a * $mO / sin($latitudeOrigin) + $MO - $rho; |
443
|
|
|
$mu = $M / ($a * (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256)); |
444
|
|
|
$e1 = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2)); |
445
|
|
|
|
446
|
|
|
$latitude = $mu + ((3 * $e1 / 2) - (27 * $e1 ** 3 / 32)) * sin(2 * $mu) + ((21 * $e1 ** 2 / 16) - (55 * $e1 ** 4 / 32)) * sin(4 * $mu) + (151 * $e1 ** 3 / 96) * sin(6 * $mu) + (1097 * $e1 ** 4 / 512) * sin(8 * $mu); |
447
|
|
|
$m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2); |
448
|
|
|
|
449
|
|
|
if ($m === 0.0) { |
450
|
|
|
$longitude = $longitudeOrigin; // pole |
451
|
|
|
} elseif ($latitudeOrigin >= 0) { |
452
|
|
|
$longitude = $longitudeOrigin + $rho * atan2($easting, $a * $mO / sin($latitudeOrigin) - $northing) / $a / $m; |
453
|
|
|
} else { |
454
|
|
|
$longitude = $longitudeOrigin + $rho * atan2(-$easting, -($a * $mO / sin($latitudeOrigin) - $northing)) / $a / $m; |
455
|
|
|
} |
456
|
|
|
|
457
|
|
|
return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
458
|
|
|
} |
459
|
|
|
|
460
|
|
|
/** |
461
|
|
|
* Bonne South Orientated. |
462
|
|
|
*/ |
463
|
|
|
public function bonneSouthOrientated( |
464
|
|
|
Geographic2D|Geographic3D $to, |
465
|
|
|
Angle $latitudeOfNaturalOrigin, |
466
|
|
|
Angle $longitudeOfNaturalOrigin, |
467
|
|
|
Length $falseEasting, |
468
|
|
|
Length $falseNorthing |
469
|
|
|
): GeographicPoint { |
470
|
|
|
$ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
471
|
|
|
$westing = $falseEasting->asMetres()->getValue() - $this->westing->asMetres()->getValue(); |
472
|
|
|
$southing = $falseNorthing->asMetres()->getValue() - $this->southing->asMetres()->getValue(); |
473
|
|
|
$latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
474
|
|
|
$longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
475
|
|
|
$a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
476
|
|
|
$e = $ellipsoid->getEccentricity(); |
477
|
|
|
$e2 = $ellipsoid->getEccentricitySquared(); |
478
|
|
|
$e4 = $e ** 4; |
479
|
|
|
$e6 = $e ** 6; |
480
|
|
|
|
481
|
|
|
$mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2); |
482
|
|
|
$MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
483
|
|
|
$rho = hypot($westing, $a * $mO / sin($latitudeOrigin) - $southing) * static::sign($latitudeOrigin); |
484
|
|
|
|
485
|
|
|
$M = $a * $mO / sin($latitudeOrigin) + $MO - $rho; |
486
|
|
|
$mu = $M / ($a * (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256)); |
487
|
|
|
$e1 = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2)); |
488
|
|
|
|
489
|
|
|
$latitude = $mu + ((3 * $e1 / 2) - (27 * $e1 ** 3 / 32)) * sin(2 * $mu) + ((21 * $e1 ** 2 / 16) - (55 * $e1 ** 4 / 32)) * sin(4 * $mu) + (151 * $e1 ** 3 / 96) * sin(6 * $mu) + (1097 * $e1 ** 4 / 512) * sin(8 * $mu); |
490
|
|
|
$m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2); |
491
|
|
|
|
492
|
|
|
if ($m === 0.0) { |
493
|
|
|
$longitude = $longitudeOrigin; // pole |
494
|
|
|
} elseif ($latitudeOrigin >= 0) { |
495
|
|
|
$longitude = $longitudeOrigin + $rho * atan2($westing, $a * $mO / sin($latitudeOrigin) - $southing) / $a / $m; |
496
|
|
|
} else { |
497
|
|
|
$longitude = $longitudeOrigin + $rho * atan2(-$westing, -($a * $mO / sin($latitudeOrigin) - $southing)) / $a / $m; |
498
|
|
|
} |
499
|
|
|
|
500
|
|
|
return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
501
|
|
|
} |
502
|
|
|
|
503
|
|
|
/** |
504
|
|
|
* Cartesian Grid Offsets |
505
|
|
|
* This transformation allows calculation of coordinates in the target system by adding the parameter value to the |
506
|
|
|
* coordinate values of the point in the source system. |
507
|
|
|
*/ |
508
|
|
|
public function offsets( |
509
|
|
|
Projected $to, |
510
|
|
|
Length $eastingOffset, |
511
|
|
|
Length $northingOffset |
512
|
|
|
): self { |
513
|
|
|
$easting = $this->easting->asMetres()->getValue() + $eastingOffset->asMetres()->getValue(); |
514
|
|
|
$northing = $this->northing->asMetres()->getValue() + $northingOffset->asMetres()->getValue(); |
515
|
|
|
|
516
|
|
|
return static::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
517
|
|
|
} |
518
|
|
|
|
519
|
|
|
/** |
520
|
|
|
* Cassini-Soldner. |
521
|
|
|
*/ |
522
|
|
|
public function cassiniSoldner( |
523
|
|
|
Geographic2D|Geographic3D $to, |
524
|
|
|
Angle $latitudeOfNaturalOrigin, |
525
|
|
|
Angle $longitudeOfNaturalOrigin, |
526
|
|
|
Length $falseEasting, |
527
|
|
|
Length $falseNorthing |
528
|
|
|
): GeographicPoint { |
529
|
|
|
$ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
530
|
|
|
$easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
531
|
|
|
$northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
532
|
|
|
$latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
533
|
|
|
$longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
534
|
|
|
$a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
535
|
|
|
$e = $ellipsoid->getEccentricity(); |
536
|
|
|
$e2 = $ellipsoid->getEccentricitySquared(); |
537
|
|
|
$e4 = $e ** 4; |
538
|
|
|
$e6 = $e ** 6; |
539
|
|
|
|
540
|
|
|
$MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
541
|
|
|
|
542
|
|
|
$e1 = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2)); |
543
|
|
|
$M = $MO + $northing; |
544
|
|
|
$mu = $M / ($a * (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256)); |
545
|
|
|
$latitudeCentralMeridian = $mu + (3 * $e1 / 2 - 27 * $e1 ** 3 / 32) * sin(2 * $mu) + (21 * $e1 ** 2 / 16 - 55 * $e1 ** 4 / 32) * sin(4 * $mu) + (151 * $e1 ** 3 / 96) * sin(6 * $mu) + (1097 * $e1 ** 4 / 512) * sin(8 * $mu); |
546
|
|
|
|
547
|
|
|
$nu = $a / sqrt(1 - $e2 * sin($latitudeCentralMeridian) ** 2); |
548
|
|
|
$rho = $a * (1 - $e2) / (1 - $e2 * sin($latitudeCentralMeridian) ** 2) ** 1.5; |
549
|
|
|
|
550
|
|
|
$T = tan($latitudeCentralMeridian) ** 2; |
551
|
|
|
$D = $easting / $nu; |
552
|
|
|
|
553
|
|
|
$latitude = $latitudeCentralMeridian - ($nu * tan($latitudeCentralMeridian) / $rho) * ($D ** 2 / 2 - (1 + 3 * $T) * $D ** 4 / 24); |
554
|
|
|
$longitude = $longitudeOrigin + ($D - $T * $D ** 3 / 3 + (1 + 3 * $T) * $T * $D ** 5 / 15) / cos($latitudeCentralMeridian); |
555
|
|
|
|
556
|
|
|
return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
557
|
|
|
} |
558
|
|
|
|
559
|
|
|
/** |
560
|
|
|
* Hyperbolic Cassini-Soldner. |
561
|
|
|
*/ |
562
|
|
|
public function hyperbolicCassiniSoldner( |
563
|
|
|
Geographic2D|Geographic3D $to, |
564
|
|
|
Angle $latitudeOfNaturalOrigin, |
565
|
|
|
Angle $longitudeOfNaturalOrigin, |
566
|
|
|
Length $falseEasting, |
567
|
|
|
Length $falseNorthing |
568
|
|
|
): GeographicPoint { |
569
|
|
|
$ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
570
|
|
|
$easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
571
|
|
|
$northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
572
|
|
|
$latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
573
|
|
|
$longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
574
|
|
|
$a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
575
|
|
|
$e = $ellipsoid->getEccentricity(); |
576
|
|
|
$e2 = $ellipsoid->getEccentricitySquared(); |
577
|
|
|
$e4 = $e ** 4; |
578
|
|
|
$e6 = $e ** 6; |
579
|
|
|
|
580
|
|
|
$MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
581
|
|
|
$e1 = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2)); |
582
|
|
|
|
583
|
|
|
$latitude1 = $latitudeOrigin + $northing / 1567446; |
584
|
|
|
|
585
|
|
|
$nu = $a / sqrt(1 - $e2 * sin($latitude1) ** 2); |
586
|
|
|
$rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude1) ** 2) ** 1.5; |
587
|
|
|
|
588
|
|
|
$qPrime = $northing ** 3 / (6 * $rho * $nu); |
589
|
|
|
$q = ($northing + $qPrime) ** 3 / (6 * $rho * $nu); |
590
|
|
|
$M = $MO + $northing + $q; |
591
|
|
|
|
592
|
|
|
$mu = $M / ($a * (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256)); |
593
|
|
|
$latitudeCentralMeridian = $mu + (3 * $e1 / 2 - 27 * $e1 ** 3 / 32) * sin(2 * $mu) + (21 * $e1 ** 2 / 16 - 55 * $e1 ** 4 / 32) * sin(4 * $mu) + (151 * $e1 ** 3 / 96) * sin(6 * $mu) + (1097 * $e1 ** 4 / 512) * sin(8 * $mu); |
594
|
|
|
|
595
|
|
|
$T = tan($latitudeCentralMeridian) ** 2; |
596
|
|
|
$D = $easting / $nu; |
597
|
|
|
|
598
|
|
|
$latitude = $latitudeCentralMeridian - ($nu * tan($latitudeCentralMeridian) / $rho) * ($D ** 2 / 2 - (1 + 3 * $T) * $D ** 4 / 24); |
599
|
|
|
$longitude = $longitudeOrigin + ($D - $T * $D ** 3 / 3 + (1 + 3 * $T) * $T * $D ** 5 / 15) / cos($latitudeCentralMeridian); |
600
|
|
|
|
601
|
|
|
return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
602
|
|
|
} |
603
|
|
|
|
604
|
|
|
/** |
605
|
|
|
* Colombia Urban. |
606
|
|
|
*/ |
607
|
|
|
public function columbiaUrban( |
608
|
|
|
Geographic2D|Geographic3D $to, |
609
|
|
|
Angle $latitudeOfNaturalOrigin, |
610
|
|
|
Angle $longitudeOfNaturalOrigin, |
611
|
|
|
Length $falseEasting, |
612
|
|
|
Length $falseNorthing, |
613
|
|
|
Length $projectionPlaneOriginHeight |
614
|
|
|
): GeographicPoint { |
615
|
|
|
$ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
616
|
|
|
$easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
617
|
|
|
$northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
618
|
|
|
$latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
619
|
|
|
$longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
620
|
|
|
$heightOrigin = $projectionPlaneOriginHeight->asMetres()->getValue(); |
621
|
|
|
$a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
622
|
|
|
$e2 = $ellipsoid->getEccentricitySquared(); |
623
|
|
|
|
624
|
|
|
$rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** 1.5; |
625
|
|
|
|
626
|
|
|
$nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2)); |
627
|
|
|
|
628
|
|
|
$B = tan($latitudeOrigin) / (2 * $rhoOrigin * $nuOrigin); |
629
|
|
|
$C = 1 + $heightOrigin / $a; |
630
|
|
|
$D = $rhoOrigin * (1 + $heightOrigin / ($a * (1 - $e2))); |
631
|
|
|
|
632
|
|
|
$latitude = $latitudeOrigin + ($northing / $D) - $B * ($easting / $C) ** 2; |
633
|
|
|
$nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2)); |
634
|
|
|
$longitude = $longitudeOrigin + $easting / ($C * $nu * cos($latitude)); |
635
|
|
|
|
636
|
|
|
return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
637
|
|
|
} |
638
|
|
|
|
639
|
|
|
/** |
640
|
|
|
* Equal Earth. |
641
|
|
|
*/ |
642
|
|
|
public function equalEarth( |
643
|
|
|
Geographic2D|Geographic3D $to, |
644
|
|
|
Angle $longitudeOfNaturalOrigin, |
645
|
|
|
Length $falseEasting, |
646
|
|
|
Length $falseNorthing |
647
|
|
|
): GeographicPoint { |
648
|
|
|
$ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
649
|
|
|
$easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
650
|
|
|
$northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
651
|
|
|
$longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
652
|
|
|
$a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
653
|
|
|
$e = $ellipsoid->getEccentricity(); |
654
|
|
|
$e2 = $ellipsoid->getEccentricitySquared(); |
655
|
|
|
$e4 = $e ** 4; |
656
|
|
|
$e6 = $e ** 6; |
657
|
|
|
|
658
|
|
|
$qP = (1 - $e2) * ((1 / (1 - $e2)) - (1 / (2 * $e) * log((1 - $e) / (1 + $e)))); |
659
|
|
|
$Rq = $a * sqrt($qP / 2); |
660
|
|
|
|
661
|
|
|
$theta = $northing / $Rq; |
662
|
|
|
do { |
663
|
|
|
$thetaN = $theta; |
664
|
|
|
$correctionFactor = ($theta * (1.340264 - 0.081106 * $theta ** 2 + $theta ** 6 * (0.000893 + 0.003796 * $theta ** 2)) - $northing / $Rq) / (1.340264 - 0.243318 * $theta ** 2 + $theta ** 6 * (0.006251 + 0.034164 * $theta ** 2)); |
665
|
|
|
$theta -= $correctionFactor; |
666
|
|
|
} while (abs($theta - $thetaN) >= static::ITERATION_CONVERGENCE_FORMULA); |
667
|
|
|
|
668
|
|
|
$beta = self::asin(2 * sin($theta) / sqrt(3)); |
669
|
|
|
|
670
|
|
|
$latitude = $beta + (($e2 / 3 + 31 * $e4 / 180 + 517 * $e6 / 5040) * sin(2 * $beta)) + ((23 * $e4 / 360 + 251 * $e6 / 3780) * sin(4 * $beta)) + ((761 * $e6 / 45360) * sin(6 * $beta)); |
671
|
|
|
$longitude = $longitudeOrigin + sqrt(3) * $easting * (1.340264 - 0.243318 * $theta ** 2 + $theta ** 6 * (0.006251 + 0.034164 * $theta ** 2)) / (2 * $Rq * cos($theta)); |
672
|
|
|
|
673
|
|
|
return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
674
|
|
|
} |
675
|
|
|
|
676
|
|
|
/** |
677
|
|
|
* Equidistant Cylindrical |
678
|
|
|
* See method code 1029 for spherical development. See also Pseudo Plate Carree, method code 9825. |
679
|
|
|
*/ |
680
|
|
|
public function equidistantCylindrical( |
681
|
|
|
Geographic2D|Geographic3D $to, |
682
|
|
|
Angle $latitudeOf1stStandardParallel, |
683
|
|
|
Angle $longitudeOfNaturalOrigin, |
684
|
|
|
Length $falseEasting, |
685
|
|
|
Length $falseNorthing |
686
|
|
|
): GeographicPoint { |
687
|
|
|
$ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
688
|
|
|
$easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
689
|
|
|
$northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
690
|
|
|
$latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
691
|
|
|
$longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
692
|
|
|
$a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
693
|
|
|
$e = $ellipsoid->getEccentricity(); |
694
|
|
|
$e2 = $ellipsoid->getEccentricitySquared(); |
695
|
|
|
$e4 = $e ** 4; |
696
|
|
|
$e6 = $e ** 6; |
697
|
|
|
$e8 = $e ** 8; |
698
|
|
|
$e10 = $e ** 10; |
699
|
|
|
$e12 = $e ** 12; |
700
|
|
|
$e14 = $e ** 14; |
701
|
|
|
|
702
|
|
|
$n = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2)); |
703
|
|
|
$n2 = $n ** 2; |
704
|
|
|
$n3 = $n ** 3; |
705
|
|
|
$n4 = $n ** 4; |
706
|
|
|
$n5 = $n ** 5; |
707
|
|
|
$n6 = $n ** 6; |
708
|
|
|
$n7 = $n ** 7; |
709
|
|
|
$mu = $northing / ($a * (1 - 1 / 4 * $e2 - 3 / 64 * $e4 - 5 / 256 * $e6 - 175 / 16384 * $e8 - 441 / 65536 * $e10 - 4851 / 1048576 * $e12 - 14157 / 4194304 * $e14)); |
710
|
|
|
|
711
|
|
|
$latitude = $mu + (3 / 2 * $n - 27 / 32 * $n3 + 269 / 512 * $n5 - 6607 / 24576 * $n7) * sin(2 * $mu) |
712
|
|
|
+ (21 / 16 * $n2 - 55 / 32 * $n4 + 6759 / 4096 * $n6) * sin(4 * $mu) |
713
|
|
|
+ (151 / 96 * $n3 - 417 / 128 * $n5 + 87963 / 20480 * $n7) * sin(6 * $mu) |
714
|
|
|
+ (1097 / 512 * $n4 - 15543 / 2560 * $n6) * sin(8 * $mu) |
715
|
|
|
+ (8011 / 2560 * $n5 - 69119 / 6144 * $n7) * sin(10 * $mu) |
716
|
|
|
+ (293393 / 61440 * $n6) * sin(12 * $mu) |
717
|
|
|
+ (6845701 / 860160 * $n7) * sin(14 * $mu); |
718
|
|
|
|
719
|
|
|
$longitude = $longitudeOrigin + $easting * sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2) / ($a * cos($latitudeFirstParallel)); |
720
|
|
|
|
721
|
|
|
return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
722
|
|
|
} |
723
|
|
|
|
724
|
|
|
/** |
725
|
|
|
* Guam Projection |
726
|
|
|
* Simplified form of Oblique Azimuthal Equidistant projection method. |
727
|
|
|
*/ |
728
|
|
|
public function guamProjection( |
729
|
|
|
Geographic2D|Geographic3D $to, |
730
|
|
|
Angle $latitudeOfNaturalOrigin, |
731
|
|
|
Angle $longitudeOfNaturalOrigin, |
732
|
|
|
Length $falseEasting, |
733
|
|
|
Length $falseNorthing |
734
|
|
|
): GeographicPoint { |
735
|
|
|
$ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
736
|
|
|
$easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
737
|
|
|
$northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
738
|
|
|
$latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
739
|
|
|
$longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
740
|
|
|
$a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
741
|
|
|
$e = $ellipsoid->getEccentricity(); |
742
|
|
|
$e2 = $ellipsoid->getEccentricitySquared(); |
743
|
|
|
$e4 = $e ** 4; |
744
|
|
|
$e6 = $e ** 6; |
745
|
|
|
|
746
|
|
|
$MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
747
|
|
|
$e1 = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2)); |
748
|
|
|
$i = (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256); |
749
|
|
|
|
750
|
|
|
$latitude = $latitudeOrigin; |
751
|
|
|
do { |
752
|
|
|
$latitudeN = $latitude; |
753
|
|
|
$M = $MO + $northing - ($easting ** 2 * tan($latitude) * sqrt(1 - $e2 * sin($latitude) ** 2) / (2 * $a)); |
754
|
|
|
$mu = $M / ($a * $i); |
755
|
|
|
$latitude = $mu + (3 * $e1 / 2 - 27 * $e1 ** 3 / 32) * sin(2 * $mu) + (21 * $e1 ** 2 / 16 - 55 * $e1 ** 4 / 32) * sin(4 * $mu) + (151 * $e1 ** 3 / 96) * sin(6 * $mu) + (1097 * $e1 ** 4 / 512) * sin(8 * $mu); |
756
|
|
|
} while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
757
|
|
|
|
758
|
|
|
$longitude = $longitudeOrigin + $easting * sqrt(1 - $e2 * sin($latitude) ** 2) / ($a * cos($latitude)); |
759
|
|
|
|
760
|
|
|
return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
761
|
|
|
} |
762
|
|
|
|
763
|
|
|
/** |
764
|
|
|
* Krovak. |
765
|
|
|
*/ |
766
|
|
|
public function krovak( |
767
|
|
|
Geographic2D|Geographic3D $to, |
768
|
|
|
Angle $latitudeOfProjectionCentre, |
769
|
|
|
Angle $longitudeOfOrigin, |
770
|
|
|
Angle $coLatitudeOfConeAxis, |
771
|
|
|
Angle $latitudeOfPseudoStandardParallel, |
772
|
|
|
Scale $scaleFactorOnPseudoStandardParallel, |
773
|
|
|
Length $falseEasting, |
774
|
|
|
Length $falseNorthing |
775
|
|
|
): GeographicPoint { |
776
|
|
|
$ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
777
|
|
|
$longitudeOffset = $this->crs->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue() - $to->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue(); |
778
|
|
|
$westing = $this->westing->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
779
|
|
|
$southing = $this->southing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
780
|
|
|
$latitudeC = $latitudeOfProjectionCentre->asRadians()->getValue(); |
781
|
|
|
$longitudeO = $longitudeOfOrigin->asRadians()->getValue(); |
782
|
|
|
$alphaC = $coLatitudeOfConeAxis->asRadians()->getValue(); |
783
|
|
|
$latitudeP = $latitudeOfPseudoStandardParallel->asRadians()->getValue(); |
784
|
|
|
$kP = $scaleFactorOnPseudoStandardParallel->asUnity()->getValue(); |
785
|
|
|
$a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
786
|
|
|
$e = $ellipsoid->getEccentricity(); |
787
|
|
|
$e2 = $ellipsoid->getEccentricitySquared(); |
788
|
|
|
|
789
|
|
|
$A = $a * sqrt(1 - $e2) / (1 - $e2 * sin($latitudeC) ** 2); |
790
|
|
|
$B = sqrt(1 + $e2 * cos($latitudeC) ** 4 / (1 - $e2)); |
791
|
|
|
$upsilonO = self::asin(sin($latitudeC) / $B); |
792
|
|
|
$tO = tan(M_PI / 4 + $upsilonO / 2) * ((1 + $e * sin($latitudeC)) / (1 - $e * sin($latitudeC))) ** ($e * $B / 2) / (tan(M_PI / 4 + $latitudeC / 2) ** $B); |
793
|
|
|
$n = sin($latitudeP); |
794
|
|
|
$rO = $kP * $A / tan($latitudeP); |
795
|
|
|
|
796
|
|
|
$r = hypot($southing, $westing) ?: 1; |
797
|
|
|
$theta = atan2($westing, $southing); |
798
|
|
|
$D = $theta / sin($latitudeP); |
799
|
|
|
$T = 2 * (atan(($rO / $r) ** (1 / $n) * tan(M_PI / 4 + $latitudeP / 2)) - M_PI / 4); |
800
|
|
|
$U = self::asin(cos($alphaC) * sin($T) - sin($alphaC) * cos($T) * cos($D)); |
801
|
|
|
$V = self::asin(cos($T) * sin($D) / cos($U)); |
802
|
|
|
|
803
|
|
|
$latitude = $U; |
804
|
|
|
do { |
805
|
|
|
$latitudeN = $latitude; |
806
|
|
|
$latitude = 2 * (atan($tO ** (-1 / $B) * tan($U / 2 + M_PI / 4) ** (1 / $B) * ((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2)) - M_PI / 4); |
807
|
|
|
} while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
808
|
|
|
|
809
|
|
|
$longitude = $longitudeO + $longitudeOffset - $V / $B; |
810
|
|
|
|
811
|
|
|
return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
812
|
|
|
} |
813
|
|
|
|
814
|
|
|
/** |
815
|
|
|
* Krovak Modified |
816
|
|
|
* Incorporates a polynomial transformation which is defined to be exact and for practical purposes is considered |
817
|
|
|
* to be a map projection. |
818
|
|
|
*/ |
819
|
|
|
public function krovakModified( |
820
|
|
|
Geographic2D|Geographic3D $to, |
821
|
|
|
Angle $latitudeOfProjectionCentre, |
822
|
|
|
Angle $longitudeOfOrigin, |
823
|
|
|
Angle $coLatitudeOfConeAxis, |
824
|
|
|
Angle $latitudeOfPseudoStandardParallel, |
825
|
|
|
Scale $scaleFactorOnPseudoStandardParallel, |
826
|
|
|
Length $falseEasting, |
827
|
|
|
Length $falseNorthing, |
828
|
|
|
Length $ordinate1OfEvaluationPoint, |
829
|
|
|
Length $ordinate2OfEvaluationPoint, |
830
|
|
|
Coefficient $C1, |
831
|
|
|
Coefficient $C2, |
832
|
|
|
Coefficient $C3, |
833
|
|
|
Coefficient $C4, |
834
|
|
|
Coefficient $C5, |
835
|
|
|
Coefficient $C6, |
836
|
|
|
Coefficient $C7, |
837
|
|
|
Coefficient $C8, |
838
|
|
|
Coefficient $C9, |
839
|
|
|
Coefficient $C10 |
840
|
|
|
): GeographicPoint { |
841
|
|
|
$Xr = $this->getSouthing()->asMetres()->getValue() - $falseNorthing->asMetres()->getValue() - $ordinate1OfEvaluationPoint->asMetres()->getValue(); |
842
|
|
|
$Yr = $this->getWesting()->asMetres()->getValue() - $falseEasting->asMetres()->getValue() - $ordinate2OfEvaluationPoint->asMetres()->getValue(); |
843
|
|
|
$c1 = $C1->asUnity()->getValue(); |
844
|
|
|
$c2 = $C2->asUnity()->getValue(); |
845
|
|
|
$c3 = $C3->asUnity()->getValue(); |
846
|
|
|
$c4 = $C4->asUnity()->getValue(); |
847
|
|
|
$c5 = $C5->asUnity()->getValue(); |
848
|
|
|
$c6 = $C6->asUnity()->getValue(); |
849
|
|
|
$c7 = $C7->asUnity()->getValue(); |
850
|
|
|
$c8 = $C8->asUnity()->getValue(); |
851
|
|
|
$c9 = $C9->asUnity()->getValue(); |
852
|
|
|
$c10 = $C10->asUnity()->getValue(); |
853
|
|
|
|
854
|
|
|
$dX = $c1 + $c3 * $Xr - $c4 * $Yr - 2 * $c6 * $Xr * $Yr + $c5 * ($Xr ** 2 - $Yr ** 2) + $c7 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) - $c8 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) + 4 * $c9 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c10 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2); |
855
|
|
|
$dY = $c2 + $c3 * $Yr + $c4 * $Xr + 2 * $c5 * $Xr * $Yr + $c6 * ($Xr ** 2 - $Yr ** 2) + $c8 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) + $c7 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) - 4 * $c10 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c9 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2); |
856
|
|
|
|
857
|
|
|
$Xp = $this->getSouthing()->asMetres()->getValue() - $falseNorthing->asMetres()->getValue() + $dX; |
858
|
|
|
$Yp = $this->getWesting()->asMetres()->getValue() - $falseEasting->asMetres()->getValue() + $dY; |
859
|
|
|
|
860
|
|
|
$asKrovak = self::create($this->crs, new Metre(-$Yp), new Metre(-$Xp), new Metre($Yp), new Metre($Xp), $this->epoch); |
861
|
|
|
|
862
|
|
|
return $asKrovak->krovak($to, $latitudeOfProjectionCentre, $longitudeOfOrigin, $coLatitudeOfConeAxis, $latitudeOfPseudoStandardParallel, $scaleFactorOnPseudoStandardParallel, new Metre(0), new Metre(0)); |
863
|
|
|
} |
864
|
|
|
|
865
|
|
|
/** |
866
|
|
|
* Lambert Azimuthal Equal Area |
867
|
|
|
* This is the ellipsoidal form of the projection. |
868
|
|
|
*/ |
869
|
|
|
public function lambertAzimuthalEqualArea( |
870
|
|
|
Geographic2D|Geographic3D $to, |
871
|
|
|
Angle $latitudeOfNaturalOrigin, |
872
|
|
|
Angle $longitudeOfNaturalOrigin, |
873
|
|
|
Length $falseEasting, |
874
|
|
|
Length $falseNorthing |
875
|
|
|
): GeographicPoint { |
876
|
|
|
$ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
877
|
|
|
$easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
878
|
|
|
$northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
879
|
|
|
$latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
880
|
|
|
$longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
881
|
|
|
$a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
882
|
|
|
$e = $ellipsoid->getEccentricity(); |
883
|
|
|
$e2 = $ellipsoid->getEccentricitySquared(); |
884
|
|
|
$e4 = $e ** 4; |
885
|
|
|
$e6 = $e ** 6; |
886
|
|
|
|
887
|
|
|
$qO = (1 - $e2) * ((sin($latitudeOrigin) / (1 - $e2 * sin($latitudeOrigin) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))))); |
888
|
|
|
$qP = (1 - $e2) * ((1 / (1 - $e2)) - ((1 / (2 * $e)) * log((1 - $e) / (1 + $e)))); |
889
|
|
|
$betaO = self::asin($qO / $qP); |
890
|
|
|
$Rq = $a * sqrt($qP / 2); |
891
|
|
|
$D = $a * (cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2)) / ($Rq * cos($betaO)); |
892
|
|
|
$rho = hypot($easting / $D, $D * $northing) ?: 1; |
893
|
|
|
$C = 2 * self::asin($rho / (2 * $Rq)); |
894
|
|
|
$beta = self::asin(cos($C) * sin($betaO) + ($D * $northing * sin($C) * cos($betaO)) / $rho); |
895
|
|
|
|
896
|
|
|
$latitude = $beta + (($e2 / 3 + 31 * $e4 / 180 + 517 * $e6 / 5040) * sin(2 * $beta)) + ((23 * $e4 / 360 + 251 * $e6 / 3780) * sin(4 * $beta)) + ((761 * $e6 / 45360) * sin(6 * $beta)); |
897
|
|
|
$longitude = $longitudeOrigin + atan2($easting * sin($C), $D * $rho * cos($betaO) * cos($C) - $D ** 2 * $northing * sin($betaO) * sin($C)); |
898
|
|
|
|
899
|
|
|
return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
900
|
|
|
} |
901
|
|
|
|
902
|
|
|
/** |
903
|
|
|
* Lambert Azimuthal Equal Area (Spherical) |
904
|
|
|
* This is the spherical form of the projection. See coordinate operation method Lambert Azimuthal Equal Area |
905
|
|
|
* (code 9820) for ellipsoidal form. Differences of several tens of metres result from comparison of the two |
906
|
|
|
* methods. |
907
|
|
|
*/ |
908
|
|
|
public function lambertAzimuthalEqualAreaSpherical( |
909
|
|
|
Geographic2D|Geographic3D $to, |
910
|
|
|
Angle $latitudeOfNaturalOrigin, |
911
|
|
|
Angle $longitudeOfNaturalOrigin, |
912
|
|
|
Length $falseEasting, |
913
|
|
|
Length $falseNorthing |
914
|
|
|
): GeographicPoint { |
915
|
|
|
$ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
916
|
|
|
$easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
917
|
|
|
$northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
918
|
|
|
$latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
919
|
|
|
$longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
920
|
|
|
$a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
921
|
|
|
|
922
|
|
|
$rho = hypot($easting, $northing) ?: 1; |
923
|
|
|
$c = 2 * self::asin($rho / (2 * $a)); |
924
|
|
|
|
925
|
|
|
$latitude = self::asin(cos($c) * sin($latitudeOrigin) + ($northing * sin($c) * cos($latitudeOrigin) / $rho)); |
926
|
|
|
|
927
|
|
|
if ($latitudeOrigin === 90.0) { |
|
|
|
|
928
|
|
|
$longitude = $longitudeOrigin + atan($easting / -$northing); |
929
|
|
|
} elseif ($latitudeOrigin === -90.0) { |
|
|
|
|
930
|
|
|
$longitude = $longitudeOrigin + atan($easting / $northing); |
931
|
|
|
} else { |
932
|
|
|
$longitudeDenominator = ($rho * cos($latitudeOrigin) * cos($c) - $northing * sin($latitudeOrigin) * sin($c)); |
933
|
|
|
$longitude = $longitudeOrigin + atan($easting * sin($c) / $longitudeDenominator); |
934
|
|
|
if ($longitudeDenominator < 0) { |
935
|
|
|
$longitude += M_PI; |
936
|
|
|
} |
937
|
|
|
} |
938
|
|
|
|
939
|
|
|
return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
940
|
|
|
} |
941
|
|
|
|
942
|
|
|
/** |
943
|
|
|
* Lambert Conic Conformal (1SP). |
944
|
|
|
*/ |
945
|
|
|
public function lambertConicConformal1SP( |
946
|
|
|
Geographic2D|Geographic3D $to, |
947
|
|
|
Angle $latitudeOfNaturalOrigin, |
948
|
|
|
Angle $longitudeOfNaturalOrigin, |
949
|
|
|
Scale $scaleFactorAtNaturalOrigin, |
950
|
|
|
Length $falseEasting, |
951
|
|
|
Length $falseNorthing |
952
|
|
|
): GeographicPoint { |
953
|
|
|
$ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
954
|
|
|
$easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
955
|
|
|
$northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
956
|
|
|
$latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
957
|
|
|
$longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
958
|
|
|
$scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
959
|
|
|
$a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
960
|
|
|
$e = $ellipsoid->getEccentricity(); |
961
|
|
|
$e2 = $ellipsoid->getEccentricitySquared(); |
962
|
|
|
|
963
|
|
|
$mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2); |
964
|
|
|
$tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2); |
965
|
|
|
$n = sin($latitudeOrigin); |
966
|
|
|
$F = $mO / ($n * $tO ** $n); |
967
|
|
|
$rO = $a * $F * $tO ** $n * $scaleFactorOrigin; |
968
|
|
|
$r = hypot($easting, $rO - $northing); |
969
|
|
|
if ($n >= 0) { |
970
|
|
|
$theta = atan2($easting, $rO - $northing); |
971
|
|
|
} else { |
972
|
|
|
$r = -$r; |
973
|
|
|
$theta = atan2(-$easting, -($rO - $northing)); |
974
|
|
|
} |
975
|
|
|
|
976
|
|
|
$t = ($r / ($a * $scaleFactorOrigin * $F)) ** (1 / $n); |
977
|
|
|
|
978
|
|
|
$latitude = M_PI / (2 - 2 * atan($t)); |
979
|
|
|
do { |
980
|
|
|
$latitudeN = $latitude; |
981
|
|
|
$latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2)); |
982
|
|
|
} while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
983
|
|
|
|
984
|
|
|
$longitude = $theta / $n + $longitudeOrigin; |
985
|
|
|
|
986
|
|
|
return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
987
|
|
|
} |
988
|
|
|
|
989
|
|
|
/** |
990
|
|
|
* Lambert Conic Conformal (west orientated). |
991
|
|
|
*/ |
992
|
|
|
public function lambertConicConformalWestOrientated( |
993
|
|
|
Geographic2D|Geographic3D $to, |
994
|
|
|
Angle $latitudeOfNaturalOrigin, |
995
|
|
|
Angle $longitudeOfNaturalOrigin, |
996
|
|
|
Scale $scaleFactorAtNaturalOrigin, |
997
|
|
|
Length $falseEasting, |
998
|
|
|
Length $falseNorthing |
999
|
|
|
): GeographicPoint { |
1000
|
|
|
$ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
1001
|
|
|
$westing = $falseEasting->asMetres()->getValue() - $this->westing->asMetres()->getValue(); |
1002
|
|
|
$northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
1003
|
|
|
$latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
1004
|
|
|
$longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
1005
|
|
|
$scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
1006
|
|
|
$a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
1007
|
|
|
$e = $ellipsoid->getEccentricity(); |
1008
|
|
|
$e2 = $ellipsoid->getEccentricitySquared(); |
1009
|
|
|
|
1010
|
|
|
$mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2); |
1011
|
|
|
$tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2); |
1012
|
|
|
$n = sin($latitudeOrigin); |
1013
|
|
|
$F = $mO / ($n * $tO ** $n); |
1014
|
|
|
$rO = $a * $F * $tO ** $n ** $scaleFactorOrigin; |
1015
|
|
|
$r = hypot($westing, $rO - $northing); |
1016
|
|
|
if ($n >= 0) { |
1017
|
|
|
$theta = atan2($westing, $rO - $northing); |
1018
|
|
|
} else { |
1019
|
|
|
$r = -$r; |
1020
|
|
|
$theta = atan2(-$westing, -($rO - $northing)); |
1021
|
|
|
} |
1022
|
|
|
|
1023
|
|
|
$t = ($r / ($a * $scaleFactorOrigin * $F)) ** (1 / $n); |
1024
|
|
|
|
1025
|
|
|
$latitude = M_PI / (2 - 2 * atan($t)); |
1026
|
|
|
do { |
1027
|
|
|
$latitudeN = $latitude; |
1028
|
|
|
$latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2)); |
1029
|
|
|
} while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
1030
|
|
|
|
1031
|
|
|
$longitude = $theta / $n + $longitudeOrigin; |
1032
|
|
|
|
1033
|
|
|
return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
1034
|
|
|
} |
1035
|
|
|
|
1036
|
|
|
/** |
1037
|
|
|
* Lambert Conic Conformal (1SP) Variant B. |
1038
|
|
|
*/ |
1039
|
|
|
public function lambertConicConformal1SPVariantB( |
1040
|
|
|
Geographic2D|Geographic3D $to, |
1041
|
|
|
Angle $latitudeOfNaturalOrigin, |
1042
|
|
|
Scale $scaleFactorAtNaturalOrigin, |
1043
|
|
|
Angle $latitudeOfFalseOrigin, |
1044
|
|
|
Angle $longitudeOfFalseOrigin, |
1045
|
|
|
Length $eastingAtFalseOrigin, |
1046
|
|
|
Length $northingAtFalseOrigin |
1047
|
|
|
): GeographicPoint { |
1048
|
|
|
$ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
1049
|
|
|
$easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue(); |
1050
|
|
|
$northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue(); |
1051
|
|
|
$latitudeNaturalOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
1052
|
|
|
$latitudeFalseOrigin = $latitudeOfFalseOrigin->asRadians()->getValue(); |
1053
|
|
|
$longitudeFalseOrigin = $longitudeOfFalseOrigin->asRadians()->getValue(); |
1054
|
|
|
$scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
1055
|
|
|
$a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
1056
|
|
|
$e = $ellipsoid->getEccentricity(); |
1057
|
|
|
$e2 = $ellipsoid->getEccentricitySquared(); |
1058
|
|
|
|
1059
|
|
|
$mO = cos($latitudeNaturalOrigin) / sqrt(1 - $e2 * sin($latitudeNaturalOrigin) ** 2); |
1060
|
|
|
$tO = tan(M_PI / 4 - $latitudeNaturalOrigin / 2) / ((1 - $e * sin($latitudeNaturalOrigin)) / (1 + $e * sin($latitudeNaturalOrigin))) ** ($e / 2); |
1061
|
|
|
$tF = tan(M_PI / 4 - $latitudeFalseOrigin / 2) / ((1 - $e * sin($latitudeFalseOrigin)) / (1 + $e * sin($latitudeFalseOrigin))) ** ($e / 2); |
1062
|
|
|
$n = sin($latitudeNaturalOrigin); |
1063
|
|
|
$F = $mO / ($n * $tO ** $n); |
1064
|
|
|
$rF = $a * $F * $tF ** $n * $scaleFactorOrigin; |
1065
|
|
|
$r = hypot($easting, $rF - $northing); |
1066
|
|
|
if ($n >= 0) { |
1067
|
|
|
$theta = atan2($easting, $rF - $northing); |
1068
|
|
|
} else { |
1069
|
|
|
$r = -$r; |
1070
|
|
|
$theta = atan2(-$easting, -($rF - $northing)); |
1071
|
|
|
} |
1072
|
|
|
|
1073
|
|
|
$t = ($r / ($a * $scaleFactorOrigin * $F)) ** (1 / $n); |
1074
|
|
|
|
1075
|
|
|
$latitude = M_PI / (2 - 2 * atan($t)); |
1076
|
|
|
do { |
1077
|
|
|
$latitudeN = $latitude; |
1078
|
|
|
$latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2)); |
1079
|
|
|
} while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
1080
|
|
|
|
1081
|
|
|
$longitude = $theta / $n + $longitudeFalseOrigin; |
1082
|
|
|
|
1083
|
|
|
return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
1084
|
|
|
} |
1085
|
|
|
|
1086
|
|
|
/** |
1087
|
|
|
* Lambert Conic Conformal (2SP). |
1088
|
|
|
*/ |
1089
|
|
|
public function lambertConicConformal2SP( |
1090
|
|
|
Geographic2D|Geographic3D $to, |
1091
|
|
|
Angle $latitudeOfFalseOrigin, |
1092
|
|
|
Angle $longitudeOfFalseOrigin, |
1093
|
|
|
Angle $latitudeOf1stStandardParallel, |
1094
|
|
|
Angle $latitudeOf2ndStandardParallel, |
1095
|
|
|
Length $eastingAtFalseOrigin, |
1096
|
|
|
Length $northingAtFalseOrigin |
1097
|
|
|
): GeographicPoint { |
1098
|
|
|
$ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
1099
|
|
|
$easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue(); |
1100
|
|
|
$northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue(); |
1101
|
|
|
$lambdaOrigin = $longitudeOfFalseOrigin->asRadians()->getValue(); |
1102
|
|
|
$phiF = $latitudeOfFalseOrigin->asRadians()->getValue(); |
1103
|
|
|
$phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
1104
|
|
|
$phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue(); |
1105
|
|
|
$a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
1106
|
|
|
$e = $ellipsoid->getEccentricity(); |
1107
|
|
|
$e2 = $ellipsoid->getEccentricitySquared(); |
1108
|
|
|
|
1109
|
|
|
$m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2); |
1110
|
|
|
$m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2); |
1111
|
|
|
$t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2); |
1112
|
|
|
$t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2); |
1113
|
|
|
$tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2); |
1114
|
|
|
$n = (log($m1) - log($m2)) / (log($t1) - log($t2)); |
1115
|
|
|
$F = $m1 / ($n * $t1 ** $n); |
1116
|
|
|
$rF = $a * $F * $tF ** $n; |
1117
|
|
|
$r = hypot($easting, $rF - $northing) * static::sign($n); |
1118
|
|
|
$t = ($r / ($a * $F)) ** (1 / $n); |
1119
|
|
|
if ($n >= 0) { |
1120
|
|
|
$theta = atan2($easting, $rF - $northing); |
1121
|
|
|
} else { |
1122
|
|
|
$theta = atan2(-$easting, -($rF - $northing)); |
1123
|
|
|
} |
1124
|
|
|
|
1125
|
|
|
$latitude = M_PI / 2 - 2 * atan($t); |
1126
|
|
|
do { |
1127
|
|
|
$latitudeN = $latitude; |
1128
|
|
|
$latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2)); |
1129
|
|
|
} while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
1130
|
|
|
|
1131
|
|
|
$longitude = $theta / $n + $lambdaOrigin; |
1132
|
|
|
|
1133
|
|
|
return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
1134
|
|
|
} |
1135
|
|
|
|
1136
|
|
|
/** |
1137
|
|
|
* Lambert Conic Conformal (2SP Michigan). |
1138
|
|
|
*/ |
1139
|
|
|
public function lambertConicConformal2SPMichigan( |
1140
|
|
|
Geographic2D|Geographic3D $to, |
1141
|
|
|
Angle $latitudeOfFalseOrigin, |
1142
|
|
|
Angle $longitudeOfFalseOrigin, |
1143
|
|
|
Angle $latitudeOf1stStandardParallel, |
1144
|
|
|
Angle $latitudeOf2ndStandardParallel, |
1145
|
|
|
Length $eastingAtFalseOrigin, |
1146
|
|
|
Length $northingAtFalseOrigin, |
1147
|
|
|
Scale $ellipsoidScalingFactor |
1148
|
|
|
): GeographicPoint { |
1149
|
|
|
$ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
1150
|
|
|
$easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue(); |
1151
|
|
|
$northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue(); |
1152
|
|
|
$lambdaOrigin = $longitudeOfFalseOrigin->asRadians()->getValue(); |
1153
|
|
|
$phiF = $latitudeOfFalseOrigin->asRadians()->getValue(); |
1154
|
|
|
$phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
1155
|
|
|
$phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue(); |
1156
|
|
|
$K = $ellipsoidScalingFactor->asUnity()->getValue(); |
1157
|
|
|
$a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
1158
|
|
|
$e = $ellipsoid->getEccentricity(); |
1159
|
|
|
$e2 = $ellipsoid->getEccentricitySquared(); |
1160
|
|
|
|
1161
|
|
|
$m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2); |
1162
|
|
|
$m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2); |
1163
|
|
|
$t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2); |
1164
|
|
|
$t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2); |
1165
|
|
|
$tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2); |
1166
|
|
|
$n = (log($m1) - log($m2)) / (log($t1) - log($t2)); |
1167
|
|
|
$F = $m1 / ($n * $t1 ** $n); |
1168
|
|
|
$rF = $a * $K * $F * $tF ** $n; |
1169
|
|
|
$r = sqrt($easting ** 2 + ($rF - $northing) ** 2) * static::sign($n); |
1170
|
|
|
$t = ($r / ($a * $K * $F)) ** (1 / $n); |
1171
|
|
|
if ($n >= 0) { |
1172
|
|
|
$theta = atan2($easting, $rF - $northing); |
1173
|
|
|
} else { |
1174
|
|
|
$theta = atan2(-$easting, -($rF - $northing)); |
1175
|
|
|
} |
1176
|
|
|
|
1177
|
|
|
$latitude = M_PI / 2 - 2 * atan($t); |
1178
|
|
|
do { |
1179
|
|
|
$latitudeN = $latitude; |
1180
|
|
|
$latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2)); |
1181
|
|
|
} while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
1182
|
|
|
|
1183
|
|
|
$longitude = $theta / $n + $lambdaOrigin; |
1184
|
|
|
|
1185
|
|
|
return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
1186
|
|
|
} |
1187
|
|
|
|
1188
|
|
|
/** |
1189
|
|
|
* Lambert Conic Conformal (2SP Belgium) |
1190
|
|
|
* In 2000 this modification was replaced through use of the regular Lambert Conic Conformal (2SP) method [9802] |
1191
|
|
|
* with appropriately modified parameter values. |
1192
|
|
|
*/ |
1193
|
|
|
public function lambertConicConformal2SPBelgium( |
1194
|
|
|
Geographic2D|Geographic3D $to, |
1195
|
|
|
Angle $latitudeOfFalseOrigin, |
1196
|
|
|
Angle $longitudeOfFalseOrigin, |
1197
|
|
|
Angle $latitudeOf1stStandardParallel, |
1198
|
|
|
Angle $latitudeOf2ndStandardParallel, |
1199
|
|
|
Length $eastingAtFalseOrigin, |
1200
|
|
|
Length $northingAtFalseOrigin |
1201
|
|
|
): GeographicPoint { |
1202
|
|
|
$ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
1203
|
|
|
$easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue(); |
1204
|
|
|
$northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue(); |
1205
|
|
|
$lambdaOrigin = $longitudeOfFalseOrigin->asRadians()->getValue(); |
1206
|
|
|
$phiF = $latitudeOfFalseOrigin->asRadians()->getValue(); |
1207
|
|
|
$phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
1208
|
|
|
$phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue(); |
1209
|
|
|
$a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
1210
|
|
|
$e = $ellipsoid->getEccentricity(); |
1211
|
|
|
$e2 = $ellipsoid->getEccentricitySquared(); |
1212
|
|
|
|
1213
|
|
|
$m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2); |
1214
|
|
|
$m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2); |
1215
|
|
|
$t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2); |
1216
|
|
|
$t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2); |
1217
|
|
|
$tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2); |
1218
|
|
|
$n = (log($m1) - log($m2)) / (log($t1) - log($t2)); |
1219
|
|
|
$F = $m1 / ($n * $t1 ** $n); |
1220
|
|
|
$rF = $a * $F * $tF ** $n; |
1221
|
|
|
if (is_nan($rF)) { |
1222
|
|
|
$rF = 0; |
1223
|
|
|
} |
1224
|
|
|
$r = hypot($easting, $rF - $northing) * static::sign($n); |
1225
|
|
|
$t = ($r / ($a * $F)) ** (1 / $n); |
1226
|
|
|
if ($n >= 0) { |
1227
|
|
|
$theta = atan2($easting, $rF - $northing); |
1228
|
|
|
} else { |
1229
|
|
|
$theta = atan2(-$easting, -($rF - $northing)); |
1230
|
|
|
} |
1231
|
|
|
|
1232
|
|
|
$latitude = M_PI / 2 - 2 * atan($t); |
1233
|
|
|
do { |
1234
|
|
|
$latitudeN = $latitude; |
1235
|
|
|
$latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2)); |
1236
|
|
|
} while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
1237
|
|
|
|
1238
|
|
|
$longitude = ($theta + (new ArcSecond(29.2985))->asRadians()->getValue()) / $n + $lambdaOrigin; |
1239
|
|
|
|
1240
|
|
|
return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
1241
|
|
|
} |
1242
|
|
|
|
1243
|
|
|
/** |
1244
|
|
|
* Lambert Conic Near-Conformal |
1245
|
|
|
* The Lambert Near-Conformal projection is derived from the Lambert Conformal Conic projection by truncating the |
1246
|
|
|
* series expansion of the projection formulae. |
1247
|
|
|
*/ |
1248
|
|
|
public function lambertConicNearConformal( |
1249
|
|
|
Geographic2D|Geographic3D $to, |
1250
|
|
|
Angle $latitudeOfNaturalOrigin, |
1251
|
|
|
Angle $longitudeOfNaturalOrigin, |
1252
|
|
|
Scale $scaleFactorAtNaturalOrigin, |
1253
|
|
|
Length $falseEasting, |
1254
|
|
|
Length $falseNorthing |
1255
|
|
|
): GeographicPoint { |
1256
|
|
|
$ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
1257
|
|
|
$easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
1258
|
|
|
$northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
1259
|
|
|
$latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
1260
|
|
|
$longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
1261
|
|
|
$scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
1262
|
|
|
$a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
1263
|
|
|
$e2 = $ellipsoid->getEccentricitySquared(); |
1264
|
|
|
$f = $ellipsoid->getFlattening(); |
1265
|
|
|
|
1266
|
|
|
$n = $f / (2 - $f); |
1267
|
|
|
$rhoO = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2); |
1268
|
|
|
$nuO = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2)); |
1269
|
|
|
$A = 1 / (6 * $rhoO * $nuO); |
1270
|
|
|
$APrime = $a * (1 - $n + 5 * ($n ** 2 - $n ** 3) / 4 + 81 * ($n ** 4 - $n ** 5) / 64); |
1271
|
|
|
$BPrime = 3 * $a * ($n - $n ** 2 + 7 * ($n ** 3 - $n ** 4) / 8 + 55 * $n ** 5 / 64) / 2; |
1272
|
|
|
$CPrime = 15 * $a * ($n ** 2 - $n ** 3 + 3 * ($n ** 4 - $n ** 5) / 4) / 16; |
1273
|
|
|
$DPrime = 35 * $a * ($n ** 3 - $n ** 4 + 11 * $n ** 5 / 16) / 48; |
1274
|
|
|
$EPrime = 315 * $a * ($n ** 4 - $n ** 5) / 512; |
1275
|
|
|
$rO = $scaleFactorOrigin * $nuO / tan($latitudeOrigin); |
1276
|
|
|
$sO = $APrime * $latitudeOrigin - $BPrime * sin(2 * $latitudeOrigin) + $CPrime * sin(4 * $latitudeOrigin) - $DPrime * sin(6 * $latitudeOrigin) + $EPrime * sin(8 * $latitudeOrigin); |
1277
|
|
|
|
1278
|
|
|
$theta = atan2($easting, $rO - $northing); |
1279
|
|
|
$r = hypot($easting, $rO - $northing) * static::sign($latitudeOrigin); |
1280
|
|
|
$M = $rO - $r; |
1281
|
|
|
|
1282
|
|
|
$m = $M; |
1283
|
|
|
do { |
1284
|
|
|
$mN = $m; |
1285
|
|
|
$m = $m - ($M - $scaleFactorOrigin * $m - $scaleFactorOrigin * $A * $m ** 3) / (-$scaleFactorOrigin - 3 * $scaleFactorOrigin * $A * $m ** 2); |
1286
|
|
|
} while (abs($m - $mN) >= static::ITERATION_CONVERGENCE_FORMULA); |
1287
|
|
|
|
1288
|
|
|
$latitude = $latitudeOrigin + $m / $A; |
1289
|
|
|
do { |
1290
|
|
|
$latitudeN = $latitude; |
1291
|
|
|
$latitude = $latitude + ($m + $sO - ($APrime * $latitude - $BPrime * sin(2 * $latitude) + $CPrime * sin(4 * $latitude) - $DPrime * sin(6 * $latitude) + $EPrime * sin(8 * $latitude))) / $APrime; |
1292
|
|
|
} while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
1293
|
|
|
|
1294
|
|
|
$longitude = $longitudeOrigin + $theta / sin($latitudeOrigin); |
1295
|
|
|
|
1296
|
|
|
return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
1297
|
|
|
} |
1298
|
|
|
|
1299
|
|
|
/** |
1300
|
|
|
* Lambert Cylindrical Equal Area |
1301
|
|
|
* This is the ellipsoidal form of the projection. |
1302
|
|
|
*/ |
1303
|
|
|
public function lambertCylindricalEqualArea( |
1304
|
|
|
Geographic2D|Geographic3D $to, |
1305
|
|
|
Angle $latitudeOf1stStandardParallel, |
1306
|
|
|
Angle $longitudeOfNaturalOrigin, |
1307
|
|
|
Length $falseEasting, |
1308
|
|
|
Length $falseNorthing |
1309
|
|
|
): GeographicPoint { |
1310
|
|
|
$ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
1311
|
|
|
$easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
1312
|
|
|
$northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
1313
|
|
|
$latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
1314
|
|
|
$longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
1315
|
|
|
$a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
1316
|
|
|
$e = $ellipsoid->getEccentricity(); |
1317
|
|
|
$e2 = $ellipsoid->getEccentricitySquared(); |
1318
|
|
|
$e4 = $e ** 4; |
1319
|
|
|
$e6 = $e ** 6; |
1320
|
|
|
|
1321
|
|
|
$k = cos($latitudeFirstParallel) / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2); |
1322
|
|
|
$qP = (1 - $e2) * ((sin(M_PI_2) / (1 - $e2 * sin(M_PI_2) ** 2)) - (1 / (2 * $e)) * log((1 - $e * sin(M_PI_2)) / (1 + $e * sin(M_PI_2)))); |
1323
|
|
|
$beta = self::asin(2 * $northing * $k / ($a * $qP)); |
1324
|
|
|
|
1325
|
|
|
$latitude = $beta + (($e2 / 3 + 31 * $e4 / 180 + 517 * $e6 / 5040) * sin(2 * $beta)) + ((23 * $e4 / 360 + 251 * $e6 / 3780) * sin(4 * $beta)) + ((761 * $e6 / 45360) * sin(6 * $beta)); |
1326
|
|
|
$longitude = $longitudeOrigin + $easting / ($a * $k); |
1327
|
|
|
|
1328
|
|
|
return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
1329
|
|
|
} |
1330
|
|
|
|
1331
|
|
|
/** |
1332
|
|
|
* Lambert Cylindrical Equal Area |
1333
|
|
|
* This is the spherical form of the projection. |
1334
|
|
|
*/ |
1335
|
|
|
public function lambertCylindricalEqualAreaSpherical( |
1336
|
|
|
Geographic2D|Geographic3D $to, |
1337
|
|
|
Angle $latitudeOf1stStandardParallel, |
1338
|
|
|
Angle $longitudeOfNaturalOrigin, |
1339
|
|
|
Length $falseEasting, |
1340
|
|
|
Length $falseNorthing |
1341
|
|
|
): GeographicPoint { |
1342
|
|
|
$ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
1343
|
|
|
$easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
1344
|
|
|
$northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
1345
|
|
|
$latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
1346
|
|
|
$longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
1347
|
|
|
$a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
1348
|
|
|
|
1349
|
|
|
$latitude = self::asin(($northing / $a) * cos($latitudeFirstParallel)); |
1350
|
|
|
$longitude = $longitudeOrigin + $easting / ($a * cos($latitudeFirstParallel)); |
1351
|
|
|
|
1352
|
|
|
return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
1353
|
|
|
} |
1354
|
|
|
|
1355
|
|
|
/** |
1356
|
|
|
* Modified Azimuthal Equidistant |
1357
|
|
|
* Modified form of Oblique Azimuthal Equidistant projection method developed for Polynesian islands. For the |
1358
|
|
|
* distances over which these projections are used (under 800km) this modification introduces no significant error. |
1359
|
|
|
*/ |
1360
|
|
|
public function modifiedAzimuthalEquidistant( |
1361
|
|
|
Geographic2D|Geographic3D $to, |
1362
|
|
|
Angle $latitudeOfNaturalOrigin, |
1363
|
|
|
Angle $longitudeOfNaturalOrigin, |
1364
|
|
|
Length $falseEasting, |
1365
|
|
|
Length $falseNorthing |
1366
|
|
|
): GeographicPoint { |
1367
|
|
|
$ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
1368
|
|
|
$easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
1369
|
|
|
$northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
1370
|
|
|
$latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
1371
|
|
|
$longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
1372
|
|
|
$a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
1373
|
|
|
$e2 = $ellipsoid->getEccentricitySquared(); |
1374
|
|
|
|
1375
|
|
|
$nuO = $a / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2); |
1376
|
|
|
$c = hypot($easting, $northing); |
1377
|
|
|
$alpha = atan2($easting, $northing); |
1378
|
|
|
$A = -$e2 * cos($latitudeOrigin) ** 2 * cos($alpha) ** 2 / (1 - $e2); |
1379
|
|
|
$B = 3 * $e2 * (1 - $A) * sin($latitudeOrigin) * cos($latitudeOrigin) * cos($alpha) / (1 - $e2); |
1380
|
|
|
$D = $c / $nuO; |
1381
|
|
|
$J = $D - ($A * (1 + $A) * $D ** 3 / 6) - ($B * (1 + 3 * $A) * $D ** 4 / 24); |
1382
|
|
|
$K = 1 - ($A * $J ** 2 / 2) - ($B * $J ** 3 / 6); |
1383
|
|
|
$psi = self::asin(sin($latitudeOrigin) * cos($J) + cos($latitudeOrigin) * sin($J) * cos($alpha)); |
1384
|
|
|
|
1385
|
|
|
$latitude = atan((1 - $e2 * $K * sin($latitudeOrigin) / sin($psi)) * tan($psi) / (1 - $e2)); |
1386
|
|
|
$longitude = $longitudeOrigin + self::asin(sin($alpha) * sin($J) / cos($psi)); |
1387
|
|
|
|
1388
|
|
|
return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
1389
|
|
|
} |
1390
|
|
|
|
1391
|
|
|
/** |
1392
|
|
|
* Oblique Stereographic |
1393
|
|
|
* This is not the same as the projection method of the same name in USGS Professional Paper no. 1395, "Map |
1394
|
|
|
* Projections - A Working Manual" by John P. Snyder. |
1395
|
|
|
*/ |
1396
|
|
|
public function obliqueStereographic( |
1397
|
|
|
Geographic2D|Geographic3D $to, |
1398
|
|
|
Angle $latitudeOfNaturalOrigin, |
1399
|
|
|
Angle $longitudeOfNaturalOrigin, |
1400
|
|
|
Scale $scaleFactorAtNaturalOrigin, |
1401
|
|
|
Length $falseEasting, |
1402
|
|
|
Length $falseNorthing |
1403
|
|
|
): GeographicPoint { |
1404
|
|
|
$ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
1405
|
|
|
$easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
1406
|
|
|
$northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
1407
|
|
|
$latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
1408
|
|
|
$longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
1409
|
|
|
$scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
1410
|
|
|
$a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
1411
|
|
|
$e = $ellipsoid->getEccentricity(); |
1412
|
|
|
$e2 = $ellipsoid->getEccentricitySquared(); |
1413
|
|
|
|
1414
|
|
|
$rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2); |
1415
|
|
|
$nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2)); |
1416
|
|
|
$R = sqrt($rhoOrigin * $nuOrigin); |
1417
|
|
|
|
1418
|
|
|
$n = sqrt(1 + ($e2 * cos($latitudeOrigin) ** 4 / (1 - $e2))); |
1419
|
|
|
$S1 = (1 + sin($latitudeOrigin)) / (1 - sin($latitudeOrigin)); |
1420
|
|
|
$S2 = (1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin)); |
1421
|
|
|
$w1 = ($S1 * ($S2 ** $e)) ** $n; |
1422
|
|
|
$c = (($n + sin($latitudeOrigin)) * (1 - ($w1 - 1) / ($w1 + 1))) / (($n - sin($latitudeOrigin)) * (1 + ($w1 - 1) / ($w1 + 1))); |
1423
|
|
|
$w2 = $c * $w1; |
1424
|
|
|
$chiOrigin = self::asin(($w2 - 1) / ($w2 + 1)); |
1425
|
|
|
|
1426
|
|
|
$g = 2 * $R * $scaleFactorOrigin * tan(M_PI / 4 - $chiOrigin / 2); |
1427
|
|
|
$h = 4 * $R * $scaleFactorOrigin * tan($chiOrigin) + $g; |
1428
|
|
|
$i = atan2($easting, $h + $northing); |
1429
|
|
|
$j = atan2($easting, $g - $northing) - $i; |
1430
|
|
|
$chi = $chiOrigin + 2 * atan(($northing - $easting * tan($j / 2)) / (2 * $R * $scaleFactorOrigin)); |
1431
|
|
|
$lambda = $j + 2 * $i + $longitudeOrigin; |
1432
|
|
|
|
1433
|
|
|
$longitude = ($lambda - $longitudeOrigin) / $n + $longitudeOrigin; |
1434
|
|
|
|
1435
|
|
|
$psi = 0.5 * log((1 + sin($chi)) / ($c * (1 - sin($chi)))) / $n; |
1436
|
|
|
|
1437
|
|
|
$latitude = 2 * atan(M_E ** $psi) - M_PI / 2; |
1438
|
|
|
do { |
1439
|
|
|
$latitudeN = $latitude; |
1440
|
|
|
$psiN = log(tan($latitudeN / 2 + M_PI / 4) * ((1 - $e * sin($latitudeN)) / (1 + $e * sin($latitudeN))) ** ($e / 2)); |
1441
|
|
|
$latitude = $latitudeN - ($psiN - $psi) * cos($latitudeN) * (1 - $e2 * sin($latitudeN) ** 2) / (1 - $e2); |
1442
|
|
|
} while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
1443
|
|
|
|
1444
|
|
|
return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
1445
|
|
|
} |
1446
|
|
|
|
1447
|
|
|
/** |
1448
|
|
|
* Polar Stereographic (variant A) |
1449
|
|
|
* Latitude of natural origin must be either 90 degrees or -90 degrees (or equivalent in alternative angle unit). |
1450
|
|
|
*/ |
1451
|
|
|
public function polarStereographicVariantA( |
1452
|
|
|
Geographic2D|Geographic3D $to, |
1453
|
|
|
Angle $latitudeOfNaturalOrigin, |
1454
|
|
|
Angle $longitudeOfNaturalOrigin, |
1455
|
|
|
Scale $scaleFactorAtNaturalOrigin, |
1456
|
|
|
Length $falseEasting, |
1457
|
|
|
Length $falseNorthing |
1458
|
|
|
): GeographicPoint { |
1459
|
|
|
$ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
1460
|
|
|
$easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
1461
|
|
|
$northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
1462
|
|
|
$latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
1463
|
|
|
$longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
1464
|
|
|
$scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
1465
|
|
|
$a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
1466
|
|
|
$e = $ellipsoid->getEccentricity(); |
1467
|
|
|
$e2 = $ellipsoid->getEccentricitySquared(); |
1468
|
|
|
$e4 = $e ** 4; |
1469
|
|
|
$e6 = $e ** 6; |
1470
|
|
|
$e8 = $e ** 8; |
1471
|
|
|
|
1472
|
|
|
$rho = hypot($easting, $northing); |
1473
|
|
|
$t = $rho * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $a * $scaleFactorOrigin); |
1474
|
|
|
|
1475
|
|
|
if ($latitudeOrigin < 0) { |
1476
|
|
|
$chi = 2 * atan($t) - M_PI / 2; |
1477
|
|
|
} else { |
1478
|
|
|
$chi = M_PI / 2 - 2 * atan($t); |
1479
|
|
|
} |
1480
|
|
|
|
1481
|
|
|
$latitude = $chi + ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) * sin(2 * $chi) + (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) * sin(4 * $chi) + (7 * $e6 / 120 + 81 * $e8 / 1120) * sin(6 * $chi) + (4279 * $e8 / 161280) * sin(8 * $chi); |
1482
|
|
|
|
1483
|
|
|
if ($easting === 0.0) { |
|
|
|
|
1484
|
|
|
$longitude = $longitudeOrigin; |
1485
|
|
|
} elseif ($latitudeOrigin < 0) { |
1486
|
|
|
$longitude = $longitudeOrigin + atan2($easting, $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue()); |
1487
|
|
|
} else { |
1488
|
|
|
$longitude = $longitudeOrigin + atan2($easting, $falseNorthing->asMetres()->getValue() - $this->northing->asMetres()->getValue()); |
1489
|
|
|
} |
1490
|
|
|
|
1491
|
|
|
return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
1492
|
|
|
} |
1493
|
|
|
|
1494
|
|
|
/** |
1495
|
|
|
* Polar Stereographic (variant B). |
1496
|
|
|
*/ |
1497
|
|
|
public function polarStereographicVariantB( |
1498
|
|
|
Geographic2D|Geographic3D $to, |
1499
|
|
|
Angle $latitudeOfStandardParallel, |
1500
|
|
|
Angle $longitudeOfOrigin, |
1501
|
|
|
Length $falseEasting, |
1502
|
|
|
Length $falseNorthing |
1503
|
|
|
): GeographicPoint { |
1504
|
|
|
$ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
1505
|
|
|
$easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
1506
|
|
|
$northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
1507
|
|
|
$standardParallel = $latitudeOfStandardParallel->asRadians()->getValue(); |
1508
|
|
|
$longitudeOrigin = $longitudeOfOrigin->asRadians()->getValue(); |
1509
|
|
|
$a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
1510
|
|
|
$e = $ellipsoid->getEccentricity(); |
1511
|
|
|
$e2 = $ellipsoid->getEccentricitySquared(); |
1512
|
|
|
$e4 = $e ** 4; |
1513
|
|
|
$e6 = $e ** 6; |
1514
|
|
|
$e8 = $e ** 8; |
1515
|
|
|
|
1516
|
|
|
$rho = hypot($easting, $northing); |
1517
|
|
|
if ($standardParallel < 0) { |
1518
|
|
|
$tF = tan(M_PI / 4 + $standardParallel / 2) / (((1 + $e * sin($standardParallel)) / (1 - $e * sin($standardParallel))) ** ($e / 2)); |
1519
|
|
|
} else { |
1520
|
|
|
$tF = tan(M_PI / 4 - $standardParallel / 2) * (((1 + $e * sin($standardParallel)) / (1 - $e * sin($standardParallel))) ** ($e / 2)); |
1521
|
|
|
} |
1522
|
|
|
$mF = cos($standardParallel) / sqrt(1 - $e2 * sin($standardParallel) ** 2); |
1523
|
|
|
$kO = $mF * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $tF); |
1524
|
|
|
$t = $rho * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $a * $kO); |
1525
|
|
|
|
1526
|
|
|
if ($standardParallel < 0) { |
1527
|
|
|
$chi = 2 * atan($t) - M_PI / 2; |
1528
|
|
|
} else { |
1529
|
|
|
$chi = M_PI / 2 - 2 * atan($t); |
1530
|
|
|
} |
1531
|
|
|
|
1532
|
|
|
$latitude = $chi + ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) * sin(2 * $chi) + (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) * sin(4 * $chi) + (7 * $e6 / 120 + 81 * $e8 / 1120) * sin(6 * $chi) + (4279 * $e8 / 161280) * sin(8 * $chi); |
1533
|
|
|
|
1534
|
|
|
if ($easting === 0.0) { |
|
|
|
|
1535
|
|
|
$longitude = $longitudeOrigin; |
1536
|
|
|
} elseif ($standardParallel < 0) { |
1537
|
|
|
$longitude = $longitudeOrigin + atan2($easting, $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue()); |
1538
|
|
|
} else { |
1539
|
|
|
$longitude = $longitudeOrigin + atan2($easting, $falseNorthing->asMetres()->getValue() - $this->northing->asMetres()->getValue()); |
1540
|
|
|
} |
1541
|
|
|
|
1542
|
|
|
return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
1543
|
|
|
} |
1544
|
|
|
|
1545
|
|
|
/** |
1546
|
|
|
* Polar Stereographic (variant C). |
1547
|
|
|
*/ |
1548
|
|
|
public function polarStereographicVariantC( |
1549
|
|
|
Geographic2D|Geographic3D $to, |
1550
|
|
|
Angle $latitudeOfStandardParallel, |
1551
|
|
|
Angle $longitudeOfOrigin, |
1552
|
|
|
Length $eastingAtFalseOrigin, |
1553
|
|
|
Length $northingAtFalseOrigin |
1554
|
|
|
): GeographicPoint { |
1555
|
|
|
$ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
1556
|
|
|
$easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue(); |
1557
|
|
|
$northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue(); |
1558
|
|
|
$standardParallel = $latitudeOfStandardParallel->asRadians()->getValue(); |
1559
|
|
|
$longitudeOrigin = $longitudeOfOrigin->asRadians()->getValue(); |
1560
|
|
|
$a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
1561
|
|
|
$e = $ellipsoid->getEccentricity(); |
1562
|
|
|
$e2 = $ellipsoid->getEccentricitySquared(); |
1563
|
|
|
$e4 = $e ** 4; |
1564
|
|
|
$e6 = $e ** 6; |
1565
|
|
|
$e8 = $e ** 8; |
1566
|
|
|
|
1567
|
|
|
if ($standardParallel < 0) { |
1568
|
|
|
$tF = tan(M_PI / 4 + $standardParallel / 2) / (((1 + $e * sin($standardParallel)) / (1 - $e * sin($standardParallel))) ** ($e / 2)); |
1569
|
|
|
} else { |
1570
|
|
|
$tF = tan(M_PI / 4 - $standardParallel / 2) * (((1 + $e * sin($standardParallel)) / (1 - $e * sin($standardParallel))) ** ($e / 2)); |
1571
|
|
|
} |
1572
|
|
|
$mF = cos($standardParallel) / sqrt(1 - $e2 * sin($standardParallel) ** 2); |
1573
|
|
|
$rhoF = $a * $mF; |
1574
|
|
|
if ($standardParallel < 0) { |
1575
|
|
|
$rho = hypot($easting, $northing + $rhoF); |
1576
|
|
|
$t = $rho * $tF / $rhoF; |
1577
|
|
|
$chi = 2 * atan($t) - M_PI / 2; |
1578
|
|
|
} else { |
1579
|
|
|
$rho = hypot($easting, $northing - $rhoF); |
1580
|
|
|
$t = $rho * $tF / $rhoF; |
1581
|
|
|
$chi = M_PI / 2 - 2 * atan($t); |
1582
|
|
|
} |
1583
|
|
|
|
1584
|
|
|
$latitude = $chi + ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) * sin(2 * $chi) + (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) * sin(4 * $chi) + (7 * $e6 / 120 + 81 * $e8 / 1120) * sin(6 * $chi) + (4279 * $e8 / 161280) * sin(8 * $chi); |
1585
|
|
|
|
1586
|
|
|
if ($easting === 0.0) { |
|
|
|
|
1587
|
|
|
$longitude = $longitudeOrigin; |
1588
|
|
|
} elseif ($standardParallel < 0) { |
1589
|
|
|
$longitude = $longitudeOrigin + atan2($easting, $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue() + $rhoF); |
1590
|
|
|
} else { |
1591
|
|
|
$longitude = $longitudeOrigin + atan2($easting, $northingAtFalseOrigin->asMetres()->getValue() - $this->northing->asMetres()->getValue() + $rhoF); |
1592
|
|
|
} |
1593
|
|
|
|
1594
|
|
|
return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
1595
|
|
|
} |
1596
|
|
|
|
1597
|
|
|
/** |
1598
|
|
|
* Popular Visualisation Pseudo Mercator |
1599
|
|
|
* Applies spherical formulas to the ellipsoid. As such does not have the properties of a true Mercator projection. |
1600
|
|
|
*/ |
1601
|
|
|
public function popularVisualisationPseudoMercator( |
1602
|
|
|
Geographic2D|Geographic3D $to, |
1603
|
|
|
Angle $latitudeOfNaturalOrigin, |
1604
|
|
|
Angle $longitudeOfNaturalOrigin, |
1605
|
|
|
Length $falseEasting, |
1606
|
|
|
Length $falseNorthing |
1607
|
|
|
): GeographicPoint { |
1608
|
|
|
$ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
1609
|
|
|
$easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
1610
|
|
|
$northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
1611
|
|
|
$latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|
|
|
|
1612
|
|
|
$longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
1613
|
|
|
$a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
1614
|
|
|
|
1615
|
|
|
$D = -$northing / $a; |
1616
|
|
|
$latitude = M_PI / 2 - 2 * atan(M_E ** $D); |
1617
|
|
|
$longitude = $easting / $a + $longitudeOrigin; |
1618
|
|
|
|
1619
|
|
|
return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
1620
|
|
|
} |
1621
|
|
|
|
1622
|
|
|
/** |
1623
|
|
|
* Similarity transformation |
1624
|
|
|
* Defined for two-dimensional coordinate systems. |
1625
|
|
|
*/ |
1626
|
|
|
public function similarityTransformation( |
1627
|
|
|
Projected $to, |
1628
|
|
|
Length $ordinate1OfEvaluationPointInTargetCRS, |
1629
|
|
|
Length $ordinate2OfEvaluationPointInTargetCRS, |
1630
|
|
|
Scale $scaleFactorForSourceCRSAxes, |
1631
|
|
|
Angle $rotationAngleOfSourceCRSAxes, |
1632
|
|
|
bool $inReverse |
1633
|
|
|
): self { |
1634
|
|
|
$xs = $this->easting->asMetres()->getValue(); |
1635
|
|
|
$ys = $this->northing->asMetres()->getValue(); |
1636
|
|
|
$xo = $ordinate1OfEvaluationPointInTargetCRS->asMetres()->getValue(); |
1637
|
|
|
$yo = $ordinate2OfEvaluationPointInTargetCRS->asMetres()->getValue(); |
1638
|
|
|
$M = $scaleFactorForSourceCRSAxes->asUnity()->getValue(); |
1639
|
|
|
$theta = $rotationAngleOfSourceCRSAxes->asRadians()->getValue(); |
1640
|
|
|
|
1641
|
|
|
if ($inReverse) { |
1642
|
|
|
$easting = (($xs - $xo) * cos($theta) - ($ys - $yo) * sin($theta)) / $M; |
1643
|
|
|
$northing = (($xs - $xo) * sin($theta) + ($ys - $yo) * cos($theta)) / $M; |
1644
|
|
|
} else { |
1645
|
|
|
$easting = $xo + $xs * $M * cos($theta) + $ys * $M * sin($theta); |
1646
|
|
|
$northing = $yo - $xs * $M * sin($theta) + $ys * $M * cos($theta); |
1647
|
|
|
} |
1648
|
|
|
|
1649
|
|
|
return self::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
1650
|
|
|
} |
1651
|
|
|
|
1652
|
|
|
/** |
1653
|
|
|
* Mercator (variant A) |
1654
|
|
|
* Note that in these formulas the parameter latitude of natural origin (latO) is not used. However for this |
1655
|
|
|
* Mercator (variant A) method the EPSG dataset includes this parameter, which must have a value of zero, for |
1656
|
|
|
* completeness in CRS labelling. |
1657
|
|
|
*/ |
1658
|
|
|
public function mercatorVariantA( |
1659
|
|
|
Geographic2D|Geographic3D $to, |
1660
|
|
|
Angle $latitudeOfNaturalOrigin, |
1661
|
|
|
Angle $longitudeOfNaturalOrigin, |
1662
|
|
|
Scale $scaleFactorAtNaturalOrigin, |
1663
|
|
|
Length $falseEasting, |
1664
|
|
|
Length $falseNorthing |
1665
|
|
|
): GeographicPoint { |
1666
|
|
|
$ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
1667
|
|
|
$easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
1668
|
|
|
$northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|
|
|
|
1669
|
|
|
$latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
|
|
|
|
1670
|
|
|
$longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
1671
|
|
|
$scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
1672
|
|
|
$a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
1673
|
|
|
$e = $ellipsoid->getEccentricity(); |
1674
|
|
|
$e2 = $ellipsoid->getEccentricitySquared(); |
1675
|
|
|
$e4 = $e ** 4; |
1676
|
|
|
$e6 = $e ** 6; |
1677
|
|
|
$e8 = $e ** 8; |
1678
|
|
|
|
1679
|
|
|
$t = M_E ** (($falseNorthing->asMetres()->getValue() - $this->northing->asMetres()->getValue()) / ($a * $scaleFactorOrigin)); |
1680
|
|
|
$chi = M_PI / 2 - 2 * atan($t); |
1681
|
|
|
|
1682
|
|
|
$latitude = $chi + ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) * sin(2 * $chi) + (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) * sin(4 * $chi) + (7 * $e6 / 120 + 81 * $e8 / 1120) * sin(6 * $chi) + (4279 * $e8 / 161280) * sin(8 * $chi); |
1683
|
|
|
$longitude = $easting / ($a * $scaleFactorOrigin) + $longitudeOrigin; |
1684
|
|
|
|
1685
|
|
|
return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
1686
|
|
|
} |
1687
|
|
|
|
1688
|
|
|
/** |
1689
|
|
|
* Mercator (variant B) |
1690
|
|
|
* Used for most nautical charts. |
1691
|
|
|
*/ |
1692
|
|
|
public function mercatorVariantB( |
1693
|
|
|
Geographic2D|Geographic3D $to, |
1694
|
|
|
Angle $latitudeOf1stStandardParallel, |
1695
|
|
|
Angle $longitudeOfNaturalOrigin, |
1696
|
|
|
Length $falseEasting, |
1697
|
|
|
Length $falseNorthing |
1698
|
|
|
): GeographicPoint { |
1699
|
|
|
$ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
1700
|
|
|
$easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
1701
|
|
|
$northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
|
|
|
|
1702
|
|
|
$longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
1703
|
|
|
$firstStandardParallel = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
1704
|
|
|
$a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
1705
|
|
|
$e = $ellipsoid->getEccentricity(); |
1706
|
|
|
$e2 = $ellipsoid->getEccentricitySquared(); |
1707
|
|
|
$e4 = $e ** 4; |
1708
|
|
|
$e6 = $e ** 6; |
1709
|
|
|
$e8 = $e ** 8; |
1710
|
|
|
|
1711
|
|
|
$scaleFactorOrigin = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2); |
1712
|
|
|
|
1713
|
|
|
$t = M_E ** (($falseNorthing->asMetres()->getValue() - $this->northing->asMetres()->getValue()) / ($a * $scaleFactorOrigin)); |
1714
|
|
|
$chi = M_PI / 2 - 2 * atan($t); |
1715
|
|
|
|
1716
|
|
|
$latitude = $chi + ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) * sin(2 * $chi) + (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) * sin(4 * $chi) + (7 * $e6 / 120 + 81 * $e8 / 1120) * sin(6 * $chi) + (4279 * $e8 / 161280) * sin(8 * $chi); |
1717
|
|
|
$longitude = $easting / ($a * $scaleFactorOrigin) + $longitudeOrigin; |
1718
|
|
|
|
1719
|
|
|
return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
1720
|
|
|
} |
1721
|
|
|
|
1722
|
|
|
/** |
1723
|
|
|
* Hotine Oblique Mercator (variant A). |
1724
|
|
|
*/ |
1725
|
|
|
public function obliqueMercatorHotineVariantA( |
1726
|
|
|
Geographic2D|Geographic3D $to, |
1727
|
|
|
Angle $latitudeOfProjectionCentre, |
1728
|
|
|
Angle $longitudeOfProjectionCentre, |
1729
|
|
|
Angle $azimuthOfInitialLine, |
1730
|
|
|
Angle $angleFromRectifiedToSkewGrid, |
1731
|
|
|
Scale $scaleFactorOnInitialLine, |
1732
|
|
|
Length $falseEasting, |
1733
|
|
|
Length $falseNorthing |
1734
|
|
|
): GeographicPoint { |
1735
|
|
|
$ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
1736
|
|
|
$easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
1737
|
|
|
$northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
1738
|
|
|
$latC = $latitudeOfProjectionCentre->asRadians()->getValue(); |
1739
|
|
|
$lonC = $longitudeOfProjectionCentre->asRadians()->getValue(); |
1740
|
|
|
$alphaC = $azimuthOfInitialLine->asRadians()->getValue(); |
1741
|
|
|
$kC = $scaleFactorOnInitialLine->asUnity()->getValue(); |
1742
|
|
|
$gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue(); |
1743
|
|
|
$a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
1744
|
|
|
$e = $ellipsoid->getEccentricity(); |
1745
|
|
|
$e2 = $ellipsoid->getEccentricitySquared(); |
1746
|
|
|
$e4 = $e ** 4; |
1747
|
|
|
$e6 = $e ** 6; |
1748
|
|
|
$e8 = $e ** 8; |
1749
|
|
|
|
1750
|
|
|
$B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2))); |
1751
|
|
|
$A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2); |
1752
|
|
|
$tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2); |
1753
|
|
|
$D = $B * sqrt(1 - $e2) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2)); |
1754
|
|
|
$DD = max(1, $D ** 2); |
1755
|
|
|
$F = $D + sqrt($DD - 1) * static::sign($latC); |
1756
|
|
|
$H = $F * $tO ** $B; |
1757
|
|
|
$G = ($F - 1 / $F) / 2; |
1758
|
|
|
$gammaO = self::asin(sin($alphaC) / $D); |
1759
|
|
|
$lonO = $lonC - self::asin($G * tan($gammaO)) / $B; |
1760
|
|
|
|
1761
|
|
|
$v = $easting * cos($gammaC) - $northing * sin($gammaC); |
1762
|
|
|
$u = $northing * cos($gammaC) + $easting * sin($gammaC); |
1763
|
|
|
|
1764
|
|
|
$Q = M_E ** -($B * $v / $A); |
1765
|
|
|
$S = ($Q - 1 / $Q) / 2; |
1766
|
|
|
$T = ($Q + 1 / $Q) / 2; |
1767
|
|
|
$V = sin($B * $u / $A); |
1768
|
|
|
$U = ($V * cos($gammaO) + $S * sin($gammaO)) / $T; |
1769
|
|
|
$t = ($H / sqrt((1 + $U) / (1 - $U))) ** (1 / $B); |
1770
|
|
|
|
1771
|
|
|
$chi = M_PI / 2 - 2 * atan($t); |
1772
|
|
|
|
1773
|
|
|
$latitude = $chi + sin(2 * $chi) * ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) + sin(4 * $chi) * (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) + sin(6 * $chi) * (7 * $e6 / 120 + 81 * $e8 / 1120) + sin(8 * $chi) * (4279 * $e8 / 161280); |
1774
|
|
|
$longitude = $lonO - atan2($S * cos($gammaO) - $V * sin($gammaO), cos($B * $u / $A)) / $B; |
1775
|
|
|
|
1776
|
|
|
return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
1777
|
|
|
} |
1778
|
|
|
|
1779
|
|
|
/** |
1780
|
|
|
* Hotine Oblique Mercator (variant B). |
1781
|
|
|
*/ |
1782
|
|
|
public function obliqueMercatorHotineVariantB( |
1783
|
|
|
Geographic2D|Geographic3D $to, |
1784
|
|
|
Angle $latitudeOfProjectionCentre, |
1785
|
|
|
Angle $longitudeOfProjectionCentre, |
1786
|
|
|
Angle $azimuthOfInitialLine, |
1787
|
|
|
Angle $angleFromRectifiedToSkewGrid, |
1788
|
|
|
Scale $scaleFactorOnInitialLine, |
1789
|
|
|
Length $eastingAtProjectionCentre, |
1790
|
|
|
Length $northingAtProjectionCentre |
1791
|
|
|
): GeographicPoint { |
1792
|
|
|
$ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
1793
|
|
|
$easting = $this->easting->asMetres()->getValue() - $eastingAtProjectionCentre->asMetres()->getValue(); |
1794
|
|
|
$northing = $this->northing->asMetres()->getValue() - $northingAtProjectionCentre->asMetres()->getValue(); |
1795
|
|
|
$latC = $latitudeOfProjectionCentre->asRadians()->getValue(); |
1796
|
|
|
$lonC = $longitudeOfProjectionCentre->asRadians()->getValue(); |
1797
|
|
|
$alphaC = $azimuthOfInitialLine->asRadians()->getValue(); |
1798
|
|
|
$kC = $scaleFactorOnInitialLine->asUnity()->getValue(); |
1799
|
|
|
$gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue(); |
1800
|
|
|
$a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
1801
|
|
|
$e = $ellipsoid->getEccentricity(); |
1802
|
|
|
$e2 = $ellipsoid->getEccentricitySquared(); |
1803
|
|
|
$e4 = $e ** 4; |
1804
|
|
|
$e6 = $e ** 6; |
1805
|
|
|
$e8 = $e ** 8; |
1806
|
|
|
|
1807
|
|
|
$B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2))); |
1808
|
|
|
$A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2); |
1809
|
|
|
$tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2); |
1810
|
|
|
$D = $B * sqrt(1 - $e2) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2)); |
1811
|
|
|
$DD = max(1, $D ** 2); |
1812
|
|
|
$F = $D + sqrt($DD - 1) * static::sign($latC); |
1813
|
|
|
$H = $F * $tO ** $B; |
1814
|
|
|
$G = ($F - 1 / $F) / 2; |
1815
|
|
|
$gammaO = self::asin(sin($alphaC) / $D); |
1816
|
|
|
$lonO = $lonC - self::asin($G * tan($gammaO)) / $B; |
1817
|
|
|
$vC = 0; |
|
|
|
|
1818
|
|
|
if ($alphaC === M_PI / 2) { |
1819
|
|
|
$uC = $A * ($lonC - $lonO); |
1820
|
|
|
} else { |
1821
|
|
|
$uC = ($A / $B) * atan2(sqrt($DD - 1), cos($alphaC)) * static::sign($latC); |
1822
|
|
|
} |
1823
|
|
|
|
1824
|
|
|
$v = $easting * cos($gammaC) - $northing * sin($gammaC); |
1825
|
|
|
$u = $northing * cos($gammaC) + $easting * sin($gammaC) + (abs($uC) * static::sign($latC)); |
1826
|
|
|
|
1827
|
|
|
$Q = M_E ** -($B * $v / $A); |
1828
|
|
|
$S = ($Q - 1 / $Q) / 2; |
1829
|
|
|
$T = ($Q + 1 / $Q) / 2; |
1830
|
|
|
$V = sin($B * $u / $A); |
1831
|
|
|
$U = ($V * cos($gammaO) + $S * sin($gammaO)) / $T; |
1832
|
|
|
$t = ($H / sqrt((1 + $U) / (1 - $U))) ** (1 / $B); |
1833
|
|
|
|
1834
|
|
|
$chi = M_PI / 2 - 2 * atan($t); |
1835
|
|
|
|
1836
|
|
|
$latitude = $chi + sin(2 * $chi) * ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) + sin(4 * $chi) * (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) + sin(6 * $chi) * (7 * $e6 / 120 + 81 * $e8 / 1120) + sin(8 * $chi) * (4279 * $e8 / 161280); |
1837
|
|
|
$longitude = $lonO - atan2($S * cos($gammaO) - $V * sin($gammaO), cos($B * $u / $A)) / $B; |
1838
|
|
|
|
1839
|
|
|
return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
1840
|
|
|
} |
1841
|
|
|
|
1842
|
|
|
/** |
1843
|
|
|
* Laborde Oblique Mercator. |
1844
|
|
|
*/ |
1845
|
|
|
public function obliqueMercatorLaborde( |
1846
|
|
|
Geographic2D|Geographic3D $to, |
1847
|
|
|
Angle $latitudeOfProjectionCentre, |
1848
|
|
|
Angle $longitudeOfProjectionCentre, |
1849
|
|
|
Angle $azimuthOfInitialLine, |
1850
|
|
|
Scale $scaleFactorOnInitialLine, |
1851
|
|
|
Length $falseEasting, |
1852
|
|
|
Length $falseNorthing |
1853
|
|
|
): GeographicPoint { |
1854
|
|
|
$ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
1855
|
|
|
$easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
1856
|
|
|
$northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
1857
|
|
|
$latC = $latitudeOfProjectionCentre->asRadians()->getValue(); |
1858
|
|
|
$lonC = $longitudeOfProjectionCentre->asRadians()->getValue(); |
1859
|
|
|
$alphaC = $azimuthOfInitialLine->asRadians()->getValue(); |
1860
|
|
|
$kC = $scaleFactorOnInitialLine->asUnity()->getValue(); |
1861
|
|
|
$a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
1862
|
|
|
$e = $ellipsoid->getEccentricity(); |
1863
|
|
|
$e2 = $ellipsoid->getEccentricitySquared(); |
1864
|
|
|
|
1865
|
|
|
$B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2))); |
1866
|
|
|
$latS = self::asin(sin($latC) / $B); |
1867
|
|
|
$R = $a * $kC * (sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2)); |
1868
|
|
|
$C = log(tan(M_PI / 4 + $latS / 2)) - $B * log(tan(M_PI / 4 + $latC / 2) * ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2)); |
1869
|
|
|
|
1870
|
|
|
$G = (new ComplexNumber(1 - cos(2 * $alphaC), sin(2 * $alphaC)))->divide(new ComplexNumber(12, 0)); |
1871
|
|
|
|
1872
|
|
|
$H0 = new ComplexNumber($northing / $R, $easting / $R); |
1873
|
|
|
$H = $H0->divide($H0->pow(3)->multiply($G)->add($H0)); |
1874
|
|
|
do { |
1875
|
|
|
$HN = $H; |
1876
|
|
|
$H = $HN->pow(3)->multiply($G)->multiply(new ComplexNumber(2, 0))->add($H0)->divide($HN->pow(2)->multiply($G)->multiply(new ComplexNumber(3, 0))->add(new ComplexNumber(1, 0))); |
1877
|
|
|
} while (abs($H0->subtract($H)->subtract($H->pow(3)->multiply($G))->getReal()) >= static::ITERATION_CONVERGENCE_FORMULA); |
1878
|
|
|
|
1879
|
|
|
$LPrime = -1 * $H->getReal(); |
1880
|
|
|
$PPrime = 2 * atan(M_E ** $H->getImaginary()) - M_PI / 2; |
1881
|
|
|
$U = cos($PPrime) * cos($LPrime) * cos($latS) + cos($PPrime) * sin($LPrime) * sin($latS); |
1882
|
|
|
$V = sin($PPrime); |
1883
|
|
|
$W = cos($PPrime) * cos($LPrime) * sin($latS) - cos($PPrime) * sin($LPrime) * cos($latS); |
1884
|
|
|
|
1885
|
|
|
$d = hypot($U, $V); |
1886
|
|
|
if ($d === 0.0) { |
1887
|
|
|
$L = 0; |
1888
|
|
|
$P = static::sign($W) * M_PI / 2; |
1889
|
|
|
} else { |
1890
|
|
|
$L = 2 * atan($V / ($U + $d)); |
1891
|
|
|
$P = atan($W / $d); |
1892
|
|
|
} |
1893
|
|
|
|
1894
|
|
|
$longitude = $lonC + ($L / $B); |
1895
|
|
|
|
1896
|
|
|
$q = (log(tan(M_PI / 4 + $P / 2)) - $C) / $B; |
1897
|
|
|
|
1898
|
|
|
$latitude = 2 * atan(M_E ** $q) - M_PI / 2; |
1899
|
|
|
do { |
1900
|
|
|
$latitudeN = $latitude; |
1901
|
|
|
$latitude = 2 * atan(((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2) * M_E ** $q) - M_PI / 2; |
1902
|
|
|
} while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
1903
|
|
|
|
1904
|
|
|
return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
1905
|
|
|
} |
1906
|
|
|
|
1907
|
|
|
/** |
1908
|
|
|
* Transverse Mercator. |
1909
|
|
|
*/ |
1910
|
|
|
public function transverseMercator( |
1911
|
|
|
Geographic2D|Geographic3D $to, |
1912
|
|
|
Angle $latitudeOfNaturalOrigin, |
1913
|
|
|
Angle $longitudeOfNaturalOrigin, |
1914
|
|
|
Scale $scaleFactorAtNaturalOrigin, |
1915
|
|
|
Length $falseEasting, |
1916
|
|
|
Length $falseNorthing |
1917
|
|
|
): GeographicPoint { |
1918
|
|
|
$ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
1919
|
|
|
$easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
1920
|
|
|
$northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
1921
|
|
|
$latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
1922
|
|
|
$longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
1923
|
|
|
$kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
1924
|
|
|
$a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
1925
|
|
|
$e = $ellipsoid->getEccentricity(); |
1926
|
|
|
$f = $ellipsoid->getFlattening(); |
1927
|
|
|
|
1928
|
|
|
$n = $f / (2 - $f); |
1929
|
|
|
$B = ($a / (1 + $n)) * (1 + $n ** 2 / 4 + $n ** 4 / 64 + $n ** 6 / 256 + (25 / 16384) * $n ** 8); |
1930
|
|
|
|
1931
|
|
|
$h1 = $n / 2 - (2 / 3) * $n ** 2 + (5 / 16) * $n ** 3 + (41 / 180) * $n ** 4 - (127 / 288) * $n ** 5 + (7891 / 37800) * $n ** 6 + (72161 / 387072) * $n ** 7 - (18975107 / 50803200) * $n ** 8; |
1932
|
|
|
$h2 = (13 / 48) * $n ** 2 - (3 / 5) * $n ** 3 + (557 / 1440) * $n ** 4 + (281 / 630) * $n ** 5 - (1983433 / 1935360) * $n ** 6 + (13769 / 28800) * $n ** 7 + (148003883 / 174182400) * $n ** 8; |
1933
|
|
|
$h3 = (61 / 240) * $n ** 3 - (103 / 140) * $n ** 4 + (15061 / 26880) * $n ** 5 + (167603 / 181440) * $n ** 6 - (67102379 / 29030400) * $n ** 7 + (79682431 / 79833600) * $n ** 8; |
1934
|
|
|
$h4 = (49561 / 161280) * $n ** 4 - (179 / 168) * $n ** 5 + (6601661 / 7257600) * $n ** 6 + (97445 / 49896) * $n ** 7 - (40176129013 / 7664025600) * $n ** 8; |
1935
|
|
|
$h5 = (34729 / 80640) * $n ** 5 - (3418889 / 1995840) * $n ** 6 + (14644087 / 9123840) * $n ** 7 + (2605413599 / 622702080) * $n ** 8; |
1936
|
|
|
$h6 = (212378941 / 319334400) * $n ** 6 - (30705481 / 10378368) * $n ** 7 + (175214326799 / 58118860800) * $n ** 8; |
1937
|
|
|
$h7 = (1522256789 / 1383782400) * $n ** 7 - (16759934899 / 3113510400) * $n ** 8; |
1938
|
|
|
$h8 = (1424729850961 / 743921418240) * $n ** 8; |
1939
|
|
|
|
1940
|
|
|
if ($latitudeOrigin === 0.0) { |
|
|
|
|
1941
|
|
|
$mO = 0; |
1942
|
|
|
} elseif ($latitudeOrigin === M_PI / 2) { |
1943
|
|
|
$mO = $B * M_PI / 2; |
1944
|
|
|
} elseif ($latitudeOrigin === -M_PI / 2) { |
1945
|
|
|
$mO = $B * -M_PI / 2; |
1946
|
|
|
} else { |
1947
|
|
|
$qO = asinh(tan($latitudeOrigin)) - ($e * atanh($e * sin($latitudeOrigin))); |
1948
|
|
|
$betaO = atan(sinh($qO)); |
1949
|
|
|
$xiO0 = self::asin(sin($betaO)); |
1950
|
|
|
$xiO1 = $h1 * sin(2 * $xiO0); |
1951
|
|
|
$xiO2 = $h2 * sin(4 * $xiO0); |
1952
|
|
|
$xiO3 = $h3 * sin(6 * $xiO0); |
1953
|
|
|
$xiO4 = $h4 * sin(8 * $xiO0); |
1954
|
|
|
$xiO5 = $h5 * sin(10 * $xiO0); |
1955
|
|
|
$xiO6 = $h6 * sin(12 * $xiO0); |
1956
|
|
|
$xiO7 = $h7 * sin(14 * $xiO0); |
1957
|
|
|
$xiO8 = $h8 * sin(16 * $xiO0); |
1958
|
|
|
$xiO = $xiO0 + $xiO1 + $xiO2 + $xiO3 + $xiO4 + $xiO5 + $xiO6 + $xiO7 + $xiO8; |
1959
|
|
|
$mO = $B * $xiO; |
1960
|
|
|
} |
1961
|
|
|
|
1962
|
|
|
$h1 = $n / 2 - (2 / 3) * $n ** 2 + (37 / 96) * $n ** 3 - (1 / 360) * $n ** 4 - (81 / 512) * $n ** 5 + (96199 / 604800) * $n ** 6 - (5406467 / 38707200) * $n ** 7 + (7944359 / 67737600) * $n ** 8; |
1963
|
|
|
$h2 = (1 / 48) * $n ** 2 + (1 / 15) * $n ** 3 - (437 / 1440) * $n ** 4 + (46 / 105) * $n ** 5 - (1118711 / 3870720) * $n ** 6 + (51841 / 1209600) * $n ** 7 + (24749483 / 348364800) * $n ** 8; |
1964
|
|
|
$h3 = (17 / 480) * $n ** 3 - (37 / 840) * $n ** 4 - (209 / 4480) * $n ** 5 + (5569 / 90720) * $n ** 6 + (9261899 / 58060800) * $n ** 7 - (6457463 / 17740800) * $n ** 8; |
1965
|
|
|
$h4 = (4397 / 161280) * $n ** 4 - (11 / 504) * $n ** 5 - (830251 / 7257600) * $n ** 6 + (466511 / 2494800) * $n ** 7 + (324154477 / 7664025600) * $n ** 8; |
1966
|
|
|
$h5 = (4583 / 161280) * $n ** 5 - (108847 / 3991680) * $n ** 6 - (8005831 / 63866880) * $n ** 7 + (22894433 / 124540416) * $n ** 8; |
1967
|
|
|
$h6 = (20648693 / 638668800) * $n ** 6 - (16363163 / 518918400) * $n ** 7 - (2204645983 / 12915302400) * $n ** 8; |
1968
|
|
|
$h7 = (219941297 / 5535129600) * $n ** 7 - (497323811 / 12454041600) * $n ** 8; |
1969
|
|
|
$h8 = (191773887257 / 3719607091200) * $n ** 8; |
1970
|
|
|
|
1971
|
|
|
$eta = $easting / ($B * $kO); |
1972
|
|
|
$xi = ($northing + $kO * $mO) / ($B * $kO); |
1973
|
|
|
$xi1 = $h1 * sin(2 * $xi) * cosh(2 * $eta); |
1974
|
|
|
$eta1 = $h1 * cos(2 * $xi) * sinh(2 * $eta); |
1975
|
|
|
$xi2 = $h2 * sin(4 * $xi) * cosh(4 * $eta); |
1976
|
|
|
$eta2 = $h2 * cos(4 * $xi) * sinh(4 * $eta); |
1977
|
|
|
$xi3 = $h3 * sin(6 * $xi) * cosh(6 * $eta); |
1978
|
|
|
$eta3 = $h3 * cos(6 * $xi) * sinh(6 * $eta); |
1979
|
|
|
$xi4 = $h4 * sin(8 * $xi) * cosh(8 * $eta); |
1980
|
|
|
$eta4 = $h4 * cos(8 * $xi) * sinh(8 * $eta); |
1981
|
|
|
$xi5 = $h5 * sin(10 * $xi) * cosh(10 * $eta); |
1982
|
|
|
$eta5 = $h5 * cos(10 * $xi) * sinh(10 * $eta); |
1983
|
|
|
$xi6 = $h6 * sin(12 * $xi) * cosh(12 * $eta); |
1984
|
|
|
$eta6 = $h6 * cos(12 * $xi) * sinh(12 * $eta); |
1985
|
|
|
$xi7 = $h7 * sin(14 * $xi) * cosh(14 * $eta); |
1986
|
|
|
$eta7 = $h7 * cos(14 * $xi) * sinh(14 * $eta); |
1987
|
|
|
$xi8 = $h8 * sin(16 * $xi) * cosh(16 * $eta); |
1988
|
|
|
$eta8 = $h8 * cos(16 * $xi) * sinh(16 * $eta); |
1989
|
|
|
$xi0 = $xi - $xi1 - $xi2 - $xi3 - $xi4 - $xi5 - $xi6 - $xi7 - $xi8; |
1990
|
|
|
$eta0 = $eta - $eta1 - $eta2 - $eta3 - $eta4 - $eta5 - $eta6 - $eta7 - $eta8; |
1991
|
|
|
|
1992
|
|
|
$beta = self::asin(sin($xi0) / cosh($eta0)); |
1993
|
|
|
|
1994
|
|
|
$QPrime = asinh(tan($beta)); |
1995
|
|
|
$Q = asinh(tan($beta)); |
1996
|
|
|
do { |
1997
|
|
|
$QN = $Q; |
1998
|
|
|
$Q = $QPrime + ($e * atanh($e * tanh($Q))); |
1999
|
|
|
} while (abs($Q - $QN) >= static::ITERATION_CONVERGENCE_FORMULA); |
2000
|
|
|
|
2001
|
|
|
$latitude = atan(sinh($Q)); |
2002
|
|
|
$longitude = $longitudeOrigin + self::asin(tanh($eta0) / cos($beta)); |
2003
|
|
|
|
2004
|
|
|
$height = $this->height && $to instanceof Geographic3D ? $this->height : null; |
2005
|
|
|
|
2006
|
|
|
return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), $height, $this->epoch); |
2007
|
|
|
} |
2008
|
|
|
|
2009
|
|
|
/** |
2010
|
|
|
* Transverse Mercator Zoned Grid System |
2011
|
|
|
* If locations fall outwith the fixed zones the general Transverse Mercator method (code 9807) must be used for |
2012
|
|
|
* each zone. |
2013
|
|
|
*/ |
2014
|
|
|
public function transverseMercatorZonedGrid( |
2015
|
|
|
Geographic2D|Geographic3D $to, |
2016
|
|
|
Angle $latitudeOfNaturalOrigin, |
2017
|
|
|
Angle $initialLongitude, |
2018
|
|
|
Angle $zoneWidth, |
2019
|
|
|
Scale $scaleFactorAtNaturalOrigin, |
2020
|
|
|
Length $falseEasting, |
2021
|
|
|
Length $falseNorthing |
2022
|
|
|
): GeographicPoint { |
2023
|
|
|
$Z = (int) substr((string) $this->easting->asMetres()->getValue(), 0, 2); |
2024
|
|
|
$falseEasting = $falseEasting->add(new Metre($Z * 1000000)); |
2025
|
|
|
|
2026
|
|
|
$W = $zoneWidth->asDegrees()->getValue(); |
2027
|
|
|
$longitudeOrigin = $initialLongitude->add(new Degree($Z * $W - $W / 2)); |
2028
|
|
|
|
2029
|
|
|
return $this->transverseMercator($to, $latitudeOfNaturalOrigin, $longitudeOrigin, $scaleFactorAtNaturalOrigin, $falseEasting, $falseNorthing); |
2030
|
|
|
} |
2031
|
|
|
|
2032
|
|
|
/** |
2033
|
|
|
* General polynomial. |
2034
|
|
|
* @param Coefficient[] $powerCoefficients |
2035
|
|
|
*/ |
2036
|
|
|
public function generalPolynomial( |
2037
|
|
|
Projected $to, |
2038
|
|
|
Length $ordinate1OfEvaluationPointInSourceCRS, |
2039
|
|
|
Length $ordinate2OfEvaluationPointInSourceCRS, |
2040
|
|
|
Length $ordinate1OfEvaluationPointInTargetCRS, |
2041
|
|
|
Length $ordinate2OfEvaluationPointInTargetCRS, |
2042
|
|
|
Scale $scalingFactorForSourceCRSCoordDifferences, |
2043
|
|
|
Scale $scalingFactorForTargetCRSCoordDifferences, |
2044
|
|
|
Scale $A0, |
2045
|
|
|
Scale $B0, |
2046
|
|
|
array $powerCoefficients |
2047
|
|
|
): self { |
2048
|
|
|
$xs = $this->easting->getValue(); |
2049
|
|
|
$ys = $this->northing->getValue(); |
2050
|
|
|
|
2051
|
|
|
$t = $this->generalPolynomialUnitless( |
2052
|
|
|
$xs, |
2053
|
|
|
$ys, |
2054
|
|
|
$ordinate1OfEvaluationPointInSourceCRS, |
2055
|
|
|
$ordinate2OfEvaluationPointInSourceCRS, |
2056
|
|
|
$ordinate1OfEvaluationPointInTargetCRS, |
2057
|
|
|
$ordinate2OfEvaluationPointInTargetCRS, |
2058
|
|
|
$scalingFactorForSourceCRSCoordDifferences, |
2059
|
|
|
$scalingFactorForTargetCRSCoordDifferences, |
2060
|
|
|
$A0, |
2061
|
|
|
$B0, |
2062
|
|
|
$powerCoefficients |
2063
|
|
|
); |
2064
|
|
|
|
2065
|
|
|
$xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId(); |
2066
|
|
|
$ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId(); |
2067
|
|
|
|
2068
|
|
|
return static::createFromEastingNorthing( |
2069
|
|
|
$to, |
2070
|
|
|
Length::makeUnit($t['xt'], $xtUnit), |
2071
|
|
|
Length::makeUnit($t['yt'], $ytUnit), |
2072
|
|
|
$this->epoch |
2073
|
|
|
); |
2074
|
|
|
} |
2075
|
|
|
|
2076
|
|
|
/** |
2077
|
|
|
* New Zealand Map Grid. |
2078
|
|
|
*/ |
2079
|
|
|
public function newZealandMapGrid( |
2080
|
|
|
Geographic2D|Geographic3D $to, |
2081
|
|
|
Angle $latitudeOfNaturalOrigin, |
2082
|
|
|
Angle $longitudeOfNaturalOrigin, |
2083
|
|
|
Length $falseEasting, |
2084
|
|
|
Length $falseNorthing |
2085
|
|
|
): GeographicPoint { |
2086
|
|
|
$ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
2087
|
|
|
$a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
2088
|
|
|
|
2089
|
|
|
$z = new ComplexNumber( |
2090
|
|
|
$this->northing->subtract($falseNorthing)->divide($a)->asMetres()->getValue(), |
2091
|
|
|
$this->easting->subtract($falseEasting)->divide($a)->asMetres()->getValue(), |
2092
|
|
|
); |
2093
|
|
|
|
2094
|
|
|
$B1 = new ComplexNumber(0.7557853228, 0.0); |
2095
|
|
|
$B2 = new ComplexNumber(0.249204646, 0.003371507); |
2096
|
|
|
$B3 = new ComplexNumber(-0.001541739, 0.041058560); |
2097
|
|
|
$B4 = new ComplexNumber(-0.10162907, 0.01727609); |
2098
|
|
|
$B5 = new ComplexNumber(-0.26623489, -0.36249218); |
2099
|
|
|
$B6 = new ComplexNumber(-0.6870983, -1.1651967); |
2100
|
|
|
$b1 = new ComplexNumber(1.3231270439, 0.0); |
2101
|
|
|
$b2 = new ComplexNumber(-0.577245789, -0.007809598); |
2102
|
|
|
$b3 = new ComplexNumber(0.508307513, -0.112208952); |
2103
|
|
|
$b4 = new ComplexNumber(-0.15094762, 0.18200602); |
2104
|
|
|
$b5 = new ComplexNumber(1.01418179, 1.64497696); |
2105
|
|
|
$b6 = new ComplexNumber(1.9660549, 2.5127645); |
2106
|
|
|
|
2107
|
|
|
$zeta = new ComplexNumber(0, 0); |
2108
|
|
|
$zeta = $zeta->add($b1->multiply($z->pow(1))); |
2109
|
|
|
$zeta = $zeta->add($b2->multiply($z->pow(2))); |
2110
|
|
|
$zeta = $zeta->add($b3->multiply($z->pow(3))); |
2111
|
|
|
$zeta = $zeta->add($b4->multiply($z->pow(4))); |
2112
|
|
|
$zeta = $zeta->add($b5->multiply($z->pow(5))); |
2113
|
|
|
$zeta = $zeta->add($b6->multiply($z->pow(6))); |
2114
|
|
|
|
2115
|
|
|
for ($iterations = 0; $iterations < 2; ++$iterations) { |
2116
|
|
|
$numerator = $z; |
2117
|
|
|
$numerator = $numerator->add($B2->multiply($zeta->pow(2))->multiply(new ComplexNumber(1, 0))); |
2118
|
|
|
$numerator = $numerator->add($B3->multiply($zeta->pow(3))->multiply(new ComplexNumber(2, 0))); |
2119
|
|
|
$numerator = $numerator->add($B4->multiply($zeta->pow(4))->multiply(new ComplexNumber(3, 0))); |
2120
|
|
|
$numerator = $numerator->add($B5->multiply($zeta->pow(5))->multiply(new ComplexNumber(4, 0))); |
2121
|
|
|
$numerator = $numerator->add($B6->multiply($zeta->pow(6))->multiply(new ComplexNumber(5, 0))); |
2122
|
|
|
|
2123
|
|
|
$denominator = $B1; |
2124
|
|
|
$denominator = $denominator->add($B2->multiply($zeta->pow(1))->multiply(new ComplexNumber(2, 0))); |
2125
|
|
|
$denominator = $denominator->add($B3->multiply($zeta->pow(2))->multiply(new ComplexNumber(3, 0))); |
2126
|
|
|
$denominator = $denominator->add($B4->multiply($zeta->pow(3))->multiply(new ComplexNumber(4, 0))); |
2127
|
|
|
$denominator = $denominator->add($B5->multiply($zeta->pow(4))->multiply(new ComplexNumber(5, 0))); |
2128
|
|
|
$denominator = $denominator->add($B6->multiply($zeta->pow(5))->multiply(new ComplexNumber(6, 0))); |
2129
|
|
|
|
2130
|
|
|
$zeta = $numerator->divide($denominator); |
2131
|
|
|
} |
2132
|
|
|
|
2133
|
|
|
$deltaPsi = $zeta->getReal(); |
2134
|
|
|
$deltaLatitudeToOrigin = 0; |
2135
|
|
|
$deltaLatitudeToOrigin += 1.5627014243 * $deltaPsi ** 1; |
2136
|
|
|
$deltaLatitudeToOrigin += 0.5185406398 * $deltaPsi ** 2; |
2137
|
|
|
$deltaLatitudeToOrigin += -0.03333098 * $deltaPsi ** 3; |
2138
|
|
|
$deltaLatitudeToOrigin += -0.1052906 * $deltaPsi ** 4; |
2139
|
|
|
$deltaLatitudeToOrigin += -0.0368594 * $deltaPsi ** 5; |
2140
|
|
|
$deltaLatitudeToOrigin += 0.007317 * $deltaPsi ** 6; |
2141
|
|
|
$deltaLatitudeToOrigin += 0.01220 * $deltaPsi ** 7; |
2142
|
|
|
$deltaLatitudeToOrigin += 0.00394 * $deltaPsi ** 8; |
2143
|
|
|
$deltaLatitudeToOrigin += -0.0013 * $deltaPsi ** 9; |
2144
|
|
|
|
2145
|
|
|
$latitude = $latitudeOfNaturalOrigin->add(new ArcSecond($deltaLatitudeToOrigin / 0.00001)); |
2146
|
|
|
$longitude = $longitudeOfNaturalOrigin->add(new Radian($zeta->getImaginary())); |
2147
|
|
|
|
2148
|
|
|
return GeographicPoint::create($to, $latitude, $longitude, null, $this->epoch); |
2149
|
|
|
} |
2150
|
|
|
|
2151
|
|
|
/** |
2152
|
|
|
* Complex polynomial. |
2153
|
|
|
* Coordinate pairs treated as complex numbers. This exploits the correlation between the polynomial coefficients |
2154
|
|
|
* and leads to a smaller number of coefficients than the general polynomials. |
2155
|
|
|
*/ |
2156
|
|
|
public function complexPolynomial( |
2157
|
|
|
Projected $to, |
2158
|
|
|
Length $ordinate1OfEvaluationPointInSourceCRS, |
2159
|
|
|
Length $ordinate2OfEvaluationPointInSourceCRS, |
2160
|
|
|
Length $ordinate1OfEvaluationPointInTargetCRS, |
2161
|
|
|
Length $ordinate2OfEvaluationPointInTargetCRS, |
2162
|
|
|
Scale $scalingFactorForSourceCRSCoordDifferences, |
2163
|
|
|
Scale $scalingFactorForTargetCRSCoordDifferences, |
2164
|
|
|
Scale $A1, |
2165
|
|
|
Scale $A2, |
2166
|
|
|
Scale $A3, |
2167
|
|
|
Scale $A4, |
2168
|
|
|
Scale $A5, |
2169
|
|
|
Scale $A6, |
2170
|
|
|
?Scale $A7 = null, |
2171
|
|
|
?Scale $A8 = null |
2172
|
|
|
): self { |
2173
|
|
|
$xs = $this->easting->getValue(); |
2174
|
|
|
$ys = $this->northing->getValue(); |
2175
|
|
|
$xso = $ordinate1OfEvaluationPointInSourceCRS->getValue(); |
2176
|
|
|
$yso = $ordinate2OfEvaluationPointInSourceCRS->getValue(); |
2177
|
|
|
$xto = $ordinate1OfEvaluationPointInTargetCRS->getValue(); |
2178
|
|
|
$yto = $ordinate2OfEvaluationPointInTargetCRS->getValue(); |
2179
|
|
|
|
2180
|
|
|
$U = $scalingFactorForSourceCRSCoordDifferences->asUnity()->getValue() * ($xs - $xso); |
2181
|
|
|
$V = $scalingFactorForSourceCRSCoordDifferences->asUnity()->getValue() * ($ys - $yso); |
2182
|
|
|
|
2183
|
|
|
$mTdXdY = new ComplexNumber(0, 0); |
2184
|
|
|
$mTdXdY = $mTdXdY->add((new ComplexNumber($A1->getValue(), $A2->getValue()))->multiply(new ComplexNumber($U, $V))->pow(1)); |
2185
|
|
|
$mTdXdY = $mTdXdY->add((new ComplexNumber($A3->getValue(), $A4->getValue()))->multiply((new ComplexNumber($U, $V))->pow(2))); |
2186
|
|
|
$mTdXdY = $mTdXdY->add((new ComplexNumber($A5->getValue(), $A6->getValue()))->multiply((new ComplexNumber($U, $V))->pow(3))); |
2187
|
|
|
$mTdXdY = $mTdXdY->add((new ComplexNumber($A7 ? $A7->getValue() : 0, $A8 ? $A8->getValue() : 0))->multiply((new ComplexNumber($U, $V))->pow(4))); |
2188
|
|
|
|
2189
|
|
|
$xt = $xs - $xso + $xto + $mTdXdY->getReal() / $scalingFactorForTargetCRSCoordDifferences->asUnity()->getValue(); |
2190
|
|
|
$yt = $ys - $yso + $yto + $mTdXdY->getImaginary() / $scalingFactorForTargetCRSCoordDifferences->asUnity()->getValue(); |
2191
|
|
|
|
2192
|
|
|
$xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId(); |
2193
|
|
|
$ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId(); |
2194
|
|
|
|
2195
|
|
|
return static::createFromEastingNorthing( |
2196
|
|
|
$to, |
2197
|
|
|
Length::makeUnit($xt, $xtUnit), |
2198
|
|
|
Length::makeUnit($yt, $ytUnit), |
2199
|
|
|
$this->epoch |
2200
|
|
|
); |
2201
|
|
|
} |
2202
|
|
|
|
2203
|
|
|
/** |
2204
|
|
|
* Ordnance Survey National Transformation |
2205
|
|
|
* Geodetic transformation between ETRS89 (or WGS 84) and OSGB36 / National Grid. Uses ETRS89 / National Grid as |
2206
|
|
|
* an intermediate coordinate system for bi-linear interpolation of gridded grid coordinate differences. |
2207
|
|
|
*/ |
2208
|
|
|
public function OSTN15( |
2209
|
|
|
Geographic2D $to, |
2210
|
|
|
OSTNOSGM15Grid $eastingAndNorthingDifferenceFile |
2211
|
|
|
): GeographicPoint { |
2212
|
|
|
$asETRS89 = $eastingAndNorthingDifferenceFile->applyReverseHorizontalAdjustment($this); |
2213
|
|
|
|
2214
|
|
|
return $asETRS89->transverseMercator($to, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000)); |
2215
|
|
|
} |
2216
|
|
|
} |
2217
|
|
|
|