| Total Complexity | 143 |
| Total Lines | 2148 |
| Duplicated Lines | 0 % |
| Changes | 0 | ||
Complex classes like ProjectedPoint often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
While breaking up the class, it is a good idea to analyze how other classes use ProjectedPoint, and based on these observations, apply Extract Interface, too.
| 1 | <?php |
||
| 67 | class ProjectedPoint extends Point implements ConvertiblePoint |
||
| 68 | { |
||
| 69 | use AutoConversion { |
||
| 70 | convert as protected autoConvert; |
||
| 71 | } |
||
| 72 | |||
| 73 | /** |
||
| 74 | * Easting. |
||
| 75 | */ |
||
| 76 | protected Length $easting; |
||
| 77 | |||
| 78 | /** |
||
| 79 | * Northing. |
||
| 80 | */ |
||
| 81 | protected Length $northing; |
||
| 82 | |||
| 83 | /** |
||
| 84 | * Westing. |
||
| 85 | */ |
||
| 86 | protected Length $westing; |
||
| 87 | |||
| 88 | /** |
||
| 89 | * Southing. |
||
| 90 | */ |
||
| 91 | protected Length $southing; |
||
| 92 | |||
| 93 | /** |
||
| 94 | * Height. |
||
| 95 | */ |
||
| 96 | protected ?Length $height; |
||
| 97 | |||
| 98 | /** |
||
| 99 | * Coordinate reference system. |
||
| 100 | */ |
||
| 101 | protected Projected $crs; |
||
| 102 | |||
| 103 | /** |
||
| 104 | * Coordinate epoch (date for which the specified coordinates represented this point). |
||
| 105 | */ |
||
| 106 | protected ?DateTimeImmutable $epoch; |
||
| 107 | |||
| 108 | protected function __construct(Projected $crs, ?Length $easting, ?Length $northing, ?Length $westing, ?Length $southing, ?DateTimeInterface $epoch, ?Length $height) |
||
| 109 | { |
||
| 110 | if (count($crs->getCoordinateSystem()->getAxes()) === 2 && $height !== null) { |
||
| 111 | throw new InvalidCoordinateReferenceSystemException('A 2D projected point must not include a height'); |
||
| 112 | } |
||
| 113 | |||
| 114 | if (count($crs->getCoordinateSystem()->getAxes()) === 3 && $height === null) { |
||
| 115 | throw new InvalidCoordinateReferenceSystemException('A 3D projected point must include a height, none given'); |
||
| 116 | } |
||
| 117 | |||
| 118 | $this->crs = $crs; |
||
| 119 | $cs = $this->crs->getCoordinateSystem(); |
||
| 120 | |||
| 121 | $eastingAxis = $cs->hasAxisByName(Axis::EASTING) ? $cs->getAxisByName(Axis::EASTING) : null; |
||
| 122 | $westingAxis = $cs->hasAxisByName(Axis::WESTING) ? $cs->getAxisByName(Axis::WESTING) : null; |
||
| 123 | $northingAxis = $cs->hasAxisByName(Axis::NORTHING) ? $cs->getAxisByName(Axis::NORTHING) : null; |
||
| 124 | $southingAxis = $cs->hasAxisByName(Axis::SOUTHING) ? $cs->getAxisByName(Axis::SOUTHING) : null; |
||
| 125 | |||
| 126 | if ($easting && $eastingAxis) { |
||
| 127 | $this->easting = $easting::convert($easting, $eastingAxis->getUnitOfMeasureId()); |
||
| 128 | $this->westing = $this->easting->multiply(-1); |
||
| 129 | } elseif ($westing && $westingAxis) { |
||
| 130 | $this->westing = $westing::convert($westing, $westingAxis->getUnitOfMeasureId()); |
||
| 131 | $this->easting = $this->westing->multiply(-1); |
||
| 132 | } else { |
||
| 133 | throw new InvalidAxesException($crs->getCoordinateSystem()->getAxes()); |
||
| 134 | } |
||
| 135 | |||
| 136 | if ($northing && $northingAxis) { |
||
| 137 | $this->northing = $northing::convert($northing, $northingAxis->getUnitOfMeasureId()); |
||
| 138 | $this->southing = $this->northing->multiply(-1); |
||
| 139 | } elseif ($southing && $southingAxis) { |
||
| 140 | $this->southing = $southing::convert($southing, $southingAxis->getUnitOfMeasureId()); |
||
| 141 | $this->northing = $this->southing->multiply(-1); |
||
| 142 | } else { |
||
| 143 | throw new InvalidAxesException($crs->getCoordinateSystem()->getAxes()); |
||
| 144 | } |
||
| 145 | |||
| 146 | if ($epoch instanceof DateTime) { |
||
| 147 | $epoch = DateTimeImmutable::createFromMutable($epoch); |
||
| 148 | } |
||
| 149 | $this->epoch = $epoch; |
||
| 150 | |||
| 151 | $this->height = $height; |
||
| 152 | } |
||
| 153 | |||
| 154 | public static function create(Projected $crs, ?Length $easting, ?Length $northing, ?Length $westing, ?Length $southing, ?DateTimeInterface $epoch = null, ?Length $height = null): self |
||
| 155 | { |
||
| 156 | return match ($crs->getSRID()) { |
||
| 157 | Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID => new BritishNationalGridPoint($easting, $northing, $epoch), |
||
| 158 | Projected::EPSG_TM75_IRISH_GRID => new IrishGridPoint($easting, $northing, $epoch), |
||
| 159 | Projected::EPSG_IRENET95_IRISH_TRANSVERSE_MERCATOR => new IrishTransverseMercatorPoint($easting, $northing, $epoch), |
||
| 160 | default => new self($crs, $easting, $northing, $westing, $southing, $epoch, $height), |
||
| 161 | }; |
||
| 162 | } |
||
| 163 | |||
| 164 | public static function createFromEastingNorthing(Projected $crs, Length $easting, Length $northing, ?DateTimeInterface $epoch = null, ?Length $height = null): self |
||
| 165 | { |
||
| 166 | return static::create($crs, $easting, $northing, null, null, $epoch, $height); |
||
| 167 | } |
||
| 168 | |||
| 169 | public static function createFromWestingNorthing(Projected $crs, Length $westing, Length $northing, ?DateTimeInterface $epoch = null, ?Length $height = null): self |
||
| 170 | { |
||
| 171 | return static::create($crs, null, $northing, $westing, null, $epoch, $height); |
||
| 172 | } |
||
| 173 | |||
| 174 | public static function createFromWestingSouthing(Projected $crs, Length $westing, Length $southing, ?DateTimeInterface $epoch = null, ?Length $height = null): self |
||
| 175 | { |
||
| 176 | return static::create($crs, null, null, $westing, $southing, $epoch, $height); |
||
| 177 | } |
||
| 178 | |||
| 179 | public function getEasting(): Length |
||
| 182 | } |
||
| 183 | |||
| 184 | public function getNorthing(): Length |
||
| 185 | { |
||
| 186 | return $this->northing; |
||
| 187 | } |
||
| 188 | |||
| 189 | public function getWesting(): Length |
||
| 190 | { |
||
| 191 | return $this->westing; |
||
| 192 | } |
||
| 193 | |||
| 194 | public function getSouthing(): Length |
||
| 195 | { |
||
| 196 | return $this->southing; |
||
| 197 | } |
||
| 198 | |||
| 199 | public function getHeight(): ?Length |
||
| 200 | { |
||
| 201 | return $this->height; |
||
| 202 | } |
||
| 203 | |||
| 204 | public function getCRS(): Projected |
||
| 205 | { |
||
| 206 | return $this->crs; |
||
| 207 | } |
||
| 208 | |||
| 209 | public function getCoordinateEpoch(): ?DateTimeImmutable |
||
| 210 | { |
||
| 211 | return $this->epoch; |
||
| 212 | } |
||
| 213 | |||
| 214 | /** |
||
| 215 | * Calculate distance between two points. |
||
| 216 | * Because this is a simple grid, we can use Pythagoras. |
||
| 217 | */ |
||
| 218 | public function calculateDistance(Point $to): Length |
||
| 219 | { |
||
| 220 | try { |
||
| 221 | if ($to instanceof ConvertiblePoint) { |
||
| 222 | $to = $to->convert($this->crs); |
||
| 223 | } |
||
| 224 | } finally { |
||
| 225 | if ($to->getCRS()->getSRID() !== $this->crs->getSRID()) { |
||
| 226 | throw new InvalidCoordinateReferenceSystemException('Can only calculate distances between two points in the same CRS'); |
||
| 227 | } |
||
| 228 | |||
| 229 | /** @var ProjectedPoint $to */ |
||
| 230 | return new Metre( |
||
| 231 | sqrt( |
||
| 232 | ($to->getEasting()->getValue() - $this->getEasting()->getValue()) ** 2 + |
||
| 233 | ($to->getNorthing()->getValue() - $this->getNorthing()->getValue()) ** 2 |
||
| 234 | ) |
||
| 235 | ); |
||
| 236 | } |
||
| 237 | } |
||
| 238 | |||
| 239 | public function asGeographicPoint(): GeographicPoint |
||
| 240 | { |
||
| 241 | $geographicPoint = $this->performOperation($this->crs->getDerivingConversion(), $this->crs->getBaseCRS(), true); |
||
| 242 | assert($geographicPoint instanceof GeographicPoint); |
||
| 243 | |||
| 244 | return $geographicPoint; |
||
| 245 | } |
||
| 246 | |||
| 247 | public function convert(Compound|Geocentric|Geographic2D|Geographic3D|Projected|Vertical $to, bool $ignoreBoundaryRestrictions = false): Point |
||
| 248 | { |
||
| 249 | if ($to->getSRID() === $this->crs->getBaseCRS()->getSRID()) { |
||
| 250 | return $this->performOperation($this->crs->getDerivingConversion(), $this->crs->getBaseCRS(), true); |
||
| 251 | } |
||
| 252 | |||
| 253 | return $this->autoConvert($to, $ignoreBoundaryRestrictions); |
||
| 254 | } |
||
| 255 | |||
| 256 | public function __toString(): string |
||
| 257 | { |
||
| 258 | $values = []; |
||
| 259 | foreach ($this->getCRS()->getCoordinateSystem()->getAxes() as $axis) { |
||
| 260 | if ($axis->getName() === Axis::EASTING) { |
||
| 261 | $values[] = $this->easting; |
||
| 262 | } elseif ($axis->getName() === Axis::NORTHING) { |
||
| 263 | $values[] = $this->northing; |
||
| 264 | } elseif ($axis->getName() === Axis::WESTING) { |
||
| 265 | $values[] = $this->westing; |
||
| 266 | } elseif ($axis->getName() === Axis::SOUTHING) { |
||
| 267 | $values[] = $this->southing; |
||
| 268 | } elseif ($axis->getName() === Axis::ELLIPSOIDAL_HEIGHT) { |
||
| 269 | $values[] = $this->height; |
||
| 270 | } else { |
||
| 271 | throw new UnknownAxisException(); // @codeCoverageIgnore |
||
| 272 | } |
||
| 273 | } |
||
| 274 | |||
| 275 | return '(' . implode(', ', $values) . ')'; |
||
| 276 | } |
||
| 277 | |||
| 278 | /** |
||
| 279 | * Affine parametric transformation. |
||
| 280 | */ |
||
| 281 | public function affineParametricTransform( |
||
| 282 | Projected $to, |
||
| 283 | Length $A0, |
||
| 284 | Coefficient $A1, |
||
| 285 | Coefficient $A2, |
||
| 286 | Length $B0, |
||
| 287 | Coefficient $B1, |
||
| 288 | Coefficient $B2, |
||
| 289 | bool $inReverse |
||
| 290 | ): self { |
||
| 291 | $xs = $this->easting->getValue(); // native unit to metre conversion already embedded in the scale factor |
||
| 292 | $ys = $this->northing->getValue(); // native unit to metre conversion already embedded in the scale factor |
||
| 293 | |||
| 294 | if ($inReverse) { |
||
| 295 | $D = ($A1->getValue() * $B2->getValue()) - ($A2->getValue() * $B1->getValue()); |
||
| 296 | $a0 = (($A2->getValue() * $B0->asMetres()->getValue()) - ($B2->getValue() * $A0->asMetres()->getValue())) / $D; |
||
| 297 | $b0 = (($B1->getValue() * $A0->asMetres()->getValue()) - ($A1->getValue() * $B0->asMetres()->getValue())) / $D; |
||
| 298 | $a1 = $B2->getValue() / $D; |
||
| 299 | $a2 = -$A2->getValue() / $D; |
||
| 300 | $b1 = -$B1->getValue() / $D; |
||
| 301 | $b2 = $A1->getValue() / $D; |
||
| 302 | } else { |
||
| 303 | $a0 = $A0->asMetres()->getValue(); |
||
| 304 | $a1 = $A1->getValue(); |
||
| 305 | $a2 = $A2->getValue(); |
||
| 306 | $b0 = $B0->asMetres()->getValue(); |
||
| 307 | $b1 = $B1->getValue(); |
||
| 308 | $b2 = $B2->getValue(); |
||
| 309 | } |
||
| 310 | |||
| 311 | $xt = $a0 + ($a1 * $xs) + ($a2 * $ys); |
||
| 312 | $yt = $b0 + ($b1 * $xs) + ($b2 * $ys); |
||
| 313 | |||
| 314 | return static::create($to, new Metre($xt), new Metre($yt), new Metre(-$xt), new Metre(-$yt), $this->epoch); |
||
| 315 | } |
||
| 316 | |||
| 317 | /** |
||
| 318 | * Albers Equal Area. |
||
| 319 | */ |
||
| 320 | public function albersEqualArea( |
||
| 321 | Geographic2D|Geographic3D $to, |
||
| 322 | Angle $latitudeOfFalseOrigin, |
||
| 323 | Angle $longitudeOfFalseOrigin, |
||
| 324 | Angle $latitudeOf1stStandardParallel, |
||
| 325 | Angle $latitudeOf2ndStandardParallel, |
||
| 326 | Length $eastingAtFalseOrigin, |
||
| 327 | Length $northingAtFalseOrigin |
||
| 328 | ): GeographicPoint { |
||
| 329 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 330 | $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue(); |
||
| 331 | $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue(); |
||
| 332 | $phiOrigin = $latitudeOfFalseOrigin->asRadians()->getValue(); |
||
| 333 | $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
||
| 334 | $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue(); |
||
| 335 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 336 | $e = $ellipsoid->getEccentricity(); |
||
| 337 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 338 | $e4 = $e ** 4; |
||
| 339 | $e6 = $e ** 6; |
||
| 340 | |||
| 341 | $centralMeridianFirstParallel = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2); |
||
| 342 | $centralMeridianSecondParallel = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2); |
||
| 343 | |||
| 344 | $alphaOrigin = (1 - $e2) * (sin($phiOrigin) / (1 - $e2 * sin($phiOrigin) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phiOrigin)) / (1 + $e * sin($phiOrigin)))); |
||
| 345 | $alphaFirstParallel = (1 - $e2) * (sin($phi1) / (1 - $e2 * sin($phi1) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi1)) / (1 + $e * sin($phi1)))); |
||
| 346 | $alphaSecondParallel = (1 - $e2) * (sin($phi2) / (1 - $e2 * sin($phi2) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi2)) / (1 + $e * sin($phi2)))); |
||
| 347 | |||
| 348 | $n = ($centralMeridianFirstParallel ** 2 - $centralMeridianSecondParallel ** 2) / ($alphaSecondParallel - $alphaFirstParallel); |
||
| 349 | $C = $centralMeridianFirstParallel ** 2 + $n * $alphaFirstParallel; |
||
| 350 | $rhoOrigin = $a * sqrt($C - $n * $alphaOrigin) / $n; |
||
| 351 | $rhoPrime = hypot($easting, $rhoOrigin - $northing); |
||
| 352 | $alphaPrime = ($C - $rhoPrime ** 2 * $n ** 2 / $a ** 2) / $n; |
||
| 353 | $betaPrime = self::asin($alphaPrime / (1 - (1 - $e2) / 2 / $e * log((1 - $e) / (1 + $e)))); |
||
| 354 | if ($n > 0) { |
||
| 355 | $theta = atan2($easting, $rhoOrigin - $northing); |
||
| 356 | } else { |
||
| 357 | $theta = atan2(-$easting, $northing - $rhoOrigin); |
||
| 358 | } |
||
| 359 | |||
| 360 | $latitude = $betaPrime + (($e2 / 3 + 31 * $e4 / 180 + 517 * $e6 / 5040) * sin(2 * $betaPrime)) + ((23 * $e4 / 360 + 251 * $e6 / 3780) * sin(4 * $betaPrime)) + ((761 * $e6 / 45360) * sin(6 * $betaPrime)); |
||
| 361 | $longitude = $longitudeOfFalseOrigin->asRadians()->getValue() + ($theta / $n); |
||
| 362 | |||
| 363 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
| 364 | } |
||
| 365 | |||
| 366 | /** |
||
| 367 | * American Polyconic. |
||
| 368 | */ |
||
| 369 | public function americanPolyconic( |
||
| 370 | Geographic2D|Geographic3D $to, |
||
| 371 | Angle $latitudeOfNaturalOrigin, |
||
| 372 | Angle $longitudeOfNaturalOrigin, |
||
| 373 | Length $falseEasting, |
||
| 374 | Length $falseNorthing |
||
| 375 | ): GeographicPoint { |
||
| 376 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 377 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
| 378 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
| 379 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 380 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 381 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 382 | $e = $ellipsoid->getEccentricity(); |
||
| 383 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 384 | $e4 = $e ** 4; |
||
| 385 | $e6 = $e ** 6; |
||
| 386 | |||
| 387 | $i = (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256); |
||
| 388 | $ii = (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024); |
||
| 389 | $iii = (15 * $e4 / 256 + 45 * $e6 / 1024); |
||
| 390 | $iv = (35 * $e6 / 3072); |
||
| 391 | |||
| 392 | $MO = $a * ($i * $latitudeOrigin - $ii * sin(2 * $latitudeOrigin) + $iii * sin(4 * $latitudeOrigin) - $iv * sin(6 * $latitudeOrigin)); |
||
| 393 | |||
| 394 | if ($MO === $northing) { |
||
| 395 | $latitude = 0; |
||
| 396 | $longitude = $longitudeOrigin + $easting / $a; |
||
| 397 | } else { |
||
| 398 | $A = ($MO + $northing) / $a; |
||
| 399 | $B = $A ** 2 + $easting ** 2 / $a ** 2; |
||
| 400 | |||
| 401 | $latitude = $A; |
||
| 402 | $C = sqrt(1 - $e2 * sin($latitude) ** 2) * tan($latitude); |
||
| 403 | do { |
||
| 404 | $latitudeN = $latitude; |
||
| 405 | $Ma = $i * $latitude - $ii * sin(2 * $latitude) + $iii * sin(4 * $latitude) - $iv * sin(6 * $latitude); |
||
| 406 | $MnPrime = $i - 2 * $ii * cos(2 * $latitude) + 4 * $iii * cos(4 * $latitude) - 6 * $iv * cos(6 * $latitude); |
||
| 407 | $latitude = $latitude - ($A * ($C * $Ma + 1) - $Ma - $C * ($Ma ** 2 + $B) / 2) / ($e2 * sin(2 * $latitude) * ($Ma ** 2 + $B - 2 * $A * $Ma) / 4 * $C + ($A - $Ma) * ($C * $MnPrime - (2 / sin(2 * $latitude))) - $MnPrime); |
||
| 408 | $C = sqrt(1 - $e2 * sin($latitude) ** 2) * tan($latitude); |
||
| 409 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||
| 410 | |||
| 411 | $longitude = $longitudeOrigin + self::asin($easting * $C / $a) / sin($latitude); |
||
| 412 | } |
||
| 413 | |||
| 414 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
| 415 | } |
||
| 416 | |||
| 417 | /** |
||
| 418 | * Bonne. |
||
| 419 | */ |
||
| 420 | public function bonne( |
||
| 421 | Geographic2D|Geographic3D $to, |
||
| 422 | Angle $latitudeOfNaturalOrigin, |
||
| 423 | Angle $longitudeOfNaturalOrigin, |
||
| 424 | Length $falseEasting, |
||
| 425 | Length $falseNorthing |
||
| 426 | ): GeographicPoint { |
||
| 427 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 428 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
| 429 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
| 430 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 431 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 432 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 433 | $e = $ellipsoid->getEccentricity(); |
||
| 434 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 435 | $e4 = $e ** 4; |
||
| 436 | $e6 = $e ** 6; |
||
| 437 | |||
| 438 | $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2); |
||
| 439 | $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
||
| 440 | $rho = hypot($easting, $a * $mO / sin($latitudeOrigin) - $northing) * static::sign($latitudeOrigin); |
||
| 441 | |||
| 442 | $M = $a * $mO / sin($latitudeOrigin) + $MO - $rho; |
||
| 443 | $mu = $M / ($a * (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256)); |
||
| 444 | $e1 = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2)); |
||
| 445 | |||
| 446 | $latitude = $mu + ((3 * $e1 / 2) - (27 * $e1 ** 3 / 32)) * sin(2 * $mu) + ((21 * $e1 ** 2 / 16) - (55 * $e1 ** 4 / 32)) * sin(4 * $mu) + (151 * $e1 ** 3 / 96) * sin(6 * $mu) + (1097 * $e1 ** 4 / 512) * sin(8 * $mu); |
||
| 447 | $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2); |
||
| 448 | |||
| 449 | if ($m === 0.0) { |
||
| 450 | $longitude = $longitudeOrigin; // pole |
||
| 451 | } elseif ($latitudeOrigin >= 0) { |
||
| 452 | $longitude = $longitudeOrigin + $rho * atan2($easting, $a * $mO / sin($latitudeOrigin) - $northing) / $a / $m; |
||
| 453 | } else { |
||
| 454 | $longitude = $longitudeOrigin + $rho * atan2(-$easting, -($a * $mO / sin($latitudeOrigin) - $northing)) / $a / $m; |
||
| 455 | } |
||
| 456 | |||
| 457 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
| 458 | } |
||
| 459 | |||
| 460 | /** |
||
| 461 | * Bonne South Orientated. |
||
| 462 | */ |
||
| 463 | public function bonneSouthOrientated( |
||
| 464 | Geographic2D|Geographic3D $to, |
||
| 465 | Angle $latitudeOfNaturalOrigin, |
||
| 466 | Angle $longitudeOfNaturalOrigin, |
||
| 467 | Length $falseEasting, |
||
| 468 | Length $falseNorthing |
||
| 469 | ): GeographicPoint { |
||
| 470 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 471 | $westing = $falseEasting->asMetres()->getValue() - $this->westing->asMetres()->getValue(); |
||
| 472 | $southing = $falseNorthing->asMetres()->getValue() - $this->southing->asMetres()->getValue(); |
||
| 473 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 474 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 475 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 476 | $e = $ellipsoid->getEccentricity(); |
||
| 477 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 478 | $e4 = $e ** 4; |
||
| 479 | $e6 = $e ** 6; |
||
| 480 | |||
| 481 | $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2); |
||
| 482 | $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
||
| 483 | $rho = hypot($westing, $a * $mO / sin($latitudeOrigin) - $southing) * static::sign($latitudeOrigin); |
||
| 484 | |||
| 485 | $M = $a * $mO / sin($latitudeOrigin) + $MO - $rho; |
||
| 486 | $mu = $M / ($a * (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256)); |
||
| 487 | $e1 = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2)); |
||
| 488 | |||
| 489 | $latitude = $mu + ((3 * $e1 / 2) - (27 * $e1 ** 3 / 32)) * sin(2 * $mu) + ((21 * $e1 ** 2 / 16) - (55 * $e1 ** 4 / 32)) * sin(4 * $mu) + (151 * $e1 ** 3 / 96) * sin(6 * $mu) + (1097 * $e1 ** 4 / 512) * sin(8 * $mu); |
||
| 490 | $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2); |
||
| 491 | |||
| 492 | if ($m === 0.0) { |
||
| 493 | $longitude = $longitudeOrigin; // pole |
||
| 494 | } elseif ($latitudeOrigin >= 0) { |
||
| 495 | $longitude = $longitudeOrigin + $rho * atan2($westing, $a * $mO / sin($latitudeOrigin) - $southing) / $a / $m; |
||
| 496 | } else { |
||
| 497 | $longitude = $longitudeOrigin + $rho * atan2(-$westing, -($a * $mO / sin($latitudeOrigin) - $southing)) / $a / $m; |
||
| 498 | } |
||
| 499 | |||
| 500 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
| 501 | } |
||
| 502 | |||
| 503 | /** |
||
| 504 | * Cartesian Grid Offsets |
||
| 505 | * This transformation allows calculation of coordinates in the target system by adding the parameter value to the |
||
| 506 | * coordinate values of the point in the source system. |
||
| 507 | */ |
||
| 508 | public function offsets( |
||
| 509 | Projected $to, |
||
| 510 | Length $eastingOffset, |
||
| 511 | Length $northingOffset |
||
| 512 | ): self { |
||
| 513 | $easting = $this->easting->asMetres()->getValue() + $eastingOffset->asMetres()->getValue(); |
||
| 514 | $northing = $this->northing->asMetres()->getValue() + $northingOffset->asMetres()->getValue(); |
||
| 515 | |||
| 516 | return static::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
| 517 | } |
||
| 518 | |||
| 519 | /** |
||
| 520 | * Cassini-Soldner. |
||
| 521 | */ |
||
| 522 | public function cassiniSoldner( |
||
| 523 | Geographic2D|Geographic3D $to, |
||
| 524 | Angle $latitudeOfNaturalOrigin, |
||
| 525 | Angle $longitudeOfNaturalOrigin, |
||
| 526 | Length $falseEasting, |
||
| 527 | Length $falseNorthing |
||
| 528 | ): GeographicPoint { |
||
| 529 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 530 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
| 531 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
| 532 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 533 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 534 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 535 | $e = $ellipsoid->getEccentricity(); |
||
| 536 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 537 | $e4 = $e ** 4; |
||
| 538 | $e6 = $e ** 6; |
||
| 539 | |||
| 540 | $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
||
| 541 | |||
| 542 | $e1 = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2)); |
||
| 543 | $M = $MO + $northing; |
||
| 544 | $mu = $M / ($a * (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256)); |
||
| 545 | $latitudeCentralMeridian = $mu + (3 * $e1 / 2 - 27 * $e1 ** 3 / 32) * sin(2 * $mu) + (21 * $e1 ** 2 / 16 - 55 * $e1 ** 4 / 32) * sin(4 * $mu) + (151 * $e1 ** 3 / 96) * sin(6 * $mu) + (1097 * $e1 ** 4 / 512) * sin(8 * $mu); |
||
| 546 | |||
| 547 | $nu = $a / sqrt(1 - $e2 * sin($latitudeCentralMeridian) ** 2); |
||
| 548 | $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitudeCentralMeridian) ** 2) ** 1.5; |
||
| 549 | |||
| 550 | $T = tan($latitudeCentralMeridian) ** 2; |
||
| 551 | $D = $easting / $nu; |
||
| 552 | |||
| 553 | $latitude = $latitudeCentralMeridian - ($nu * tan($latitudeCentralMeridian) / $rho) * ($D ** 2 / 2 - (1 + 3 * $T) * $D ** 4 / 24); |
||
| 554 | $longitude = $longitudeOrigin + ($D - $T * $D ** 3 / 3 + (1 + 3 * $T) * $T * $D ** 5 / 15) / cos($latitudeCentralMeridian); |
||
| 555 | |||
| 556 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
| 557 | } |
||
| 558 | |||
| 559 | /** |
||
| 560 | * Hyperbolic Cassini-Soldner. |
||
| 561 | */ |
||
| 562 | public function hyperbolicCassiniSoldner( |
||
| 602 | } |
||
| 603 | |||
| 604 | /** |
||
| 605 | * Colombia Urban. |
||
| 606 | */ |
||
| 607 | public function columbiaUrban( |
||
| 608 | Geographic2D|Geographic3D $to, |
||
| 609 | Angle $latitudeOfNaturalOrigin, |
||
| 610 | Angle $longitudeOfNaturalOrigin, |
||
| 611 | Length $falseEasting, |
||
| 612 | Length $falseNorthing, |
||
| 613 | Length $projectionPlaneOriginHeight |
||
| 614 | ): GeographicPoint { |
||
| 615 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 616 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
| 617 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
| 618 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 619 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 620 | $heightOrigin = $projectionPlaneOriginHeight->asMetres()->getValue(); |
||
| 621 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 622 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 623 | |||
| 624 | $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** 1.5; |
||
| 625 | |||
| 626 | $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2)); |
||
| 627 | |||
| 628 | $B = tan($latitudeOrigin) / (2 * $rhoOrigin * $nuOrigin); |
||
| 629 | $C = 1 + $heightOrigin / $a; |
||
| 630 | $D = $rhoOrigin * (1 + $heightOrigin / ($a * (1 - $e2))); |
||
| 631 | |||
| 632 | $latitude = $latitudeOrigin + ($northing / $D) - $B * ($easting / $C) ** 2; |
||
| 633 | $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2)); |
||
| 634 | $longitude = $longitudeOrigin + $easting / ($C * $nu * cos($latitude)); |
||
| 635 | |||
| 636 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
| 637 | } |
||
| 638 | |||
| 639 | /** |
||
| 640 | * Equal Earth. |
||
| 641 | */ |
||
| 642 | public function equalEarth( |
||
| 643 | Geographic2D|Geographic3D $to, |
||
| 644 | Angle $longitudeOfNaturalOrigin, |
||
| 645 | Length $falseEasting, |
||
| 646 | Length $falseNorthing |
||
| 647 | ): GeographicPoint { |
||
| 648 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 649 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
| 650 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
| 651 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 652 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 653 | $e = $ellipsoid->getEccentricity(); |
||
| 654 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 655 | $e4 = $e ** 4; |
||
| 656 | $e6 = $e ** 6; |
||
| 657 | |||
| 658 | $qP = (1 - $e2) * ((1 / (1 - $e2)) - (1 / (2 * $e) * log((1 - $e) / (1 + $e)))); |
||
| 659 | $Rq = $a * sqrt($qP / 2); |
||
| 660 | |||
| 661 | $theta = $northing / $Rq; |
||
| 662 | do { |
||
| 663 | $thetaN = $theta; |
||
| 664 | $correctionFactor = ($theta * (1.340264 - 0.081106 * $theta ** 2 + $theta ** 6 * (0.000893 + 0.003796 * $theta ** 2)) - $northing / $Rq) / (1.340264 - 0.243318 * $theta ** 2 + $theta ** 6 * (0.006251 + 0.034164 * $theta ** 2)); |
||
| 665 | $theta -= $correctionFactor; |
||
| 666 | } while (abs($theta - $thetaN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||
| 667 | |||
| 668 | $beta = self::asin(2 * sin($theta) / sqrt(3)); |
||
| 669 | |||
| 670 | $latitude = $beta + (($e2 / 3 + 31 * $e4 / 180 + 517 * $e6 / 5040) * sin(2 * $beta)) + ((23 * $e4 / 360 + 251 * $e6 / 3780) * sin(4 * $beta)) + ((761 * $e6 / 45360) * sin(6 * $beta)); |
||
| 671 | $longitude = $longitudeOrigin + sqrt(3) * $easting * (1.340264 - 0.243318 * $theta ** 2 + $theta ** 6 * (0.006251 + 0.034164 * $theta ** 2)) / (2 * $Rq * cos($theta)); |
||
| 672 | |||
| 673 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
| 674 | } |
||
| 675 | |||
| 676 | /** |
||
| 677 | * Equidistant Cylindrical |
||
| 678 | * See method code 1029 for spherical development. See also Pseudo Plate Carree, method code 9825. |
||
| 679 | */ |
||
| 680 | public function equidistantCylindrical( |
||
| 681 | Geographic2D|Geographic3D $to, |
||
| 682 | Angle $latitudeOf1stStandardParallel, |
||
| 683 | Angle $longitudeOfNaturalOrigin, |
||
| 684 | Length $falseEasting, |
||
| 685 | Length $falseNorthing |
||
| 686 | ): GeographicPoint { |
||
| 687 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 688 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
| 689 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
| 690 | $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
||
| 691 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 692 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 693 | $e = $ellipsoid->getEccentricity(); |
||
| 694 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 695 | $e4 = $e ** 4; |
||
| 696 | $e6 = $e ** 6; |
||
| 697 | $e8 = $e ** 8; |
||
| 698 | $e10 = $e ** 10; |
||
| 699 | $e12 = $e ** 12; |
||
| 700 | $e14 = $e ** 14; |
||
| 701 | |||
| 702 | $n = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2)); |
||
| 703 | $n2 = $n ** 2; |
||
| 704 | $n3 = $n ** 3; |
||
| 705 | $n4 = $n ** 4; |
||
| 706 | $n5 = $n ** 5; |
||
| 707 | $n6 = $n ** 6; |
||
| 708 | $n7 = $n ** 7; |
||
| 709 | $mu = $northing / ($a * (1 - 1 / 4 * $e2 - 3 / 64 * $e4 - 5 / 256 * $e6 - 175 / 16384 * $e8 - 441 / 65536 * $e10 - 4851 / 1048576 * $e12 - 14157 / 4194304 * $e14)); |
||
| 710 | |||
| 711 | $latitude = $mu + (3 / 2 * $n - 27 / 32 * $n3 + 269 / 512 * $n5 - 6607 / 24576 * $n7) * sin(2 * $mu) |
||
| 712 | + (21 / 16 * $n2 - 55 / 32 * $n4 + 6759 / 4096 * $n6) * sin(4 * $mu) |
||
| 713 | + (151 / 96 * $n3 - 417 / 128 * $n5 + 87963 / 20480 * $n7) * sin(6 * $mu) |
||
| 714 | + (1097 / 512 * $n4 - 15543 / 2560 * $n6) * sin(8 * $mu) |
||
| 715 | + (8011 / 2560 * $n5 - 69119 / 6144 * $n7) * sin(10 * $mu) |
||
| 716 | + (293393 / 61440 * $n6) * sin(12 * $mu) |
||
| 717 | + (6845701 / 860160 * $n7) * sin(14 * $mu); |
||
| 718 | |||
| 719 | $longitude = $longitudeOrigin + $easting * sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2) / ($a * cos($latitudeFirstParallel)); |
||
| 720 | |||
| 721 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
| 722 | } |
||
| 723 | |||
| 724 | /** |
||
| 725 | * Guam Projection |
||
| 726 | * Simplified form of Oblique Azimuthal Equidistant projection method. |
||
| 727 | */ |
||
| 728 | public function guamProjection( |
||
| 729 | Geographic2D|Geographic3D $to, |
||
| 730 | Angle $latitudeOfNaturalOrigin, |
||
| 731 | Angle $longitudeOfNaturalOrigin, |
||
| 732 | Length $falseEasting, |
||
| 733 | Length $falseNorthing |
||
| 734 | ): GeographicPoint { |
||
| 735 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 736 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
| 737 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
| 738 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 739 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 740 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 741 | $e = $ellipsoid->getEccentricity(); |
||
| 742 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 743 | $e4 = $e ** 4; |
||
| 744 | $e6 = $e ** 6; |
||
| 745 | |||
| 746 | $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
||
| 747 | $e1 = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2)); |
||
| 748 | $i = (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256); |
||
| 749 | |||
| 750 | $latitude = $latitudeOrigin; |
||
| 751 | do { |
||
| 752 | $latitudeN = $latitude; |
||
| 753 | $M = $MO + $northing - ($easting ** 2 * tan($latitude) * sqrt(1 - $e2 * sin($latitude) ** 2) / (2 * $a)); |
||
| 754 | $mu = $M / ($a * $i); |
||
| 755 | $latitude = $mu + (3 * $e1 / 2 - 27 * $e1 ** 3 / 32) * sin(2 * $mu) + (21 * $e1 ** 2 / 16 - 55 * $e1 ** 4 / 32) * sin(4 * $mu) + (151 * $e1 ** 3 / 96) * sin(6 * $mu) + (1097 * $e1 ** 4 / 512) * sin(8 * $mu); |
||
| 756 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||
| 757 | |||
| 758 | $longitude = $longitudeOrigin + $easting * sqrt(1 - $e2 * sin($latitude) ** 2) / ($a * cos($latitude)); |
||
| 759 | |||
| 760 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
| 761 | } |
||
| 762 | |||
| 763 | /** |
||
| 764 | * Krovak. |
||
| 765 | */ |
||
| 766 | public function krovak( |
||
| 767 | Geographic2D|Geographic3D $to, |
||
| 768 | Angle $latitudeOfProjectionCentre, |
||
| 769 | Angle $longitudeOfOrigin, |
||
| 770 | Angle $coLatitudeOfConeAxis, |
||
| 771 | Angle $latitudeOfPseudoStandardParallel, |
||
| 772 | Scale $scaleFactorOnPseudoStandardParallel, |
||
| 773 | Length $falseEasting, |
||
| 774 | Length $falseNorthing |
||
| 775 | ): GeographicPoint { |
||
| 776 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 777 | $longitudeOffset = $this->crs->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue() - $to->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue(); |
||
| 778 | $westing = $this->westing->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
| 779 | $southing = $this->southing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
| 780 | $latitudeC = $latitudeOfProjectionCentre->asRadians()->getValue(); |
||
| 781 | $longitudeO = $longitudeOfOrigin->asRadians()->getValue(); |
||
| 782 | $alphaC = $coLatitudeOfConeAxis->asRadians()->getValue(); |
||
| 783 | $latitudeP = $latitudeOfPseudoStandardParallel->asRadians()->getValue(); |
||
| 784 | $kP = $scaleFactorOnPseudoStandardParallel->asUnity()->getValue(); |
||
| 785 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 786 | $e = $ellipsoid->getEccentricity(); |
||
| 787 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 788 | |||
| 789 | $A = $a * sqrt(1 - $e2) / (1 - $e2 * sin($latitudeC) ** 2); |
||
| 790 | $B = sqrt(1 + $e2 * cos($latitudeC) ** 4 / (1 - $e2)); |
||
| 791 | $upsilonO = self::asin(sin($latitudeC) / $B); |
||
| 792 | $tO = tan(M_PI / 4 + $upsilonO / 2) * ((1 + $e * sin($latitudeC)) / (1 - $e * sin($latitudeC))) ** ($e * $B / 2) / (tan(M_PI / 4 + $latitudeC / 2) ** $B); |
||
| 793 | $n = sin($latitudeP); |
||
| 794 | $rO = $kP * $A / tan($latitudeP); |
||
| 795 | |||
| 796 | $r = hypot($southing, $westing) ?: 1; |
||
| 797 | $theta = atan2($westing, $southing); |
||
| 798 | $D = $theta / sin($latitudeP); |
||
| 799 | $T = 2 * (atan(($rO / $r) ** (1 / $n) * tan(M_PI / 4 + $latitudeP / 2)) - M_PI / 4); |
||
| 800 | $U = self::asin(cos($alphaC) * sin($T) - sin($alphaC) * cos($T) * cos($D)); |
||
| 801 | $V = self::asin(cos($T) * sin($D) / cos($U)); |
||
| 802 | |||
| 803 | $latitude = $U; |
||
| 804 | do { |
||
| 805 | $latitudeN = $latitude; |
||
| 806 | $latitude = 2 * (atan($tO ** (-1 / $B) * tan($U / 2 + M_PI / 4) ** (1 / $B) * ((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2)) - M_PI / 4); |
||
| 807 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||
| 808 | |||
| 809 | $longitude = $longitudeO + $longitudeOffset - $V / $B; |
||
| 810 | |||
| 811 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
| 812 | } |
||
| 813 | |||
| 814 | /** |
||
| 815 | * Krovak Modified |
||
| 816 | * Incorporates a polynomial transformation which is defined to be exact and for practical purposes is considered |
||
| 817 | * to be a map projection. |
||
| 818 | */ |
||
| 819 | public function krovakModified( |
||
| 820 | Geographic2D|Geographic3D $to, |
||
| 821 | Angle $latitudeOfProjectionCentre, |
||
| 822 | Angle $longitudeOfOrigin, |
||
| 823 | Angle $coLatitudeOfConeAxis, |
||
| 824 | Angle $latitudeOfPseudoStandardParallel, |
||
| 825 | Scale $scaleFactorOnPseudoStandardParallel, |
||
| 826 | Length $falseEasting, |
||
| 827 | Length $falseNorthing, |
||
| 828 | Length $ordinate1OfEvaluationPoint, |
||
| 829 | Length $ordinate2OfEvaluationPoint, |
||
| 830 | Coefficient $C1, |
||
| 831 | Coefficient $C2, |
||
| 832 | Coefficient $C3, |
||
| 833 | Coefficient $C4, |
||
| 834 | Coefficient $C5, |
||
| 835 | Coefficient $C6, |
||
| 836 | Coefficient $C7, |
||
| 837 | Coefficient $C8, |
||
| 838 | Coefficient $C9, |
||
| 839 | Coefficient $C10 |
||
| 840 | ): GeographicPoint { |
||
| 841 | $Xr = $this->getSouthing()->asMetres()->getValue() - $falseNorthing->asMetres()->getValue() - $ordinate1OfEvaluationPoint->asMetres()->getValue(); |
||
| 842 | $Yr = $this->getWesting()->asMetres()->getValue() - $falseEasting->asMetres()->getValue() - $ordinate2OfEvaluationPoint->asMetres()->getValue(); |
||
| 843 | $c1 = $C1->asUnity()->getValue(); |
||
| 844 | $c2 = $C2->asUnity()->getValue(); |
||
| 845 | $c3 = $C3->asUnity()->getValue(); |
||
| 846 | $c4 = $C4->asUnity()->getValue(); |
||
| 847 | $c5 = $C5->asUnity()->getValue(); |
||
| 848 | $c6 = $C6->asUnity()->getValue(); |
||
| 849 | $c7 = $C7->asUnity()->getValue(); |
||
| 850 | $c8 = $C8->asUnity()->getValue(); |
||
| 851 | $c9 = $C9->asUnity()->getValue(); |
||
| 852 | $c10 = $C10->asUnity()->getValue(); |
||
| 853 | |||
| 854 | $dX = $c1 + $c3 * $Xr - $c4 * $Yr - 2 * $c6 * $Xr * $Yr + $c5 * ($Xr ** 2 - $Yr ** 2) + $c7 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) - $c8 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) + 4 * $c9 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c10 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2); |
||
| 855 | $dY = $c2 + $c3 * $Yr + $c4 * $Xr + 2 * $c5 * $Xr * $Yr + $c6 * ($Xr ** 2 - $Yr ** 2) + $c8 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) + $c7 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) - 4 * $c10 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c9 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2); |
||
| 856 | |||
| 857 | $Xp = $this->getSouthing()->asMetres()->getValue() - $falseNorthing->asMetres()->getValue() + $dX; |
||
| 858 | $Yp = $this->getWesting()->asMetres()->getValue() - $falseEasting->asMetres()->getValue() + $dY; |
||
| 859 | |||
| 860 | $asKrovak = self::create($this->crs, new Metre(-$Yp), new Metre(-$Xp), new Metre($Yp), new Metre($Xp), $this->epoch); |
||
| 861 | |||
| 862 | return $asKrovak->krovak($to, $latitudeOfProjectionCentre, $longitudeOfOrigin, $coLatitudeOfConeAxis, $latitudeOfPseudoStandardParallel, $scaleFactorOnPseudoStandardParallel, new Metre(0), new Metre(0)); |
||
| 863 | } |
||
| 864 | |||
| 865 | /** |
||
| 866 | * Lambert Azimuthal Equal Area |
||
| 867 | * This is the ellipsoidal form of the projection. |
||
| 868 | */ |
||
| 869 | public function lambertAzimuthalEqualArea( |
||
| 870 | Geographic2D|Geographic3D $to, |
||
| 871 | Angle $latitudeOfNaturalOrigin, |
||
| 872 | Angle $longitudeOfNaturalOrigin, |
||
| 873 | Length $falseEasting, |
||
| 874 | Length $falseNorthing |
||
| 875 | ): GeographicPoint { |
||
| 876 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 877 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
| 878 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
| 879 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 880 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 881 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 882 | $e = $ellipsoid->getEccentricity(); |
||
| 883 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 884 | $e4 = $e ** 4; |
||
| 885 | $e6 = $e ** 6; |
||
| 886 | |||
| 887 | $qO = (1 - $e2) * ((sin($latitudeOrigin) / (1 - $e2 * sin($latitudeOrigin) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))))); |
||
| 888 | $qP = (1 - $e2) * ((1 / (1 - $e2)) - ((1 / (2 * $e)) * log((1 - $e) / (1 + $e)))); |
||
| 889 | $betaO = self::asin($qO / $qP); |
||
| 890 | $Rq = $a * sqrt($qP / 2); |
||
| 891 | $D = $a * (cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2)) / ($Rq * cos($betaO)); |
||
| 892 | $rho = hypot($easting / $D, $D * $northing) ?: 1; |
||
| 893 | $C = 2 * self::asin($rho / (2 * $Rq)); |
||
| 894 | $beta = self::asin(cos($C) * sin($betaO) + ($D * $northing * sin($C) * cos($betaO)) / $rho); |
||
| 895 | |||
| 896 | $latitude = $beta + (($e2 / 3 + 31 * $e4 / 180 + 517 * $e6 / 5040) * sin(2 * $beta)) + ((23 * $e4 / 360 + 251 * $e6 / 3780) * sin(4 * $beta)) + ((761 * $e6 / 45360) * sin(6 * $beta)); |
||
| 897 | $longitude = $longitudeOrigin + atan2($easting * sin($C), $D * $rho * cos($betaO) * cos($C) - $D ** 2 * $northing * sin($betaO) * sin($C)); |
||
| 898 | |||
| 899 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
| 900 | } |
||
| 901 | |||
| 902 | /** |
||
| 903 | * Lambert Azimuthal Equal Area (Spherical) |
||
| 904 | * This is the spherical form of the projection. See coordinate operation method Lambert Azimuthal Equal Area |
||
| 905 | * (code 9820) for ellipsoidal form. Differences of several tens of metres result from comparison of the two |
||
| 906 | * methods. |
||
| 907 | */ |
||
| 908 | public function lambertAzimuthalEqualAreaSpherical( |
||
| 909 | Geographic2D|Geographic3D $to, |
||
| 910 | Angle $latitudeOfNaturalOrigin, |
||
| 911 | Angle $longitudeOfNaturalOrigin, |
||
| 912 | Length $falseEasting, |
||
| 913 | Length $falseNorthing |
||
| 914 | ): GeographicPoint { |
||
| 915 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 916 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
| 917 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
| 918 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 919 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 920 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 921 | |||
| 922 | $rho = hypot($easting, $northing) ?: 1; |
||
| 923 | $c = 2 * self::asin($rho / (2 * $a)); |
||
| 924 | |||
| 925 | $latitude = self::asin(cos($c) * sin($latitudeOrigin) + ($northing * sin($c) * cos($latitudeOrigin) / $rho)); |
||
| 926 | |||
| 927 | if ($latitudeOrigin === 90.0) { |
||
| 928 | $longitude = $longitudeOrigin + atan($easting / -$northing); |
||
| 929 | } elseif ($latitudeOrigin === -90.0) { |
||
| 930 | $longitude = $longitudeOrigin + atan($easting / $northing); |
||
| 931 | } else { |
||
| 932 | $longitudeDenominator = ($rho * cos($latitudeOrigin) * cos($c) - $northing * sin($latitudeOrigin) * sin($c)); |
||
| 933 | $longitude = $longitudeOrigin + atan($easting * sin($c) / $longitudeDenominator); |
||
| 934 | if ($longitudeDenominator < 0) { |
||
| 935 | $longitude += M_PI; |
||
| 936 | } |
||
| 937 | } |
||
| 938 | |||
| 939 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
| 940 | } |
||
| 941 | |||
| 942 | /** |
||
| 943 | * Lambert Conic Conformal (1SP). |
||
| 944 | */ |
||
| 945 | public function lambertConicConformal1SP( |
||
| 946 | Geographic2D|Geographic3D $to, |
||
| 947 | Angle $latitudeOfNaturalOrigin, |
||
| 948 | Angle $longitudeOfNaturalOrigin, |
||
| 949 | Scale $scaleFactorAtNaturalOrigin, |
||
| 950 | Length $falseEasting, |
||
| 951 | Length $falseNorthing |
||
| 952 | ): GeographicPoint { |
||
| 953 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 954 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
| 955 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
| 956 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 957 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 958 | $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
||
| 959 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 960 | $e = $ellipsoid->getEccentricity(); |
||
| 961 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 962 | |||
| 963 | $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2); |
||
| 964 | $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2); |
||
| 965 | $n = sin($latitudeOrigin); |
||
| 966 | $F = $mO / ($n * $tO ** $n); |
||
| 967 | $rO = $a * $F * $tO ** $n * $scaleFactorOrigin; |
||
| 968 | $r = hypot($easting, $rO - $northing); |
||
| 969 | if ($n >= 0) { |
||
| 970 | $theta = atan2($easting, $rO - $northing); |
||
| 971 | } else { |
||
| 972 | $r = -$r; |
||
| 973 | $theta = atan2(-$easting, -($rO - $northing)); |
||
| 974 | } |
||
| 975 | |||
| 976 | $t = ($r / ($a * $scaleFactorOrigin * $F)) ** (1 / $n); |
||
| 977 | |||
| 978 | $latitude = M_PI / (2 - 2 * atan($t)); |
||
| 979 | do { |
||
| 980 | $latitudeN = $latitude; |
||
| 981 | $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2)); |
||
| 982 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||
| 983 | |||
| 984 | $longitude = $theta / $n + $longitudeOrigin; |
||
| 985 | |||
| 986 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
| 987 | } |
||
| 988 | |||
| 989 | /** |
||
| 990 | * Lambert Conic Conformal (west orientated). |
||
| 991 | */ |
||
| 992 | public function lambertConicConformalWestOrientated( |
||
| 993 | Geographic2D|Geographic3D $to, |
||
| 994 | Angle $latitudeOfNaturalOrigin, |
||
| 995 | Angle $longitudeOfNaturalOrigin, |
||
| 996 | Scale $scaleFactorAtNaturalOrigin, |
||
| 997 | Length $falseEasting, |
||
| 998 | Length $falseNorthing |
||
| 999 | ): GeographicPoint { |
||
| 1000 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 1001 | $westing = $falseEasting->asMetres()->getValue() - $this->westing->asMetres()->getValue(); |
||
| 1002 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
| 1003 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 1004 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 1005 | $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
||
| 1006 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 1007 | $e = $ellipsoid->getEccentricity(); |
||
| 1008 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 1009 | |||
| 1010 | $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2); |
||
| 1011 | $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2); |
||
| 1012 | $n = sin($latitudeOrigin); |
||
| 1013 | $F = $mO / ($n * $tO ** $n); |
||
| 1014 | $rO = $a * $F * $tO ** $n ** $scaleFactorOrigin; |
||
| 1015 | $r = hypot($westing, $rO - $northing); |
||
| 1016 | if ($n >= 0) { |
||
| 1017 | $theta = atan2($westing, $rO - $northing); |
||
| 1018 | } else { |
||
| 1019 | $r = -$r; |
||
| 1020 | $theta = atan2(-$westing, -($rO - $northing)); |
||
| 1021 | } |
||
| 1022 | |||
| 1023 | $t = ($r / ($a * $scaleFactorOrigin * $F)) ** (1 / $n); |
||
| 1024 | |||
| 1025 | $latitude = M_PI / (2 - 2 * atan($t)); |
||
| 1026 | do { |
||
| 1027 | $latitudeN = $latitude; |
||
| 1028 | $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2)); |
||
| 1029 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||
| 1030 | |||
| 1031 | $longitude = $theta / $n + $longitudeOrigin; |
||
| 1032 | |||
| 1033 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
| 1034 | } |
||
| 1035 | |||
| 1036 | /** |
||
| 1037 | * Lambert Conic Conformal (1SP) Variant B. |
||
| 1038 | */ |
||
| 1039 | public function lambertConicConformal1SPVariantB( |
||
| 1040 | Geographic2D|Geographic3D $to, |
||
| 1041 | Angle $latitudeOfNaturalOrigin, |
||
| 1042 | Scale $scaleFactorAtNaturalOrigin, |
||
| 1043 | Angle $latitudeOfFalseOrigin, |
||
| 1044 | Angle $longitudeOfFalseOrigin, |
||
| 1045 | Length $eastingAtFalseOrigin, |
||
| 1046 | Length $northingAtFalseOrigin |
||
| 1047 | ): GeographicPoint { |
||
| 1048 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 1049 | $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue(); |
||
| 1050 | $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue(); |
||
| 1051 | $latitudeNaturalOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 1052 | $latitudeFalseOrigin = $latitudeOfFalseOrigin->asRadians()->getValue(); |
||
| 1053 | $longitudeFalseOrigin = $longitudeOfFalseOrigin->asRadians()->getValue(); |
||
| 1054 | $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
||
| 1055 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 1056 | $e = $ellipsoid->getEccentricity(); |
||
| 1057 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 1058 | |||
| 1059 | $mO = cos($latitudeNaturalOrigin) / sqrt(1 - $e2 * sin($latitudeNaturalOrigin) ** 2); |
||
| 1060 | $tO = tan(M_PI / 4 - $latitudeNaturalOrigin / 2) / ((1 - $e * sin($latitudeNaturalOrigin)) / (1 + $e * sin($latitudeNaturalOrigin))) ** ($e / 2); |
||
| 1061 | $tF = tan(M_PI / 4 - $latitudeFalseOrigin / 2) / ((1 - $e * sin($latitudeFalseOrigin)) / (1 + $e * sin($latitudeFalseOrigin))) ** ($e / 2); |
||
| 1062 | $n = sin($latitudeNaturalOrigin); |
||
| 1063 | $F = $mO / ($n * $tO ** $n); |
||
| 1064 | $rF = $a * $F * $tF ** $n * $scaleFactorOrigin; |
||
| 1065 | $r = hypot($easting, $rF - $northing); |
||
| 1066 | if ($n >= 0) { |
||
| 1067 | $theta = atan2($easting, $rF - $northing); |
||
| 1068 | } else { |
||
| 1069 | $r = -$r; |
||
| 1070 | $theta = atan2(-$easting, -($rF - $northing)); |
||
| 1071 | } |
||
| 1072 | |||
| 1073 | $t = ($r / ($a * $scaleFactorOrigin * $F)) ** (1 / $n); |
||
| 1074 | |||
| 1075 | $latitude = M_PI / (2 - 2 * atan($t)); |
||
| 1076 | do { |
||
| 1077 | $latitudeN = $latitude; |
||
| 1078 | $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2)); |
||
| 1079 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||
| 1080 | |||
| 1081 | $longitude = $theta / $n + $longitudeFalseOrigin; |
||
| 1082 | |||
| 1083 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
| 1084 | } |
||
| 1085 | |||
| 1086 | /** |
||
| 1087 | * Lambert Conic Conformal (2SP). |
||
| 1088 | */ |
||
| 1089 | public function lambertConicConformal2SP( |
||
| 1090 | Geographic2D|Geographic3D $to, |
||
| 1091 | Angle $latitudeOfFalseOrigin, |
||
| 1092 | Angle $longitudeOfFalseOrigin, |
||
| 1093 | Angle $latitudeOf1stStandardParallel, |
||
| 1094 | Angle $latitudeOf2ndStandardParallel, |
||
| 1095 | Length $eastingAtFalseOrigin, |
||
| 1096 | Length $northingAtFalseOrigin |
||
| 1097 | ): GeographicPoint { |
||
| 1098 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 1099 | $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue(); |
||
| 1100 | $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue(); |
||
| 1101 | $lambdaOrigin = $longitudeOfFalseOrigin->asRadians()->getValue(); |
||
| 1102 | $phiF = $latitudeOfFalseOrigin->asRadians()->getValue(); |
||
| 1103 | $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
||
| 1104 | $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue(); |
||
| 1105 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 1106 | $e = $ellipsoid->getEccentricity(); |
||
| 1107 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 1108 | |||
| 1109 | $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2); |
||
| 1110 | $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2); |
||
| 1111 | $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2); |
||
| 1112 | $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2); |
||
| 1113 | $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2); |
||
| 1114 | $n = (log($m1) - log($m2)) / (log($t1) - log($t2)); |
||
| 1115 | $F = $m1 / ($n * $t1 ** $n); |
||
| 1116 | $rF = $a * $F * $tF ** $n; |
||
| 1117 | $r = hypot($easting, $rF - $northing) * static::sign($n); |
||
| 1118 | $t = ($r / ($a * $F)) ** (1 / $n); |
||
| 1119 | if ($n >= 0) { |
||
| 1120 | $theta = atan2($easting, $rF - $northing); |
||
| 1121 | } else { |
||
| 1122 | $theta = atan2(-$easting, -($rF - $northing)); |
||
| 1123 | } |
||
| 1124 | |||
| 1125 | $latitude = M_PI / 2 - 2 * atan($t); |
||
| 1126 | do { |
||
| 1127 | $latitudeN = $latitude; |
||
| 1128 | $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2)); |
||
| 1129 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||
| 1130 | |||
| 1131 | $longitude = $theta / $n + $lambdaOrigin; |
||
| 1132 | |||
| 1133 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
| 1134 | } |
||
| 1135 | |||
| 1136 | /** |
||
| 1137 | * Lambert Conic Conformal (2SP Michigan). |
||
| 1138 | */ |
||
| 1139 | public function lambertConicConformal2SPMichigan( |
||
| 1140 | Geographic2D|Geographic3D $to, |
||
| 1141 | Angle $latitudeOfFalseOrigin, |
||
| 1142 | Angle $longitudeOfFalseOrigin, |
||
| 1143 | Angle $latitudeOf1stStandardParallel, |
||
| 1144 | Angle $latitudeOf2ndStandardParallel, |
||
| 1145 | Length $eastingAtFalseOrigin, |
||
| 1146 | Length $northingAtFalseOrigin, |
||
| 1147 | Scale $ellipsoidScalingFactor |
||
| 1148 | ): GeographicPoint { |
||
| 1149 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 1150 | $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue(); |
||
| 1151 | $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue(); |
||
| 1152 | $lambdaOrigin = $longitudeOfFalseOrigin->asRadians()->getValue(); |
||
| 1153 | $phiF = $latitudeOfFalseOrigin->asRadians()->getValue(); |
||
| 1154 | $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
||
| 1155 | $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue(); |
||
| 1156 | $K = $ellipsoidScalingFactor->asUnity()->getValue(); |
||
| 1157 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 1158 | $e = $ellipsoid->getEccentricity(); |
||
| 1159 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 1160 | |||
| 1161 | $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2); |
||
| 1162 | $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2); |
||
| 1163 | $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2); |
||
| 1164 | $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2); |
||
| 1165 | $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2); |
||
| 1166 | $n = (log($m1) - log($m2)) / (log($t1) - log($t2)); |
||
| 1167 | $F = $m1 / ($n * $t1 ** $n); |
||
| 1168 | $rF = $a * $K * $F * $tF ** $n; |
||
| 1169 | $r = sqrt($easting ** 2 + ($rF - $northing) ** 2) * static::sign($n); |
||
| 1170 | $t = ($r / ($a * $K * $F)) ** (1 / $n); |
||
| 1171 | if ($n >= 0) { |
||
| 1172 | $theta = atan2($easting, $rF - $northing); |
||
| 1173 | } else { |
||
| 1174 | $theta = atan2(-$easting, -($rF - $northing)); |
||
| 1175 | } |
||
| 1176 | |||
| 1177 | $latitude = M_PI / 2 - 2 * atan($t); |
||
| 1178 | do { |
||
| 1179 | $latitudeN = $latitude; |
||
| 1180 | $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2)); |
||
| 1181 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||
| 1182 | |||
| 1183 | $longitude = $theta / $n + $lambdaOrigin; |
||
| 1184 | |||
| 1185 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
| 1186 | } |
||
| 1187 | |||
| 1188 | /** |
||
| 1189 | * Lambert Conic Conformal (2SP Belgium) |
||
| 1190 | * In 2000 this modification was replaced through use of the regular Lambert Conic Conformal (2SP) method [9802] |
||
| 1191 | * with appropriately modified parameter values. |
||
| 1192 | */ |
||
| 1193 | public function lambertConicConformal2SPBelgium( |
||
| 1194 | Geographic2D|Geographic3D $to, |
||
| 1195 | Angle $latitudeOfFalseOrigin, |
||
| 1196 | Angle $longitudeOfFalseOrigin, |
||
| 1197 | Angle $latitudeOf1stStandardParallel, |
||
| 1198 | Angle $latitudeOf2ndStandardParallel, |
||
| 1199 | Length $eastingAtFalseOrigin, |
||
| 1200 | Length $northingAtFalseOrigin |
||
| 1201 | ): GeographicPoint { |
||
| 1202 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 1203 | $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue(); |
||
| 1204 | $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue(); |
||
| 1205 | $lambdaOrigin = $longitudeOfFalseOrigin->asRadians()->getValue(); |
||
| 1206 | $phiF = $latitudeOfFalseOrigin->asRadians()->getValue(); |
||
| 1207 | $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
||
| 1208 | $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue(); |
||
| 1209 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 1210 | $e = $ellipsoid->getEccentricity(); |
||
| 1211 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 1212 | |||
| 1213 | $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2); |
||
| 1214 | $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2); |
||
| 1215 | $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2); |
||
| 1216 | $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2); |
||
| 1217 | $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2); |
||
| 1218 | $n = (log($m1) - log($m2)) / (log($t1) - log($t2)); |
||
| 1219 | $F = $m1 / ($n * $t1 ** $n); |
||
| 1220 | $rF = $a * $F * $tF ** $n; |
||
| 1221 | if (is_nan($rF)) { |
||
| 1222 | $rF = 0; |
||
| 1223 | } |
||
| 1224 | $r = hypot($easting, $rF - $northing) * static::sign($n); |
||
| 1225 | $t = ($r / ($a * $F)) ** (1 / $n); |
||
| 1226 | if ($n >= 0) { |
||
| 1227 | $theta = atan2($easting, $rF - $northing); |
||
| 1228 | } else { |
||
| 1229 | $theta = atan2(-$easting, -($rF - $northing)); |
||
| 1230 | } |
||
| 1231 | |||
| 1232 | $latitude = M_PI / 2 - 2 * atan($t); |
||
| 1233 | do { |
||
| 1234 | $latitudeN = $latitude; |
||
| 1235 | $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2)); |
||
| 1236 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||
| 1237 | |||
| 1238 | $longitude = ($theta + (new ArcSecond(29.2985))->asRadians()->getValue()) / $n + $lambdaOrigin; |
||
| 1239 | |||
| 1240 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
| 1241 | } |
||
| 1242 | |||
| 1243 | /** |
||
| 1244 | * Lambert Conic Near-Conformal |
||
| 1245 | * The Lambert Near-Conformal projection is derived from the Lambert Conformal Conic projection by truncating the |
||
| 1246 | * series expansion of the projection formulae. |
||
| 1247 | */ |
||
| 1248 | public function lambertConicNearConformal( |
||
| 1249 | Geographic2D|Geographic3D $to, |
||
| 1250 | Angle $latitudeOfNaturalOrigin, |
||
| 1251 | Angle $longitudeOfNaturalOrigin, |
||
| 1252 | Scale $scaleFactorAtNaturalOrigin, |
||
| 1253 | Length $falseEasting, |
||
| 1254 | Length $falseNorthing |
||
| 1255 | ): GeographicPoint { |
||
| 1256 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 1257 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
| 1258 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
| 1259 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 1260 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 1261 | $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
||
| 1262 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 1263 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 1264 | $f = $ellipsoid->getFlattening(); |
||
| 1265 | |||
| 1266 | $n = $f / (2 - $f); |
||
| 1267 | $rhoO = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2); |
||
| 1268 | $nuO = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2)); |
||
| 1269 | $A = 1 / (6 * $rhoO * $nuO); |
||
| 1270 | $APrime = $a * (1 - $n + 5 * ($n ** 2 - $n ** 3) / 4 + 81 * ($n ** 4 - $n ** 5) / 64); |
||
| 1271 | $BPrime = 3 * $a * ($n - $n ** 2 + 7 * ($n ** 3 - $n ** 4) / 8 + 55 * $n ** 5 / 64) / 2; |
||
| 1272 | $CPrime = 15 * $a * ($n ** 2 - $n ** 3 + 3 * ($n ** 4 - $n ** 5) / 4) / 16; |
||
| 1273 | $DPrime = 35 * $a * ($n ** 3 - $n ** 4 + 11 * $n ** 5 / 16) / 48; |
||
| 1274 | $EPrime = 315 * $a * ($n ** 4 - $n ** 5) / 512; |
||
| 1275 | $rO = $scaleFactorOrigin * $nuO / tan($latitudeOrigin); |
||
| 1276 | $sO = $APrime * $latitudeOrigin - $BPrime * sin(2 * $latitudeOrigin) + $CPrime * sin(4 * $latitudeOrigin) - $DPrime * sin(6 * $latitudeOrigin) + $EPrime * sin(8 * $latitudeOrigin); |
||
| 1277 | |||
| 1278 | $theta = atan2($easting, $rO - $northing); |
||
| 1279 | $r = hypot($easting, $rO - $northing) * static::sign($latitudeOrigin); |
||
| 1280 | $M = $rO - $r; |
||
| 1281 | |||
| 1282 | $m = $M; |
||
| 1283 | do { |
||
| 1284 | $mN = $m; |
||
| 1285 | $m = $m - ($M - $scaleFactorOrigin * $m - $scaleFactorOrigin * $A * $m ** 3) / (-$scaleFactorOrigin - 3 * $scaleFactorOrigin * $A * $m ** 2); |
||
| 1286 | } while (abs($m - $mN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||
| 1287 | |||
| 1288 | $latitude = $latitudeOrigin + $m / $A; |
||
| 1289 | do { |
||
| 1290 | $latitudeN = $latitude; |
||
| 1291 | $latitude = $latitude + ($m + $sO - ($APrime * $latitude - $BPrime * sin(2 * $latitude) + $CPrime * sin(4 * $latitude) - $DPrime * sin(6 * $latitude) + $EPrime * sin(8 * $latitude))) / $APrime; |
||
| 1292 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||
| 1293 | |||
| 1294 | $longitude = $longitudeOrigin + $theta / sin($latitudeOrigin); |
||
| 1295 | |||
| 1296 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
| 1297 | } |
||
| 1298 | |||
| 1299 | /** |
||
| 1300 | * Lambert Cylindrical Equal Area |
||
| 1301 | * This is the ellipsoidal form of the projection. |
||
| 1302 | */ |
||
| 1303 | public function lambertCylindricalEqualArea( |
||
| 1304 | Geographic2D|Geographic3D $to, |
||
| 1305 | Angle $latitudeOf1stStandardParallel, |
||
| 1306 | Angle $longitudeOfNaturalOrigin, |
||
| 1307 | Length $falseEasting, |
||
| 1308 | Length $falseNorthing |
||
| 1309 | ): GeographicPoint { |
||
| 1310 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 1311 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
| 1312 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
| 1313 | $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
||
| 1314 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 1315 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 1316 | $e = $ellipsoid->getEccentricity(); |
||
| 1317 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 1318 | $e4 = $e ** 4; |
||
| 1319 | $e6 = $e ** 6; |
||
| 1320 | |||
| 1321 | $k = cos($latitudeFirstParallel) / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2); |
||
| 1322 | $qP = (1 - $e2) * ((sin(M_PI_2) / (1 - $e2 * sin(M_PI_2) ** 2)) - (1 / (2 * $e)) * log((1 - $e * sin(M_PI_2)) / (1 + $e * sin(M_PI_2)))); |
||
| 1323 | $beta = self::asin(2 * $northing * $k / ($a * $qP)); |
||
| 1324 | |||
| 1325 | $latitude = $beta + (($e2 / 3 + 31 * $e4 / 180 + 517 * $e6 / 5040) * sin(2 * $beta)) + ((23 * $e4 / 360 + 251 * $e6 / 3780) * sin(4 * $beta)) + ((761 * $e6 / 45360) * sin(6 * $beta)); |
||
| 1326 | $longitude = $longitudeOrigin + $easting / ($a * $k); |
||
| 1327 | |||
| 1328 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
| 1329 | } |
||
| 1330 | |||
| 1331 | /** |
||
| 1332 | * Lambert Cylindrical Equal Area |
||
| 1333 | * This is the spherical form of the projection. |
||
| 1334 | */ |
||
| 1335 | public function lambertCylindricalEqualAreaSpherical( |
||
| 1336 | Geographic2D|Geographic3D $to, |
||
| 1337 | Angle $latitudeOf1stStandardParallel, |
||
| 1338 | Angle $longitudeOfNaturalOrigin, |
||
| 1339 | Length $falseEasting, |
||
| 1340 | Length $falseNorthing |
||
| 1341 | ): GeographicPoint { |
||
| 1342 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 1343 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
| 1344 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
| 1345 | $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
||
| 1346 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 1347 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 1348 | |||
| 1349 | $latitude = self::asin(($northing / $a) * cos($latitudeFirstParallel)); |
||
| 1350 | $longitude = $longitudeOrigin + $easting / ($a * cos($latitudeFirstParallel)); |
||
| 1351 | |||
| 1352 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
| 1353 | } |
||
| 1354 | |||
| 1355 | /** |
||
| 1356 | * Modified Azimuthal Equidistant |
||
| 1357 | * Modified form of Oblique Azimuthal Equidistant projection method developed for Polynesian islands. For the |
||
| 1358 | * distances over which these projections are used (under 800km) this modification introduces no significant error. |
||
| 1359 | */ |
||
| 1360 | public function modifiedAzimuthalEquidistant( |
||
| 1361 | Geographic2D|Geographic3D $to, |
||
| 1362 | Angle $latitudeOfNaturalOrigin, |
||
| 1363 | Angle $longitudeOfNaturalOrigin, |
||
| 1364 | Length $falseEasting, |
||
| 1365 | Length $falseNorthing |
||
| 1366 | ): GeographicPoint { |
||
| 1367 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 1368 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
| 1369 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
| 1370 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 1371 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 1372 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 1373 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 1374 | |||
| 1375 | $nuO = $a / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2); |
||
| 1376 | $c = hypot($easting, $northing); |
||
| 1377 | $alpha = atan2($easting, $northing); |
||
| 1378 | $A = -$e2 * cos($latitudeOrigin) ** 2 * cos($alpha) ** 2 / (1 - $e2); |
||
| 1379 | $B = 3 * $e2 * (1 - $A) * sin($latitudeOrigin) * cos($latitudeOrigin) * cos($alpha) / (1 - $e2); |
||
| 1380 | $D = $c / $nuO; |
||
| 1381 | $J = $D - ($A * (1 + $A) * $D ** 3 / 6) - ($B * (1 + 3 * $A) * $D ** 4 / 24); |
||
| 1382 | $K = 1 - ($A * $J ** 2 / 2) - ($B * $J ** 3 / 6); |
||
| 1383 | $psi = self::asin(sin($latitudeOrigin) * cos($J) + cos($latitudeOrigin) * sin($J) * cos($alpha)); |
||
| 1384 | |||
| 1385 | $latitude = atan((1 - $e2 * $K * sin($latitudeOrigin) / sin($psi)) * tan($psi) / (1 - $e2)); |
||
| 1386 | $longitude = $longitudeOrigin + self::asin(sin($alpha) * sin($J) / cos($psi)); |
||
| 1387 | |||
| 1388 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
| 1389 | } |
||
| 1390 | |||
| 1391 | /** |
||
| 1392 | * Oblique Stereographic |
||
| 1393 | * This is not the same as the projection method of the same name in USGS Professional Paper no. 1395, "Map |
||
| 1394 | * Projections - A Working Manual" by John P. Snyder. |
||
| 1395 | */ |
||
| 1396 | public function obliqueStereographic( |
||
| 1397 | Geographic2D|Geographic3D $to, |
||
| 1398 | Angle $latitudeOfNaturalOrigin, |
||
| 1399 | Angle $longitudeOfNaturalOrigin, |
||
| 1400 | Scale $scaleFactorAtNaturalOrigin, |
||
| 1401 | Length $falseEasting, |
||
| 1402 | Length $falseNorthing |
||
| 1403 | ): GeographicPoint { |
||
| 1404 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 1405 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
| 1406 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
| 1407 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 1408 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 1409 | $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
||
| 1410 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 1411 | $e = $ellipsoid->getEccentricity(); |
||
| 1412 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 1413 | |||
| 1414 | $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2); |
||
| 1415 | $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2)); |
||
| 1416 | $R = sqrt($rhoOrigin * $nuOrigin); |
||
| 1417 | |||
| 1418 | $n = sqrt(1 + ($e2 * cos($latitudeOrigin) ** 4 / (1 - $e2))); |
||
| 1419 | $S1 = (1 + sin($latitudeOrigin)) / (1 - sin($latitudeOrigin)); |
||
| 1420 | $S2 = (1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin)); |
||
| 1421 | $w1 = ($S1 * ($S2 ** $e)) ** $n; |
||
| 1422 | $c = (($n + sin($latitudeOrigin)) * (1 - ($w1 - 1) / ($w1 + 1))) / (($n - sin($latitudeOrigin)) * (1 + ($w1 - 1) / ($w1 + 1))); |
||
| 1423 | $w2 = $c * $w1; |
||
| 1424 | $chiOrigin = self::asin(($w2 - 1) / ($w2 + 1)); |
||
| 1425 | |||
| 1426 | $g = 2 * $R * $scaleFactorOrigin * tan(M_PI / 4 - $chiOrigin / 2); |
||
| 1427 | $h = 4 * $R * $scaleFactorOrigin * tan($chiOrigin) + $g; |
||
| 1428 | $i = atan2($easting, $h + $northing); |
||
| 1429 | $j = atan2($easting, $g - $northing) - $i; |
||
| 1430 | $chi = $chiOrigin + 2 * atan(($northing - $easting * tan($j / 2)) / (2 * $R * $scaleFactorOrigin)); |
||
| 1431 | $lambda = $j + 2 * $i + $longitudeOrigin; |
||
| 1432 | |||
| 1433 | $longitude = ($lambda - $longitudeOrigin) / $n + $longitudeOrigin; |
||
| 1434 | |||
| 1435 | $psi = 0.5 * log((1 + sin($chi)) / ($c * (1 - sin($chi)))) / $n; |
||
| 1436 | |||
| 1437 | $latitude = 2 * atan(M_E ** $psi) - M_PI / 2; |
||
| 1438 | do { |
||
| 1439 | $latitudeN = $latitude; |
||
| 1440 | $psiN = log(tan($latitudeN / 2 + M_PI / 4) * ((1 - $e * sin($latitudeN)) / (1 + $e * sin($latitudeN))) ** ($e / 2)); |
||
| 1441 | $latitude = $latitudeN - ($psiN - $psi) * cos($latitudeN) * (1 - $e2 * sin($latitudeN) ** 2) / (1 - $e2); |
||
| 1442 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||
| 1443 | |||
| 1444 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
| 1445 | } |
||
| 1446 | |||
| 1447 | /** |
||
| 1448 | * Polar Stereographic (variant A) |
||
| 1449 | * Latitude of natural origin must be either 90 degrees or -90 degrees (or equivalent in alternative angle unit). |
||
| 1450 | */ |
||
| 1451 | public function polarStereographicVariantA( |
||
| 1452 | Geographic2D|Geographic3D $to, |
||
| 1453 | Angle $latitudeOfNaturalOrigin, |
||
| 1454 | Angle $longitudeOfNaturalOrigin, |
||
| 1455 | Scale $scaleFactorAtNaturalOrigin, |
||
| 1456 | Length $falseEasting, |
||
| 1457 | Length $falseNorthing |
||
| 1458 | ): GeographicPoint { |
||
| 1459 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 1460 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
| 1461 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
| 1462 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 1463 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 1464 | $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
||
| 1465 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 1466 | $e = $ellipsoid->getEccentricity(); |
||
| 1467 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 1468 | $e4 = $e ** 4; |
||
| 1469 | $e6 = $e ** 6; |
||
| 1470 | $e8 = $e ** 8; |
||
| 1471 | |||
| 1472 | $rho = hypot($easting, $northing); |
||
| 1473 | $t = $rho * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $a * $scaleFactorOrigin); |
||
| 1474 | |||
| 1475 | if ($latitudeOrigin < 0) { |
||
| 1476 | $chi = 2 * atan($t) - M_PI / 2; |
||
| 1477 | } else { |
||
| 1478 | $chi = M_PI / 2 - 2 * atan($t); |
||
| 1479 | } |
||
| 1480 | |||
| 1481 | $latitude = $chi + ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) * sin(2 * $chi) + (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) * sin(4 * $chi) + (7 * $e6 / 120 + 81 * $e8 / 1120) * sin(6 * $chi) + (4279 * $e8 / 161280) * sin(8 * $chi); |
||
| 1482 | |||
| 1483 | if ($easting === 0.0) { |
||
| 1484 | $longitude = $longitudeOrigin; |
||
| 1485 | } elseif ($latitudeOrigin < 0) { |
||
| 1486 | $longitude = $longitudeOrigin + atan2($easting, $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue()); |
||
| 1487 | } else { |
||
| 1488 | $longitude = $longitudeOrigin + atan2($easting, $falseNorthing->asMetres()->getValue() - $this->northing->asMetres()->getValue()); |
||
| 1489 | } |
||
| 1490 | |||
| 1491 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
| 1492 | } |
||
| 1493 | |||
| 1494 | /** |
||
| 1495 | * Polar Stereographic (variant B). |
||
| 1496 | */ |
||
| 1497 | public function polarStereographicVariantB( |
||
| 1498 | Geographic2D|Geographic3D $to, |
||
| 1499 | Angle $latitudeOfStandardParallel, |
||
| 1500 | Angle $longitudeOfOrigin, |
||
| 1501 | Length $falseEasting, |
||
| 1502 | Length $falseNorthing |
||
| 1503 | ): GeographicPoint { |
||
| 1504 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 1505 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
| 1506 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
| 1507 | $standardParallel = $latitudeOfStandardParallel->asRadians()->getValue(); |
||
| 1508 | $longitudeOrigin = $longitudeOfOrigin->asRadians()->getValue(); |
||
| 1509 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 1510 | $e = $ellipsoid->getEccentricity(); |
||
| 1511 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 1512 | $e4 = $e ** 4; |
||
| 1513 | $e6 = $e ** 6; |
||
| 1514 | $e8 = $e ** 8; |
||
| 1515 | |||
| 1516 | $rho = hypot($easting, $northing); |
||
| 1517 | if ($standardParallel < 0) { |
||
| 1518 | $tF = tan(M_PI / 4 + $standardParallel / 2) / (((1 + $e * sin($standardParallel)) / (1 - $e * sin($standardParallel))) ** ($e / 2)); |
||
| 1519 | } else { |
||
| 1520 | $tF = tan(M_PI / 4 - $standardParallel / 2) * (((1 + $e * sin($standardParallel)) / (1 - $e * sin($standardParallel))) ** ($e / 2)); |
||
| 1521 | } |
||
| 1522 | $mF = cos($standardParallel) / sqrt(1 - $e2 * sin($standardParallel) ** 2); |
||
| 1523 | $kO = $mF * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $tF); |
||
| 1524 | $t = $rho * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $a * $kO); |
||
| 1525 | |||
| 1526 | if ($standardParallel < 0) { |
||
| 1527 | $chi = 2 * atan($t) - M_PI / 2; |
||
| 1528 | } else { |
||
| 1529 | $chi = M_PI / 2 - 2 * atan($t); |
||
| 1530 | } |
||
| 1531 | |||
| 1532 | $latitude = $chi + ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) * sin(2 * $chi) + (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) * sin(4 * $chi) + (7 * $e6 / 120 + 81 * $e8 / 1120) * sin(6 * $chi) + (4279 * $e8 / 161280) * sin(8 * $chi); |
||
| 1533 | |||
| 1534 | if ($easting === 0.0) { |
||
| 1535 | $longitude = $longitudeOrigin; |
||
| 1536 | } elseif ($standardParallel < 0) { |
||
| 1537 | $longitude = $longitudeOrigin + atan2($easting, $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue()); |
||
| 1538 | } else { |
||
| 1539 | $longitude = $longitudeOrigin + atan2($easting, $falseNorthing->asMetres()->getValue() - $this->northing->asMetres()->getValue()); |
||
| 1540 | } |
||
| 1541 | |||
| 1542 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
| 1543 | } |
||
| 1544 | |||
| 1545 | /** |
||
| 1546 | * Polar Stereographic (variant C). |
||
| 1547 | */ |
||
| 1548 | public function polarStereographicVariantC( |
||
| 1549 | Geographic2D|Geographic3D $to, |
||
| 1550 | Angle $latitudeOfStandardParallel, |
||
| 1551 | Angle $longitudeOfOrigin, |
||
| 1552 | Length $eastingAtFalseOrigin, |
||
| 1553 | Length $northingAtFalseOrigin |
||
| 1554 | ): GeographicPoint { |
||
| 1555 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 1556 | $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue(); |
||
| 1557 | $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue(); |
||
| 1558 | $standardParallel = $latitudeOfStandardParallel->asRadians()->getValue(); |
||
| 1559 | $longitudeOrigin = $longitudeOfOrigin->asRadians()->getValue(); |
||
| 1560 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 1561 | $e = $ellipsoid->getEccentricity(); |
||
| 1562 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 1563 | $e4 = $e ** 4; |
||
| 1564 | $e6 = $e ** 6; |
||
| 1565 | $e8 = $e ** 8; |
||
| 1566 | |||
| 1567 | if ($standardParallel < 0) { |
||
| 1568 | $tF = tan(M_PI / 4 + $standardParallel / 2) / (((1 + $e * sin($standardParallel)) / (1 - $e * sin($standardParallel))) ** ($e / 2)); |
||
| 1569 | } else { |
||
| 1570 | $tF = tan(M_PI / 4 - $standardParallel / 2) * (((1 + $e * sin($standardParallel)) / (1 - $e * sin($standardParallel))) ** ($e / 2)); |
||
| 1571 | } |
||
| 1572 | $mF = cos($standardParallel) / sqrt(1 - $e2 * sin($standardParallel) ** 2); |
||
| 1573 | $rhoF = $a * $mF; |
||
| 1574 | if ($standardParallel < 0) { |
||
| 1575 | $rho = hypot($easting, $northing + $rhoF); |
||
| 1576 | $t = $rho * $tF / $rhoF; |
||
| 1577 | $chi = 2 * atan($t) - M_PI / 2; |
||
| 1578 | } else { |
||
| 1579 | $rho = hypot($easting, $northing - $rhoF); |
||
| 1580 | $t = $rho * $tF / $rhoF; |
||
| 1581 | $chi = M_PI / 2 - 2 * atan($t); |
||
| 1582 | } |
||
| 1583 | |||
| 1584 | $latitude = $chi + ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) * sin(2 * $chi) + (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) * sin(4 * $chi) + (7 * $e6 / 120 + 81 * $e8 / 1120) * sin(6 * $chi) + (4279 * $e8 / 161280) * sin(8 * $chi); |
||
| 1585 | |||
| 1586 | if ($easting === 0.0) { |
||
| 1587 | $longitude = $longitudeOrigin; |
||
| 1588 | } elseif ($standardParallel < 0) { |
||
| 1589 | $longitude = $longitudeOrigin + atan2($easting, $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue() + $rhoF); |
||
| 1590 | } else { |
||
| 1591 | $longitude = $longitudeOrigin + atan2($easting, $northingAtFalseOrigin->asMetres()->getValue() - $this->northing->asMetres()->getValue() + $rhoF); |
||
| 1592 | } |
||
| 1593 | |||
| 1594 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
| 1595 | } |
||
| 1596 | |||
| 1597 | /** |
||
| 1598 | * Popular Visualisation Pseudo Mercator |
||
| 1599 | * Applies spherical formulas to the ellipsoid. As such does not have the properties of a true Mercator projection. |
||
| 1600 | */ |
||
| 1601 | public function popularVisualisationPseudoMercator( |
||
| 1602 | Geographic2D|Geographic3D $to, |
||
| 1603 | Angle $latitudeOfNaturalOrigin, |
||
| 1604 | Angle $longitudeOfNaturalOrigin, |
||
| 1605 | Length $falseEasting, |
||
| 1606 | Length $falseNorthing |
||
| 1607 | ): GeographicPoint { |
||
| 1608 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 1609 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
| 1610 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
| 1611 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 1612 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 1613 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 1614 | |||
| 1615 | $D = -$northing / $a; |
||
| 1616 | $latitude = M_PI / 2 - 2 * atan(M_E ** $D); |
||
| 1617 | $longitude = $easting / $a + $longitudeOrigin; |
||
| 1618 | |||
| 1619 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
| 1620 | } |
||
| 1621 | |||
| 1622 | /** |
||
| 1623 | * Similarity transformation |
||
| 1624 | * Defined for two-dimensional coordinate systems. |
||
| 1625 | */ |
||
| 1626 | public function similarityTransformation( |
||
| 1627 | Projected $to, |
||
| 1628 | Length $ordinate1OfEvaluationPointInTargetCRS, |
||
| 1629 | Length $ordinate2OfEvaluationPointInTargetCRS, |
||
| 1630 | Scale $scaleFactorForSourceCRSAxes, |
||
| 1631 | Angle $rotationAngleOfSourceCRSAxes, |
||
| 1632 | bool $inReverse |
||
| 1633 | ): self { |
||
| 1634 | $xs = $this->easting->asMetres()->getValue(); |
||
| 1635 | $ys = $this->northing->asMetres()->getValue(); |
||
| 1636 | $xo = $ordinate1OfEvaluationPointInTargetCRS->asMetres()->getValue(); |
||
| 1637 | $yo = $ordinate2OfEvaluationPointInTargetCRS->asMetres()->getValue(); |
||
| 1638 | $M = $scaleFactorForSourceCRSAxes->asUnity()->getValue(); |
||
| 1639 | $theta = $rotationAngleOfSourceCRSAxes->asRadians()->getValue(); |
||
| 1640 | |||
| 1641 | if ($inReverse) { |
||
| 1642 | $easting = (($xs - $xo) * cos($theta) - ($ys - $yo) * sin($theta)) / $M; |
||
| 1643 | $northing = (($xs - $xo) * sin($theta) + ($ys - $yo) * cos($theta)) / $M; |
||
| 1644 | } else { |
||
| 1645 | $easting = $xo + $xs * $M * cos($theta) + $ys * $M * sin($theta); |
||
| 1646 | $northing = $yo - $xs * $M * sin($theta) + $ys * $M * cos($theta); |
||
| 1647 | } |
||
| 1648 | |||
| 1649 | return self::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
| 1650 | } |
||
| 1651 | |||
| 1652 | /** |
||
| 1653 | * Mercator (variant A) |
||
| 1654 | * Note that in these formulas the parameter latitude of natural origin (latO) is not used. However for this |
||
| 1655 | * Mercator (variant A) method the EPSG dataset includes this parameter, which must have a value of zero, for |
||
| 1656 | * completeness in CRS labelling. |
||
| 1657 | */ |
||
| 1658 | public function mercatorVariantA( |
||
| 1659 | Geographic2D|Geographic3D $to, |
||
| 1660 | Angle $latitudeOfNaturalOrigin, |
||
| 1661 | Angle $longitudeOfNaturalOrigin, |
||
| 1662 | Scale $scaleFactorAtNaturalOrigin, |
||
| 1663 | Length $falseEasting, |
||
| 1664 | Length $falseNorthing |
||
| 1665 | ): GeographicPoint { |
||
| 1666 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 1667 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
| 1668 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
| 1669 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 1670 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 1671 | $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
||
| 1672 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 1673 | $e = $ellipsoid->getEccentricity(); |
||
| 1674 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 1675 | $e4 = $e ** 4; |
||
| 1676 | $e6 = $e ** 6; |
||
| 1677 | $e8 = $e ** 8; |
||
| 1678 | |||
| 1679 | $t = M_E ** (($falseNorthing->asMetres()->getValue() - $this->northing->asMetres()->getValue()) / ($a * $scaleFactorOrigin)); |
||
| 1680 | $chi = M_PI / 2 - 2 * atan($t); |
||
| 1681 | |||
| 1682 | $latitude = $chi + ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) * sin(2 * $chi) + (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) * sin(4 * $chi) + (7 * $e6 / 120 + 81 * $e8 / 1120) * sin(6 * $chi) + (4279 * $e8 / 161280) * sin(8 * $chi); |
||
| 1683 | $longitude = $easting / ($a * $scaleFactorOrigin) + $longitudeOrigin; |
||
| 1684 | |||
| 1685 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
| 1686 | } |
||
| 1687 | |||
| 1688 | /** |
||
| 1689 | * Mercator (variant B) |
||
| 1690 | * Used for most nautical charts. |
||
| 1691 | */ |
||
| 1692 | public function mercatorVariantB( |
||
| 1693 | Geographic2D|Geographic3D $to, |
||
| 1694 | Angle $latitudeOf1stStandardParallel, |
||
| 1695 | Angle $longitudeOfNaturalOrigin, |
||
| 1696 | Length $falseEasting, |
||
| 1697 | Length $falseNorthing |
||
| 1698 | ): GeographicPoint { |
||
| 1699 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 1700 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
| 1701 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
| 1702 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 1703 | $firstStandardParallel = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
||
| 1704 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 1705 | $e = $ellipsoid->getEccentricity(); |
||
| 1706 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 1707 | $e4 = $e ** 4; |
||
| 1708 | $e6 = $e ** 6; |
||
| 1709 | $e8 = $e ** 8; |
||
| 1710 | |||
| 1711 | $scaleFactorOrigin = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2); |
||
| 1712 | |||
| 1713 | $t = M_E ** (($falseNorthing->asMetres()->getValue() - $this->northing->asMetres()->getValue()) / ($a * $scaleFactorOrigin)); |
||
| 1714 | $chi = M_PI / 2 - 2 * atan($t); |
||
| 1715 | |||
| 1716 | $latitude = $chi + ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) * sin(2 * $chi) + (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) * sin(4 * $chi) + (7 * $e6 / 120 + 81 * $e8 / 1120) * sin(6 * $chi) + (4279 * $e8 / 161280) * sin(8 * $chi); |
||
| 1717 | $longitude = $easting / ($a * $scaleFactorOrigin) + $longitudeOrigin; |
||
| 1718 | |||
| 1719 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
| 1720 | } |
||
| 1721 | |||
| 1722 | /** |
||
| 1723 | * Hotine Oblique Mercator (variant A). |
||
| 1724 | */ |
||
| 1725 | public function obliqueMercatorHotineVariantA( |
||
| 1726 | Geographic2D|Geographic3D $to, |
||
| 1727 | Angle $latitudeOfProjectionCentre, |
||
| 1728 | Angle $longitudeOfProjectionCentre, |
||
| 1729 | Angle $azimuthOfInitialLine, |
||
| 1730 | Angle $angleFromRectifiedToSkewGrid, |
||
| 1731 | Scale $scaleFactorOnInitialLine, |
||
| 1732 | Length $falseEasting, |
||
| 1733 | Length $falseNorthing |
||
| 1734 | ): GeographicPoint { |
||
| 1735 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 1736 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
| 1737 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
| 1738 | $latC = $latitudeOfProjectionCentre->asRadians()->getValue(); |
||
| 1739 | $lonC = $longitudeOfProjectionCentre->asRadians()->getValue(); |
||
| 1740 | $alphaC = $azimuthOfInitialLine->asRadians()->getValue(); |
||
| 1741 | $kC = $scaleFactorOnInitialLine->asUnity()->getValue(); |
||
| 1742 | $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue(); |
||
| 1743 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 1744 | $e = $ellipsoid->getEccentricity(); |
||
| 1745 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 1746 | $e4 = $e ** 4; |
||
| 1747 | $e6 = $e ** 6; |
||
| 1748 | $e8 = $e ** 8; |
||
| 1749 | |||
| 1750 | $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2))); |
||
| 1751 | $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2); |
||
| 1752 | $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2); |
||
| 1753 | $D = $B * sqrt(1 - $e2) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2)); |
||
| 1754 | $DD = max(1, $D ** 2); |
||
| 1755 | $F = $D + sqrt($DD - 1) * static::sign($latC); |
||
| 1756 | $H = $F * $tO ** $B; |
||
| 1757 | $G = ($F - 1 / $F) / 2; |
||
| 1758 | $gammaO = self::asin(sin($alphaC) / $D); |
||
| 1759 | $lonO = $lonC - self::asin($G * tan($gammaO)) / $B; |
||
| 1760 | |||
| 1761 | $v = $easting * cos($gammaC) - $northing * sin($gammaC); |
||
| 1762 | $u = $northing * cos($gammaC) + $easting * sin($gammaC); |
||
| 1763 | |||
| 1764 | $Q = M_E ** -($B * $v / $A); |
||
| 1765 | $S = ($Q - 1 / $Q) / 2; |
||
| 1766 | $T = ($Q + 1 / $Q) / 2; |
||
| 1767 | $V = sin($B * $u / $A); |
||
| 1768 | $U = ($V * cos($gammaO) + $S * sin($gammaO)) / $T; |
||
| 1769 | $t = ($H / sqrt((1 + $U) / (1 - $U))) ** (1 / $B); |
||
| 1770 | |||
| 1771 | $chi = M_PI / 2 - 2 * atan($t); |
||
| 1772 | |||
| 1773 | $latitude = $chi + sin(2 * $chi) * ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) + sin(4 * $chi) * (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) + sin(6 * $chi) * (7 * $e6 / 120 + 81 * $e8 / 1120) + sin(8 * $chi) * (4279 * $e8 / 161280); |
||
| 1774 | $longitude = $lonO - atan2($S * cos($gammaO) - $V * sin($gammaO), cos($B * $u / $A)) / $B; |
||
| 1775 | |||
| 1776 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
| 1777 | } |
||
| 1778 | |||
| 1779 | /** |
||
| 1780 | * Hotine Oblique Mercator (variant B). |
||
| 1781 | */ |
||
| 1782 | public function obliqueMercatorHotineVariantB( |
||
| 1840 | } |
||
| 1841 | |||
| 1842 | /** |
||
| 1843 | * Laborde Oblique Mercator. |
||
| 1844 | */ |
||
| 1845 | public function obliqueMercatorLaborde( |
||
| 1846 | Geographic2D|Geographic3D $to, |
||
| 1905 | } |
||
| 1906 | |||
| 1907 | /** |
||
| 1908 | * Transverse Mercator. |
||
| 1909 | */ |
||
| 1910 | public function transverseMercator( |
||
| 1911 | Geographic2D|Geographic3D $to, |
||
| 1912 | Angle $latitudeOfNaturalOrigin, |
||
| 1913 | Angle $longitudeOfNaturalOrigin, |
||
| 1914 | Scale $scaleFactorAtNaturalOrigin, |
||
| 1915 | Length $falseEasting, |
||
| 1916 | Length $falseNorthing |
||
| 1917 | ): GeographicPoint { |
||
| 1918 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 1919 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
| 1920 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
| 1921 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 1922 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 1923 | $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
||
| 1924 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 1925 | $e = $ellipsoid->getEccentricity(); |
||
| 1926 | $f = $ellipsoid->getFlattening(); |
||
| 1927 | |||
| 1928 | $n = $f / (2 - $f); |
||
| 1929 | $B = ($a / (1 + $n)) * (1 + $n ** 2 / 4 + $n ** 4 / 64 + $n ** 6 / 256 + (25 / 16384) * $n ** 8); |
||
| 1930 | |||
| 1931 | $h1 = $n / 2 - (2 / 3) * $n ** 2 + (5 / 16) * $n ** 3 + (41 / 180) * $n ** 4 - (127 / 288) * $n ** 5 + (7891 / 37800) * $n ** 6 + (72161 / 387072) * $n ** 7 - (18975107 / 50803200) * $n ** 8; |
||
| 1932 | $h2 = (13 / 48) * $n ** 2 - (3 / 5) * $n ** 3 + (557 / 1440) * $n ** 4 + (281 / 630) * $n ** 5 - (1983433 / 1935360) * $n ** 6 + (13769 / 28800) * $n ** 7 + (148003883 / 174182400) * $n ** 8; |
||
| 1933 | $h3 = (61 / 240) * $n ** 3 - (103 / 140) * $n ** 4 + (15061 / 26880) * $n ** 5 + (167603 / 181440) * $n ** 6 - (67102379 / 29030400) * $n ** 7 + (79682431 / 79833600) * $n ** 8; |
||
| 1934 | $h4 = (49561 / 161280) * $n ** 4 - (179 / 168) * $n ** 5 + (6601661 / 7257600) * $n ** 6 + (97445 / 49896) * $n ** 7 - (40176129013 / 7664025600) * $n ** 8; |
||
| 1935 | $h5 = (34729 / 80640) * $n ** 5 - (3418889 / 1995840) * $n ** 6 + (14644087 / 9123840) * $n ** 7 + (2605413599 / 622702080) * $n ** 8; |
||
| 1936 | $h6 = (212378941 / 319334400) * $n ** 6 - (30705481 / 10378368) * $n ** 7 + (175214326799 / 58118860800) * $n ** 8; |
||
| 1937 | $h7 = (1522256789 / 1383782400) * $n ** 7 - (16759934899 / 3113510400) * $n ** 8; |
||
| 1938 | $h8 = (1424729850961 / 743921418240) * $n ** 8; |
||
| 1939 | |||
| 1940 | if ($latitudeOrigin === 0.0) { |
||
| 1941 | $mO = 0; |
||
| 1942 | } elseif ($latitudeOrigin === M_PI / 2) { |
||
| 1943 | $mO = $B * M_PI / 2; |
||
| 1944 | } elseif ($latitudeOrigin === -M_PI / 2) { |
||
| 1945 | $mO = $B * -M_PI / 2; |
||
| 1946 | } else { |
||
| 1947 | $qO = asinh(tan($latitudeOrigin)) - ($e * atanh($e * sin($latitudeOrigin))); |
||
| 1948 | $betaO = atan(sinh($qO)); |
||
| 1949 | $xiO0 = self::asin(sin($betaO)); |
||
| 1950 | $xiO1 = $h1 * sin(2 * $xiO0); |
||
| 1951 | $xiO2 = $h2 * sin(4 * $xiO0); |
||
| 1952 | $xiO3 = $h3 * sin(6 * $xiO0); |
||
| 1953 | $xiO4 = $h4 * sin(8 * $xiO0); |
||
| 1954 | $xiO5 = $h5 * sin(10 * $xiO0); |
||
| 1955 | $xiO6 = $h6 * sin(12 * $xiO0); |
||
| 1956 | $xiO7 = $h7 * sin(14 * $xiO0); |
||
| 1957 | $xiO8 = $h8 * sin(16 * $xiO0); |
||
| 1958 | $xiO = $xiO0 + $xiO1 + $xiO2 + $xiO3 + $xiO4 + $xiO5 + $xiO6 + $xiO7 + $xiO8; |
||
| 1959 | $mO = $B * $xiO; |
||
| 1960 | } |
||
| 1961 | |||
| 1962 | $h1 = $n / 2 - (2 / 3) * $n ** 2 + (37 / 96) * $n ** 3 - (1 / 360) * $n ** 4 - (81 / 512) * $n ** 5 + (96199 / 604800) * $n ** 6 - (5406467 / 38707200) * $n ** 7 + (7944359 / 67737600) * $n ** 8; |
||
| 1963 | $h2 = (1 / 48) * $n ** 2 + (1 / 15) * $n ** 3 - (437 / 1440) * $n ** 4 + (46 / 105) * $n ** 5 - (1118711 / 3870720) * $n ** 6 + (51841 / 1209600) * $n ** 7 + (24749483 / 348364800) * $n ** 8; |
||
| 1964 | $h3 = (17 / 480) * $n ** 3 - (37 / 840) * $n ** 4 - (209 / 4480) * $n ** 5 + (5569 / 90720) * $n ** 6 + (9261899 / 58060800) * $n ** 7 - (6457463 / 17740800) * $n ** 8; |
||
| 1965 | $h4 = (4397 / 161280) * $n ** 4 - (11 / 504) * $n ** 5 - (830251 / 7257600) * $n ** 6 + (466511 / 2494800) * $n ** 7 + (324154477 / 7664025600) * $n ** 8; |
||
| 1966 | $h5 = (4583 / 161280) * $n ** 5 - (108847 / 3991680) * $n ** 6 - (8005831 / 63866880) * $n ** 7 + (22894433 / 124540416) * $n ** 8; |
||
| 1967 | $h6 = (20648693 / 638668800) * $n ** 6 - (16363163 / 518918400) * $n ** 7 - (2204645983 / 12915302400) * $n ** 8; |
||
| 1968 | $h7 = (219941297 / 5535129600) * $n ** 7 - (497323811 / 12454041600) * $n ** 8; |
||
| 1969 | $h8 = (191773887257 / 3719607091200) * $n ** 8; |
||
| 1970 | |||
| 1971 | $eta = $easting / ($B * $kO); |
||
| 1972 | $xi = ($northing + $kO * $mO) / ($B * $kO); |
||
| 1973 | $xi1 = $h1 * sin(2 * $xi) * cosh(2 * $eta); |
||
| 1974 | $eta1 = $h1 * cos(2 * $xi) * sinh(2 * $eta); |
||
| 1975 | $xi2 = $h2 * sin(4 * $xi) * cosh(4 * $eta); |
||
| 1976 | $eta2 = $h2 * cos(4 * $xi) * sinh(4 * $eta); |
||
| 1977 | $xi3 = $h3 * sin(6 * $xi) * cosh(6 * $eta); |
||
| 1978 | $eta3 = $h3 * cos(6 * $xi) * sinh(6 * $eta); |
||
| 1979 | $xi4 = $h4 * sin(8 * $xi) * cosh(8 * $eta); |
||
| 1980 | $eta4 = $h4 * cos(8 * $xi) * sinh(8 * $eta); |
||
| 1981 | $xi5 = $h5 * sin(10 * $xi) * cosh(10 * $eta); |
||
| 1982 | $eta5 = $h5 * cos(10 * $xi) * sinh(10 * $eta); |
||
| 1983 | $xi6 = $h6 * sin(12 * $xi) * cosh(12 * $eta); |
||
| 1984 | $eta6 = $h6 * cos(12 * $xi) * sinh(12 * $eta); |
||
| 1985 | $xi7 = $h7 * sin(14 * $xi) * cosh(14 * $eta); |
||
| 1986 | $eta7 = $h7 * cos(14 * $xi) * sinh(14 * $eta); |
||
| 1987 | $xi8 = $h8 * sin(16 * $xi) * cosh(16 * $eta); |
||
| 1988 | $eta8 = $h8 * cos(16 * $xi) * sinh(16 * $eta); |
||
| 1989 | $xi0 = $xi - $xi1 - $xi2 - $xi3 - $xi4 - $xi5 - $xi6 - $xi7 - $xi8; |
||
| 1990 | $eta0 = $eta - $eta1 - $eta2 - $eta3 - $eta4 - $eta5 - $eta6 - $eta7 - $eta8; |
||
| 1991 | |||
| 1992 | $beta = self::asin(sin($xi0) / cosh($eta0)); |
||
| 1993 | |||
| 1994 | $QPrime = asinh(tan($beta)); |
||
| 1995 | $Q = asinh(tan($beta)); |
||
| 1996 | do { |
||
| 1997 | $QN = $Q; |
||
| 1998 | $Q = $QPrime + ($e * atanh($e * tanh($Q))); |
||
| 1999 | } while (abs($Q - $QN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||
| 2000 | |||
| 2001 | $latitude = atan(sinh($Q)); |
||
| 2002 | $longitude = $longitudeOrigin + self::asin(tanh($eta0) / cos($beta)); |
||
| 2003 | |||
| 2004 | $height = $this->height && $to instanceof Geographic3D ? $this->height : null; |
||
| 2005 | |||
| 2006 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), $height, $this->epoch); |
||
| 2007 | } |
||
| 2008 | |||
| 2009 | /** |
||
| 2010 | * Transverse Mercator Zoned Grid System |
||
| 2011 | * If locations fall outwith the fixed zones the general Transverse Mercator method (code 9807) must be used for |
||
| 2012 | * each zone. |
||
| 2013 | */ |
||
| 2014 | public function transverseMercatorZonedGrid( |
||
| 2015 | Geographic2D|Geographic3D $to, |
||
| 2016 | Angle $latitudeOfNaturalOrigin, |
||
| 2017 | Angle $initialLongitude, |
||
| 2018 | Angle $zoneWidth, |
||
| 2019 | Scale $scaleFactorAtNaturalOrigin, |
||
| 2020 | Length $falseEasting, |
||
| 2021 | Length $falseNorthing |
||
| 2022 | ): GeographicPoint { |
||
| 2023 | $Z = (int) substr((string) $this->easting->asMetres()->getValue(), 0, 2); |
||
| 2024 | $falseEasting = $falseEasting->add(new Metre($Z * 1000000)); |
||
| 2025 | |||
| 2026 | $W = $zoneWidth->asDegrees()->getValue(); |
||
| 2027 | $longitudeOrigin = $initialLongitude->add(new Degree($Z * $W - $W / 2)); |
||
| 2028 | |||
| 2029 | return $this->transverseMercator($to, $latitudeOfNaturalOrigin, $longitudeOrigin, $scaleFactorAtNaturalOrigin, $falseEasting, $falseNorthing); |
||
| 2030 | } |
||
| 2031 | |||
| 2032 | /** |
||
| 2033 | * General polynomial. |
||
| 2034 | * @param Coefficient[] $powerCoefficients |
||
| 2035 | */ |
||
| 2036 | public function generalPolynomial( |
||
| 2037 | Projected $to, |
||
| 2038 | Length $ordinate1OfEvaluationPointInSourceCRS, |
||
| 2039 | Length $ordinate2OfEvaluationPointInSourceCRS, |
||
| 2040 | Length $ordinate1OfEvaluationPointInTargetCRS, |
||
| 2041 | Length $ordinate2OfEvaluationPointInTargetCRS, |
||
| 2042 | Scale $scalingFactorForSourceCRSCoordDifferences, |
||
| 2043 | Scale $scalingFactorForTargetCRSCoordDifferences, |
||
| 2044 | Scale $A0, |
||
| 2045 | Scale $B0, |
||
| 2046 | array $powerCoefficients |
||
| 2047 | ): self { |
||
| 2048 | $xs = $this->easting->getValue(); |
||
| 2049 | $ys = $this->northing->getValue(); |
||
| 2050 | |||
| 2051 | $t = $this->generalPolynomialUnitless( |
||
| 2052 | $xs, |
||
| 2053 | $ys, |
||
| 2054 | $ordinate1OfEvaluationPointInSourceCRS, |
||
| 2055 | $ordinate2OfEvaluationPointInSourceCRS, |
||
| 2056 | $ordinate1OfEvaluationPointInTargetCRS, |
||
| 2057 | $ordinate2OfEvaluationPointInTargetCRS, |
||
| 2058 | $scalingFactorForSourceCRSCoordDifferences, |
||
| 2059 | $scalingFactorForTargetCRSCoordDifferences, |
||
| 2060 | $A0, |
||
| 2061 | $B0, |
||
| 2062 | $powerCoefficients |
||
| 2063 | ); |
||
| 2064 | |||
| 2065 | $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId(); |
||
| 2066 | $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId(); |
||
| 2067 | |||
| 2068 | return static::createFromEastingNorthing( |
||
| 2069 | $to, |
||
| 2070 | Length::makeUnit($t['xt'], $xtUnit), |
||
| 2071 | Length::makeUnit($t['yt'], $ytUnit), |
||
| 2072 | $this->epoch |
||
| 2073 | ); |
||
| 2074 | } |
||
| 2075 | |||
| 2076 | /** |
||
| 2077 | * New Zealand Map Grid. |
||
| 2078 | */ |
||
| 2079 | public function newZealandMapGrid( |
||
| 2149 | } |
||
| 2150 | |||
| 2151 | /** |
||
| 2152 | * Complex polynomial. |
||
| 2153 | * Coordinate pairs treated as complex numbers. This exploits the correlation between the polynomial coefficients |
||
| 2154 | * and leads to a smaller number of coefficients than the general polynomials. |
||
| 2155 | */ |
||
| 2156 | public function complexPolynomial( |
||
| 2200 | ); |
||
| 2201 | } |
||
| 2202 | |||
| 2203 | /** |
||
| 2204 | * Ordnance Survey National Transformation |
||
| 2205 | * Geodetic transformation between ETRS89 (or WGS 84) and OSGB36 / National Grid. Uses ETRS89 / National Grid as |
||
| 2206 | * an intermediate coordinate system for bi-linear interpolation of gridded grid coordinate differences. |
||
| 2207 | */ |
||
| 2208 | public function OSTN15( |
||
| 2209 | Geographic2D $to, |
||
| 2210 | OSTNOSGM15Grid $eastingAndNorthingDifferenceFile |
||
| 2211 | ): GeographicPoint { |
||
| 2212 | $asETRS89 = $eastingAndNorthingDifferenceFile->applyReverseHorizontalAdjustment($this); |
||
| 2213 | |||
| 2214 | return $asETRS89->transverseMercator($to, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000)); |
||
| 2215 | } |
||
| 2216 | } |
||
| 2217 |