Total Complexity | 143 |
Total Lines | 2148 |
Duplicated Lines | 0 % |
Changes | 0 |
Complex classes like ProjectedPoint often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
While breaking up the class, it is a good idea to analyze how other classes use ProjectedPoint, and based on these observations, apply Extract Interface, too.
1 | <?php |
||
67 | class ProjectedPoint extends Point implements ConvertiblePoint |
||
68 | { |
||
69 | use AutoConversion { |
||
70 | convert as protected autoConvert; |
||
71 | } |
||
72 | |||
73 | /** |
||
74 | * Easting. |
||
75 | */ |
||
76 | protected Length $easting; |
||
77 | |||
78 | /** |
||
79 | * Northing. |
||
80 | */ |
||
81 | protected Length $northing; |
||
82 | |||
83 | /** |
||
84 | * Westing. |
||
85 | */ |
||
86 | protected Length $westing; |
||
87 | |||
88 | /** |
||
89 | * Southing. |
||
90 | */ |
||
91 | protected Length $southing; |
||
92 | |||
93 | /** |
||
94 | * Height. |
||
95 | */ |
||
96 | protected ?Length $height; |
||
97 | |||
98 | /** |
||
99 | * Coordinate reference system. |
||
100 | */ |
||
101 | protected Projected $crs; |
||
102 | |||
103 | /** |
||
104 | * Coordinate epoch (date for which the specified coordinates represented this point). |
||
105 | */ |
||
106 | protected ?DateTimeImmutable $epoch; |
||
107 | |||
108 | protected function __construct(Projected $crs, ?Length $easting, ?Length $northing, ?Length $westing, ?Length $southing, ?DateTimeInterface $epoch, ?Length $height) |
||
109 | { |
||
110 | if (count($crs->getCoordinateSystem()->getAxes()) === 2 && $height !== null) { |
||
111 | throw new InvalidCoordinateReferenceSystemException('A 2D projected point must not include a height'); |
||
112 | } |
||
113 | |||
114 | if (count($crs->getCoordinateSystem()->getAxes()) === 3 && $height === null) { |
||
115 | throw new InvalidCoordinateReferenceSystemException('A 3D projected point must include a height, none given'); |
||
116 | } |
||
117 | |||
118 | $this->crs = $crs; |
||
119 | $cs = $this->crs->getCoordinateSystem(); |
||
120 | |||
121 | $eastingAxis = $cs->hasAxisByName(Axis::EASTING) ? $cs->getAxisByName(Axis::EASTING) : null; |
||
122 | $westingAxis = $cs->hasAxisByName(Axis::WESTING) ? $cs->getAxisByName(Axis::WESTING) : null; |
||
123 | $northingAxis = $cs->hasAxisByName(Axis::NORTHING) ? $cs->getAxisByName(Axis::NORTHING) : null; |
||
124 | $southingAxis = $cs->hasAxisByName(Axis::SOUTHING) ? $cs->getAxisByName(Axis::SOUTHING) : null; |
||
125 | |||
126 | if ($easting && $eastingAxis) { |
||
127 | $this->easting = $easting::convert($easting, $eastingAxis->getUnitOfMeasureId()); |
||
128 | $this->westing = $this->easting->multiply(-1); |
||
129 | } elseif ($westing && $westingAxis) { |
||
130 | $this->westing = $westing::convert($westing, $westingAxis->getUnitOfMeasureId()); |
||
131 | $this->easting = $this->westing->multiply(-1); |
||
132 | } else { |
||
133 | throw new InvalidAxesException($crs->getCoordinateSystem()->getAxes()); |
||
134 | } |
||
135 | |||
136 | if ($northing && $northingAxis) { |
||
137 | $this->northing = $northing::convert($northing, $northingAxis->getUnitOfMeasureId()); |
||
138 | $this->southing = $this->northing->multiply(-1); |
||
139 | } elseif ($southing && $southingAxis) { |
||
140 | $this->southing = $southing::convert($southing, $southingAxis->getUnitOfMeasureId()); |
||
141 | $this->northing = $this->southing->multiply(-1); |
||
142 | } else { |
||
143 | throw new InvalidAxesException($crs->getCoordinateSystem()->getAxes()); |
||
144 | } |
||
145 | |||
146 | if ($epoch instanceof DateTime) { |
||
147 | $epoch = DateTimeImmutable::createFromMutable($epoch); |
||
148 | } |
||
149 | $this->epoch = $epoch; |
||
150 | |||
151 | $this->height = $height; |
||
152 | } |
||
153 | |||
154 | public static function create(Projected $crs, ?Length $easting, ?Length $northing, ?Length $westing, ?Length $southing, ?DateTimeInterface $epoch = null, ?Length $height = null): self |
||
155 | { |
||
156 | return match ($crs->getSRID()) { |
||
157 | Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID => new BritishNationalGridPoint($easting, $northing, $epoch), |
||
158 | Projected::EPSG_TM75_IRISH_GRID => new IrishGridPoint($easting, $northing, $epoch), |
||
159 | Projected::EPSG_IRENET95_IRISH_TRANSVERSE_MERCATOR => new IrishTransverseMercatorPoint($easting, $northing, $epoch), |
||
160 | default => new self($crs, $easting, $northing, $westing, $southing, $epoch, $height), |
||
161 | }; |
||
162 | } |
||
163 | |||
164 | public static function createFromEastingNorthing(Projected $crs, Length $easting, Length $northing, ?DateTimeInterface $epoch = null, ?Length $height = null): self |
||
165 | { |
||
166 | return static::create($crs, $easting, $northing, null, null, $epoch, $height); |
||
167 | } |
||
168 | |||
169 | public static function createFromWestingNorthing(Projected $crs, Length $westing, Length $northing, ?DateTimeInterface $epoch = null, ?Length $height = null): self |
||
170 | { |
||
171 | return static::create($crs, null, $northing, $westing, null, $epoch, $height); |
||
172 | } |
||
173 | |||
174 | public static function createFromWestingSouthing(Projected $crs, Length $westing, Length $southing, ?DateTimeInterface $epoch = null, ?Length $height = null): self |
||
175 | { |
||
176 | return static::create($crs, null, null, $westing, $southing, $epoch, $height); |
||
177 | } |
||
178 | |||
179 | public function getEasting(): Length |
||
182 | } |
||
183 | |||
184 | public function getNorthing(): Length |
||
185 | { |
||
186 | return $this->northing; |
||
187 | } |
||
188 | |||
189 | public function getWesting(): Length |
||
190 | { |
||
191 | return $this->westing; |
||
192 | } |
||
193 | |||
194 | public function getSouthing(): Length |
||
195 | { |
||
196 | return $this->southing; |
||
197 | } |
||
198 | |||
199 | public function getHeight(): ?Length |
||
200 | { |
||
201 | return $this->height; |
||
202 | } |
||
203 | |||
204 | public function getCRS(): Projected |
||
205 | { |
||
206 | return $this->crs; |
||
207 | } |
||
208 | |||
209 | public function getCoordinateEpoch(): ?DateTimeImmutable |
||
210 | { |
||
211 | return $this->epoch; |
||
212 | } |
||
213 | |||
214 | /** |
||
215 | * Calculate distance between two points. |
||
216 | * Because this is a simple grid, we can use Pythagoras. |
||
217 | */ |
||
218 | public function calculateDistance(Point $to): Length |
||
219 | { |
||
220 | try { |
||
221 | if ($to instanceof ConvertiblePoint) { |
||
222 | $to = $to->convert($this->crs); |
||
223 | } |
||
224 | } finally { |
||
225 | if ($to->getCRS()->getSRID() !== $this->crs->getSRID()) { |
||
226 | throw new InvalidCoordinateReferenceSystemException('Can only calculate distances between two points in the same CRS'); |
||
227 | } |
||
228 | |||
229 | /** @var ProjectedPoint $to */ |
||
230 | return new Metre( |
||
231 | sqrt( |
||
232 | ($to->getEasting()->getValue() - $this->getEasting()->getValue()) ** 2 + |
||
233 | ($to->getNorthing()->getValue() - $this->getNorthing()->getValue()) ** 2 |
||
234 | ) |
||
235 | ); |
||
236 | } |
||
237 | } |
||
238 | |||
239 | public function asGeographicPoint(): GeographicPoint |
||
240 | { |
||
241 | $geographicPoint = $this->performOperation($this->crs->getDerivingConversion(), $this->crs->getBaseCRS(), true); |
||
242 | assert($geographicPoint instanceof GeographicPoint); |
||
243 | |||
244 | return $geographicPoint; |
||
245 | } |
||
246 | |||
247 | public function convert(Compound|Geocentric|Geographic2D|Geographic3D|Projected|Vertical $to, bool $ignoreBoundaryRestrictions = false): Point |
||
248 | { |
||
249 | if ($to->getSRID() === $this->crs->getBaseCRS()->getSRID()) { |
||
250 | return $this->performOperation($this->crs->getDerivingConversion(), $this->crs->getBaseCRS(), true); |
||
251 | } |
||
252 | |||
253 | return $this->autoConvert($to, $ignoreBoundaryRestrictions); |
||
254 | } |
||
255 | |||
256 | public function __toString(): string |
||
257 | { |
||
258 | $values = []; |
||
259 | foreach ($this->getCRS()->getCoordinateSystem()->getAxes() as $axis) { |
||
260 | if ($axis->getName() === Axis::EASTING) { |
||
261 | $values[] = $this->easting; |
||
262 | } elseif ($axis->getName() === Axis::NORTHING) { |
||
263 | $values[] = $this->northing; |
||
264 | } elseif ($axis->getName() === Axis::WESTING) { |
||
265 | $values[] = $this->westing; |
||
266 | } elseif ($axis->getName() === Axis::SOUTHING) { |
||
267 | $values[] = $this->southing; |
||
268 | } elseif ($axis->getName() === Axis::ELLIPSOIDAL_HEIGHT) { |
||
269 | $values[] = $this->height; |
||
270 | } else { |
||
271 | throw new UnknownAxisException(); // @codeCoverageIgnore |
||
272 | } |
||
273 | } |
||
274 | |||
275 | return '(' . implode(', ', $values) . ')'; |
||
276 | } |
||
277 | |||
278 | /** |
||
279 | * Affine parametric transformation. |
||
280 | */ |
||
281 | public function affineParametricTransform( |
||
282 | Projected $to, |
||
283 | Length $A0, |
||
284 | Coefficient $A1, |
||
285 | Coefficient $A2, |
||
286 | Length $B0, |
||
287 | Coefficient $B1, |
||
288 | Coefficient $B2, |
||
289 | bool $inReverse |
||
290 | ): self { |
||
291 | $xs = $this->easting->getValue(); // native unit to metre conversion already embedded in the scale factor |
||
292 | $ys = $this->northing->getValue(); // native unit to metre conversion already embedded in the scale factor |
||
293 | |||
294 | if ($inReverse) { |
||
295 | $D = ($A1->getValue() * $B2->getValue()) - ($A2->getValue() * $B1->getValue()); |
||
296 | $a0 = (($A2->getValue() * $B0->asMetres()->getValue()) - ($B2->getValue() * $A0->asMetres()->getValue())) / $D; |
||
297 | $b0 = (($B1->getValue() * $A0->asMetres()->getValue()) - ($A1->getValue() * $B0->asMetres()->getValue())) / $D; |
||
298 | $a1 = $B2->getValue() / $D; |
||
299 | $a2 = -$A2->getValue() / $D; |
||
300 | $b1 = -$B1->getValue() / $D; |
||
301 | $b2 = $A1->getValue() / $D; |
||
302 | } else { |
||
303 | $a0 = $A0->asMetres()->getValue(); |
||
304 | $a1 = $A1->getValue(); |
||
305 | $a2 = $A2->getValue(); |
||
306 | $b0 = $B0->asMetres()->getValue(); |
||
307 | $b1 = $B1->getValue(); |
||
308 | $b2 = $B2->getValue(); |
||
309 | } |
||
310 | |||
311 | $xt = $a0 + ($a1 * $xs) + ($a2 * $ys); |
||
312 | $yt = $b0 + ($b1 * $xs) + ($b2 * $ys); |
||
313 | |||
314 | return static::create($to, new Metre($xt), new Metre($yt), new Metre(-$xt), new Metre(-$yt), $this->epoch); |
||
315 | } |
||
316 | |||
317 | /** |
||
318 | * Albers Equal Area. |
||
319 | */ |
||
320 | public function albersEqualArea( |
||
321 | Geographic2D|Geographic3D $to, |
||
322 | Angle $latitudeOfFalseOrigin, |
||
323 | Angle $longitudeOfFalseOrigin, |
||
324 | Angle $latitudeOf1stStandardParallel, |
||
325 | Angle $latitudeOf2ndStandardParallel, |
||
326 | Length $eastingAtFalseOrigin, |
||
327 | Length $northingAtFalseOrigin |
||
328 | ): GeographicPoint { |
||
329 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
330 | $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue(); |
||
331 | $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue(); |
||
332 | $phiOrigin = $latitudeOfFalseOrigin->asRadians()->getValue(); |
||
333 | $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
||
334 | $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue(); |
||
335 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
336 | $e = $ellipsoid->getEccentricity(); |
||
337 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
338 | $e4 = $e ** 4; |
||
339 | $e6 = $e ** 6; |
||
340 | |||
341 | $centralMeridianFirstParallel = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2); |
||
342 | $centralMeridianSecondParallel = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2); |
||
343 | |||
344 | $alphaOrigin = (1 - $e2) * (sin($phiOrigin) / (1 - $e2 * sin($phiOrigin) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phiOrigin)) / (1 + $e * sin($phiOrigin)))); |
||
345 | $alphaFirstParallel = (1 - $e2) * (sin($phi1) / (1 - $e2 * sin($phi1) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi1)) / (1 + $e * sin($phi1)))); |
||
346 | $alphaSecondParallel = (1 - $e2) * (sin($phi2) / (1 - $e2 * sin($phi2) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi2)) / (1 + $e * sin($phi2)))); |
||
347 | |||
348 | $n = ($centralMeridianFirstParallel ** 2 - $centralMeridianSecondParallel ** 2) / ($alphaSecondParallel - $alphaFirstParallel); |
||
349 | $C = $centralMeridianFirstParallel ** 2 + $n * $alphaFirstParallel; |
||
350 | $rhoOrigin = $a * sqrt($C - $n * $alphaOrigin) / $n; |
||
351 | $rhoPrime = hypot($easting, $rhoOrigin - $northing); |
||
352 | $alphaPrime = ($C - $rhoPrime ** 2 * $n ** 2 / $a ** 2) / $n; |
||
353 | $betaPrime = self::asin($alphaPrime / (1 - (1 - $e2) / 2 / $e * log((1 - $e) / (1 + $e)))); |
||
354 | if ($n > 0) { |
||
355 | $theta = atan2($easting, $rhoOrigin - $northing); |
||
356 | } else { |
||
357 | $theta = atan2(-$easting, $northing - $rhoOrigin); |
||
358 | } |
||
359 | |||
360 | $latitude = $betaPrime + (($e2 / 3 + 31 * $e4 / 180 + 517 * $e6 / 5040) * sin(2 * $betaPrime)) + ((23 * $e4 / 360 + 251 * $e6 / 3780) * sin(4 * $betaPrime)) + ((761 * $e6 / 45360) * sin(6 * $betaPrime)); |
||
361 | $longitude = $longitudeOfFalseOrigin->asRadians()->getValue() + ($theta / $n); |
||
362 | |||
363 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
364 | } |
||
365 | |||
366 | /** |
||
367 | * American Polyconic. |
||
368 | */ |
||
369 | public function americanPolyconic( |
||
370 | Geographic2D|Geographic3D $to, |
||
371 | Angle $latitudeOfNaturalOrigin, |
||
372 | Angle $longitudeOfNaturalOrigin, |
||
373 | Length $falseEasting, |
||
374 | Length $falseNorthing |
||
375 | ): GeographicPoint { |
||
376 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
377 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
378 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
379 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
380 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
381 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
382 | $e = $ellipsoid->getEccentricity(); |
||
383 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
384 | $e4 = $e ** 4; |
||
385 | $e6 = $e ** 6; |
||
386 | |||
387 | $i = (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256); |
||
388 | $ii = (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024); |
||
389 | $iii = (15 * $e4 / 256 + 45 * $e6 / 1024); |
||
390 | $iv = (35 * $e6 / 3072); |
||
391 | |||
392 | $MO = $a * ($i * $latitudeOrigin - $ii * sin(2 * $latitudeOrigin) + $iii * sin(4 * $latitudeOrigin) - $iv * sin(6 * $latitudeOrigin)); |
||
393 | |||
394 | if ($MO === $northing) { |
||
395 | $latitude = 0; |
||
396 | $longitude = $longitudeOrigin + $easting / $a; |
||
397 | } else { |
||
398 | $A = ($MO + $northing) / $a; |
||
399 | $B = $A ** 2 + $easting ** 2 / $a ** 2; |
||
400 | |||
401 | $latitude = $A; |
||
402 | $C = sqrt(1 - $e2 * sin($latitude) ** 2) * tan($latitude); |
||
403 | do { |
||
404 | $latitudeN = $latitude; |
||
405 | $Ma = $i * $latitude - $ii * sin(2 * $latitude) + $iii * sin(4 * $latitude) - $iv * sin(6 * $latitude); |
||
406 | $MnPrime = $i - 2 * $ii * cos(2 * $latitude) + 4 * $iii * cos(4 * $latitude) - 6 * $iv * cos(6 * $latitude); |
||
407 | $latitude = $latitude - ($A * ($C * $Ma + 1) - $Ma - $C * ($Ma ** 2 + $B) / 2) / ($e2 * sin(2 * $latitude) * ($Ma ** 2 + $B - 2 * $A * $Ma) / 4 * $C + ($A - $Ma) * ($C * $MnPrime - (2 / sin(2 * $latitude))) - $MnPrime); |
||
408 | $C = sqrt(1 - $e2 * sin($latitude) ** 2) * tan($latitude); |
||
409 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||
410 | |||
411 | $longitude = $longitudeOrigin + self::asin($easting * $C / $a) / sin($latitude); |
||
412 | } |
||
413 | |||
414 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
415 | } |
||
416 | |||
417 | /** |
||
418 | * Bonne. |
||
419 | */ |
||
420 | public function bonne( |
||
421 | Geographic2D|Geographic3D $to, |
||
422 | Angle $latitudeOfNaturalOrigin, |
||
423 | Angle $longitudeOfNaturalOrigin, |
||
424 | Length $falseEasting, |
||
425 | Length $falseNorthing |
||
426 | ): GeographicPoint { |
||
427 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
428 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
429 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
430 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
431 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
432 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
433 | $e = $ellipsoid->getEccentricity(); |
||
434 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
435 | $e4 = $e ** 4; |
||
436 | $e6 = $e ** 6; |
||
437 | |||
438 | $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2); |
||
439 | $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
||
440 | $rho = hypot($easting, $a * $mO / sin($latitudeOrigin) - $northing) * static::sign($latitudeOrigin); |
||
441 | |||
442 | $M = $a * $mO / sin($latitudeOrigin) + $MO - $rho; |
||
443 | $mu = $M / ($a * (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256)); |
||
444 | $e1 = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2)); |
||
445 | |||
446 | $latitude = $mu + ((3 * $e1 / 2) - (27 * $e1 ** 3 / 32)) * sin(2 * $mu) + ((21 * $e1 ** 2 / 16) - (55 * $e1 ** 4 / 32)) * sin(4 * $mu) + (151 * $e1 ** 3 / 96) * sin(6 * $mu) + (1097 * $e1 ** 4 / 512) * sin(8 * $mu); |
||
447 | $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2); |
||
448 | |||
449 | if ($m === 0.0) { |
||
450 | $longitude = $longitudeOrigin; // pole |
||
451 | } elseif ($latitudeOrigin >= 0) { |
||
452 | $longitude = $longitudeOrigin + $rho * atan2($easting, $a * $mO / sin($latitudeOrigin) - $northing) / $a / $m; |
||
453 | } else { |
||
454 | $longitude = $longitudeOrigin + $rho * atan2(-$easting, -($a * $mO / sin($latitudeOrigin) - $northing)) / $a / $m; |
||
455 | } |
||
456 | |||
457 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
458 | } |
||
459 | |||
460 | /** |
||
461 | * Bonne South Orientated. |
||
462 | */ |
||
463 | public function bonneSouthOrientated( |
||
464 | Geographic2D|Geographic3D $to, |
||
465 | Angle $latitudeOfNaturalOrigin, |
||
466 | Angle $longitudeOfNaturalOrigin, |
||
467 | Length $falseEasting, |
||
468 | Length $falseNorthing |
||
469 | ): GeographicPoint { |
||
470 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
471 | $westing = $falseEasting->asMetres()->getValue() - $this->westing->asMetres()->getValue(); |
||
472 | $southing = $falseNorthing->asMetres()->getValue() - $this->southing->asMetres()->getValue(); |
||
473 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
474 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
475 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
476 | $e = $ellipsoid->getEccentricity(); |
||
477 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
478 | $e4 = $e ** 4; |
||
479 | $e6 = $e ** 6; |
||
480 | |||
481 | $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2); |
||
482 | $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
||
483 | $rho = hypot($westing, $a * $mO / sin($latitudeOrigin) - $southing) * static::sign($latitudeOrigin); |
||
484 | |||
485 | $M = $a * $mO / sin($latitudeOrigin) + $MO - $rho; |
||
486 | $mu = $M / ($a * (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256)); |
||
487 | $e1 = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2)); |
||
488 | |||
489 | $latitude = $mu + ((3 * $e1 / 2) - (27 * $e1 ** 3 / 32)) * sin(2 * $mu) + ((21 * $e1 ** 2 / 16) - (55 * $e1 ** 4 / 32)) * sin(4 * $mu) + (151 * $e1 ** 3 / 96) * sin(6 * $mu) + (1097 * $e1 ** 4 / 512) * sin(8 * $mu); |
||
490 | $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2); |
||
491 | |||
492 | if ($m === 0.0) { |
||
493 | $longitude = $longitudeOrigin; // pole |
||
494 | } elseif ($latitudeOrigin >= 0) { |
||
495 | $longitude = $longitudeOrigin + $rho * atan2($westing, $a * $mO / sin($latitudeOrigin) - $southing) / $a / $m; |
||
496 | } else { |
||
497 | $longitude = $longitudeOrigin + $rho * atan2(-$westing, -($a * $mO / sin($latitudeOrigin) - $southing)) / $a / $m; |
||
498 | } |
||
499 | |||
500 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
501 | } |
||
502 | |||
503 | /** |
||
504 | * Cartesian Grid Offsets |
||
505 | * This transformation allows calculation of coordinates in the target system by adding the parameter value to the |
||
506 | * coordinate values of the point in the source system. |
||
507 | */ |
||
508 | public function offsets( |
||
509 | Projected $to, |
||
510 | Length $eastingOffset, |
||
511 | Length $northingOffset |
||
512 | ): self { |
||
513 | $easting = $this->easting->asMetres()->getValue() + $eastingOffset->asMetres()->getValue(); |
||
514 | $northing = $this->northing->asMetres()->getValue() + $northingOffset->asMetres()->getValue(); |
||
515 | |||
516 | return static::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
517 | } |
||
518 | |||
519 | /** |
||
520 | * Cassini-Soldner. |
||
521 | */ |
||
522 | public function cassiniSoldner( |
||
523 | Geographic2D|Geographic3D $to, |
||
524 | Angle $latitudeOfNaturalOrigin, |
||
525 | Angle $longitudeOfNaturalOrigin, |
||
526 | Length $falseEasting, |
||
527 | Length $falseNorthing |
||
528 | ): GeographicPoint { |
||
529 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
530 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
531 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
532 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
533 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
534 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
535 | $e = $ellipsoid->getEccentricity(); |
||
536 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
537 | $e4 = $e ** 4; |
||
538 | $e6 = $e ** 6; |
||
539 | |||
540 | $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
||
541 | |||
542 | $e1 = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2)); |
||
543 | $M = $MO + $northing; |
||
544 | $mu = $M / ($a * (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256)); |
||
545 | $latitudeCentralMeridian = $mu + (3 * $e1 / 2 - 27 * $e1 ** 3 / 32) * sin(2 * $mu) + (21 * $e1 ** 2 / 16 - 55 * $e1 ** 4 / 32) * sin(4 * $mu) + (151 * $e1 ** 3 / 96) * sin(6 * $mu) + (1097 * $e1 ** 4 / 512) * sin(8 * $mu); |
||
546 | |||
547 | $nu = $a / sqrt(1 - $e2 * sin($latitudeCentralMeridian) ** 2); |
||
548 | $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitudeCentralMeridian) ** 2) ** 1.5; |
||
549 | |||
550 | $T = tan($latitudeCentralMeridian) ** 2; |
||
551 | $D = $easting / $nu; |
||
552 | |||
553 | $latitude = $latitudeCentralMeridian - ($nu * tan($latitudeCentralMeridian) / $rho) * ($D ** 2 / 2 - (1 + 3 * $T) * $D ** 4 / 24); |
||
554 | $longitude = $longitudeOrigin + ($D - $T * $D ** 3 / 3 + (1 + 3 * $T) * $T * $D ** 5 / 15) / cos($latitudeCentralMeridian); |
||
555 | |||
556 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
557 | } |
||
558 | |||
559 | /** |
||
560 | * Hyperbolic Cassini-Soldner. |
||
561 | */ |
||
562 | public function hyperbolicCassiniSoldner( |
||
602 | } |
||
603 | |||
604 | /** |
||
605 | * Colombia Urban. |
||
606 | */ |
||
607 | public function columbiaUrban( |
||
608 | Geographic2D|Geographic3D $to, |
||
609 | Angle $latitudeOfNaturalOrigin, |
||
610 | Angle $longitudeOfNaturalOrigin, |
||
611 | Length $falseEasting, |
||
612 | Length $falseNorthing, |
||
613 | Length $projectionPlaneOriginHeight |
||
614 | ): GeographicPoint { |
||
615 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
616 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
617 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
618 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
619 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
620 | $heightOrigin = $projectionPlaneOriginHeight->asMetres()->getValue(); |
||
621 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
622 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
623 | |||
624 | $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** 1.5; |
||
625 | |||
626 | $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2)); |
||
627 | |||
628 | $B = tan($latitudeOrigin) / (2 * $rhoOrigin * $nuOrigin); |
||
629 | $C = 1 + $heightOrigin / $a; |
||
630 | $D = $rhoOrigin * (1 + $heightOrigin / ($a * (1 - $e2))); |
||
631 | |||
632 | $latitude = $latitudeOrigin + ($northing / $D) - $B * ($easting / $C) ** 2; |
||
633 | $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2)); |
||
634 | $longitude = $longitudeOrigin + $easting / ($C * $nu * cos($latitude)); |
||
635 | |||
636 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
637 | } |
||
638 | |||
639 | /** |
||
640 | * Equal Earth. |
||
641 | */ |
||
642 | public function equalEarth( |
||
643 | Geographic2D|Geographic3D $to, |
||
644 | Angle $longitudeOfNaturalOrigin, |
||
645 | Length $falseEasting, |
||
646 | Length $falseNorthing |
||
647 | ): GeographicPoint { |
||
648 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
649 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
650 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
651 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
652 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
653 | $e = $ellipsoid->getEccentricity(); |
||
654 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
655 | $e4 = $e ** 4; |
||
656 | $e6 = $e ** 6; |
||
657 | |||
658 | $qP = (1 - $e2) * ((1 / (1 - $e2)) - (1 / (2 * $e) * log((1 - $e) / (1 + $e)))); |
||
659 | $Rq = $a * sqrt($qP / 2); |
||
660 | |||
661 | $theta = $northing / $Rq; |
||
662 | do { |
||
663 | $thetaN = $theta; |
||
664 | $correctionFactor = ($theta * (1.340264 - 0.081106 * $theta ** 2 + $theta ** 6 * (0.000893 + 0.003796 * $theta ** 2)) - $northing / $Rq) / (1.340264 - 0.243318 * $theta ** 2 + $theta ** 6 * (0.006251 + 0.034164 * $theta ** 2)); |
||
665 | $theta -= $correctionFactor; |
||
666 | } while (abs($theta - $thetaN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||
667 | |||
668 | $beta = self::asin(2 * sin($theta) / sqrt(3)); |
||
669 | |||
670 | $latitude = $beta + (($e2 / 3 + 31 * $e4 / 180 + 517 * $e6 / 5040) * sin(2 * $beta)) + ((23 * $e4 / 360 + 251 * $e6 / 3780) * sin(4 * $beta)) + ((761 * $e6 / 45360) * sin(6 * $beta)); |
||
671 | $longitude = $longitudeOrigin + sqrt(3) * $easting * (1.340264 - 0.243318 * $theta ** 2 + $theta ** 6 * (0.006251 + 0.034164 * $theta ** 2)) / (2 * $Rq * cos($theta)); |
||
672 | |||
673 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
674 | } |
||
675 | |||
676 | /** |
||
677 | * Equidistant Cylindrical |
||
678 | * See method code 1029 for spherical development. See also Pseudo Plate Carree, method code 9825. |
||
679 | */ |
||
680 | public function equidistantCylindrical( |
||
681 | Geographic2D|Geographic3D $to, |
||
682 | Angle $latitudeOf1stStandardParallel, |
||
683 | Angle $longitudeOfNaturalOrigin, |
||
684 | Length $falseEasting, |
||
685 | Length $falseNorthing |
||
686 | ): GeographicPoint { |
||
687 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
688 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
689 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
690 | $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
||
691 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
692 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
693 | $e = $ellipsoid->getEccentricity(); |
||
694 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
695 | $e4 = $e ** 4; |
||
696 | $e6 = $e ** 6; |
||
697 | $e8 = $e ** 8; |
||
698 | $e10 = $e ** 10; |
||
699 | $e12 = $e ** 12; |
||
700 | $e14 = $e ** 14; |
||
701 | |||
702 | $n = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2)); |
||
703 | $n2 = $n ** 2; |
||
704 | $n3 = $n ** 3; |
||
705 | $n4 = $n ** 4; |
||
706 | $n5 = $n ** 5; |
||
707 | $n6 = $n ** 6; |
||
708 | $n7 = $n ** 7; |
||
709 | $mu = $northing / ($a * (1 - 1 / 4 * $e2 - 3 / 64 * $e4 - 5 / 256 * $e6 - 175 / 16384 * $e8 - 441 / 65536 * $e10 - 4851 / 1048576 * $e12 - 14157 / 4194304 * $e14)); |
||
710 | |||
711 | $latitude = $mu + (3 / 2 * $n - 27 / 32 * $n3 + 269 / 512 * $n5 - 6607 / 24576 * $n7) * sin(2 * $mu) |
||
712 | + (21 / 16 * $n2 - 55 / 32 * $n4 + 6759 / 4096 * $n6) * sin(4 * $mu) |
||
713 | + (151 / 96 * $n3 - 417 / 128 * $n5 + 87963 / 20480 * $n7) * sin(6 * $mu) |
||
714 | + (1097 / 512 * $n4 - 15543 / 2560 * $n6) * sin(8 * $mu) |
||
715 | + (8011 / 2560 * $n5 - 69119 / 6144 * $n7) * sin(10 * $mu) |
||
716 | + (293393 / 61440 * $n6) * sin(12 * $mu) |
||
717 | + (6845701 / 860160 * $n7) * sin(14 * $mu); |
||
718 | |||
719 | $longitude = $longitudeOrigin + $easting * sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2) / ($a * cos($latitudeFirstParallel)); |
||
720 | |||
721 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
722 | } |
||
723 | |||
724 | /** |
||
725 | * Guam Projection |
||
726 | * Simplified form of Oblique Azimuthal Equidistant projection method. |
||
727 | */ |
||
728 | public function guamProjection( |
||
729 | Geographic2D|Geographic3D $to, |
||
730 | Angle $latitudeOfNaturalOrigin, |
||
731 | Angle $longitudeOfNaturalOrigin, |
||
732 | Length $falseEasting, |
||
733 | Length $falseNorthing |
||
734 | ): GeographicPoint { |
||
735 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
736 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
737 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
738 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
739 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
740 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
741 | $e = $ellipsoid->getEccentricity(); |
||
742 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
743 | $e4 = $e ** 4; |
||
744 | $e6 = $e ** 6; |
||
745 | |||
746 | $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
||
747 | $e1 = (1 - sqrt(1 - $e2)) / (1 + sqrt(1 - $e2)); |
||
748 | $i = (1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256); |
||
749 | |||
750 | $latitude = $latitudeOrigin; |
||
751 | do { |
||
752 | $latitudeN = $latitude; |
||
753 | $M = $MO + $northing - ($easting ** 2 * tan($latitude) * sqrt(1 - $e2 * sin($latitude) ** 2) / (2 * $a)); |
||
754 | $mu = $M / ($a * $i); |
||
755 | $latitude = $mu + (3 * $e1 / 2 - 27 * $e1 ** 3 / 32) * sin(2 * $mu) + (21 * $e1 ** 2 / 16 - 55 * $e1 ** 4 / 32) * sin(4 * $mu) + (151 * $e1 ** 3 / 96) * sin(6 * $mu) + (1097 * $e1 ** 4 / 512) * sin(8 * $mu); |
||
756 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||
757 | |||
758 | $longitude = $longitudeOrigin + $easting * sqrt(1 - $e2 * sin($latitude) ** 2) / ($a * cos($latitude)); |
||
759 | |||
760 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
761 | } |
||
762 | |||
763 | /** |
||
764 | * Krovak. |
||
765 | */ |
||
766 | public function krovak( |
||
767 | Geographic2D|Geographic3D $to, |
||
768 | Angle $latitudeOfProjectionCentre, |
||
769 | Angle $longitudeOfOrigin, |
||
770 | Angle $coLatitudeOfConeAxis, |
||
771 | Angle $latitudeOfPseudoStandardParallel, |
||
772 | Scale $scaleFactorOnPseudoStandardParallel, |
||
773 | Length $falseEasting, |
||
774 | Length $falseNorthing |
||
775 | ): GeographicPoint { |
||
776 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
777 | $longitudeOffset = $this->crs->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue() - $to->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue(); |
||
778 | $westing = $this->westing->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
779 | $southing = $this->southing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
780 | $latitudeC = $latitudeOfProjectionCentre->asRadians()->getValue(); |
||
781 | $longitudeO = $longitudeOfOrigin->asRadians()->getValue(); |
||
782 | $alphaC = $coLatitudeOfConeAxis->asRadians()->getValue(); |
||
783 | $latitudeP = $latitudeOfPseudoStandardParallel->asRadians()->getValue(); |
||
784 | $kP = $scaleFactorOnPseudoStandardParallel->asUnity()->getValue(); |
||
785 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
786 | $e = $ellipsoid->getEccentricity(); |
||
787 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
788 | |||
789 | $A = $a * sqrt(1 - $e2) / (1 - $e2 * sin($latitudeC) ** 2); |
||
790 | $B = sqrt(1 + $e2 * cos($latitudeC) ** 4 / (1 - $e2)); |
||
791 | $upsilonO = self::asin(sin($latitudeC) / $B); |
||
792 | $tO = tan(M_PI / 4 + $upsilonO / 2) * ((1 + $e * sin($latitudeC)) / (1 - $e * sin($latitudeC))) ** ($e * $B / 2) / (tan(M_PI / 4 + $latitudeC / 2) ** $B); |
||
793 | $n = sin($latitudeP); |
||
794 | $rO = $kP * $A / tan($latitudeP); |
||
795 | |||
796 | $r = hypot($southing, $westing) ?: 1; |
||
797 | $theta = atan2($westing, $southing); |
||
798 | $D = $theta / sin($latitudeP); |
||
799 | $T = 2 * (atan(($rO / $r) ** (1 / $n) * tan(M_PI / 4 + $latitudeP / 2)) - M_PI / 4); |
||
800 | $U = self::asin(cos($alphaC) * sin($T) - sin($alphaC) * cos($T) * cos($D)); |
||
801 | $V = self::asin(cos($T) * sin($D) / cos($U)); |
||
802 | |||
803 | $latitude = $U; |
||
804 | do { |
||
805 | $latitudeN = $latitude; |
||
806 | $latitude = 2 * (atan($tO ** (-1 / $B) * tan($U / 2 + M_PI / 4) ** (1 / $B) * ((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2)) - M_PI / 4); |
||
807 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||
808 | |||
809 | $longitude = $longitudeO + $longitudeOffset - $V / $B; |
||
810 | |||
811 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
812 | } |
||
813 | |||
814 | /** |
||
815 | * Krovak Modified |
||
816 | * Incorporates a polynomial transformation which is defined to be exact and for practical purposes is considered |
||
817 | * to be a map projection. |
||
818 | */ |
||
819 | public function krovakModified( |
||
820 | Geographic2D|Geographic3D $to, |
||
821 | Angle $latitudeOfProjectionCentre, |
||
822 | Angle $longitudeOfOrigin, |
||
823 | Angle $coLatitudeOfConeAxis, |
||
824 | Angle $latitudeOfPseudoStandardParallel, |
||
825 | Scale $scaleFactorOnPseudoStandardParallel, |
||
826 | Length $falseEasting, |
||
827 | Length $falseNorthing, |
||
828 | Length $ordinate1OfEvaluationPoint, |
||
829 | Length $ordinate2OfEvaluationPoint, |
||
830 | Coefficient $C1, |
||
831 | Coefficient $C2, |
||
832 | Coefficient $C3, |
||
833 | Coefficient $C4, |
||
834 | Coefficient $C5, |
||
835 | Coefficient $C6, |
||
836 | Coefficient $C7, |
||
837 | Coefficient $C8, |
||
838 | Coefficient $C9, |
||
839 | Coefficient $C10 |
||
840 | ): GeographicPoint { |
||
841 | $Xr = $this->getSouthing()->asMetres()->getValue() - $falseNorthing->asMetres()->getValue() - $ordinate1OfEvaluationPoint->asMetres()->getValue(); |
||
842 | $Yr = $this->getWesting()->asMetres()->getValue() - $falseEasting->asMetres()->getValue() - $ordinate2OfEvaluationPoint->asMetres()->getValue(); |
||
843 | $c1 = $C1->asUnity()->getValue(); |
||
844 | $c2 = $C2->asUnity()->getValue(); |
||
845 | $c3 = $C3->asUnity()->getValue(); |
||
846 | $c4 = $C4->asUnity()->getValue(); |
||
847 | $c5 = $C5->asUnity()->getValue(); |
||
848 | $c6 = $C6->asUnity()->getValue(); |
||
849 | $c7 = $C7->asUnity()->getValue(); |
||
850 | $c8 = $C8->asUnity()->getValue(); |
||
851 | $c9 = $C9->asUnity()->getValue(); |
||
852 | $c10 = $C10->asUnity()->getValue(); |
||
853 | |||
854 | $dX = $c1 + $c3 * $Xr - $c4 * $Yr - 2 * $c6 * $Xr * $Yr + $c5 * ($Xr ** 2 - $Yr ** 2) + $c7 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) - $c8 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) + 4 * $c9 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c10 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2); |
||
855 | $dY = $c2 + $c3 * $Yr + $c4 * $Xr + 2 * $c5 * $Xr * $Yr + $c6 * ($Xr ** 2 - $Yr ** 2) + $c8 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) + $c7 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) - 4 * $c10 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c9 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2); |
||
856 | |||
857 | $Xp = $this->getSouthing()->asMetres()->getValue() - $falseNorthing->asMetres()->getValue() + $dX; |
||
858 | $Yp = $this->getWesting()->asMetres()->getValue() - $falseEasting->asMetres()->getValue() + $dY; |
||
859 | |||
860 | $asKrovak = self::create($this->crs, new Metre(-$Yp), new Metre(-$Xp), new Metre($Yp), new Metre($Xp), $this->epoch); |
||
861 | |||
862 | return $asKrovak->krovak($to, $latitudeOfProjectionCentre, $longitudeOfOrigin, $coLatitudeOfConeAxis, $latitudeOfPseudoStandardParallel, $scaleFactorOnPseudoStandardParallel, new Metre(0), new Metre(0)); |
||
863 | } |
||
864 | |||
865 | /** |
||
866 | * Lambert Azimuthal Equal Area |
||
867 | * This is the ellipsoidal form of the projection. |
||
868 | */ |
||
869 | public function lambertAzimuthalEqualArea( |
||
870 | Geographic2D|Geographic3D $to, |
||
871 | Angle $latitudeOfNaturalOrigin, |
||
872 | Angle $longitudeOfNaturalOrigin, |
||
873 | Length $falseEasting, |
||
874 | Length $falseNorthing |
||
875 | ): GeographicPoint { |
||
876 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
877 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
878 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
879 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
880 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
881 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
882 | $e = $ellipsoid->getEccentricity(); |
||
883 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
884 | $e4 = $e ** 4; |
||
885 | $e6 = $e ** 6; |
||
886 | |||
887 | $qO = (1 - $e2) * ((sin($latitudeOrigin) / (1 - $e2 * sin($latitudeOrigin) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))))); |
||
888 | $qP = (1 - $e2) * ((1 / (1 - $e2)) - ((1 / (2 * $e)) * log((1 - $e) / (1 + $e)))); |
||
889 | $betaO = self::asin($qO / $qP); |
||
890 | $Rq = $a * sqrt($qP / 2); |
||
891 | $D = $a * (cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2)) / ($Rq * cos($betaO)); |
||
892 | $rho = hypot($easting / $D, $D * $northing) ?: 1; |
||
893 | $C = 2 * self::asin($rho / (2 * $Rq)); |
||
894 | $beta = self::asin(cos($C) * sin($betaO) + ($D * $northing * sin($C) * cos($betaO)) / $rho); |
||
895 | |||
896 | $latitude = $beta + (($e2 / 3 + 31 * $e4 / 180 + 517 * $e6 / 5040) * sin(2 * $beta)) + ((23 * $e4 / 360 + 251 * $e6 / 3780) * sin(4 * $beta)) + ((761 * $e6 / 45360) * sin(6 * $beta)); |
||
897 | $longitude = $longitudeOrigin + atan2($easting * sin($C), $D * $rho * cos($betaO) * cos($C) - $D ** 2 * $northing * sin($betaO) * sin($C)); |
||
898 | |||
899 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
900 | } |
||
901 | |||
902 | /** |
||
903 | * Lambert Azimuthal Equal Area (Spherical) |
||
904 | * This is the spherical form of the projection. See coordinate operation method Lambert Azimuthal Equal Area |
||
905 | * (code 9820) for ellipsoidal form. Differences of several tens of metres result from comparison of the two |
||
906 | * methods. |
||
907 | */ |
||
908 | public function lambertAzimuthalEqualAreaSpherical( |
||
909 | Geographic2D|Geographic3D $to, |
||
910 | Angle $latitudeOfNaturalOrigin, |
||
911 | Angle $longitudeOfNaturalOrigin, |
||
912 | Length $falseEasting, |
||
913 | Length $falseNorthing |
||
914 | ): GeographicPoint { |
||
915 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
916 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
917 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
918 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
919 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
920 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
921 | |||
922 | $rho = hypot($easting, $northing) ?: 1; |
||
923 | $c = 2 * self::asin($rho / (2 * $a)); |
||
924 | |||
925 | $latitude = self::asin(cos($c) * sin($latitudeOrigin) + ($northing * sin($c) * cos($latitudeOrigin) / $rho)); |
||
926 | |||
927 | if ($latitudeOrigin === 90.0) { |
||
928 | $longitude = $longitudeOrigin + atan($easting / -$northing); |
||
929 | } elseif ($latitudeOrigin === -90.0) { |
||
930 | $longitude = $longitudeOrigin + atan($easting / $northing); |
||
931 | } else { |
||
932 | $longitudeDenominator = ($rho * cos($latitudeOrigin) * cos($c) - $northing * sin($latitudeOrigin) * sin($c)); |
||
933 | $longitude = $longitudeOrigin + atan($easting * sin($c) / $longitudeDenominator); |
||
934 | if ($longitudeDenominator < 0) { |
||
935 | $longitude += M_PI; |
||
936 | } |
||
937 | } |
||
938 | |||
939 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
940 | } |
||
941 | |||
942 | /** |
||
943 | * Lambert Conic Conformal (1SP). |
||
944 | */ |
||
945 | public function lambertConicConformal1SP( |
||
946 | Geographic2D|Geographic3D $to, |
||
947 | Angle $latitudeOfNaturalOrigin, |
||
948 | Angle $longitudeOfNaturalOrigin, |
||
949 | Scale $scaleFactorAtNaturalOrigin, |
||
950 | Length $falseEasting, |
||
951 | Length $falseNorthing |
||
952 | ): GeographicPoint { |
||
953 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
954 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
955 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
956 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
957 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
958 | $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
||
959 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
960 | $e = $ellipsoid->getEccentricity(); |
||
961 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
962 | |||
963 | $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2); |
||
964 | $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2); |
||
965 | $n = sin($latitudeOrigin); |
||
966 | $F = $mO / ($n * $tO ** $n); |
||
967 | $rO = $a * $F * $tO ** $n * $scaleFactorOrigin; |
||
968 | $r = hypot($easting, $rO - $northing); |
||
969 | if ($n >= 0) { |
||
970 | $theta = atan2($easting, $rO - $northing); |
||
971 | } else { |
||
972 | $r = -$r; |
||
973 | $theta = atan2(-$easting, -($rO - $northing)); |
||
974 | } |
||
975 | |||
976 | $t = ($r / ($a * $scaleFactorOrigin * $F)) ** (1 / $n); |
||
977 | |||
978 | $latitude = M_PI / (2 - 2 * atan($t)); |
||
979 | do { |
||
980 | $latitudeN = $latitude; |
||
981 | $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2)); |
||
982 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||
983 | |||
984 | $longitude = $theta / $n + $longitudeOrigin; |
||
985 | |||
986 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
987 | } |
||
988 | |||
989 | /** |
||
990 | * Lambert Conic Conformal (west orientated). |
||
991 | */ |
||
992 | public function lambertConicConformalWestOrientated( |
||
993 | Geographic2D|Geographic3D $to, |
||
994 | Angle $latitudeOfNaturalOrigin, |
||
995 | Angle $longitudeOfNaturalOrigin, |
||
996 | Scale $scaleFactorAtNaturalOrigin, |
||
997 | Length $falseEasting, |
||
998 | Length $falseNorthing |
||
999 | ): GeographicPoint { |
||
1000 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
1001 | $westing = $falseEasting->asMetres()->getValue() - $this->westing->asMetres()->getValue(); |
||
1002 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
1003 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
1004 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
1005 | $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
||
1006 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
1007 | $e = $ellipsoid->getEccentricity(); |
||
1008 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
1009 | |||
1010 | $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2); |
||
1011 | $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2); |
||
1012 | $n = sin($latitudeOrigin); |
||
1013 | $F = $mO / ($n * $tO ** $n); |
||
1014 | $rO = $a * $F * $tO ** $n ** $scaleFactorOrigin; |
||
1015 | $r = hypot($westing, $rO - $northing); |
||
1016 | if ($n >= 0) { |
||
1017 | $theta = atan2($westing, $rO - $northing); |
||
1018 | } else { |
||
1019 | $r = -$r; |
||
1020 | $theta = atan2(-$westing, -($rO - $northing)); |
||
1021 | } |
||
1022 | |||
1023 | $t = ($r / ($a * $scaleFactorOrigin * $F)) ** (1 / $n); |
||
1024 | |||
1025 | $latitude = M_PI / (2 - 2 * atan($t)); |
||
1026 | do { |
||
1027 | $latitudeN = $latitude; |
||
1028 | $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2)); |
||
1029 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||
1030 | |||
1031 | $longitude = $theta / $n + $longitudeOrigin; |
||
1032 | |||
1033 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
1034 | } |
||
1035 | |||
1036 | /** |
||
1037 | * Lambert Conic Conformal (1SP) Variant B. |
||
1038 | */ |
||
1039 | public function lambertConicConformal1SPVariantB( |
||
1040 | Geographic2D|Geographic3D $to, |
||
1041 | Angle $latitudeOfNaturalOrigin, |
||
1042 | Scale $scaleFactorAtNaturalOrigin, |
||
1043 | Angle $latitudeOfFalseOrigin, |
||
1044 | Angle $longitudeOfFalseOrigin, |
||
1045 | Length $eastingAtFalseOrigin, |
||
1046 | Length $northingAtFalseOrigin |
||
1047 | ): GeographicPoint { |
||
1048 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
1049 | $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue(); |
||
1050 | $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue(); |
||
1051 | $latitudeNaturalOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
1052 | $latitudeFalseOrigin = $latitudeOfFalseOrigin->asRadians()->getValue(); |
||
1053 | $longitudeFalseOrigin = $longitudeOfFalseOrigin->asRadians()->getValue(); |
||
1054 | $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
||
1055 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
1056 | $e = $ellipsoid->getEccentricity(); |
||
1057 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
1058 | |||
1059 | $mO = cos($latitudeNaturalOrigin) / sqrt(1 - $e2 * sin($latitudeNaturalOrigin) ** 2); |
||
1060 | $tO = tan(M_PI / 4 - $latitudeNaturalOrigin / 2) / ((1 - $e * sin($latitudeNaturalOrigin)) / (1 + $e * sin($latitudeNaturalOrigin))) ** ($e / 2); |
||
1061 | $tF = tan(M_PI / 4 - $latitudeFalseOrigin / 2) / ((1 - $e * sin($latitudeFalseOrigin)) / (1 + $e * sin($latitudeFalseOrigin))) ** ($e / 2); |
||
1062 | $n = sin($latitudeNaturalOrigin); |
||
1063 | $F = $mO / ($n * $tO ** $n); |
||
1064 | $rF = $a * $F * $tF ** $n * $scaleFactorOrigin; |
||
1065 | $r = hypot($easting, $rF - $northing); |
||
1066 | if ($n >= 0) { |
||
1067 | $theta = atan2($easting, $rF - $northing); |
||
1068 | } else { |
||
1069 | $r = -$r; |
||
1070 | $theta = atan2(-$easting, -($rF - $northing)); |
||
1071 | } |
||
1072 | |||
1073 | $t = ($r / ($a * $scaleFactorOrigin * $F)) ** (1 / $n); |
||
1074 | |||
1075 | $latitude = M_PI / (2 - 2 * atan($t)); |
||
1076 | do { |
||
1077 | $latitudeN = $latitude; |
||
1078 | $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2)); |
||
1079 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||
1080 | |||
1081 | $longitude = $theta / $n + $longitudeFalseOrigin; |
||
1082 | |||
1083 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
1084 | } |
||
1085 | |||
1086 | /** |
||
1087 | * Lambert Conic Conformal (2SP). |
||
1088 | */ |
||
1089 | public function lambertConicConformal2SP( |
||
1090 | Geographic2D|Geographic3D $to, |
||
1091 | Angle $latitudeOfFalseOrigin, |
||
1092 | Angle $longitudeOfFalseOrigin, |
||
1093 | Angle $latitudeOf1stStandardParallel, |
||
1094 | Angle $latitudeOf2ndStandardParallel, |
||
1095 | Length $eastingAtFalseOrigin, |
||
1096 | Length $northingAtFalseOrigin |
||
1097 | ): GeographicPoint { |
||
1098 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
1099 | $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue(); |
||
1100 | $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue(); |
||
1101 | $lambdaOrigin = $longitudeOfFalseOrigin->asRadians()->getValue(); |
||
1102 | $phiF = $latitudeOfFalseOrigin->asRadians()->getValue(); |
||
1103 | $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
||
1104 | $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue(); |
||
1105 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
1106 | $e = $ellipsoid->getEccentricity(); |
||
1107 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
1108 | |||
1109 | $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2); |
||
1110 | $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2); |
||
1111 | $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2); |
||
1112 | $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2); |
||
1113 | $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2); |
||
1114 | $n = (log($m1) - log($m2)) / (log($t1) - log($t2)); |
||
1115 | $F = $m1 / ($n * $t1 ** $n); |
||
1116 | $rF = $a * $F * $tF ** $n; |
||
1117 | $r = hypot($easting, $rF - $northing) * static::sign($n); |
||
1118 | $t = ($r / ($a * $F)) ** (1 / $n); |
||
1119 | if ($n >= 0) { |
||
1120 | $theta = atan2($easting, $rF - $northing); |
||
1121 | } else { |
||
1122 | $theta = atan2(-$easting, -($rF - $northing)); |
||
1123 | } |
||
1124 | |||
1125 | $latitude = M_PI / 2 - 2 * atan($t); |
||
1126 | do { |
||
1127 | $latitudeN = $latitude; |
||
1128 | $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2)); |
||
1129 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||
1130 | |||
1131 | $longitude = $theta / $n + $lambdaOrigin; |
||
1132 | |||
1133 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
1134 | } |
||
1135 | |||
1136 | /** |
||
1137 | * Lambert Conic Conformal (2SP Michigan). |
||
1138 | */ |
||
1139 | public function lambertConicConformal2SPMichigan( |
||
1140 | Geographic2D|Geographic3D $to, |
||
1141 | Angle $latitudeOfFalseOrigin, |
||
1142 | Angle $longitudeOfFalseOrigin, |
||
1143 | Angle $latitudeOf1stStandardParallel, |
||
1144 | Angle $latitudeOf2ndStandardParallel, |
||
1145 | Length $eastingAtFalseOrigin, |
||
1146 | Length $northingAtFalseOrigin, |
||
1147 | Scale $ellipsoidScalingFactor |
||
1148 | ): GeographicPoint { |
||
1149 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
1150 | $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue(); |
||
1151 | $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue(); |
||
1152 | $lambdaOrigin = $longitudeOfFalseOrigin->asRadians()->getValue(); |
||
1153 | $phiF = $latitudeOfFalseOrigin->asRadians()->getValue(); |
||
1154 | $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
||
1155 | $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue(); |
||
1156 | $K = $ellipsoidScalingFactor->asUnity()->getValue(); |
||
1157 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
1158 | $e = $ellipsoid->getEccentricity(); |
||
1159 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
1160 | |||
1161 | $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2); |
||
1162 | $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2); |
||
1163 | $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2); |
||
1164 | $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2); |
||
1165 | $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2); |
||
1166 | $n = (log($m1) - log($m2)) / (log($t1) - log($t2)); |
||
1167 | $F = $m1 / ($n * $t1 ** $n); |
||
1168 | $rF = $a * $K * $F * $tF ** $n; |
||
1169 | $r = sqrt($easting ** 2 + ($rF - $northing) ** 2) * static::sign($n); |
||
1170 | $t = ($r / ($a * $K * $F)) ** (1 / $n); |
||
1171 | if ($n >= 0) { |
||
1172 | $theta = atan2($easting, $rF - $northing); |
||
1173 | } else { |
||
1174 | $theta = atan2(-$easting, -($rF - $northing)); |
||
1175 | } |
||
1176 | |||
1177 | $latitude = M_PI / 2 - 2 * atan($t); |
||
1178 | do { |
||
1179 | $latitudeN = $latitude; |
||
1180 | $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2)); |
||
1181 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||
1182 | |||
1183 | $longitude = $theta / $n + $lambdaOrigin; |
||
1184 | |||
1185 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
1186 | } |
||
1187 | |||
1188 | /** |
||
1189 | * Lambert Conic Conformal (2SP Belgium) |
||
1190 | * In 2000 this modification was replaced through use of the regular Lambert Conic Conformal (2SP) method [9802] |
||
1191 | * with appropriately modified parameter values. |
||
1192 | */ |
||
1193 | public function lambertConicConformal2SPBelgium( |
||
1194 | Geographic2D|Geographic3D $to, |
||
1195 | Angle $latitudeOfFalseOrigin, |
||
1196 | Angle $longitudeOfFalseOrigin, |
||
1197 | Angle $latitudeOf1stStandardParallel, |
||
1198 | Angle $latitudeOf2ndStandardParallel, |
||
1199 | Length $eastingAtFalseOrigin, |
||
1200 | Length $northingAtFalseOrigin |
||
1201 | ): GeographicPoint { |
||
1202 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
1203 | $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue(); |
||
1204 | $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue(); |
||
1205 | $lambdaOrigin = $longitudeOfFalseOrigin->asRadians()->getValue(); |
||
1206 | $phiF = $latitudeOfFalseOrigin->asRadians()->getValue(); |
||
1207 | $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
||
1208 | $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue(); |
||
1209 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
1210 | $e = $ellipsoid->getEccentricity(); |
||
1211 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
1212 | |||
1213 | $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2); |
||
1214 | $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2); |
||
1215 | $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2); |
||
1216 | $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2); |
||
1217 | $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2); |
||
1218 | $n = (log($m1) - log($m2)) / (log($t1) - log($t2)); |
||
1219 | $F = $m1 / ($n * $t1 ** $n); |
||
1220 | $rF = $a * $F * $tF ** $n; |
||
1221 | if (is_nan($rF)) { |
||
1222 | $rF = 0; |
||
1223 | } |
||
1224 | $r = hypot($easting, $rF - $northing) * static::sign($n); |
||
1225 | $t = ($r / ($a * $F)) ** (1 / $n); |
||
1226 | if ($n >= 0) { |
||
1227 | $theta = atan2($easting, $rF - $northing); |
||
1228 | } else { |
||
1229 | $theta = atan2(-$easting, -($rF - $northing)); |
||
1230 | } |
||
1231 | |||
1232 | $latitude = M_PI / 2 - 2 * atan($t); |
||
1233 | do { |
||
1234 | $latitudeN = $latitude; |
||
1235 | $latitude = M_PI / 2 - 2 * atan($t * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2)); |
||
1236 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||
1237 | |||
1238 | $longitude = ($theta + (new ArcSecond(29.2985))->asRadians()->getValue()) / $n + $lambdaOrigin; |
||
1239 | |||
1240 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
1241 | } |
||
1242 | |||
1243 | /** |
||
1244 | * Lambert Conic Near-Conformal |
||
1245 | * The Lambert Near-Conformal projection is derived from the Lambert Conformal Conic projection by truncating the |
||
1246 | * series expansion of the projection formulae. |
||
1247 | */ |
||
1248 | public function lambertConicNearConformal( |
||
1249 | Geographic2D|Geographic3D $to, |
||
1250 | Angle $latitudeOfNaturalOrigin, |
||
1251 | Angle $longitudeOfNaturalOrigin, |
||
1252 | Scale $scaleFactorAtNaturalOrigin, |
||
1253 | Length $falseEasting, |
||
1254 | Length $falseNorthing |
||
1255 | ): GeographicPoint { |
||
1256 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
1257 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
1258 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
1259 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
1260 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
1261 | $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
||
1262 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
1263 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
1264 | $f = $ellipsoid->getFlattening(); |
||
1265 | |||
1266 | $n = $f / (2 - $f); |
||
1267 | $rhoO = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2); |
||
1268 | $nuO = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2)); |
||
1269 | $A = 1 / (6 * $rhoO * $nuO); |
||
1270 | $APrime = $a * (1 - $n + 5 * ($n ** 2 - $n ** 3) / 4 + 81 * ($n ** 4 - $n ** 5) / 64); |
||
1271 | $BPrime = 3 * $a * ($n - $n ** 2 + 7 * ($n ** 3 - $n ** 4) / 8 + 55 * $n ** 5 / 64) / 2; |
||
1272 | $CPrime = 15 * $a * ($n ** 2 - $n ** 3 + 3 * ($n ** 4 - $n ** 5) / 4) / 16; |
||
1273 | $DPrime = 35 * $a * ($n ** 3 - $n ** 4 + 11 * $n ** 5 / 16) / 48; |
||
1274 | $EPrime = 315 * $a * ($n ** 4 - $n ** 5) / 512; |
||
1275 | $rO = $scaleFactorOrigin * $nuO / tan($latitudeOrigin); |
||
1276 | $sO = $APrime * $latitudeOrigin - $BPrime * sin(2 * $latitudeOrigin) + $CPrime * sin(4 * $latitudeOrigin) - $DPrime * sin(6 * $latitudeOrigin) + $EPrime * sin(8 * $latitudeOrigin); |
||
1277 | |||
1278 | $theta = atan2($easting, $rO - $northing); |
||
1279 | $r = hypot($easting, $rO - $northing) * static::sign($latitudeOrigin); |
||
1280 | $M = $rO - $r; |
||
1281 | |||
1282 | $m = $M; |
||
1283 | do { |
||
1284 | $mN = $m; |
||
1285 | $m = $m - ($M - $scaleFactorOrigin * $m - $scaleFactorOrigin * $A * $m ** 3) / (-$scaleFactorOrigin - 3 * $scaleFactorOrigin * $A * $m ** 2); |
||
1286 | } while (abs($m - $mN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||
1287 | |||
1288 | $latitude = $latitudeOrigin + $m / $A; |
||
1289 | do { |
||
1290 | $latitudeN = $latitude; |
||
1291 | $latitude = $latitude + ($m + $sO - ($APrime * $latitude - $BPrime * sin(2 * $latitude) + $CPrime * sin(4 * $latitude) - $DPrime * sin(6 * $latitude) + $EPrime * sin(8 * $latitude))) / $APrime; |
||
1292 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||
1293 | |||
1294 | $longitude = $longitudeOrigin + $theta / sin($latitudeOrigin); |
||
1295 | |||
1296 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
1297 | } |
||
1298 | |||
1299 | /** |
||
1300 | * Lambert Cylindrical Equal Area |
||
1301 | * This is the ellipsoidal form of the projection. |
||
1302 | */ |
||
1303 | public function lambertCylindricalEqualArea( |
||
1304 | Geographic2D|Geographic3D $to, |
||
1305 | Angle $latitudeOf1stStandardParallel, |
||
1306 | Angle $longitudeOfNaturalOrigin, |
||
1307 | Length $falseEasting, |
||
1308 | Length $falseNorthing |
||
1309 | ): GeographicPoint { |
||
1310 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
1311 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
1312 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
1313 | $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
||
1314 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
1315 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
1316 | $e = $ellipsoid->getEccentricity(); |
||
1317 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
1318 | $e4 = $e ** 4; |
||
1319 | $e6 = $e ** 6; |
||
1320 | |||
1321 | $k = cos($latitudeFirstParallel) / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2); |
||
1322 | $qP = (1 - $e2) * ((sin(M_PI_2) / (1 - $e2 * sin(M_PI_2) ** 2)) - (1 / (2 * $e)) * log((1 - $e * sin(M_PI_2)) / (1 + $e * sin(M_PI_2)))); |
||
1323 | $beta = self::asin(2 * $northing * $k / ($a * $qP)); |
||
1324 | |||
1325 | $latitude = $beta + (($e2 / 3 + 31 * $e4 / 180 + 517 * $e6 / 5040) * sin(2 * $beta)) + ((23 * $e4 / 360 + 251 * $e6 / 3780) * sin(4 * $beta)) + ((761 * $e6 / 45360) * sin(6 * $beta)); |
||
1326 | $longitude = $longitudeOrigin + $easting / ($a * $k); |
||
1327 | |||
1328 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
1329 | } |
||
1330 | |||
1331 | /** |
||
1332 | * Lambert Cylindrical Equal Area |
||
1333 | * This is the spherical form of the projection. |
||
1334 | */ |
||
1335 | public function lambertCylindricalEqualAreaSpherical( |
||
1336 | Geographic2D|Geographic3D $to, |
||
1337 | Angle $latitudeOf1stStandardParallel, |
||
1338 | Angle $longitudeOfNaturalOrigin, |
||
1339 | Length $falseEasting, |
||
1340 | Length $falseNorthing |
||
1341 | ): GeographicPoint { |
||
1342 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
1343 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
1344 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
1345 | $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
||
1346 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
1347 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
1348 | |||
1349 | $latitude = self::asin(($northing / $a) * cos($latitudeFirstParallel)); |
||
1350 | $longitude = $longitudeOrigin + $easting / ($a * cos($latitudeFirstParallel)); |
||
1351 | |||
1352 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
1353 | } |
||
1354 | |||
1355 | /** |
||
1356 | * Modified Azimuthal Equidistant |
||
1357 | * Modified form of Oblique Azimuthal Equidistant projection method developed for Polynesian islands. For the |
||
1358 | * distances over which these projections are used (under 800km) this modification introduces no significant error. |
||
1359 | */ |
||
1360 | public function modifiedAzimuthalEquidistant( |
||
1361 | Geographic2D|Geographic3D $to, |
||
1362 | Angle $latitudeOfNaturalOrigin, |
||
1363 | Angle $longitudeOfNaturalOrigin, |
||
1364 | Length $falseEasting, |
||
1365 | Length $falseNorthing |
||
1366 | ): GeographicPoint { |
||
1367 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
1368 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
1369 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
1370 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
1371 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
1372 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
1373 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
1374 | |||
1375 | $nuO = $a / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2); |
||
1376 | $c = hypot($easting, $northing); |
||
1377 | $alpha = atan2($easting, $northing); |
||
1378 | $A = -$e2 * cos($latitudeOrigin) ** 2 * cos($alpha) ** 2 / (1 - $e2); |
||
1379 | $B = 3 * $e2 * (1 - $A) * sin($latitudeOrigin) * cos($latitudeOrigin) * cos($alpha) / (1 - $e2); |
||
1380 | $D = $c / $nuO; |
||
1381 | $J = $D - ($A * (1 + $A) * $D ** 3 / 6) - ($B * (1 + 3 * $A) * $D ** 4 / 24); |
||
1382 | $K = 1 - ($A * $J ** 2 / 2) - ($B * $J ** 3 / 6); |
||
1383 | $psi = self::asin(sin($latitudeOrigin) * cos($J) + cos($latitudeOrigin) * sin($J) * cos($alpha)); |
||
1384 | |||
1385 | $latitude = atan((1 - $e2 * $K * sin($latitudeOrigin) / sin($psi)) * tan($psi) / (1 - $e2)); |
||
1386 | $longitude = $longitudeOrigin + self::asin(sin($alpha) * sin($J) / cos($psi)); |
||
1387 | |||
1388 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
1389 | } |
||
1390 | |||
1391 | /** |
||
1392 | * Oblique Stereographic |
||
1393 | * This is not the same as the projection method of the same name in USGS Professional Paper no. 1395, "Map |
||
1394 | * Projections - A Working Manual" by John P. Snyder. |
||
1395 | */ |
||
1396 | public function obliqueStereographic( |
||
1397 | Geographic2D|Geographic3D $to, |
||
1398 | Angle $latitudeOfNaturalOrigin, |
||
1399 | Angle $longitudeOfNaturalOrigin, |
||
1400 | Scale $scaleFactorAtNaturalOrigin, |
||
1401 | Length $falseEasting, |
||
1402 | Length $falseNorthing |
||
1403 | ): GeographicPoint { |
||
1404 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
1405 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
1406 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
1407 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
1408 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
1409 | $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
||
1410 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
1411 | $e = $ellipsoid->getEccentricity(); |
||
1412 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
1413 | |||
1414 | $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2); |
||
1415 | $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2)); |
||
1416 | $R = sqrt($rhoOrigin * $nuOrigin); |
||
1417 | |||
1418 | $n = sqrt(1 + ($e2 * cos($latitudeOrigin) ** 4 / (1 - $e2))); |
||
1419 | $S1 = (1 + sin($latitudeOrigin)) / (1 - sin($latitudeOrigin)); |
||
1420 | $S2 = (1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin)); |
||
1421 | $w1 = ($S1 * ($S2 ** $e)) ** $n; |
||
1422 | $c = (($n + sin($latitudeOrigin)) * (1 - ($w1 - 1) / ($w1 + 1))) / (($n - sin($latitudeOrigin)) * (1 + ($w1 - 1) / ($w1 + 1))); |
||
1423 | $w2 = $c * $w1; |
||
1424 | $chiOrigin = self::asin(($w2 - 1) / ($w2 + 1)); |
||
1425 | |||
1426 | $g = 2 * $R * $scaleFactorOrigin * tan(M_PI / 4 - $chiOrigin / 2); |
||
1427 | $h = 4 * $R * $scaleFactorOrigin * tan($chiOrigin) + $g; |
||
1428 | $i = atan2($easting, $h + $northing); |
||
1429 | $j = atan2($easting, $g - $northing) - $i; |
||
1430 | $chi = $chiOrigin + 2 * atan(($northing - $easting * tan($j / 2)) / (2 * $R * $scaleFactorOrigin)); |
||
1431 | $lambda = $j + 2 * $i + $longitudeOrigin; |
||
1432 | |||
1433 | $longitude = ($lambda - $longitudeOrigin) / $n + $longitudeOrigin; |
||
1434 | |||
1435 | $psi = 0.5 * log((1 + sin($chi)) / ($c * (1 - sin($chi)))) / $n; |
||
1436 | |||
1437 | $latitude = 2 * atan(M_E ** $psi) - M_PI / 2; |
||
1438 | do { |
||
1439 | $latitudeN = $latitude; |
||
1440 | $psiN = log(tan($latitudeN / 2 + M_PI / 4) * ((1 - $e * sin($latitudeN)) / (1 + $e * sin($latitudeN))) ** ($e / 2)); |
||
1441 | $latitude = $latitudeN - ($psiN - $psi) * cos($latitudeN) * (1 - $e2 * sin($latitudeN) ** 2) / (1 - $e2); |
||
1442 | } while (abs($latitude - $latitudeN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||
1443 | |||
1444 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
1445 | } |
||
1446 | |||
1447 | /** |
||
1448 | * Polar Stereographic (variant A) |
||
1449 | * Latitude of natural origin must be either 90 degrees or -90 degrees (or equivalent in alternative angle unit). |
||
1450 | */ |
||
1451 | public function polarStereographicVariantA( |
||
1452 | Geographic2D|Geographic3D $to, |
||
1453 | Angle $latitudeOfNaturalOrigin, |
||
1454 | Angle $longitudeOfNaturalOrigin, |
||
1455 | Scale $scaleFactorAtNaturalOrigin, |
||
1456 | Length $falseEasting, |
||
1457 | Length $falseNorthing |
||
1458 | ): GeographicPoint { |
||
1459 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
1460 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
1461 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
1462 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
1463 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
1464 | $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
||
1465 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
1466 | $e = $ellipsoid->getEccentricity(); |
||
1467 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
1468 | $e4 = $e ** 4; |
||
1469 | $e6 = $e ** 6; |
||
1470 | $e8 = $e ** 8; |
||
1471 | |||
1472 | $rho = hypot($easting, $northing); |
||
1473 | $t = $rho * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $a * $scaleFactorOrigin); |
||
1474 | |||
1475 | if ($latitudeOrigin < 0) { |
||
1476 | $chi = 2 * atan($t) - M_PI / 2; |
||
1477 | } else { |
||
1478 | $chi = M_PI / 2 - 2 * atan($t); |
||
1479 | } |
||
1480 | |||
1481 | $latitude = $chi + ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) * sin(2 * $chi) + (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) * sin(4 * $chi) + (7 * $e6 / 120 + 81 * $e8 / 1120) * sin(6 * $chi) + (4279 * $e8 / 161280) * sin(8 * $chi); |
||
1482 | |||
1483 | if ($easting === 0.0) { |
||
1484 | $longitude = $longitudeOrigin; |
||
1485 | } elseif ($latitudeOrigin < 0) { |
||
1486 | $longitude = $longitudeOrigin + atan2($easting, $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue()); |
||
1487 | } else { |
||
1488 | $longitude = $longitudeOrigin + atan2($easting, $falseNorthing->asMetres()->getValue() - $this->northing->asMetres()->getValue()); |
||
1489 | } |
||
1490 | |||
1491 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
1492 | } |
||
1493 | |||
1494 | /** |
||
1495 | * Polar Stereographic (variant B). |
||
1496 | */ |
||
1497 | public function polarStereographicVariantB( |
||
1498 | Geographic2D|Geographic3D $to, |
||
1499 | Angle $latitudeOfStandardParallel, |
||
1500 | Angle $longitudeOfOrigin, |
||
1501 | Length $falseEasting, |
||
1502 | Length $falseNorthing |
||
1503 | ): GeographicPoint { |
||
1504 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
1505 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
1506 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
1507 | $standardParallel = $latitudeOfStandardParallel->asRadians()->getValue(); |
||
1508 | $longitudeOrigin = $longitudeOfOrigin->asRadians()->getValue(); |
||
1509 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
1510 | $e = $ellipsoid->getEccentricity(); |
||
1511 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
1512 | $e4 = $e ** 4; |
||
1513 | $e6 = $e ** 6; |
||
1514 | $e8 = $e ** 8; |
||
1515 | |||
1516 | $rho = hypot($easting, $northing); |
||
1517 | if ($standardParallel < 0) { |
||
1518 | $tF = tan(M_PI / 4 + $standardParallel / 2) / (((1 + $e * sin($standardParallel)) / (1 - $e * sin($standardParallel))) ** ($e / 2)); |
||
1519 | } else { |
||
1520 | $tF = tan(M_PI / 4 - $standardParallel / 2) * (((1 + $e * sin($standardParallel)) / (1 - $e * sin($standardParallel))) ** ($e / 2)); |
||
1521 | } |
||
1522 | $mF = cos($standardParallel) / sqrt(1 - $e2 * sin($standardParallel) ** 2); |
||
1523 | $kO = $mF * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $tF); |
||
1524 | $t = $rho * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $a * $kO); |
||
1525 | |||
1526 | if ($standardParallel < 0) { |
||
1527 | $chi = 2 * atan($t) - M_PI / 2; |
||
1528 | } else { |
||
1529 | $chi = M_PI / 2 - 2 * atan($t); |
||
1530 | } |
||
1531 | |||
1532 | $latitude = $chi + ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) * sin(2 * $chi) + (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) * sin(4 * $chi) + (7 * $e6 / 120 + 81 * $e8 / 1120) * sin(6 * $chi) + (4279 * $e8 / 161280) * sin(8 * $chi); |
||
1533 | |||
1534 | if ($easting === 0.0) { |
||
1535 | $longitude = $longitudeOrigin; |
||
1536 | } elseif ($standardParallel < 0) { |
||
1537 | $longitude = $longitudeOrigin + atan2($easting, $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue()); |
||
1538 | } else { |
||
1539 | $longitude = $longitudeOrigin + atan2($easting, $falseNorthing->asMetres()->getValue() - $this->northing->asMetres()->getValue()); |
||
1540 | } |
||
1541 | |||
1542 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
1543 | } |
||
1544 | |||
1545 | /** |
||
1546 | * Polar Stereographic (variant C). |
||
1547 | */ |
||
1548 | public function polarStereographicVariantC( |
||
1549 | Geographic2D|Geographic3D $to, |
||
1550 | Angle $latitudeOfStandardParallel, |
||
1551 | Angle $longitudeOfOrigin, |
||
1552 | Length $eastingAtFalseOrigin, |
||
1553 | Length $northingAtFalseOrigin |
||
1554 | ): GeographicPoint { |
||
1555 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
1556 | $easting = $this->easting->asMetres()->getValue() - $eastingAtFalseOrigin->asMetres()->getValue(); |
||
1557 | $northing = $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue(); |
||
1558 | $standardParallel = $latitudeOfStandardParallel->asRadians()->getValue(); |
||
1559 | $longitudeOrigin = $longitudeOfOrigin->asRadians()->getValue(); |
||
1560 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
1561 | $e = $ellipsoid->getEccentricity(); |
||
1562 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
1563 | $e4 = $e ** 4; |
||
1564 | $e6 = $e ** 6; |
||
1565 | $e8 = $e ** 8; |
||
1566 | |||
1567 | if ($standardParallel < 0) { |
||
1568 | $tF = tan(M_PI / 4 + $standardParallel / 2) / (((1 + $e * sin($standardParallel)) / (1 - $e * sin($standardParallel))) ** ($e / 2)); |
||
1569 | } else { |
||
1570 | $tF = tan(M_PI / 4 - $standardParallel / 2) * (((1 + $e * sin($standardParallel)) / (1 - $e * sin($standardParallel))) ** ($e / 2)); |
||
1571 | } |
||
1572 | $mF = cos($standardParallel) / sqrt(1 - $e2 * sin($standardParallel) ** 2); |
||
1573 | $rhoF = $a * $mF; |
||
1574 | if ($standardParallel < 0) { |
||
1575 | $rho = hypot($easting, $northing + $rhoF); |
||
1576 | $t = $rho * $tF / $rhoF; |
||
1577 | $chi = 2 * atan($t) - M_PI / 2; |
||
1578 | } else { |
||
1579 | $rho = hypot($easting, $northing - $rhoF); |
||
1580 | $t = $rho * $tF / $rhoF; |
||
1581 | $chi = M_PI / 2 - 2 * atan($t); |
||
1582 | } |
||
1583 | |||
1584 | $latitude = $chi + ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) * sin(2 * $chi) + (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) * sin(4 * $chi) + (7 * $e6 / 120 + 81 * $e8 / 1120) * sin(6 * $chi) + (4279 * $e8 / 161280) * sin(8 * $chi); |
||
1585 | |||
1586 | if ($easting === 0.0) { |
||
1587 | $longitude = $longitudeOrigin; |
||
1588 | } elseif ($standardParallel < 0) { |
||
1589 | $longitude = $longitudeOrigin + atan2($easting, $this->northing->asMetres()->getValue() - $northingAtFalseOrigin->asMetres()->getValue() + $rhoF); |
||
1590 | } else { |
||
1591 | $longitude = $longitudeOrigin + atan2($easting, $northingAtFalseOrigin->asMetres()->getValue() - $this->northing->asMetres()->getValue() + $rhoF); |
||
1592 | } |
||
1593 | |||
1594 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
1595 | } |
||
1596 | |||
1597 | /** |
||
1598 | * Popular Visualisation Pseudo Mercator |
||
1599 | * Applies spherical formulas to the ellipsoid. As such does not have the properties of a true Mercator projection. |
||
1600 | */ |
||
1601 | public function popularVisualisationPseudoMercator( |
||
1602 | Geographic2D|Geographic3D $to, |
||
1603 | Angle $latitudeOfNaturalOrigin, |
||
1604 | Angle $longitudeOfNaturalOrigin, |
||
1605 | Length $falseEasting, |
||
1606 | Length $falseNorthing |
||
1607 | ): GeographicPoint { |
||
1608 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
1609 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
1610 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
1611 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
1612 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
1613 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
1614 | |||
1615 | $D = -$northing / $a; |
||
1616 | $latitude = M_PI / 2 - 2 * atan(M_E ** $D); |
||
1617 | $longitude = $easting / $a + $longitudeOrigin; |
||
1618 | |||
1619 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
1620 | } |
||
1621 | |||
1622 | /** |
||
1623 | * Similarity transformation |
||
1624 | * Defined for two-dimensional coordinate systems. |
||
1625 | */ |
||
1626 | public function similarityTransformation( |
||
1627 | Projected $to, |
||
1628 | Length $ordinate1OfEvaluationPointInTargetCRS, |
||
1629 | Length $ordinate2OfEvaluationPointInTargetCRS, |
||
1630 | Scale $scaleFactorForSourceCRSAxes, |
||
1631 | Angle $rotationAngleOfSourceCRSAxes, |
||
1632 | bool $inReverse |
||
1633 | ): self { |
||
1634 | $xs = $this->easting->asMetres()->getValue(); |
||
1635 | $ys = $this->northing->asMetres()->getValue(); |
||
1636 | $xo = $ordinate1OfEvaluationPointInTargetCRS->asMetres()->getValue(); |
||
1637 | $yo = $ordinate2OfEvaluationPointInTargetCRS->asMetres()->getValue(); |
||
1638 | $M = $scaleFactorForSourceCRSAxes->asUnity()->getValue(); |
||
1639 | $theta = $rotationAngleOfSourceCRSAxes->asRadians()->getValue(); |
||
1640 | |||
1641 | if ($inReverse) { |
||
1642 | $easting = (($xs - $xo) * cos($theta) - ($ys - $yo) * sin($theta)) / $M; |
||
1643 | $northing = (($xs - $xo) * sin($theta) + ($ys - $yo) * cos($theta)) / $M; |
||
1644 | } else { |
||
1645 | $easting = $xo + $xs * $M * cos($theta) + $ys * $M * sin($theta); |
||
1646 | $northing = $yo - $xs * $M * sin($theta) + $ys * $M * cos($theta); |
||
1647 | } |
||
1648 | |||
1649 | return self::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
1650 | } |
||
1651 | |||
1652 | /** |
||
1653 | * Mercator (variant A) |
||
1654 | * Note that in these formulas the parameter latitude of natural origin (latO) is not used. However for this |
||
1655 | * Mercator (variant A) method the EPSG dataset includes this parameter, which must have a value of zero, for |
||
1656 | * completeness in CRS labelling. |
||
1657 | */ |
||
1658 | public function mercatorVariantA( |
||
1659 | Geographic2D|Geographic3D $to, |
||
1660 | Angle $latitudeOfNaturalOrigin, |
||
1661 | Angle $longitudeOfNaturalOrigin, |
||
1662 | Scale $scaleFactorAtNaturalOrigin, |
||
1663 | Length $falseEasting, |
||
1664 | Length $falseNorthing |
||
1665 | ): GeographicPoint { |
||
1666 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
1667 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
1668 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
1669 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
1670 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
1671 | $scaleFactorOrigin = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
||
1672 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
1673 | $e = $ellipsoid->getEccentricity(); |
||
1674 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
1675 | $e4 = $e ** 4; |
||
1676 | $e6 = $e ** 6; |
||
1677 | $e8 = $e ** 8; |
||
1678 | |||
1679 | $t = M_E ** (($falseNorthing->asMetres()->getValue() - $this->northing->asMetres()->getValue()) / ($a * $scaleFactorOrigin)); |
||
1680 | $chi = M_PI / 2 - 2 * atan($t); |
||
1681 | |||
1682 | $latitude = $chi + ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) * sin(2 * $chi) + (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) * sin(4 * $chi) + (7 * $e6 / 120 + 81 * $e8 / 1120) * sin(6 * $chi) + (4279 * $e8 / 161280) * sin(8 * $chi); |
||
1683 | $longitude = $easting / ($a * $scaleFactorOrigin) + $longitudeOrigin; |
||
1684 | |||
1685 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
1686 | } |
||
1687 | |||
1688 | /** |
||
1689 | * Mercator (variant B) |
||
1690 | * Used for most nautical charts. |
||
1691 | */ |
||
1692 | public function mercatorVariantB( |
||
1693 | Geographic2D|Geographic3D $to, |
||
1694 | Angle $latitudeOf1stStandardParallel, |
||
1695 | Angle $longitudeOfNaturalOrigin, |
||
1696 | Length $falseEasting, |
||
1697 | Length $falseNorthing |
||
1698 | ): GeographicPoint { |
||
1699 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
1700 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
1701 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
1702 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
1703 | $firstStandardParallel = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
||
1704 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
1705 | $e = $ellipsoid->getEccentricity(); |
||
1706 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
1707 | $e4 = $e ** 4; |
||
1708 | $e6 = $e ** 6; |
||
1709 | $e8 = $e ** 8; |
||
1710 | |||
1711 | $scaleFactorOrigin = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2); |
||
1712 | |||
1713 | $t = M_E ** (($falseNorthing->asMetres()->getValue() - $this->northing->asMetres()->getValue()) / ($a * $scaleFactorOrigin)); |
||
1714 | $chi = M_PI / 2 - 2 * atan($t); |
||
1715 | |||
1716 | $latitude = $chi + ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) * sin(2 * $chi) + (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) * sin(4 * $chi) + (7 * $e6 / 120 + 81 * $e8 / 1120) * sin(6 * $chi) + (4279 * $e8 / 161280) * sin(8 * $chi); |
||
1717 | $longitude = $easting / ($a * $scaleFactorOrigin) + $longitudeOrigin; |
||
1718 | |||
1719 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
1720 | } |
||
1721 | |||
1722 | /** |
||
1723 | * Hotine Oblique Mercator (variant A). |
||
1724 | */ |
||
1725 | public function obliqueMercatorHotineVariantA( |
||
1726 | Geographic2D|Geographic3D $to, |
||
1727 | Angle $latitudeOfProjectionCentre, |
||
1728 | Angle $longitudeOfProjectionCentre, |
||
1729 | Angle $azimuthOfInitialLine, |
||
1730 | Angle $angleFromRectifiedToSkewGrid, |
||
1731 | Scale $scaleFactorOnInitialLine, |
||
1732 | Length $falseEasting, |
||
1733 | Length $falseNorthing |
||
1734 | ): GeographicPoint { |
||
1735 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
1736 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
1737 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
1738 | $latC = $latitudeOfProjectionCentre->asRadians()->getValue(); |
||
1739 | $lonC = $longitudeOfProjectionCentre->asRadians()->getValue(); |
||
1740 | $alphaC = $azimuthOfInitialLine->asRadians()->getValue(); |
||
1741 | $kC = $scaleFactorOnInitialLine->asUnity()->getValue(); |
||
1742 | $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue(); |
||
1743 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
1744 | $e = $ellipsoid->getEccentricity(); |
||
1745 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
1746 | $e4 = $e ** 4; |
||
1747 | $e6 = $e ** 6; |
||
1748 | $e8 = $e ** 8; |
||
1749 | |||
1750 | $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2))); |
||
1751 | $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2); |
||
1752 | $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2); |
||
1753 | $D = $B * sqrt(1 - $e2) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2)); |
||
1754 | $DD = max(1, $D ** 2); |
||
1755 | $F = $D + sqrt($DD - 1) * static::sign($latC); |
||
1756 | $H = $F * $tO ** $B; |
||
1757 | $G = ($F - 1 / $F) / 2; |
||
1758 | $gammaO = self::asin(sin($alphaC) / $D); |
||
1759 | $lonO = $lonC - self::asin($G * tan($gammaO)) / $B; |
||
1760 | |||
1761 | $v = $easting * cos($gammaC) - $northing * sin($gammaC); |
||
1762 | $u = $northing * cos($gammaC) + $easting * sin($gammaC); |
||
1763 | |||
1764 | $Q = M_E ** -($B * $v / $A); |
||
1765 | $S = ($Q - 1 / $Q) / 2; |
||
1766 | $T = ($Q + 1 / $Q) / 2; |
||
1767 | $V = sin($B * $u / $A); |
||
1768 | $U = ($V * cos($gammaO) + $S * sin($gammaO)) / $T; |
||
1769 | $t = ($H / sqrt((1 + $U) / (1 - $U))) ** (1 / $B); |
||
1770 | |||
1771 | $chi = M_PI / 2 - 2 * atan($t); |
||
1772 | |||
1773 | $latitude = $chi + sin(2 * $chi) * ($e2 / 2 + 5 * $e4 / 24 + $e6 / 12 + 13 * $e8 / 360) + sin(4 * $chi) * (7 * $e4 / 48 + 29 * $e6 / 240 + 811 * $e8 / 11520) + sin(6 * $chi) * (7 * $e6 / 120 + 81 * $e8 / 1120) + sin(8 * $chi) * (4279 * $e8 / 161280); |
||
1774 | $longitude = $lonO - atan2($S * cos($gammaO) - $V * sin($gammaO), cos($B * $u / $A)) / $B; |
||
1775 | |||
1776 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), null, $this->epoch); |
||
1777 | } |
||
1778 | |||
1779 | /** |
||
1780 | * Hotine Oblique Mercator (variant B). |
||
1781 | */ |
||
1782 | public function obliqueMercatorHotineVariantB( |
||
1840 | } |
||
1841 | |||
1842 | /** |
||
1843 | * Laborde Oblique Mercator. |
||
1844 | */ |
||
1845 | public function obliqueMercatorLaborde( |
||
1846 | Geographic2D|Geographic3D $to, |
||
1905 | } |
||
1906 | |||
1907 | /** |
||
1908 | * Transverse Mercator. |
||
1909 | */ |
||
1910 | public function transverseMercator( |
||
1911 | Geographic2D|Geographic3D $to, |
||
1912 | Angle $latitudeOfNaturalOrigin, |
||
1913 | Angle $longitudeOfNaturalOrigin, |
||
1914 | Scale $scaleFactorAtNaturalOrigin, |
||
1915 | Length $falseEasting, |
||
1916 | Length $falseNorthing |
||
1917 | ): GeographicPoint { |
||
1918 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
1919 | $easting = $this->easting->asMetres()->getValue() - $falseEasting->asMetres()->getValue(); |
||
1920 | $northing = $this->northing->asMetres()->getValue() - $falseNorthing->asMetres()->getValue(); |
||
1921 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
1922 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
1923 | $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
||
1924 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
1925 | $e = $ellipsoid->getEccentricity(); |
||
1926 | $f = $ellipsoid->getFlattening(); |
||
1927 | |||
1928 | $n = $f / (2 - $f); |
||
1929 | $B = ($a / (1 + $n)) * (1 + $n ** 2 / 4 + $n ** 4 / 64 + $n ** 6 / 256 + (25 / 16384) * $n ** 8); |
||
1930 | |||
1931 | $h1 = $n / 2 - (2 / 3) * $n ** 2 + (5 / 16) * $n ** 3 + (41 / 180) * $n ** 4 - (127 / 288) * $n ** 5 + (7891 / 37800) * $n ** 6 + (72161 / 387072) * $n ** 7 - (18975107 / 50803200) * $n ** 8; |
||
1932 | $h2 = (13 / 48) * $n ** 2 - (3 / 5) * $n ** 3 + (557 / 1440) * $n ** 4 + (281 / 630) * $n ** 5 - (1983433 / 1935360) * $n ** 6 + (13769 / 28800) * $n ** 7 + (148003883 / 174182400) * $n ** 8; |
||
1933 | $h3 = (61 / 240) * $n ** 3 - (103 / 140) * $n ** 4 + (15061 / 26880) * $n ** 5 + (167603 / 181440) * $n ** 6 - (67102379 / 29030400) * $n ** 7 + (79682431 / 79833600) * $n ** 8; |
||
1934 | $h4 = (49561 / 161280) * $n ** 4 - (179 / 168) * $n ** 5 + (6601661 / 7257600) * $n ** 6 + (97445 / 49896) * $n ** 7 - (40176129013 / 7664025600) * $n ** 8; |
||
1935 | $h5 = (34729 / 80640) * $n ** 5 - (3418889 / 1995840) * $n ** 6 + (14644087 / 9123840) * $n ** 7 + (2605413599 / 622702080) * $n ** 8; |
||
1936 | $h6 = (212378941 / 319334400) * $n ** 6 - (30705481 / 10378368) * $n ** 7 + (175214326799 / 58118860800) * $n ** 8; |
||
1937 | $h7 = (1522256789 / 1383782400) * $n ** 7 - (16759934899 / 3113510400) * $n ** 8; |
||
1938 | $h8 = (1424729850961 / 743921418240) * $n ** 8; |
||
1939 | |||
1940 | if ($latitudeOrigin === 0.0) { |
||
1941 | $mO = 0; |
||
1942 | } elseif ($latitudeOrigin === M_PI / 2) { |
||
1943 | $mO = $B * M_PI / 2; |
||
1944 | } elseif ($latitudeOrigin === -M_PI / 2) { |
||
1945 | $mO = $B * -M_PI / 2; |
||
1946 | } else { |
||
1947 | $qO = asinh(tan($latitudeOrigin)) - ($e * atanh($e * sin($latitudeOrigin))); |
||
1948 | $betaO = atan(sinh($qO)); |
||
1949 | $xiO0 = self::asin(sin($betaO)); |
||
1950 | $xiO1 = $h1 * sin(2 * $xiO0); |
||
1951 | $xiO2 = $h2 * sin(4 * $xiO0); |
||
1952 | $xiO3 = $h3 * sin(6 * $xiO0); |
||
1953 | $xiO4 = $h4 * sin(8 * $xiO0); |
||
1954 | $xiO5 = $h5 * sin(10 * $xiO0); |
||
1955 | $xiO6 = $h6 * sin(12 * $xiO0); |
||
1956 | $xiO7 = $h7 * sin(14 * $xiO0); |
||
1957 | $xiO8 = $h8 * sin(16 * $xiO0); |
||
1958 | $xiO = $xiO0 + $xiO1 + $xiO2 + $xiO3 + $xiO4 + $xiO5 + $xiO6 + $xiO7 + $xiO8; |
||
1959 | $mO = $B * $xiO; |
||
1960 | } |
||
1961 | |||
1962 | $h1 = $n / 2 - (2 / 3) * $n ** 2 + (37 / 96) * $n ** 3 - (1 / 360) * $n ** 4 - (81 / 512) * $n ** 5 + (96199 / 604800) * $n ** 6 - (5406467 / 38707200) * $n ** 7 + (7944359 / 67737600) * $n ** 8; |
||
1963 | $h2 = (1 / 48) * $n ** 2 + (1 / 15) * $n ** 3 - (437 / 1440) * $n ** 4 + (46 / 105) * $n ** 5 - (1118711 / 3870720) * $n ** 6 + (51841 / 1209600) * $n ** 7 + (24749483 / 348364800) * $n ** 8; |
||
1964 | $h3 = (17 / 480) * $n ** 3 - (37 / 840) * $n ** 4 - (209 / 4480) * $n ** 5 + (5569 / 90720) * $n ** 6 + (9261899 / 58060800) * $n ** 7 - (6457463 / 17740800) * $n ** 8; |
||
1965 | $h4 = (4397 / 161280) * $n ** 4 - (11 / 504) * $n ** 5 - (830251 / 7257600) * $n ** 6 + (466511 / 2494800) * $n ** 7 + (324154477 / 7664025600) * $n ** 8; |
||
1966 | $h5 = (4583 / 161280) * $n ** 5 - (108847 / 3991680) * $n ** 6 - (8005831 / 63866880) * $n ** 7 + (22894433 / 124540416) * $n ** 8; |
||
1967 | $h6 = (20648693 / 638668800) * $n ** 6 - (16363163 / 518918400) * $n ** 7 - (2204645983 / 12915302400) * $n ** 8; |
||
1968 | $h7 = (219941297 / 5535129600) * $n ** 7 - (497323811 / 12454041600) * $n ** 8; |
||
1969 | $h8 = (191773887257 / 3719607091200) * $n ** 8; |
||
1970 | |||
1971 | $eta = $easting / ($B * $kO); |
||
1972 | $xi = ($northing + $kO * $mO) / ($B * $kO); |
||
1973 | $xi1 = $h1 * sin(2 * $xi) * cosh(2 * $eta); |
||
1974 | $eta1 = $h1 * cos(2 * $xi) * sinh(2 * $eta); |
||
1975 | $xi2 = $h2 * sin(4 * $xi) * cosh(4 * $eta); |
||
1976 | $eta2 = $h2 * cos(4 * $xi) * sinh(4 * $eta); |
||
1977 | $xi3 = $h3 * sin(6 * $xi) * cosh(6 * $eta); |
||
1978 | $eta3 = $h3 * cos(6 * $xi) * sinh(6 * $eta); |
||
1979 | $xi4 = $h4 * sin(8 * $xi) * cosh(8 * $eta); |
||
1980 | $eta4 = $h4 * cos(8 * $xi) * sinh(8 * $eta); |
||
1981 | $xi5 = $h5 * sin(10 * $xi) * cosh(10 * $eta); |
||
1982 | $eta5 = $h5 * cos(10 * $xi) * sinh(10 * $eta); |
||
1983 | $xi6 = $h6 * sin(12 * $xi) * cosh(12 * $eta); |
||
1984 | $eta6 = $h6 * cos(12 * $xi) * sinh(12 * $eta); |
||
1985 | $xi7 = $h7 * sin(14 * $xi) * cosh(14 * $eta); |
||
1986 | $eta7 = $h7 * cos(14 * $xi) * sinh(14 * $eta); |
||
1987 | $xi8 = $h8 * sin(16 * $xi) * cosh(16 * $eta); |
||
1988 | $eta8 = $h8 * cos(16 * $xi) * sinh(16 * $eta); |
||
1989 | $xi0 = $xi - $xi1 - $xi2 - $xi3 - $xi4 - $xi5 - $xi6 - $xi7 - $xi8; |
||
1990 | $eta0 = $eta - $eta1 - $eta2 - $eta3 - $eta4 - $eta5 - $eta6 - $eta7 - $eta8; |
||
1991 | |||
1992 | $beta = self::asin(sin($xi0) / cosh($eta0)); |
||
1993 | |||
1994 | $QPrime = asinh(tan($beta)); |
||
1995 | $Q = asinh(tan($beta)); |
||
1996 | do { |
||
1997 | $QN = $Q; |
||
1998 | $Q = $QPrime + ($e * atanh($e * tanh($Q))); |
||
1999 | } while (abs($Q - $QN) >= static::ITERATION_CONVERGENCE_FORMULA); |
||
2000 | |||
2001 | $latitude = atan(sinh($Q)); |
||
2002 | $longitude = $longitudeOrigin + self::asin(tanh($eta0) / cos($beta)); |
||
2003 | |||
2004 | $height = $this->height && $to instanceof Geographic3D ? $this->height : null; |
||
2005 | |||
2006 | return GeographicPoint::create($to, new Radian($latitude), new Radian($longitude), $height, $this->epoch); |
||
2007 | } |
||
2008 | |||
2009 | /** |
||
2010 | * Transverse Mercator Zoned Grid System |
||
2011 | * If locations fall outwith the fixed zones the general Transverse Mercator method (code 9807) must be used for |
||
2012 | * each zone. |
||
2013 | */ |
||
2014 | public function transverseMercatorZonedGrid( |
||
2015 | Geographic2D|Geographic3D $to, |
||
2016 | Angle $latitudeOfNaturalOrigin, |
||
2017 | Angle $initialLongitude, |
||
2018 | Angle $zoneWidth, |
||
2019 | Scale $scaleFactorAtNaturalOrigin, |
||
2020 | Length $falseEasting, |
||
2021 | Length $falseNorthing |
||
2022 | ): GeographicPoint { |
||
2023 | $Z = (int) substr((string) $this->easting->asMetres()->getValue(), 0, 2); |
||
2024 | $falseEasting = $falseEasting->add(new Metre($Z * 1000000)); |
||
2025 | |||
2026 | $W = $zoneWidth->asDegrees()->getValue(); |
||
2027 | $longitudeOrigin = $initialLongitude->add(new Degree($Z * $W - $W / 2)); |
||
2028 | |||
2029 | return $this->transverseMercator($to, $latitudeOfNaturalOrigin, $longitudeOrigin, $scaleFactorAtNaturalOrigin, $falseEasting, $falseNorthing); |
||
2030 | } |
||
2031 | |||
2032 | /** |
||
2033 | * General polynomial. |
||
2034 | * @param Coefficient[] $powerCoefficients |
||
2035 | */ |
||
2036 | public function generalPolynomial( |
||
2037 | Projected $to, |
||
2038 | Length $ordinate1OfEvaluationPointInSourceCRS, |
||
2039 | Length $ordinate2OfEvaluationPointInSourceCRS, |
||
2040 | Length $ordinate1OfEvaluationPointInTargetCRS, |
||
2041 | Length $ordinate2OfEvaluationPointInTargetCRS, |
||
2042 | Scale $scalingFactorForSourceCRSCoordDifferences, |
||
2043 | Scale $scalingFactorForTargetCRSCoordDifferences, |
||
2044 | Scale $A0, |
||
2045 | Scale $B0, |
||
2046 | array $powerCoefficients |
||
2047 | ): self { |
||
2048 | $xs = $this->easting->getValue(); |
||
2049 | $ys = $this->northing->getValue(); |
||
2050 | |||
2051 | $t = $this->generalPolynomialUnitless( |
||
2052 | $xs, |
||
2053 | $ys, |
||
2054 | $ordinate1OfEvaluationPointInSourceCRS, |
||
2055 | $ordinate2OfEvaluationPointInSourceCRS, |
||
2056 | $ordinate1OfEvaluationPointInTargetCRS, |
||
2057 | $ordinate2OfEvaluationPointInTargetCRS, |
||
2058 | $scalingFactorForSourceCRSCoordDifferences, |
||
2059 | $scalingFactorForTargetCRSCoordDifferences, |
||
2060 | $A0, |
||
2061 | $B0, |
||
2062 | $powerCoefficients |
||
2063 | ); |
||
2064 | |||
2065 | $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId(); |
||
2066 | $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId(); |
||
2067 | |||
2068 | return static::createFromEastingNorthing( |
||
2069 | $to, |
||
2070 | Length::makeUnit($t['xt'], $xtUnit), |
||
2071 | Length::makeUnit($t['yt'], $ytUnit), |
||
2072 | $this->epoch |
||
2073 | ); |
||
2074 | } |
||
2075 | |||
2076 | /** |
||
2077 | * New Zealand Map Grid. |
||
2078 | */ |
||
2079 | public function newZealandMapGrid( |
||
2149 | } |
||
2150 | |||
2151 | /** |
||
2152 | * Complex polynomial. |
||
2153 | * Coordinate pairs treated as complex numbers. This exploits the correlation between the polynomial coefficients |
||
2154 | * and leads to a smaller number of coefficients than the general polynomials. |
||
2155 | */ |
||
2156 | public function complexPolynomial( |
||
2200 | ); |
||
2201 | } |
||
2202 | |||
2203 | /** |
||
2204 | * Ordnance Survey National Transformation |
||
2205 | * Geodetic transformation between ETRS89 (or WGS 84) and OSGB36 / National Grid. Uses ETRS89 / National Grid as |
||
2206 | * an intermediate coordinate system for bi-linear interpolation of gridded grid coordinate differences. |
||
2207 | */ |
||
2208 | public function OSTN15( |
||
2209 | Geographic2D $to, |
||
2210 | OSTNOSGM15Grid $eastingAndNorthingDifferenceFile |
||
2211 | ): GeographicPoint { |
||
2212 | $asETRS89 = $eastingAndNorthingDifferenceFile->applyReverseHorizontalAdjustment($this); |
||
2213 | |||
2214 | return $asETRS89->transverseMercator($to, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000)); |
||
2215 | } |
||
2216 | } |
||
2217 |