Passed
Push — master ( e5f776...37af97 )
by Doug
63:28
created

GeographicPoint::localOrthographic()   A

Complexity

Conditions 1
Paths 1

Size

Total Lines 29
Code Lines 16

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
cc 1
eloc 16
nc 1
nop 7
dl 0
loc 29
rs 9.7333
c 0
b 0
f 0
1
<?php
2
/**
3
 * PHPCoord.
4
 *
5
 * @author Doug Wright
6
 */
7
declare(strict_types=1);
8
9
namespace PHPCoord\Point;
10
11
use DateTime;
12
use DateTimeImmutable;
13
use DateTimeInterface;
14
use PHPCoord\CoordinateOperation\AutoConversion;
15
use PHPCoord\CoordinateOperation\ComplexNumber;
16
use PHPCoord\CoordinateOperation\ConvertiblePoint;
17
use PHPCoord\CoordinateOperation\GeocentricValue;
18
use PHPCoord\CoordinateOperation\GeographicGeoidHeightGrid;
19
use PHPCoord\CoordinateOperation\GeographicGrid;
20
use PHPCoord\CoordinateOperation\GeographicValue;
21
use PHPCoord\CoordinateOperation\NADCON5Grid;
22
use PHPCoord\CoordinateOperation\NADCON5Grids;
23
use PHPCoord\CoordinateOperation\OSTNOSGM15Grid;
24
use PHPCoord\CoordinateReferenceSystem\Compound;
25
use PHPCoord\CoordinateReferenceSystem\Geocentric;
26
use PHPCoord\CoordinateReferenceSystem\Geographic;
27
use PHPCoord\CoordinateReferenceSystem\Geographic2D;
28
use PHPCoord\CoordinateReferenceSystem\Geographic3D;
29
use PHPCoord\CoordinateReferenceSystem\Projected;
30
use PHPCoord\CoordinateReferenceSystem\Vertical;
31
use PHPCoord\CoordinateSystem\Axis;
32
use PHPCoord\CoordinateSystem\Cartesian;
33
use PHPCoord\Datum\Datum;
34
use PHPCoord\Exception\InvalidCoordinateReferenceSystemException;
35
use PHPCoord\Exception\UnknownAxisException;
36
use PHPCoord\Geometry\BoundingArea;
37
use PHPCoord\Geometry\Geodesic;
38
use PHPCoord\UnitOfMeasure\Angle\Angle;
39
use PHPCoord\UnitOfMeasure\Angle\ArcSecond;
40
use PHPCoord\UnitOfMeasure\Angle\Degree;
41
use PHPCoord\UnitOfMeasure\Angle\Radian;
42
use PHPCoord\UnitOfMeasure\Length\Length;
43
use PHPCoord\UnitOfMeasure\Length\Metre;
44
use PHPCoord\UnitOfMeasure\Scale\Coefficient;
45
use PHPCoord\UnitOfMeasure\Scale\Scale;
46
use PHPCoord\UnitOfMeasure\Scale\Unity;
47
48
use function abs;
49
use function asinh;
50
use function atan;
51
use function atan2;
52
use function atanh;
53
use function cos;
54
use function cosh;
55
use function count;
56
use function hypot;
57
use function implode;
58
use function is_nan;
59
use function log;
60
use function max;
61
use function sin;
62
use function sinh;
63
use function sqrt;
64
use function str_replace;
65
use function tan;
66
use function assert;
67
68
use const M_E;
69
use const M_PI;
70
71
/**
72
 * Coordinate representing a point on an ellipsoid.
73
 */
74
class GeographicPoint extends Point implements ConvertiblePoint
75
{
76
    use AutoConversion;
77
78
    /**
79
     * Latitude.
80
     */
81
    protected Angle $latitude;
82
83
    /**
84
     * Longitude.
85
     */
86
    protected Angle $longitude;
87
88
    /**
89
     * Height above ellipsoid (N.B. *not* height above ground, sea-level or anything else tangible).
90
     */
91
    protected ?Length $height;
92
93
    /**
94
     * Coordinate reference system.
95
     */
96
    protected Geographic2D|Geographic3D $crs;
97
98
    /**
99
     * Coordinate epoch (date for which the specified coordinates represented this point).
100
     */
101
    protected ?DateTimeImmutable $epoch;
102
103
    protected function __construct(Geographic2D|Geographic3D $crs, Angle $latitude, Angle $longitude, ?Length $height, ?DateTimeInterface $epoch)
104
    {
105
        if ($crs instanceof Geographic2D && $height !== null) {
106
            throw new InvalidCoordinateReferenceSystemException('A 2D geographic point must not include a height');
107
        }
108
109
        if ($crs instanceof Geographic3D && $height === null) {
110
            throw new InvalidCoordinateReferenceSystemException('A 3D geographic point must include a height, none given');
111
        }
112
113
        $this->crs = $crs;
114
115
        $latitude = $this->normaliseLatitude($latitude);
116
        $longitude = $this->normaliseLongitude($longitude);
117
118
        $this->latitude = $latitude::convert($latitude, $this->crs->getCoordinateSystem()->getAxisByName(Axis::GEODETIC_LATITUDE)->getUnitOfMeasureId());
119
        $this->longitude = $longitude::convert($longitude, $this->crs->getCoordinateSystem()->getAxisByName(Axis::GEODETIC_LONGITUDE)->getUnitOfMeasureId());
120
121
        if ($height) {
122
            $this->height = $height::convert($height, $this->crs->getCoordinateSystem()->getAxisByName(Axis::ELLIPSOIDAL_HEIGHT)->getUnitOfMeasureId());
123
        } else {
124
            $this->height = null;
125
        }
126
127
        if ($epoch instanceof DateTime) {
128
            $epoch = DateTimeImmutable::createFromMutable($epoch);
129
        }
130
        $this->epoch = $epoch;
131
    }
132
133
    /**
134
     * @param ?Length $height    refer to CRS for preferred unit of measure, but any length unit accepted
135
     * @param Angle   $latitude  refer to CRS for preferred unit of measure, but any angle unit accepted
136
     * @param Angle   $longitude refer to CRS for preferred unit of measure, but any angle unit accepted
137
     */
138
    public static function create(Geographic2D|Geographic3D $crs, Angle $latitude, Angle $longitude, ?Length $height = null, ?DateTimeInterface $epoch = null): self
139
    {
140
        return new self($crs, $latitude, $longitude, $height, $epoch);
141
    }
142
143
    public function getLatitude(): Angle
144
    {
145
        return $this->latitude;
146
    }
147
148
    public function getLongitude(): Angle
149
    {
150
        return $this->longitude;
151
    }
152
153
    public function getHeight(): ?Length
154
    {
155
        return $this->height;
156
    }
157
158
    public function getCRS(): Geographic2D|Geographic3D
159
    {
160
        return $this->crs;
161
    }
162
163
    public function getCoordinateEpoch(): ?DateTimeImmutable
164
    {
165
        return $this->epoch;
166
    }
167
168
    protected function normaliseLatitude(Angle $latitude): Angle
169
    {
170
        if ($latitude->asDegrees()->getValue() > 90) {
171
            return new Degree(90);
172
        }
173
        if ($latitude->asDegrees()->getValue() < -90) {
174
            return new Degree(-90);
175
        }
176
177
        return $latitude;
178
    }
179
180
    protected function normaliseLongitude(Angle $longitude): Angle
181
    {
182
        while ($longitude->asDegrees()->getValue() > 180) {
183
            $longitude = $longitude->subtract(new Degree(360));
184
        }
185
        while ($longitude->asDegrees()->getValue() <= -180) {
186
            $longitude = $longitude->add(new Degree(360));
187
        }
188
189
        return $longitude;
190
    }
191
192
    /**
193
     * Calculate surface distance between two points.
194
     */
195
    public function calculateDistance(Point $to): Length
196
    {
197
        try {
198
            if ($to instanceof ConvertiblePoint) {
199
                $to = $to->convert($this->crs);
200
            }
201
        } finally {
202
            if ($to->getCRS()->getSRID() !== $this->crs->getSRID()) {
203
                throw new InvalidCoordinateReferenceSystemException('Can only calculate distances between two points in the same CRS');
204
            }
205
206
            /** @var GeographicPoint $to */
207
            $geodesic = new Geodesic($this->getCRS()->getDatum()->getEllipsoid());
208
209
            return $geodesic->distance($this->asGeographicValue(), $to->asGeographicValue());
210
        }
211
    }
212
213
    public function __toString(): string
214
    {
215
        $values = [];
216
        foreach ($this->getCRS()->getCoordinateSystem()->getAxes() as $axis) {
217
            if ($axis->getName() === Axis::GEODETIC_LATITUDE) {
218
                $values[] = $this->latitude;
219
            } elseif ($axis->getName() === Axis::GEODETIC_LONGITUDE) {
220
                $values[] = $this->longitude;
221
            } elseif ($axis->getName() === Axis::ELLIPSOIDAL_HEIGHT) {
222
                $values[] = $this->height;
223
            } else {
224
                throw new UnknownAxisException(); // @codeCoverageIgnore
225
            }
226
        }
227
228
        return '(' . implode(', ', $values) . ')';
229
    }
230
231
    /**
232
     * Geographic/geocentric conversions
233
     * In applications it is often concatenated with the 3- 7- or 10-parameter transformations 9603, 9606, 9607 or
234
     * 9636 to form a geographic to geographic transformation.
235
     */
236
    public function geographicGeocentric(
237
        Geocentric $to
238
    ): GeocentricPoint {
239
        $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
240
        $asGeocentric = $geographicValue->asGeocentricValue();
241
242
        return GeocentricPoint::create($to, $asGeocentric->getX(), $asGeocentric->getY(), $asGeocentric->getZ(), $this->epoch);
243
    }
244
245
    /**
246
     * Coordinate Frame rotation (geog2D/geog3D domain)
247
     * Note the analogy with the Position Vector tfm (codes 9606/1037) but beware of the differences!  The Position Vector
248
     * convention is used by IAG and recommended by ISO 19111. See methods 1032/1038/9607 for similar tfms operating
249
     * between other CRS types.
250
     */
251
    public function coordinateFrameRotation(
252
        Geographic2D|Geographic3D $to,
253
        Length $xAxisTranslation,
254
        Length $yAxisTranslation,
255
        Length $zAxisTranslation,
256
        Angle $xAxisRotation,
257
        Angle $yAxisRotation,
258
        Angle $zAxisRotation,
259
        Scale $scaleDifference
260
    ): self {
261
        return $this->coordinateFrameMolodenskyBadekas(
262
            $to,
263
            $xAxisTranslation,
264
            $yAxisTranslation,
265
            $zAxisTranslation,
266
            $xAxisRotation,
267
            $yAxisRotation,
268
            $zAxisRotation,
269
            $scaleDifference,
270
            new Metre(0),
271
            new Metre(0),
272
            new Metre(0)
273
        );
274
    }
275
276
    /**
277
     * Molodensky-Badekas (CF geog2D/geog3D domain)
278
     * See method codes 1034 and 1039/9636 for this operation in other coordinate domains and method code 1062/1063 for the
279
     * opposite rotation convention in geographic 2D domain.
280
     */
281
    public function coordinateFrameMolodenskyBadekas(
282
        Geographic2D|Geographic3D $to,
283
        Length $xAxisTranslation,
284
        Length $yAxisTranslation,
285
        Length $zAxisTranslation,
286
        Angle $xAxisRotation,
287
        Angle $yAxisRotation,
288
        Angle $zAxisRotation,
289
        Scale $scaleDifference,
290
        Length $ordinate1OfEvaluationPoint,
291
        Length $ordinate2OfEvaluationPoint,
292
        Length $ordinate3OfEvaluationPoint
293
    ): self {
294
        $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
295
        $asGeocentric = $geographicValue->asGeocentricValue();
296
297
        $xs = $asGeocentric->getX()->asMetres()->getValue();
298
        $ys = $asGeocentric->getY()->asMetres()->getValue();
299
        $zs = $asGeocentric->getZ()->asMetres()->getValue();
300
        $tx = $xAxisTranslation->asMetres()->getValue();
301
        $ty = $yAxisTranslation->asMetres()->getValue();
302
        $tz = $zAxisTranslation->asMetres()->getValue();
303
        $rx = $xAxisRotation->asRadians()->getValue();
304
        $ry = $yAxisRotation->asRadians()->getValue();
305
        $rz = $zAxisRotation->asRadians()->getValue();
306
        $M = 1 + $scaleDifference->asUnity()->getValue();
307
        $xp = $ordinate1OfEvaluationPoint->asMetres()->getValue();
308
        $yp = $ordinate2OfEvaluationPoint->asMetres()->getValue();
309
        $zp = $ordinate3OfEvaluationPoint->asMetres()->getValue();
310
311
        $xt = $M * ((($xs - $xp) * 1) + (($ys - $yp) * $rz) + (($zs - $zp) * -$ry)) + $tx + $xp;
312
        $yt = $M * ((($xs - $xp) * -$rz) + (($ys - $yp) * 1) + (($zs - $zp) * $rx)) + $ty + $yp;
313
        $zt = $M * ((($xs - $xp) * $ry) + (($ys - $yp) * -$rx) + (($zs - $zp) * 1)) + $tz + $zp;
314
        $newGeocentric = new GeocentricValue(new Metre($xt), new Metre($yt), new Metre($zt), $to->getDatum());
315
        $newGeographic = $newGeocentric->asGeographicValue();
316
317
        return static::create($to, $newGeographic->getLatitude(), $newGeographic->getLongitude(), $to instanceof Geographic3D ? $newGeographic->getHeight() : null, $this->epoch);
318
    }
319
320
    /**
321
     * Position Vector transformation (geog2D/geog3D domain)
322
     * Note the analogy with the Coordinate Frame rotation (code 9607/1038) but beware of the differences!  The Position
323
     * Vector convention is used by IAG and recommended by ISO 19111. See methods 1033/1037/9606 for similar tfms
324
     * operating between other CRS types.
325
     */
326
    public function positionVectorTransformation(
327
        Geographic2D|Geographic3D $to,
328
        Length $xAxisTranslation,
329
        Length $yAxisTranslation,
330
        Length $zAxisTranslation,
331
        Angle $xAxisRotation,
332
        Angle $yAxisRotation,
333
        Angle $zAxisRotation,
334
        Scale $scaleDifference
335
    ): self {
336
        return $this->positionVectorMolodenskyBadekas(
337
            $to,
338
            $xAxisTranslation,
339
            $yAxisTranslation,
340
            $zAxisTranslation,
341
            $xAxisRotation,
342
            $yAxisRotation,
343
            $zAxisRotation,
344
            $scaleDifference,
345
            new Metre(0),
346
            new Metre(0),
347
            new Metre(0)
348
        );
349
    }
350
351
    /**
352
     * Molodensky-Badekas (PV geog2D/geog3D domain)
353
     * See method codes 1061 and 1062/1063 for this operation in other coordinate domains and method code 1039/9636 for opposite
354
     * rotation in geographic 2D/3D domain.
355
     */
356
    public function positionVectorMolodenskyBadekas(
357
        Geographic2D|Geographic3D $to,
358
        Length $xAxisTranslation,
359
        Length $yAxisTranslation,
360
        Length $zAxisTranslation,
361
        Angle $xAxisRotation,
362
        Angle $yAxisRotation,
363
        Angle $zAxisRotation,
364
        Scale $scaleDifference,
365
        Length $ordinate1OfEvaluationPoint,
366
        Length $ordinate2OfEvaluationPoint,
367
        Length $ordinate3OfEvaluationPoint
368
    ): self {
369
        $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
370
        $asGeocentric = $geographicValue->asGeocentricValue();
371
372
        $xs = $asGeocentric->getX()->asMetres()->getValue();
373
        $ys = $asGeocentric->getY()->asMetres()->getValue();
374
        $zs = $asGeocentric->getZ()->asMetres()->getValue();
375
        $tx = $xAxisTranslation->asMetres()->getValue();
376
        $ty = $yAxisTranslation->asMetres()->getValue();
377
        $tz = $zAxisTranslation->asMetres()->getValue();
378
        $rx = $xAxisRotation->asRadians()->getValue();
379
        $ry = $yAxisRotation->asRadians()->getValue();
380
        $rz = $zAxisRotation->asRadians()->getValue();
381
        $M = 1 + $scaleDifference->asUnity()->getValue();
382
        $xp = $ordinate1OfEvaluationPoint->asMetres()->getValue();
383
        $yp = $ordinate2OfEvaluationPoint->asMetres()->getValue();
384
        $zp = $ordinate3OfEvaluationPoint->asMetres()->getValue();
385
386
        $xt = $M * ((($xs - $xp) * 1) + (($ys - $yp) * -$rz) + (($zs - $zp) * $ry)) + $tx + $xp;
387
        $yt = $M * ((($xs - $xp) * $rz) + (($ys - $yp) * 1) + (($zs - $zp) * -$rx)) + $ty + $yp;
388
        $zt = $M * ((($xs - $xp) * -$ry) + (($ys - $yp) * $rx) + (($zs - $zp) * 1)) + $tz + $zp;
389
        $newGeocentric = new GeocentricValue(new Metre($xt), new Metre($yt), new Metre($zt), $to->getDatum());
390
        $newGeographic = $newGeocentric->asGeographicValue();
391
392
        return static::create($to, $newGeographic->getLatitude(), $newGeographic->getLongitude(), $to instanceof Geographic3D ? $newGeographic->getHeight() : null, $this->epoch);
393
    }
394
395
    /**
396
     * Geocentric translations
397
     * This method allows calculation of geocentric coords in the target system by adding the parameter values to the
398
     * corresponding coordinates of the point in the source system. See methods 1031 and 1035 for similar tfms
399
     * operating between other CRSs types.
400
     */
401
    public function geocentricTranslation(
402
        Geographic2D|Geographic3D $to,
403
        Length $xAxisTranslation,
404
        Length $yAxisTranslation,
405
        Length $zAxisTranslation
406
    ): self {
407
        return $this->positionVectorTransformation(
408
            $to,
409
            $xAxisTranslation,
410
            $yAxisTranslation,
411
            $zAxisTranslation,
412
            new Radian(0),
413
            new Radian(0),
414
            new Radian(0),
415
            new Unity(0)
416
        );
417
    }
418
419
    /**
420
     * Abridged Molodensky
421
     * This transformation is a truncated Taylor series expansion of a transformation between two geographic coordinate
422
     * systems, modelled as a set of geocentric translations.
423
     */
424
    public function abridgedMolodensky(
425
        Geographic2D|Geographic3D $to,
426
        Length $xAxisTranslation,
427
        Length $yAxisTranslation,
428
        Length $zAxisTranslation,
429
        Length $differenceInSemiMajorAxis,
430
        Scale $differenceInFlattening
431
    ): self {
432
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
433
        $latitude = $this->latitude->asRadians()->getValue();
434
        $longitude = $this->longitude->asRadians()->getValue();
435
        $fromHeight = $this->height ? $this->height->asMetres()->getValue() : 0;
436
        $tx = $xAxisTranslation->asMetres()->getValue();
437
        $ty = $yAxisTranslation->asMetres()->getValue();
438
        $tz = $zAxisTranslation->asMetres()->getValue();
439
        $da = $differenceInSemiMajorAxis->asMetres()->getValue();
440
        $df = $differenceInFlattening->asUnity()->getValue();
441
442
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
443
        $e2 = $ellipsoid->getEccentricitySquared();
444
445
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
446
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
447
448
        $f = $ellipsoid->getFlattening();
449
450
        $dLatitude = ((-$tx * sin($latitude) * cos($longitude)) - ($ty * sin($latitude) * sin($longitude)) + ($tz * cos($latitude)) + ((($a * $df) + ($ellipsoid->getFlattening() * $da)) * sin(2 * $latitude))) / ($rho * sin((new ArcSecond(1))->asRadians()->getValue()));
451
        $dLongitude = (-$tx * sin($longitude) + $ty * cos($longitude)) / (($nu * cos($latitude)) * sin((new ArcSecond(1))->asRadians()->getValue()));
452
        $dHeight = ($tx * cos($latitude) * cos($longitude)) + ($ty * cos($latitude) * sin($longitude)) + ($tz * sin($latitude)) + (($a * $df + $f * $da) * (sin($latitude) ** 2)) - $da;
453
454
        $toLatitude = $latitude + (new ArcSecond($dLatitude))->asRadians()->getValue();
455
        $toLongitude = $longitude + (new ArcSecond($dLongitude))->asRadians()->getValue();
456
        $toHeight = $fromHeight + $dHeight;
457
458
        return static::create($to, new Radian($toLatitude), new Radian($toLongitude), $to instanceof Geographic3D ? new Metre($toHeight) : null, $this->epoch);
459
    }
460
461
    /**
462
     * Molodensky
463
     * See Abridged Molodensky.
464
     */
465
    public function molodensky(
466
        Geographic2D|Geographic3D $to,
467
        Length $xAxisTranslation,
468
        Length $yAxisTranslation,
469
        Length $zAxisTranslation,
470
        Length $differenceInSemiMajorAxis,
471
        Scale $differenceInFlattening
472
    ): self {
473
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
474
        $latitude = $this->latitude->asRadians()->getValue();
475
        $longitude = $this->longitude->asRadians()->getValue();
476
        $fromHeight = $this->height ? $this->height->asMetres()->getValue() : 0;
477
        $tx = $xAxisTranslation->asMetres()->getValue();
478
        $ty = $yAxisTranslation->asMetres()->getValue();
479
        $tz = $zAxisTranslation->asMetres()->getValue();
480
        $da = $differenceInSemiMajorAxis->asMetres()->getValue();
481
        $df = $differenceInFlattening->asUnity()->getValue();
482
483
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
484
        $b = $ellipsoid->getSemiMinorAxis()->asMetres()->getValue();
485
        $e2 = $ellipsoid->getEccentricitySquared();
486
487
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
488
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
489
490
        $f = $ellipsoid->getFlattening();
0 ignored issues
show
Unused Code introduced by
The assignment to $f is dead and can be removed.
Loading history...
491
492
        $dLatitude = ((-$tx * sin($latitude) * cos($longitude)) - ($ty * sin($latitude) * sin($longitude)) + ($tz * cos($latitude)) + ($da * ($nu * $e2 * sin($latitude) * cos($latitude)) / $a + $df * ($rho * ($a / $b) + $nu * ($b / $a)) * sin($latitude) * cos($latitude))) / (($rho + $fromHeight) * sin((new ArcSecond(1))->asRadians()->getValue()));
493
        $dLongitude = (-$tx * sin($longitude) + $ty * cos($longitude)) / ((($nu + $fromHeight) * cos($latitude)) * sin((new ArcSecond(1))->asRadians()->getValue()));
494
        $dHeight = ($tx * cos($latitude) * cos($longitude)) + ($ty * cos($latitude) * sin($longitude)) + ($tz * sin($latitude)) - $da * $a / $nu + $df * $b / $a * $nu * sin($latitude) ** 2;
495
496
        $toLatitude = $latitude + (new ArcSecond($dLatitude))->asRadians()->getValue();
497
        $toLongitude = $longitude + (new ArcSecond($dLongitude))->asRadians()->getValue();
498
        $toHeight = $fromHeight + $dHeight;
499
500
        return static::create($to, new Radian($toLatitude), new Radian($toLongitude), $to instanceof Geographic3D ? new Metre($toHeight) : null, $this->epoch);
501
    }
502
503
    /**
504
     * Albers Equal Area.
505
     */
506
    public function albersEqualArea(
507
        Projected $to,
508
        Angle $latitudeOfFalseOrigin,
509
        Angle $longitudeOfFalseOrigin,
510
        Angle $latitudeOf1stStandardParallel,
511
        Angle $latitudeOf2ndStandardParallel,
512
        Length $eastingAtFalseOrigin,
513
        Length $northingAtFalseOrigin
514
    ): ProjectedPoint {
515
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
516
        $latitude = $this->latitude->asRadians()->getValue();
517
        $longitude = $this->longitude->asRadians()->getValue();
0 ignored issues
show
Unused Code introduced by
The assignment to $longitude is dead and can be removed.
Loading history...
518
        $phiOrigin = $latitudeOfFalseOrigin->asRadians()->getValue();
519
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
520
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
521
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
522
        $e = $ellipsoid->getEccentricity();
523
        $e2 = $ellipsoid->getEccentricitySquared();
524
525
        $centralMeridianFirstParallel = cos($phi1) / sqrt(1 - ($e2 * sin($phi1) ** 2));
526
        $centralMeridianSecondParallel = cos($phi2) / sqrt(1 - ($e2 * sin($phi2) ** 2));
527
528
        $alpha = (1 - $e2) * (sin($latitude) / (1 - $e2 * sin($latitude) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))));
529
        $alphaOrigin = (1 - $e2) * (sin($phiOrigin) / (1 - $e2 * sin($phiOrigin) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phiOrigin)) / (1 + $e * sin($phiOrigin))));
530
        $alphaFirstParallel = (1 - $e2) * (sin($phi1) / (1 - $e2 * sin($phi1) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))));
531
        $alphaSecondParallel = (1 - $e2) * (sin($phi2) / (1 - $e2 * sin($phi2) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))));
532
533
        $n = ($centralMeridianFirstParallel ** 2 - $centralMeridianSecondParallel ** 2) / ($alphaSecondParallel - $alphaFirstParallel);
534
        $C = $centralMeridianFirstParallel ** 2 + $n * $alphaFirstParallel;
535
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue();
536
        $rho = $a * sqrt($C - $n * $alpha) / $n;
537
        $rhoOrigin = ($a * sqrt($C - $n * $alphaOrigin)) / $n;
538
539
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + ($rho * sin($theta));
540
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rhoOrigin - ($rho * cos($theta));
541
542
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
543
    }
544
545
    /**
546
     * American Polyconic.
547
     */
548
    public function americanPolyconic(
549
        Projected $to,
550
        Angle $latitudeOfNaturalOrigin,
551
        Angle $longitudeOfNaturalOrigin,
552
        Length $falseEasting,
553
        Length $falseNorthing
554
    ): ProjectedPoint {
555
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
556
        $latitude = $this->latitude->asRadians()->getValue();
557
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
558
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
559
        $e = $ellipsoid->getEccentricity();
560
        $e2 = $ellipsoid->getEccentricitySquared();
561
        $e4 = $e ** 4;
562
        $e6 = $e ** 6;
563
564
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
565
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
566
567
        if ($latitude === 0.0) {
0 ignored issues
show
introduced by
The condition $latitude === 0.0 is always false.
Loading history...
568
            $easting = $falseEasting->asMetres()->getValue() + $a * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
569
            $northing = $falseNorthing->asMetres()->getValue() - $MO;
570
        } else {
571
            $L = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * sin($latitude);
572
            $nu = $a / sqrt(1 - $e2 * sin($latitude) ** 2);
573
574
            $easting = $falseEasting->asMetres()->getValue() + $nu * 1 / tan($latitude) * sin($L);
575
            $northing = $falseNorthing->asMetres()->getValue() + $M - $MO + $nu * 1 / tan($latitude) * (1 - cos($L));
576
        }
577
578
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
579
    }
580
581
    /**
582
     * Bonne.
583
     */
584
    public function bonne(
585
        Projected $to,
586
        Angle $latitudeOfNaturalOrigin,
587
        Angle $longitudeOfNaturalOrigin,
588
        Length $falseEasting,
589
        Length $falseNorthing
590
    ): ProjectedPoint {
591
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
592
        $latitude = $this->latitude->asRadians()->getValue();
593
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
594
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
595
        $e = $ellipsoid->getEccentricity();
596
        $e2 = $ellipsoid->getEccentricitySquared();
597
        $e4 = $e ** 4;
598
        $e6 = $e ** 6;
599
600
        $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2);
601
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
602
603
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
604
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
605
606
        $rho = $a * $mO / sin($latitudeOrigin) + $MO - $M;
607
        $tau = $a * $m * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() / $rho;
608
609
        $easting = $falseEasting->asMetres()->getValue() + ($rho * sin($tau));
610
        $northing = $falseNorthing->asMetres()->getValue() + ($a * $mO / sin($latitudeOrigin) - $rho * cos($tau));
611
612
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
613
    }
614
615
    /**
616
     * Bonne South Orientated.
617
     */
618
    public function bonneSouthOrientated(
619
        Projected $to,
620
        Angle $latitudeOfNaturalOrigin,
621
        Angle $longitudeOfNaturalOrigin,
622
        Length $falseEasting,
623
        Length $falseNorthing
624
    ): ProjectedPoint {
625
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
626
        $latitude = $this->latitude->asRadians()->getValue();
627
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
628
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
629
        $e = $ellipsoid->getEccentricity();
630
        $e2 = $ellipsoid->getEccentricitySquared();
631
        $e4 = $e ** 4;
632
        $e6 = $e ** 6;
633
634
        $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2);
635
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
636
637
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
638
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
639
640
        $rho = $a * $mO / sin($latitudeOrigin) + $MO - $M;
641
        $tau = $a * $m * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() / $rho;
642
643
        $westing = $falseEasting->asMetres()->getValue() - ($rho * sin($tau));
644
        $southing = $falseNorthing->asMetres()->getValue() - ($a * $mO / sin($latitudeOrigin) - $rho * cos($tau));
645
646
        return ProjectedPoint::create($to, new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $this->epoch);
647
    }
648
649
    /**
650
     * Cassini-Soldner.
651
     */
652
    public function cassiniSoldner(
653
        Projected $to,
654
        Angle $latitudeOfNaturalOrigin,
655
        Angle $longitudeOfNaturalOrigin,
656
        Length $falseEasting,
657
        Length $falseNorthing
658
    ): ProjectedPoint {
659
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
660
        $latitude = $this->latitude->asRadians()->getValue();
661
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
662
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
663
        $e = $ellipsoid->getEccentricity();
664
        $e2 = $ellipsoid->getEccentricitySquared();
665
        $e4 = $e ** 4;
666
        $e6 = $e ** 6;
667
668
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
669
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
670
671
        $A = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($latitude);
672
        $T = tan($latitude) ** 2;
673
        $C = $e2 * cos($latitude) ** 2 / (1 - $e2);
674
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
675
        $X = $M - $MO + $nu * tan($latitude) * ($A ** 2 / 2 + (5 - $T + 6 * $C) * $A ** 4 / 24);
676
677
        $easting = $falseEasting->asMetres()->getValue() + $nu * ($A - $T * $A ** 3 / 6 - (8 - $T + 8 * $C) * $T * $A ** 5 / 120);
678
        $northing = $falseNorthing->asMetres()->getValue() + $X;
679
680
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
681
    }
682
683
    /**
684
     * Hyperbolic Cassini-Soldner.
685
     */
686
    public function hyperbolicCassiniSoldner(
687
        Projected $to,
688
        Angle $latitudeOfNaturalOrigin,
689
        Angle $longitudeOfNaturalOrigin,
690
        Length $falseEasting,
691
        Length $falseNorthing
692
    ): ProjectedPoint {
693
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
694
        $latitude = $this->latitude->asRadians()->getValue();
695
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
696
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
697
        $e = $ellipsoid->getEccentricity();
698
        $e2 = $ellipsoid->getEccentricitySquared();
699
        $e4 = $e ** 4;
700
        $e6 = $e ** 6;
701
702
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
703
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
704
705
        $A = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($latitude);
706
        $T = tan($latitude) ** 2;
707
        $C = $e2 * cos($latitude) ** 2 / (1 - $e2);
708
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
709
        $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2);
710
        $X = $M - $MO + $nu * tan($latitude) * ($A ** 2 / 2 + (5 - $T + 6 * $C) * $A ** 4 / 24);
711
712
        $easting = $falseEasting->asMetres()->getValue() + $nu * ($A - $T * $A ** 3 / 6 - (8 - $T + 8 * $C) * $T * $A ** 5 / 120);
713
        $northing = $falseNorthing->asMetres()->getValue() + $X - ($X ** 3 / (6 * $rho * $nu));
714
715
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
716
    }
717
718
    /**
719
     * Colombia Urban.
720
     */
721
    public function columbiaUrban(
722
        Projected $to,
723
        Angle $latitudeOfNaturalOrigin,
724
        Angle $longitudeOfNaturalOrigin,
725
        Length $falseEasting,
726
        Length $falseNorthing,
727
        Length $projectionPlaneOriginHeight
728
    ): ProjectedPoint {
729
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
730
        $latitude = $this->latitude->asRadians()->getValue();
731
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
732
        $heightOrigin = $projectionPlaneOriginHeight->asMetres()->getValue();
733
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
734
        $e2 = $ellipsoid->getEccentricitySquared();
735
736
        $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
737
        $rhoMid = $a * (1 - $e2) / (1 - $e2 * sin(($latitude + $latitudeOrigin) / 2) ** 2) ** (3 / 2);
738
739
        $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2));
740
        $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
741
742
        $A = 1 + $heightOrigin / $nuOrigin;
743
        $B = tan($latitudeOrigin) / (2 * $rhoOrigin * $nuOrigin);
744
        $G = 1 + $heightOrigin / $rhoMid;
745
746
        $easting = $falseEasting->asMetres()->getValue() + $A * $nu * cos($latitude) * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
747
        $northing = $falseNorthing->asMetres()->getValue() + $G * $rhoOrigin * (($latitude - $latitudeOrigin) + ($B * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() ** 2 * $nu ** 2 * cos($latitude) ** 2));
748
749
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
750
    }
751
752
    /**
753
     * Equal Earth.
754
     */
755
    public function equalEarth(
756
        Projected $to,
757
        Angle $longitudeOfNaturalOrigin,
758
        Length $falseEasting,
759
        Length $falseNorthing
760
    ): ProjectedPoint {
761
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
762
        $latitude = $this->latitude->asRadians()->getValue();
763
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
764
        $e = $ellipsoid->getEccentricity();
765
        $e2 = $ellipsoid->getEccentricitySquared();
766
767
        $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - (1 / (2 * $e) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude)))));
768
        $qP = (1 - $e2) * ((1 / (1 - $e2)) - (1 / (2 * $e) * log((1 - $e) / (1 + $e))));
769
        $beta = self::asin($q / $qP);
770
        $theta = self::asin(sin($beta) * sqrt(3) / 2);
771
        $Rq = $a * sqrt($qP / 2);
772
773
        $easting = $falseEasting->asMetres()->getValue() + ($Rq * 2 * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($theta)) / (sqrt(3) * (1.340264 - 0.243318 * $theta ** 2 + $theta ** 6 * (0.006251 + 0.034164 * $theta ** 2)));
774
        $northing = $falseNorthing->asMetres()->getValue() + $Rq * $theta * (1.340264 - 0.081106 * $theta ** 2 + $theta ** 6 * (0.000893 + 0.003796 * $theta ** 2));
775
776
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
777
    }
778
779
    /**
780
     * Equidistant Cylindrical
781
     * See method code 1029 for spherical development. See also Pseudo Plate Carree, method code 9825.
782
     */
783
    public function equidistantCylindrical(
784
        Projected $to,
785
        Angle $latitudeOf1stStandardParallel,
786
        Angle $longitudeOfNaturalOrigin,
787
        Length $falseEasting,
788
        Length $falseNorthing
789
    ): ProjectedPoint {
790
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
791
        $latitude = $this->latitude->asRadians()->getValue();
792
        $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
793
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
794
        $e = $ellipsoid->getEccentricity();
795
        $e2 = $ellipsoid->getEccentricitySquared();
796
        $e4 = $e ** 4;
797
        $e6 = $e ** 6;
798
        $e8 = $e ** 8;
799
        $e10 = $e ** 10;
800
        $e12 = $e ** 12;
801
        $e14 = $e ** 14;
802
803
        $nu1 = $a / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2);
804
805
        $M = $a * (
806
            (1 - 1 / 4 * $e2 - 3 / 64 * $e4 - 5 / 256 * $e6 - 175 / 16384 * $e8 - 441 / 65536 * $e10 - 4851 / 1048576 * $e12 - 14157 / 4194304 * $e14) * $latitude +
807
            (-3 / 8 * $e2 - 3 / 32 * $e4 - 45 / 1024 * $e6 - 105 / 4096 * $e8 - 2205 / 131072 * $e10 - 6237 / 524288 * $e12 - 297297 / 33554432 * $e14) * sin(2 * $latitude) +
808
            (15 / 256 * $e4 + 45 / 1024 * $e ** 6 + 525 / 16384 * $e ** 8 + 1575 / 65536 * $e10 + 155925 / 8388608 * $e12 + 495495 / 33554432 * $e14) * sin(4 * $latitude) +
809
            (-35 / 3072 * $e6 - 175 / 12288 * $e8 - 3675 / 262144 * $e10 - 13475 / 1048576 * $e12 - 385385 / 33554432 * $e14) * sin(6 * $latitude) +
810
            (315 / 131072 * $e8 + 2205 / 524288 * $e10 + 43659 / 8388608 * $e12 + 189189 / 33554432 * $e14) * sin(8 * $latitude) +
811
            (-693 / 1310720 * $e10 - 6537 / 5242880 * $e12 - 297297 / 167772160 * $e14) * sin(10 * $latitude) +
812
            (1001 / 8388608 * $e12 + 11011 / 33554432 * $e14) * sin(12 * $latitude) +
813
            (-6435 / 234881024 * $e ** 14) * sin(14 * $latitude)
814
        );
815
816
        $easting = $falseEasting->asMetres()->getValue() + $nu1 * cos($latitudeFirstParallel) * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
817
        $northing = $falseNorthing->asMetres()->getValue() + $M;
818
819
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
820
    }
821
822
    /**
823
     * Guam Projection
824
     * Simplified form of Oblique Azimuthal Equidistant projection method.
825
     */
826
    public function guamProjection(
827
        Projected $to,
828
        Angle $latitudeOfNaturalOrigin,
829
        Angle $longitudeOfNaturalOrigin,
830
        Length $falseEasting,
831
        Length $falseNorthing
832
    ): ProjectedPoint {
833
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
834
        $latitude = $this->latitude->asRadians()->getValue();
835
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
836
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
837
        $e = $ellipsoid->getEccentricity();
838
        $e2 = $ellipsoid->getEccentricitySquared();
839
        $e4 = $e ** 4;
840
        $e6 = $e ** 6;
841
842
        $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude));
843
        $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin));
844
        $x = ($a * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($latitude)) / sqrt(1 - $e2 * sin($latitude) ** 2);
845
846
        $easting = $falseEasting->asMetres()->getValue() + $x;
847
        $northing = $falseNorthing->asMetres()->getValue() + $M - $MO + ($x ** 2 * tan($latitude) * sqrt(1 - $e2 * sin($latitude) ** 2) / (2 * $a));
848
849
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
850
    }
851
852
    /**
853
     * Krovak.
854
     */
855
    public function krovak(
856
        Projected $to,
857
        Angle $latitudeOfProjectionCentre,
858
        Angle $longitudeOfOrigin,
859
        Angle $coLatitudeOfConeAxis,
860
        Angle $latitudeOfPseudoStandardParallel,
861
        Scale $scaleFactorOnPseudoStandardParallel,
862
        Length $falseEasting,
863
        Length $falseNorthing
864
    ): ProjectedPoint {
865
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
866
        $longitudeOffset = $to->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue() - $this->getCRS()->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue();
867
        $latitude = $this->latitude->asRadians()->getValue();
868
        $longitude = $this->longitude->asRadians()->getValue() - $longitudeOffset;
869
        $latitudeC = $latitudeOfProjectionCentre->asRadians()->getValue();
870
        $longitudeO = $longitudeOfOrigin->asRadians()->getValue();
871
        $alphaC = $coLatitudeOfConeAxis->asRadians()->getValue();
872
        $latitudeP = $latitudeOfPseudoStandardParallel->asRadians()->getValue();
873
        $kP = $scaleFactorOnPseudoStandardParallel->asUnity()->getValue();
874
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
875
        $e = $ellipsoid->getEccentricity();
876
        $e2 = $ellipsoid->getEccentricitySquared();
877
878
        $A = $a * sqrt(1 - $e2) / (1 - $e2 * sin($latitudeC) ** 2);
879
        $B = sqrt(1 + $e2 * cos($latitudeC) ** 4 / (1 - $e2));
880
        $upsilonO = self::asin(sin($latitudeC) / $B);
881
        $tO = tan(M_PI / 4 + $upsilonO / 2) * ((1 + $e * sin($latitudeC)) / (1 - $e * sin($latitudeC))) ** ($e * $B / 2) / (tan(M_PI / 4 + $latitudeC / 2) ** $B);
882
        $n = sin($latitudeP);
883
        $rO = $kP * $A / tan($latitudeP);
884
885
        $U = 2 * (atan($tO * tan($latitude / 2 + M_PI / 4) ** $B / ((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e * $B / 2)) - M_PI / 4);
886
        $V = $B * ($longitudeO - $longitude);
887
        $T = self::asin(cos($alphaC) * sin($U) + sin($alphaC) * cos($U) * cos($V));
888
        $D = atan2(cos($U) * sin($V) / cos($T), (cos($alphaC) * sin($T) - sin($U)) / (sin($alphaC) * cos($T)));
889
        $theta = $n * $D;
890
        $r = $rO * tan(M_PI / 4 + $latitudeP / 2) ** $n / tan($T / 2 + M_PI / 4) ** $n;
891
        $X = $r * cos($theta);
892
        $Y = $r * sin($theta);
893
894
        $westing = $Y + $falseEasting->asMetres()->getValue();
895
        $southing = $X + $falseNorthing->asMetres()->getValue();
896
897
        return ProjectedPoint::create($to, new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $this->epoch);
898
    }
899
900
    /**
901
     * Krovak Modified
902
     * Incorporates a polynomial transformation which is defined to be exact and for practical purposes is considered
903
     * to be a map projection.
904
     */
905
    public function krovakModified(
906
        Projected $to,
907
        Angle $latitudeOfProjectionCentre,
908
        Angle $longitudeOfOrigin,
909
        Angle $coLatitudeOfConeAxis,
910
        Angle $latitudeOfPseudoStandardParallel,
911
        Scale $scaleFactorOnPseudoStandardParallel,
912
        Length $falseEasting,
913
        Length $falseNorthing,
914
        Length $ordinate1OfEvaluationPoint,
915
        Length $ordinate2OfEvaluationPoint,
916
        Coefficient $C1,
917
        Coefficient $C2,
918
        Coefficient $C3,
919
        Coefficient $C4,
920
        Coefficient $C5,
921
        Coefficient $C6,
922
        Coefficient $C7,
923
        Coefficient $C8,
924
        Coefficient $C9,
925
        Coefficient $C10
926
    ): ProjectedPoint {
927
        $asKrovak = $this->krovak($to, $latitudeOfProjectionCentre, $longitudeOfOrigin, $coLatitudeOfConeAxis, $latitudeOfPseudoStandardParallel, $scaleFactorOnPseudoStandardParallel, new Metre(0), new Metre(0));
928
929
        $westing = $asKrovak->getWesting()->asMetres()->getValue();
930
        $southing = $asKrovak->getSouthing()->asMetres()->getValue();
931
        $c1 = $C1->asUnity()->getValue();
932
        $c2 = $C2->asUnity()->getValue();
933
        $c3 = $C3->asUnity()->getValue();
934
        $c4 = $C4->asUnity()->getValue();
935
        $c5 = $C5->asUnity()->getValue();
936
        $c6 = $C6->asUnity()->getValue();
937
        $c7 = $C7->asUnity()->getValue();
938
        $c8 = $C8->asUnity()->getValue();
939
        $c9 = $C9->asUnity()->getValue();
940
        $c10 = $C10->asUnity()->getValue();
941
942
        $Xr = $southing - $ordinate1OfEvaluationPoint->asMetres()->getValue();
943
        $Yr = $westing - $ordinate2OfEvaluationPoint->asMetres()->getValue();
944
945
        $dX = $c1 + $c3 * $Xr - $c4 * $Yr - 2 * $c6 * $Xr * $Yr + $c5 * ($Xr ** 2 - $Yr ** 2) + $c7 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) - $c8 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) + 4 * $c9 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c10 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2);
946
        $dY = $c2 + $c3 * $Yr + $c4 * $Xr + 2 * $c5 * $Xr * $Yr + $c6 * ($Xr ** 2 - $Yr ** 2) + $c8 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) + $c7 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) - 4 * $c10 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c9 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2);
947
948
        $westing += $falseEasting->asMetres()->getValue() - $dY;
949
        $southing += $falseNorthing->asMetres()->getValue() - $dX;
950
951
        return ProjectedPoint::create($to, new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $this->epoch);
952
    }
953
954
    /**
955
     * Lambert Azimuthal Equal Area
956
     * This is the ellipsoidal form of the projection.
957
     */
958
    public function lambertAzimuthalEqualArea(
959
        Projected $to,
960
        Angle $latitudeOfNaturalOrigin,
961
        Angle $longitudeOfNaturalOrigin,
962
        Length $falseEasting,
963
        Length $falseNorthing
964
    ): ProjectedPoint {
965
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
966
        $latitude = $this->latitude->asRadians()->getValue();
967
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
968
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
969
        $e = $ellipsoid->getEccentricity();
970
        $e2 = $ellipsoid->getEccentricitySquared();
971
972
        $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude)))));
973
        $qO = (1 - $e2) * ((sin($latitudeOrigin) / (1 - $e2 * sin($latitudeOrigin) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin)))));
974
        $qP = (1 - $e2) * ((1 / (1 - $e2)) - ((1 / (2 * $e)) * log((1 - $e) / (1 + $e))));
975
        $beta = self::asin($q / $qP);
976
        $betaO = self::asin($qO / $qP);
977
        $Rq = $a * sqrt($qP / 2);
978
        $B = $Rq * sqrt(2 / (1 + sin($betaO) * sin($beta) + (cos($betaO) * cos($beta) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()))));
979
        $D = $a * (cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2)) / ($Rq * cos($betaO));
980
981
        $easting = $falseEasting->asMetres()->getValue() + (($B * $D) * (cos($beta) * sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
982
        $northing = $falseNorthing->asMetres()->getValue() + ($B / $D) * ((cos($betaO) * sin($beta)) - (sin($betaO) * cos($beta) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
983
984
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
985
    }
986
987
    /**
988
     * Lambert Azimuthal Equal Area (Spherical)
989
     * This is the spherical form of the projection.  See coordinate operation method Lambert Azimuthal Equal Area
990
     * (code 9820) for ellipsoidal form.  Differences of several tens of metres result from comparison of the two
991
     * methods.
992
     */
993
    public function lambertAzimuthalEqualAreaSpherical(
994
        Projected $to,
995
        Angle $latitudeOfNaturalOrigin,
996
        Angle $longitudeOfNaturalOrigin,
997
        Length $falseEasting,
998
        Length $falseNorthing
999
    ): ProjectedPoint {
1000
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1001
        $latitude = $this->latitude->asRadians()->getValue();
1002
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1003
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1004
1005
        $k = sqrt(2 / (1 + sin($latitudeOrigin) * sin($latitude) + cos($latitudeOrigin) * cos($latitude) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
1006
1007
        $easting = $falseEasting->asMetres()->getValue() + ($a * $k * cos($latitude) * sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()));
1008
        $northing = $falseNorthing->asMetres()->getValue() + ($a * $k * (cos($latitudeOrigin) * sin($latitude) - sin($latitudeOrigin) * cos($latitude) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())));
1009
1010
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1011
    }
1012
1013
    /**
1014
     * Lambert Conic Conformal (1SP).
1015
     */
1016
    public function lambertConicConformal1SP(
1017
        Projected $to,
1018
        Angle $latitudeOfNaturalOrigin,
1019
        Angle $longitudeOfNaturalOrigin,
1020
        Scale $scaleFactorAtNaturalOrigin,
1021
        Length $falseEasting,
1022
        Length $falseNorthing
1023
    ): ProjectedPoint {
1024
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1025
        $latitude = $this->latitude->asRadians()->getValue();
1026
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1027
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1028
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1029
        $e = $ellipsoid->getEccentricity();
1030
        $e2 = $ellipsoid->getEccentricitySquared();
1031
1032
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1033
        $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2);
1034
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1035
        $n = sin($latitudeOrigin);
1036
        $F = $mO / ($n * $tO ** $n);
1037
        $rO = $a * $F * $tO ** $n * $kO;
1038
        $r = $a * $F * $t ** $n * $kO;
1039
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1040
1041
        $easting = $falseEasting->asMetres()->getValue() + $r * sin($theta);
1042
        $northing = $falseNorthing->asMetres()->getValue() + $rO - $r * cos($theta);
1043
1044
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1045
    }
1046
1047
    /**
1048
     * Lambert Conic Conformal (1SP) Variant B.
1049
     */
1050
    public function lambertConicConformal1SPVariantB(
1051
        Projected $to,
1052
        Angle $latitudeOfNaturalOrigin,
1053
        Scale $scaleFactorAtNaturalOrigin,
1054
        Angle $latitudeOfFalseOrigin,
1055
        Angle $longitudeOfFalseOrigin,
1056
        Length $eastingAtFalseOrigin,
1057
        Length $northingAtFalseOrigin
1058
    ): ProjectedPoint {
1059
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1060
        $latitude = $this->latitude->asRadians()->getValue();
1061
        $latitudeNaturalOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1062
        $latitudeFalseOrigin = $latitudeOfFalseOrigin->asRadians()->getValue();
1063
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1064
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1065
        $e = $ellipsoid->getEccentricity();
1066
        $e2 = $ellipsoid->getEccentricitySquared();
1067
1068
        $mO = cos($latitudeNaturalOrigin) / sqrt(1 - $e2 * sin($latitudeNaturalOrigin) ** 2);
1069
        $tO = tan(M_PI / 4 - $latitudeNaturalOrigin / 2) / ((1 - $e * sin($latitudeNaturalOrigin)) / (1 + $e * sin($latitudeNaturalOrigin))) ** ($e / 2);
1070
        $tF = tan(M_PI / 4 - $latitudeFalseOrigin / 2) / ((1 - $e * sin($latitudeFalseOrigin)) / (1 + $e * sin($latitudeFalseOrigin))) ** ($e / 2);
1071
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1072
        $n = sin($latitudeNaturalOrigin);
1073
        $F = $mO / ($n * $tO ** $n);
1074
        $rF = $a * $F * $tF ** $n * $kO;
1075
        $r = $a * $F * $t ** $n * $kO;
1076
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue();
1077
1078
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1079
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1080
1081
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1082
    }
1083
1084
    /**
1085
     * Lambert Conic Conformal (2SP Belgium)
1086
     * In 2000 this modification was replaced through use of the regular Lambert Conic Conformal (2SP) method [9802]
1087
     * with appropriately modified parameter values.
1088
     */
1089
    public function lambertConicConformal2SPBelgium(
1090
        Projected $to,
1091
        Angle $latitudeOfFalseOrigin,
1092
        Angle $longitudeOfFalseOrigin,
1093
        Angle $latitudeOf1stStandardParallel,
1094
        Angle $latitudeOf2ndStandardParallel,
1095
        Length $eastingAtFalseOrigin,
1096
        Length $northingAtFalseOrigin
1097
    ): ProjectedPoint {
1098
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1099
        $latitude = $this->latitude->asRadians()->getValue();
1100
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1101
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1102
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1103
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1104
        $e = $ellipsoid->getEccentricity();
1105
        $e2 = $ellipsoid->getEccentricitySquared();
1106
1107
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1108
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1109
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1110
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1111
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1112
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1113
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1114
        $F = $m1 / ($n * $t1 ** $n);
1115
        $r = $a * $F * $t ** $n;
1116
        $rF = $a * $F * $tF ** $n;
1117
        if (is_nan($rF)) {
1118
            $rF = 0;
1119
        }
1120
        $theta = ($n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue()) - (new ArcSecond(29.2985))->asRadians()->getValue();
1121
1122
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1123
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1124
1125
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1126
    }
1127
1128
    /**
1129
     * Lambert Conic Conformal (2SP Michigan).
1130
     */
1131
    public function lambertConicConformal2SPMichigan(
1132
        Projected $to,
1133
        Angle $latitudeOfFalseOrigin,
1134
        Angle $longitudeOfFalseOrigin,
1135
        Angle $latitudeOf1stStandardParallel,
1136
        Angle $latitudeOf2ndStandardParallel,
1137
        Length $eastingAtFalseOrigin,
1138
        Length $northingAtFalseOrigin,
1139
        Scale $ellipsoidScalingFactor
1140
    ): ProjectedPoint {
1141
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1142
        $latitude = $this->latitude->asRadians()->getValue();
1143
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1144
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1145
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1146
        $K = $ellipsoidScalingFactor->asUnity()->getValue();
1147
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1148
        $e = $ellipsoid->getEccentricity();
1149
        $e2 = $ellipsoid->getEccentricitySquared();
1150
1151
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1152
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1153
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1154
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1155
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1156
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1157
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1158
        $F = $m1 / ($n * $t1 ** $n);
1159
        $r = $a * $K * $F * $t ** $n;
1160
        $rF = $a * $K * $F * $tF ** $n;
1161
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue();
1162
1163
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1164
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1165
1166
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1167
    }
1168
1169
    /**
1170
     * Lambert Conic Conformal (2SP).
1171
     */
1172
    public function lambertConicConformal2SP(
1173
        Projected $to,
1174
        Angle $latitudeOfFalseOrigin,
1175
        Angle $longitudeOfFalseOrigin,
1176
        Angle $latitudeOf1stStandardParallel,
1177
        Angle $latitudeOf2ndStandardParallel,
1178
        Length $eastingAtFalseOrigin,
1179
        Length $northingAtFalseOrigin
1180
    ): ProjectedPoint {
1181
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1182
        $latitude = $this->latitude->asRadians()->getValue();
1183
        $phiF = $latitudeOfFalseOrigin->asRadians()->getValue();
1184
        $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue();
1185
        $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue();
1186
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1187
        $e = $ellipsoid->getEccentricity();
1188
        $e2 = $ellipsoid->getEccentricitySquared();
1189
1190
        $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2);
1191
        $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2);
1192
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1193
        $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2);
1194
        $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2);
1195
        $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2);
1196
        $n = (log($m1) - log($m2)) / (log($t1) - log($t2));
1197
        $F = $m1 / ($n * $t1 ** $n);
1198
        $r = $a * $F * $t ** $n;
1199
        $rF = $a * $F * $tF ** $n;
1200
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue();
1201
1202
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta);
1203
        $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta);
1204
1205
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1206
    }
1207
1208
    /**
1209
     * Lambert Conic Conformal (West Orientated).
1210
     */
1211
    public function lambertConicConformalWestOrientated(
1212
        Projected $to,
1213
        Angle $latitudeOfNaturalOrigin,
1214
        Angle $longitudeOfNaturalOrigin,
1215
        Scale $scaleFactorAtNaturalOrigin,
1216
        Length $falseEasting,
1217
        Length $falseNorthing
1218
    ): ProjectedPoint {
1219
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1220
        $latitude = $this->latitude->asRadians()->getValue();
1221
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1222
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1223
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1224
        $e = $ellipsoid->getEccentricity();
1225
        $e2 = $ellipsoid->getEccentricitySquared();
1226
1227
        $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1228
        $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2);
1229
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1230
        $n = sin($latitudeOrigin);
1231
        $F = $mO / ($n * $tO ** $n);
1232
        $rO = $a * $F * $tO ** $n ** $kO;
1233
        $r = $a * $F * $t ** $n ** $kO;
1234
        $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1235
1236
        $westing = $falseEasting->asMetres()->getValue() - $r * sin($theta);
1237
        $northing = $falseNorthing->asMetres()->getValue() + $rO - $r * cos($theta);
1238
1239
        return ProjectedPoint::create($to, new Metre(-$westing), new Metre($northing), new Metre($westing), new Metre(-$northing), $this->epoch);
1240
    }
1241
1242
    /**
1243
     * Lambert Conic Near-Conformal
1244
     * The Lambert Near-Conformal projection is derived from the Lambert Conformal Conic projection by truncating the
1245
     * series expansion of the projection formulae.
1246
     */
1247
    public function lambertConicNearConformal(
1248
        Projected $to,
1249
        Angle $latitudeOfNaturalOrigin,
1250
        Angle $longitudeOfNaturalOrigin,
1251
        Scale $scaleFactorAtNaturalOrigin,
1252
        Length $falseEasting,
1253
        Length $falseNorthing
1254
    ): ProjectedPoint {
1255
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1256
        $latitude = $this->latitude->asRadians()->getValue();
1257
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1258
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1259
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1260
        $e2 = $ellipsoid->getEccentricitySquared();
1261
        $f = $ellipsoid->getFlattening();
1262
1263
        $n = $f / (2 - $f);
1264
        $rhoO = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
1265
        $nuO = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
1266
        $A = 1 / (6 * $rhoO * $nuO);
1267
        $APrime = $a * (1 - $n + 5 * ($n ** 2 - $n ** 3) / 4 + 81 * ($n ** 4 - $n ** 5) / 64);
1268
        $BPrime = 3 * $a * ($n - $n ** 2 + 7 * ($n ** 3 - $n ** 4) / 8 + 55 * $n ** 5 / 64) / 2;
1269
        $CPrime = 15 * $a * ($n ** 2 - $n ** 3 + 3 * ($n ** 4 - $n ** 5) / 4) / 16;
1270
        $DPrime = 35 * $a * ($n ** 3 - $n ** 4 + 11 * $n ** 5 / 16) / 48;
1271
        $EPrime = 315 * $a * ($n ** 4 - $n ** 5) / 512;
1272
        $rO = $kO * $nuO / tan($latitudeOrigin);
1273
        $sO = $APrime * $latitudeOrigin - $BPrime * sin(2 * $latitudeOrigin) + $CPrime * sin(4 * $latitudeOrigin) - $DPrime * sin(6 * $latitudeOrigin) + $EPrime * sin(8 * $latitudeOrigin);
1274
        $s = $APrime * $latitude - $BPrime * sin(2 * $latitude) + $CPrime * sin(4 * $latitude) - $DPrime * sin(6 * $latitude) + $EPrime * sin(8 * $latitude);
1275
        $m = $s - $sO;
1276
        $M = $kO * ($m + $A * $m ** 3);
1277
        $r = $rO - $M;
1278
        $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * sin($latitudeOrigin);
1279
1280
        $easting = $falseEasting->asMetres()->getValue() + $r * sin($theta);
1281
        $northing = $falseNorthing->asMetres()->getValue() + $M + $r * sin($theta) * tan($theta / 2);
1282
1283
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1284
    }
1285
1286
    /**
1287
     * Lambert Cylindrical Equal Area
1288
     * This is the ellipsoidal form of the projection.
1289
     */
1290
    public function lambertCylindricalEqualArea(
1291
        Projected $to,
1292
        Angle $latitudeOf1stStandardParallel,
1293
        Angle $longitudeOfNaturalOrigin,
1294
        Length $falseEasting,
1295
        Length $falseNorthing
1296
    ): ProjectedPoint {
1297
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1298
        $latitude = $this->latitude->asRadians()->getValue();
1299
        $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
1300
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1301
        $e = $ellipsoid->getEccentricity();
1302
        $e2 = $ellipsoid->getEccentricitySquared();
1303
1304
        $k = cos($latitudeFirstParallel) / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2);
1305
        $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - (1 / (2 * $e)) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))));
1306
1307
        $x = $a * $k * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1308
        $y = $a * $q / (2 * $k);
1309
1310
        $easting = $falseEasting->asMetres()->getValue() + $x;
1311
        $northing = $falseNorthing->asMetres()->getValue() + $y;
1312
1313
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1314
    }
1315
1316
    /**
1317
     * Lambert Cylindrical Equal Area
1318
     * This is the spherical form of the projection.
1319
     */
1320
    public function lambertCylindricalEqualAreaSpherical(
1321
        Projected $to,
1322
        Angle $latitudeOf1stStandardParallel,
1323
        Angle $longitudeOfNaturalOrigin,
1324
        Length $falseEasting,
1325
        Length $falseNorthing
1326
    ): ProjectedPoint {
1327
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1328
        $latitude = $this->latitude->asRadians()->getValue();
1329
        $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
1330
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1331
1332
        $x = $a * cos($latitudeFirstParallel) * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1333
        $y = $a * sin($latitude) / cos($latitudeFirstParallel);
1334
1335
        $easting = $falseEasting->asMetres()->getValue() + $x;
1336
        $northing = $falseNorthing->asMetres()->getValue() + $y;
1337
1338
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1339
    }
1340
1341
    /**
1342
     * Modified Azimuthal Equidistant
1343
     * Modified form of Oblique Azimuthal Equidistant projection method developed for Polynesian islands. For the
1344
     * distances over which these projections are used (under 800km) this modification introduces no significant error.
1345
     */
1346
    public function modifiedAzimuthalEquidistant(
1347
        Projected $to,
1348
        Angle $latitudeOfNaturalOrigin,
1349
        Angle $longitudeOfNaturalOrigin,
1350
        Length $falseEasting,
1351
        Length $falseNorthing
1352
    ): ProjectedPoint {
1353
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1354
        $latitude = $this->latitude->asRadians()->getValue();
1355
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1356
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1357
        $e = $ellipsoid->getEccentricity();
1358
        $e2 = $ellipsoid->getEccentricitySquared();
1359
1360
        $nuO = $a / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2);
1361
        $nu = $a / sqrt(1 - $e2 * sin($latitude) ** 2);
1362
        $psi = atan((1 - $e2) * tan($latitude) + ($e2 * $nuO * sin($latitudeOrigin)) / ($nu * cos($latitude)));
1363
        $alpha = atan2(sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()), cos($latitudeOrigin) * tan($psi) - sin($latitudeOrigin) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()));
1364
        $G = $e * sin($latitudeOrigin) / sqrt(1 - $e2);
1365
        $H = $e * cos($latitudeOrigin) * cos($alpha) / sqrt(1 - $e2);
1366
1367
        if (sin($alpha) === 0.0) {
1368
            $s = self::asin(cos($latitudeOrigin) * sin($psi) - sin($latitudeOrigin) * cos($alpha)) * cos($alpha) / abs(cos($alpha));
1369
        } else {
1370
            $s = self::asin(sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()) * cos($psi) / sin($alpha));
1371
        }
1372
1373
        $c = $nuO * $s * ((1 - $s ** 2 * $H ** 2 * (1 - $H ** 2) / 6) + (($s ** 3 / 8) * $G * $H * (1 - 2 * $H ** 2)) + ($s ** 4 / 120) * ($H ** 2 * (4 - 7 * $H ** 2) - 3 * $G ** 2 * (1 - 7 * $H ** 2)) - (($s ** 5 / 48) * $G * $H));
1374
1375
        $easting = $falseEasting->asMetres()->getValue() + $c * sin($alpha);
1376
        $northing = $falseNorthing->asMetres()->getValue() + $c * cos($alpha);
1377
1378
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1379
    }
1380
1381
    /**
1382
     * Oblique Stereographic
1383
     * This is not the same as the projection method of the same name in USGS Professional Paper no. 1395, "Map
1384
     * Projections - A Working Manual" by John P. Snyder.
1385
     */
1386
    public function obliqueStereographic(
1387
        Projected $to,
1388
        Angle $latitudeOfNaturalOrigin,
1389
        Angle $longitudeOfNaturalOrigin,
1390
        Scale $scaleFactorAtNaturalOrigin,
1391
        Length $falseEasting,
1392
        Length $falseNorthing
1393
    ): ProjectedPoint {
1394
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1395
        $latitude = $this->latitude->asRadians()->getValue();
1396
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1397
        $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue();
1398
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1399
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1400
        $e = $ellipsoid->getEccentricity();
1401
        $e2 = $ellipsoid->getEccentricitySquared();
1402
1403
        $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2);
1404
        $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2));
1405
        $R = sqrt($rhoOrigin * $nuOrigin);
1406
1407
        $n = sqrt(1 + ($e2 * cos($latitudeOrigin) ** 4 / (1 - $e2)));
1408
        $S1 = (1 + sin($latitudeOrigin)) / (1 - sin($latitudeOrigin));
1409
        $S2 = (1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin));
1410
        $w1 = ($S1 * ($S2 ** $e)) ** $n;
1411
        $c = (($n + sin($latitudeOrigin)) * (1 - ($w1 - 1) / ($w1 + 1))) / (($n - sin($latitudeOrigin)) * (1 + ($w1 - 1) / ($w1 + 1)));
1412
        $w2 = $c * $w1;
1413
        $chiOrigin = self::asin(($w2 - 1) / ($w2 + 1));
1414
1415
        $lambda = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() + $longitudeOrigin;
1416
1417
        $Sa = (1 + sin($latitude)) / (1 - sin($latitude));
1418
        $Sb = (1 - $e * sin($latitude)) / (1 + $e * sin($latitude));
1419
        $w = $c * ($Sa * ($Sb ** $e)) ** $n;
1420
        $chi = self::asin(($w - 1) / ($w + 1));
1421
1422
        $B = (1 + sin($chi) * sin($chiOrigin) + cos($chi) * cos($chiOrigin) * cos($lambda - $longitudeOrigin));
1423
1424
        $easting = $falseEasting->asMetres()->getValue() + 2 * $R * $kO * cos($chi) * sin($lambda - $longitudeOrigin) / $B;
1425
        $northing = $falseNorthing->asMetres()->getValue() + 2 * $R * $kO * (sin($chi) * cos($chiOrigin) - cos($chi) * sin($chiOrigin) * cos($lambda - $longitudeOrigin)) / $B;
1426
1427
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1428
    }
1429
1430
    /**
1431
     * Polar Stereographic (variant A)
1432
     * Latitude of natural origin must be either 90 degrees or -90 degrees (or equivalent in alternative angle unit).
1433
     */
1434
    public function polarStereographicVariantA(
1435
        Projected $to,
1436
        Angle $latitudeOfNaturalOrigin,
1437
        Angle $longitudeOfNaturalOrigin,
1438
        Scale $scaleFactorAtNaturalOrigin,
1439
        Length $falseEasting,
1440
        Length $falseNorthing
1441
    ): ProjectedPoint {
1442
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1443
        $latitude = $this->latitude->asRadians()->getValue();
1444
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1445
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1446
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1447
        $e = $ellipsoid->getEccentricity();
1448
1449
        if ($latitudeOrigin < 0) {
1450
            $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1451
        } else {
1452
            $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1453
        }
1454
        $rho = 2 * $a * $kO * $t / sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e));
1455
1456
        $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1457
        $dE = $rho * sin($theta);
1458
        $dN = $rho * cos($theta);
1459
1460
        $easting = $falseEasting->asMetres()->getValue() + $dE;
1461
        if ($latitudeOrigin < 0) {
1462
            $northing = $falseNorthing->asMetres()->getValue() + $dN;
1463
        } else {
1464
            $northing = $falseNorthing->asMetres()->getValue() - $dN;
1465
        }
1466
1467
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1468
    }
1469
1470
    /**
1471
     * Polar Stereographic (variant B).
1472
     */
1473
    public function polarStereographicVariantB(
1474
        Projected $to,
1475
        Angle $latitudeOfStandardParallel,
1476
        Angle $longitudeOfOrigin,
1477
        Length $falseEasting,
1478
        Length $falseNorthing
1479
    ): ProjectedPoint {
1480
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1481
        $latitude = $this->latitude->asRadians()->getValue();
1482
        $firstStandardParallel = $latitudeOfStandardParallel->asRadians()->getValue();
1483
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1484
        $e = $ellipsoid->getEccentricity();
1485
        $e2 = $ellipsoid->getEccentricitySquared();
1486
1487
        if ($firstStandardParallel < 0) {
1488
            $tF = tan(M_PI / 4 + $firstStandardParallel / 2) / (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1489
            $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1490
        } else {
1491
            $tF = tan(M_PI / 4 - $firstStandardParallel / 2) * (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1492
            $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1493
        }
1494
        $mF = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1495
        $kO = $mF * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $tF);
1496
1497
        $rho = 2 * $a * $kO * $t / sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e));
1498
1499
        $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfOrigin))->asRadians()->getValue();
1500
        $dE = $rho * sin($theta);
1501
        $dN = $rho * cos($theta);
1502
1503
        $easting = $falseEasting->asMetres()->getValue() + $dE;
1504
        if ($firstStandardParallel < 0) {
1505
            $northing = $falseNorthing->asMetres()->getValue() + $dN;
1506
        } else {
1507
            $northing = $falseNorthing->asMetres()->getValue() - $dN;
1508
        }
1509
1510
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1511
    }
1512
1513
    /**
1514
     * Polar Stereographic (variant C).
1515
     */
1516
    public function polarStereographicVariantC(
1517
        Projected $to,
1518
        Angle $latitudeOfStandardParallel,
1519
        Angle $longitudeOfOrigin,
1520
        Length $eastingAtFalseOrigin,
1521
        Length $northingAtFalseOrigin
1522
    ): ProjectedPoint {
1523
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1524
        $latitude = $this->latitude->asRadians()->getValue();
1525
        $firstStandardParallel = $latitudeOfStandardParallel->asRadians()->getValue();
1526
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1527
        $e = $ellipsoid->getEccentricity();
1528
        $e2 = $ellipsoid->getEccentricitySquared();
1529
1530
        if ($firstStandardParallel < 0) {
1531
            $tF = tan(M_PI / 4 + $firstStandardParallel / 2) / (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1532
            $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1533
        } else {
1534
            $tF = tan(M_PI / 4 - $firstStandardParallel / 2) * (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2));
1535
            $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2));
1536
        }
1537
        $mF = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1538
1539
        $rhoF = $a * $mF;
1540
        $rho = $rhoF * $t / $tF;
1541
1542
        $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfOrigin))->asRadians()->getValue();
1543
        $dE = $rho * sin($theta);
1544
        $dN = $rho * cos($theta);
1545
1546
        $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $dE;
1547
        if ($firstStandardParallel < 0) {
1548
            $northing = $northingAtFalseOrigin->asMetres()->getValue() - $rhoF + $dN;
1549
        } else {
1550
            $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rhoF - $dN;
1551
        }
1552
1553
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1554
    }
1555
1556
    /**
1557
     * Popular Visualisation Pseudo Mercator
1558
     * Applies spherical formulas to the ellipsoid. As such does not have the properties of a true Mercator projection.
1559
     */
1560
    public function popularVisualisationPseudoMercator(
1561
        Projected $to,
1562
        Angle $latitudeOfNaturalOrigin,
0 ignored issues
show
Unused Code introduced by
The parameter $latitudeOfNaturalOrigin is not used and could be removed. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-unused  annotation

1562
        /** @scrutinizer ignore-unused */ Angle $latitudeOfNaturalOrigin,

This check looks for parameters that have been defined for a function or method, but which are not used in the method body.

Loading history...
1563
        Angle $longitudeOfNaturalOrigin,
1564
        Length $falseEasting,
1565
        Length $falseNorthing
1566
    ): ProjectedPoint {
1567
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1568
        $latitude = $this->latitude->asRadians()->getValue();
1569
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1570
1571
        $easting = $falseEasting->asMetres()->getValue() + $a * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1572
        $northing = $falseNorthing->asMetres()->getValue() + $a * log(tan(M_PI / 4 + $latitude / 2));
1573
1574
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1575
    }
1576
1577
    /**
1578
     * Mercator (variant A)
1579
     * Note that in these formulas the parameter latitude of natural origin (latO) is not used. However for this
1580
     * Mercator (variant A) method the EPSG dataset includes this parameter, which must have a value of zero, for
1581
     * completeness in CRS labelling.
1582
     */
1583
    public function mercatorVariantA(
1584
        Projected $to,
1585
        Angle $latitudeOfNaturalOrigin,
0 ignored issues
show
Unused Code introduced by
The parameter $latitudeOfNaturalOrigin is not used and could be removed. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-unused  annotation

1585
        /** @scrutinizer ignore-unused */ Angle $latitudeOfNaturalOrigin,

This check looks for parameters that have been defined for a function or method, but which are not used in the method body.

Loading history...
1586
        Angle $longitudeOfNaturalOrigin,
1587
        Scale $scaleFactorAtNaturalOrigin,
1588
        Length $falseEasting,
1589
        Length $falseNorthing
1590
    ): ProjectedPoint {
1591
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1592
        $latitude = $this->latitude->asRadians()->getValue();
1593
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1594
1595
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1596
        $e = $ellipsoid->getEccentricity();
1597
1598
        $easting = $falseEasting->asMetres()->getValue() + $a * $kO * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1599
        $northing = $falseNorthing->asMetres()->getValue() + $a * $kO * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1600
1601
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1602
    }
1603
1604
    /**
1605
     * Mercator (variant B)
1606
     * Used for most nautical charts.
1607
     */
1608
    public function mercatorVariantB(
1609
        Projected $to,
1610
        Angle $latitudeOf1stStandardParallel,
1611
        Angle $longitudeOfNaturalOrigin,
1612
        Length $falseEasting,
1613
        Length $falseNorthing
1614
    ): ProjectedPoint {
1615
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1616
        $latitude = $this->latitude->asRadians()->getValue();
1617
        $firstStandardParallel = $latitudeOf1stStandardParallel->asRadians()->getValue();
1618
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1619
        $e = $ellipsoid->getEccentricity();
1620
        $e2 = $ellipsoid->getEccentricitySquared();
1621
1622
        $kO = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2);
1623
1624
        $easting = $falseEasting->asMetres()->getValue() + $a * $kO * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue();
1625
        $northing = $falseNorthing->asMetres()->getValue() + $a * $kO * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1626
1627
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1628
    }
1629
1630
    /**
1631
     * Longitude rotation
1632
     * This transformation allows calculation of the longitude of a point in the target system by adding the parameter
1633
     * value to the longitude value of the point in the source system.
1634
     */
1635
    public function longitudeRotation(
1636
        Geographic2D|Geographic3D $to,
1637
        Angle $longitudeOffset
1638
    ): self {
1639
        $newLongitude = $this->longitude->add($longitudeOffset);
1640
1641
        return static::create($to, $this->latitude, $newLongitude, $this->height, $this->epoch);
1642
    }
1643
1644
    /**
1645
     * Hotine Oblique Mercator (variant A).
1646
     */
1647
    public function obliqueMercatorHotineVariantA(
1648
        Projected $to,
1649
        Angle $latitudeOfProjectionCentre,
1650
        Angle $longitudeOfProjectionCentre,
1651
        Angle $azimuthAtProjectionCentre,
1652
        Angle $angleFromRectifiedToSkewGrid,
1653
        Scale $scaleFactorAtProjectionCentre,
1654
        Length $falseEasting,
1655
        Length $falseNorthing
1656
    ): ProjectedPoint {
1657
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1658
        $latitude = $this->latitude->asRadians()->getValue();
1659
        $longitude = $this->longitude->asRadians()->getValue();
1660
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1661
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1662
        $alphaC = $azimuthAtProjectionCentre->asRadians()->getValue();
1663
        $kC = $scaleFactorAtProjectionCentre->asUnity()->getValue();
1664
        $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue();
1665
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1666
        $e = $ellipsoid->getEccentricity();
1667
        $e2 = $ellipsoid->getEccentricitySquared();
1668
1669
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1670
        $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2);
1671
        $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2);
1672
        $D = $B * sqrt(1 - $e2) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2));
1673
        $DD = max(1, $D ** 2);
1674
        $F = $D + sqrt($DD - 1) * static::sign($latC);
1675
        $H = $F * $tO ** $B;
1676
        $G = ($F - 1 / $F) / 2;
1677
        $gammaO = self::asin(sin($alphaC) / $D);
1678
        $lonO = $lonC - self::asin($G * tan($gammaO)) / $B;
1679
1680
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1681
        $Q = $H / $t ** $B;
1682
        $S = ($Q - 1 / $Q) / 2;
1683
        $T = ($Q + 1 / $Q) / 2;
1684
        $V = sin($B * ($longitude - $lonO));
1685
        $U = (-$V * cos($gammaO) + $S * sin($gammaO)) / $T;
1686
        $v = $A * log((1 - $U) / (1 + $U)) / (2 * $B);
1687
        $u = $A * atan2($S * cos($gammaO) + $V * sin($gammaO), cos($B * ($longitude - $lonO))) / $B;
1688
1689
        $easting = $v * cos($gammaC) + $u * sin($gammaC) + $falseEasting->asMetres()->getValue();
1690
        $northing = $u * cos($gammaC) - $v * sin($gammaC) + $falseNorthing->asMetres()->getValue();
1691
1692
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1693
    }
1694
1695
    /**
1696
     * Hotine Oblique Mercator (variant B).
1697
     */
1698
    public function obliqueMercatorHotineVariantB(
1699
        Projected $to,
1700
        Angle $latitudeOfProjectionCentre,
1701
        Angle $longitudeOfProjectionCentre,
1702
        Angle $azimuthAtProjectionCentre,
1703
        Angle $angleFromRectifiedToSkewGrid,
1704
        Scale $scaleFactorAtProjectionCentre,
1705
        Length $eastingAtProjectionCentre,
1706
        Length $northingAtProjectionCentre
1707
    ): ProjectedPoint {
1708
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1709
        $latitude = $this->latitude->asRadians()->getValue();
1710
        $longitude = $this->longitude->asRadians()->getValue();
1711
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1712
        $lonC = $longitudeOfProjectionCentre->asRadians()->getValue();
1713
        $alphaC = $azimuthAtProjectionCentre->asRadians()->getValue();
1714
        $kC = $scaleFactorAtProjectionCentre->asUnity()->getValue();
1715
        $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue();
1716
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1717
        $e = $ellipsoid->getEccentricity();
1718
        $e2 = $ellipsoid->getEccentricitySquared();
1719
1720
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1721
        $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2);
1722
        $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2);
1723
        $D = $B * sqrt(1 - $e2) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2));
1724
        $F = $D + sqrt(max($D ** 2, 1) - 1) * static::sign($latC);
1725
        $H = $F * $tO ** $B;
1726
        $G = ($F - 1 / $F) / 2;
1727
        $gammaO = self::asin(sin($alphaC) / $D);
1728
        $lonO = $lonC - self::asin($G * tan($gammaO)) / $B;
1729
        $vC = 0;
0 ignored issues
show
Unused Code introduced by
The assignment to $vC is dead and can be removed.
Loading history...
1730
        if ($alphaC === M_PI / 2) {
1731
            $uC = $A * ($lonC - $lonO);
1732
        } else {
1733
            $uC = ($A / $B) * atan2(sqrt(max($D ** 2, 1) - 1), cos($alphaC)) * static::sign($latC);
1734
        }
1735
1736
        $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2);
1737
        $Q = $H / $t ** $B;
1738
        $S = ($Q - 1 / $Q) / 2;
1739
        $T = ($Q + 1 / $Q) / 2;
1740
        $V = sin($B * ($longitude - $lonO));
1741
        $U = (-$V * cos($gammaO) + $S * sin($gammaO)) / $T;
1742
        $v = $A * log((1 - $U) / (1 + $U)) / (2 * $B);
1743
        $u = ($A * atan2($S * cos($gammaO) + $V * sin($gammaO), cos($B * ($longitude - $lonO))) / $B) - (abs($uC) * static::sign($latC));
1744
1745
        $easting = $v * cos($gammaC) + $u * sin($gammaC) + $eastingAtProjectionCentre->asMetres()->getValue();
1746
        $northing = $u * cos($gammaC) - $v * sin($gammaC) + $northingAtProjectionCentre->asMetres()->getValue();
1747
1748
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1749
    }
1750
1751
    /**
1752
     * Laborde Oblique Mercator.
1753
     */
1754
    public function obliqueMercatorLaborde(
1755
        Projected $to,
1756
        Angle $latitudeOfProjectionCentre,
1757
        Angle $longitudeOfProjectionCentre,
1758
        Angle $azimuthAtProjectionCentre,
1759
        Scale $scaleFactorAtProjectionCentre,
1760
        Length $falseEasting,
1761
        Length $falseNorthing
1762
    ): ProjectedPoint {
1763
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1764
        $latitude = $this->latitude->asRadians()->getValue();
1765
        $latC = $latitudeOfProjectionCentre->asRadians()->getValue();
1766
        $alphaC = $azimuthAtProjectionCentre->asRadians()->getValue();
1767
        $kC = $scaleFactorAtProjectionCentre->asUnity()->getValue();
1768
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1769
        $e = $ellipsoid->getEccentricity();
1770
        $e2 = $ellipsoid->getEccentricitySquared();
1771
1772
        $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2)));
1773
        $latS = self::asin(sin($latC) / $B);
1774
        $R = $a * $kC * (sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2));
1775
        $C = log(tan(M_PI / 4 + $latS / 2)) - $B * log(tan(M_PI / 4 + $latC / 2) * ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2));
1776
1777
        $L = $B * $this->normaliseLongitude($this->longitude->subtract($longitudeOfProjectionCentre))->asRadians()->getValue();
1778
        $q = $C + $B * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2));
1779
        $P = 2 * atan(M_E ** $q) - M_PI / 2;
1780
        $U = cos($P) * cos($L) * cos($latS) + sin($P) * sin($latS);
1781
        $V = cos($P) * cos($L) * sin($latS) - sin($P) * cos($latS);
1782
        $W = cos($P) * sin($L);
1783
        $d = hypot($U, $V);
1784
        if ($d === 0.0) {
1785
            $LPrime = 0;
1786
            $PPrime = static::sign($W) * M_PI / 2;
1787
        } else {
1788
            $LPrime = 2 * atan($V / ($U + $d));
1789
            $PPrime = atan($W / $d);
1790
        }
1791
        $H = new ComplexNumber(-$LPrime, log(tan(M_PI / 4 + $PPrime / 2)));
1792
        $G = (new ComplexNumber(1 - cos(2 * $alphaC), sin(2 * $alphaC)))->divide(new ComplexNumber(12, 0));
1793
1794
        $easting = $falseEasting->asMetres()->getValue() + $R * $H->pow(3)->multiply($G)->add($H)->getImaginary();
1795
        $northing = $falseNorthing->asMetres()->getValue() + $R * $H->pow(3)->multiply($G)->add($H)->getReal();
1796
1797
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1798
    }
1799
1800
    /**
1801
     * Transverse Mercator.
1802
     */
1803
    public function transverseMercator(
1804
        Projected $to,
1805
        Angle $latitudeOfNaturalOrigin,
1806
        Angle $longitudeOfNaturalOrigin,
1807
        Scale $scaleFactorAtNaturalOrigin,
1808
        Length $falseEasting,
1809
        Length $falseNorthing
1810
    ): ProjectedPoint {
1811
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1812
        $latitude = $this->latitude->asRadians()->getValue();
1813
        $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue();
1814
        $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue();
1815
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1816
        $e = $ellipsoid->getEccentricity();
1817
        $f = $ellipsoid->getFlattening();
1818
1819
        $n = $f / (2 - $f);
1820
        $B = ($a / (1 + $n)) * (1 + $n ** 2 / 4 + $n ** 4 / 64 + $n ** 6 / 256 + (25 / 16384) * $n ** 8);
1821
1822
        $h1 = $n / 2 - (2 / 3) * $n ** 2 + (5 / 16) * $n ** 3 + (41 / 180) * $n ** 4 - (127 / 288) * $n ** 5 + (7891 / 37800) * $n ** 6 + (72161 / 387072) * $n ** 7 - (18975107 / 50803200) * $n ** 8;
1823
        $h2 = (13 / 48) * $n ** 2 - (3 / 5) * $n ** 3 + (557 / 1440) * $n ** 4 + (281 / 630) * $n ** 5 - (1983433 / 1935360) * $n ** 6 + (13769 / 28800) * $n ** 7 + (148003883 / 174182400) * $n ** 8;
1824
        $h3 = (61 / 240) * $n ** 3 - (103 / 140) * $n ** 4 + (15061 / 26880) * $n ** 5 + (167603 / 181440) * $n ** 6 - (67102379 / 29030400) * $n ** 7 + (79682431 / 79833600) * $n ** 8;
1825
        $h4 = (49561 / 161280) * $n ** 4 - (179 / 168) * $n ** 5 + (6601661 / 7257600) * $n ** 6 + (97445 / 49896) * $n ** 7 - (40176129013 / 7664025600) * $n ** 8;
1826
        $h5 = (34729 / 80640) * $n ** 5 - (3418889 / 1995840) * $n ** 6 + (14644087 / 9123840) * $n ** 7 + (2605413599 / 622702080) * $n ** 8;
1827
        $h6 = (212378941 / 319334400) * $n ** 6 - (30705481 / 10378368) * $n ** 7 + (175214326799 / 58118860800) * $n ** 8;
1828
        $h7 = (1522256789 / 1383782400) * $n ** 7 - (16759934899 / 3113510400) * $n ** 8;
1829
        $h8 = (1424729850961 / 743921418240) * $n ** 8;
1830
1831
        if ($latitudeOrigin === 0.0) {
0 ignored issues
show
introduced by
The condition $latitudeOrigin === 0.0 is always false.
Loading history...
1832
            $mO = 0;
1833
        } elseif ($latitudeOrigin === M_PI / 2) {
1834
            $mO = $B * M_PI / 2;
1835
        } elseif ($latitudeOrigin === -M_PI / 2) {
1836
            $mO = $B * -M_PI / 2;
1837
        } else {
1838
            $qO = asinh(tan($latitudeOrigin)) - ($e * atanh($e * sin($latitudeOrigin)));
1839
            $betaO = atan(sinh($qO));
1840
            $xiO0 = self::asin(sin($betaO));
1841
            $xiO1 = $h1 * sin(2 * $xiO0);
1842
            $xiO2 = $h2 * sin(4 * $xiO0);
1843
            $xiO3 = $h3 * sin(6 * $xiO0);
1844
            $xiO4 = $h4 * sin(8 * $xiO0);
1845
            $xiO5 = $h5 * sin(10 * $xiO0);
1846
            $xiO6 = $h6 * sin(12 * $xiO0);
1847
            $xiO7 = $h7 * sin(14 * $xiO0);
1848
            $xiO8 = $h8 * sin(16 * $xiO0);
1849
            $xiO = $xiO0 + $xiO1 + $xiO2 + $xiO3 + $xiO4 + $xiO5 + $xiO6 + $xiO7 + $xiO8;
1850
            $mO = $B * $xiO;
1851
        }
1852
1853
        $Q = asinh(tan($latitude)) - ($e * atanh($e * sin($latitude)));
1854
        $beta = atan(sinh($Q));
1855
        $eta0 = atanh(cos($beta) * sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()));
1856
        $xi0 = self::asin(sin($beta) * cosh($eta0));
1857
        $xi1 = $h1 * sin(2 * $xi0) * cosh(2 * $eta0);
1858
        $eta1 = $h1 * cos(2 * $xi0) * sinh(2 * $eta0);
1859
        $xi2 = $h2 * sin(4 * $xi0) * cosh(4 * $eta0);
1860
        $eta2 = $h2 * cos(4 * $xi0) * sinh(4 * $eta0);
1861
        $xi3 = $h3 * sin(6 * $xi0) * cosh(6 * $eta0);
1862
        $eta3 = $h3 * cos(6 * $xi0) * sinh(6 * $eta0);
1863
        $xi4 = $h4 * sin(8 * $xi0) * cosh(8 * $eta0);
1864
        $eta4 = $h4 * cos(8 * $xi0) * sinh(8 * $eta0);
1865
        $xi5 = $h5 * sin(10 * $xi0) * cosh(10 * $eta0);
1866
        $eta5 = $h5 * cos(10 * $xi0) * sinh(10 * $eta0);
1867
        $xi6 = $h6 * sin(12 * $xi0) * cosh(12 * $eta0);
1868
        $eta6 = $h6 * cos(12 * $xi0) * sinh(12 * $eta0);
1869
        $xi7 = $h7 * sin(14 * $xi0) * cosh(14 * $eta0);
1870
        $eta7 = $h7 * cos(14 * $xi0) * sinh(14 * $eta0);
1871
        $xi8 = $h8 * sin(16 * $xi0) * cosh(16 * $eta0);
1872
        $eta8 = $h8 * cos(16 * $xi0) * sinh(16 * $eta0);
1873
        $xi = $xi0 + $xi1 + $xi2 + $xi3 + $xi4 + $xi5 + $xi6 + $xi7 + $xi8;
1874
        $eta = $eta0 + $eta1 + $eta2 + $eta3 + $eta4 + $eta5 + $eta6 + $eta7 + $eta8;
1875
1876
        $easting = $falseEasting->asMetres()->getValue() + $kO * $B * $eta;
1877
        $northing = $falseNorthing->asMetres()->getValue() + $kO * ($B * $xi - $mO);
1878
1879
        $height = count($to->getCoordinateSystem()->getAxes()) === 3 ? $this->height : null;
1880
1881
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch, $height);
1882
    }
1883
1884
    /**
1885
     * Transverse Mercator Zoned Grid System
1886
     * If locations fall outwith the fixed zones the general Transverse Mercator method (code 9807) must be used for
1887
     * each zone.
1888
     */
1889
    public function transverseMercatorZonedGrid(
1890
        Projected $to,
1891
        Angle $latitudeOfNaturalOrigin,
1892
        Angle $initialLongitude,
1893
        Angle $zoneWidth,
1894
        Scale $scaleFactorAtNaturalOrigin,
1895
        Length $falseEasting,
1896
        Length $falseNorthing
1897
    ): ProjectedPoint {
1898
        $W = $zoneWidth->asDegrees()->getValue();
1899
        $Z = (int) ($this->longitude->subtract($initialLongitude)->asDegrees()->getValue() / $W) % (int) (360 / $W) + 1;
1900
1901
        $longitudeOrigin = $initialLongitude->add(new Degree($Z * $W - $W / 2));
1902
        $falseEasting = $falseEasting->add(new Metre($Z * 1000000));
1903
1904
        return $this->transverseMercator($to, $latitudeOfNaturalOrigin, $longitudeOrigin, $scaleFactorAtNaturalOrigin, $falseEasting, $falseNorthing);
1905
    }
1906
1907
    /**
1908
     * New Zealand Map Grid.
1909
     */
1910
    public function newZealandMapGrid(
1911
        Projected $to,
1912
        Angle $latitudeOfNaturalOrigin,
1913
        Angle $longitudeOfNaturalOrigin,
1914
        Length $falseEasting,
1915
        Length $falseNorthing
1916
    ): ProjectedPoint {
1917
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
1918
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
1919
1920
        $deltaLatitudeToOrigin = Angle::convert($this->latitude->subtract($latitudeOfNaturalOrigin), Angle::EPSG_ARC_SECOND)->getValue();
1921
        $deltaLongitudeToOrigin = $this->longitude->subtract($longitudeOfNaturalOrigin)->asRadians();
1922
1923
        $deltaPsi = 0;
1924
        $deltaPsi += 0.6399175073 * ($deltaLatitudeToOrigin * 0.00001) ** 1;
1925
        $deltaPsi += -0.1358797613 * ($deltaLatitudeToOrigin * 0.00001) ** 2;
1926
        $deltaPsi += 0.063294409 * ($deltaLatitudeToOrigin * 0.00001) ** 3;
1927
        $deltaPsi += -0.02526853 * ($deltaLatitudeToOrigin * 0.00001) ** 4;
1928
        $deltaPsi += 0.0117879 * ($deltaLatitudeToOrigin * 0.00001) ** 5;
1929
        $deltaPsi += -0.0055161 * ($deltaLatitudeToOrigin * 0.00001) ** 6;
1930
        $deltaPsi += 0.0026906 * ($deltaLatitudeToOrigin * 0.00001) ** 7;
1931
        $deltaPsi += -0.001333 * ($deltaLatitudeToOrigin * 0.00001) ** 8;
1932
        $deltaPsi += 0.00067 * ($deltaLatitudeToOrigin * 0.00001) ** 9;
1933
        $deltaPsi += -0.00034 * ($deltaLatitudeToOrigin * 0.00001) ** 10;
1934
1935
        $zeta = new ComplexNumber($deltaPsi, $deltaLongitudeToOrigin->getValue());
1936
1937
        $B1 = new ComplexNumber(0.7557853228, 0.0);
1938
        $B2 = new ComplexNumber(0.249204646, 0.003371507);
1939
        $B3 = new ComplexNumber(-0.001541739, 0.041058560);
1940
        $B4 = new ComplexNumber(-0.10162907, 0.01727609);
1941
        $B5 = new ComplexNumber(-0.26623489, -0.36249218);
1942
        $B6 = new ComplexNumber(-0.6870983, -1.1651967);
1943
        $z = new ComplexNumber(0, 0);
1944
        $z = $z->add($B1->multiply($zeta->pow(1)));
1945
        $z = $z->add($B2->multiply($zeta->pow(2)));
1946
        $z = $z->add($B3->multiply($zeta->pow(3)));
1947
        $z = $z->add($B4->multiply($zeta->pow(4)));
1948
        $z = $z->add($B5->multiply($zeta->pow(5)));
1949
        $z = $z->add($B6->multiply($zeta->pow(6)));
1950
1951
        $easting = $falseEasting->asMetres()->getValue() + $z->getImaginary() * $a;
1952
        $northing = $falseNorthing->asMetres()->getValue() + $z->getReal() * $a;
1953
1954
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
1955
    }
1956
1957
    /**
1958
     * Madrid to ED50 polynomial.
1959
     */
1960
    public function madridToED50Polynomial(
1961
        Geographic2D $to,
1962
        Scale $A0,
1963
        Scale $A1,
1964
        Scale $A2,
1965
        Scale $A3,
1966
        Angle $B00,
1967
        Scale $B0,
1968
        Scale $B1,
1969
        Scale $B2,
1970
        Scale $B3
1971
    ): self {
1972
        $dLatitude = new ArcSecond($A0->add($A1->multiply($this->latitude->getValue()))->add($A2->multiply($this->longitude->getValue()))->add($A3->multiply($this->height ? $this->height->getValue() : 0))->getValue());
1973
        $dLongitude = $B00->add(new ArcSecond($B0->add($B1->multiply($this->latitude->getValue()))->add($B2->multiply($this->longitude->getValue()))->add($B3->multiply($this->height ? $this->height->getValue() : 0))->getValue()));
1974
1975
        return self::create($to, $this->latitude->add($dLatitude), $this->longitude->add($dLongitude), null, $this->epoch);
1976
    }
1977
1978
    /**
1979
     * Geographic3D to 2D conversion.
1980
     */
1981
    public function threeDToTwoD(
1982
        Geographic2D|Geographic3D $to
1983
    ): self {
1984
        if ($to instanceof Geographic2D) {
1985
            return static::create($to, $this->latitude, $this->longitude, null, $this->epoch);
1986
        }
1987
1988
        return static::create($to, $this->latitude, $this->longitude, new Metre(0), $this->epoch);
1989
    }
1990
1991
    /**
1992
     * Geographic2D offsets.
1993
     * This transformation allows calculation of coordinates in the target system by adding the parameter value to the
1994
     * coordinate values of the point in the source system.
1995
     */
1996
    public function geographic2DOffsets(
1997
        Geographic2D|Geographic3D $to,
1998
        Angle $latitudeOffset,
1999
        Angle $longitudeOffset
2000
    ): self {
2001
        $toLatitude = $this->latitude->add($latitudeOffset);
2002
        $toLongitude = $this->longitude->add($longitudeOffset);
2003
2004
        return static::create($to, $toLatitude, $toLongitude, null, $this->epoch);
2005
    }
2006
2007
    /*
2008
     * Geographic2D with Height Offsets.
2009
     * This transformation allows calculation of coordinates in the target system by adding the parameter value to the
2010
     * coordinate values of the point in the source system.
2011
     */
2012
    public function geographic2DWithHeightOffsets(
2013
        Compound $to,
2014
        Angle $latitudeOffset,
2015
        Angle $longitudeOffset,
2016
        Length $geoidUndulation
2017
    ): CompoundPoint {
2018
        assert($this->height instanceof Length);
2019
        $toLatitude = $this->latitude->add($latitudeOffset);
2020
        $toLongitude = $this->longitude->add($longitudeOffset);
2021
        $toHeight = $this->height->add($geoidUndulation);
2022
2023
        assert($to->getHorizontal() instanceof Geographic2D);
2024
        $horizontal = static::create($to->getHorizontal(), $toLatitude, $toLongitude, null, $this->epoch);
2025
        $vertical = VerticalPoint::create($to->getVertical(), $toHeight, $this->epoch);
2026
2027
        return CompoundPoint::create($to, $horizontal, $vertical, $this->epoch);
2028
    }
2029
2030
    /**
2031
     * General polynomial.
2032
     * @param Coefficient[] $powerCoefficients
2033
     */
2034
    public function generalPolynomial(
2035
        Geographic2D|Geographic3D $to,
2036
        Angle $ordinate1OfEvaluationPointInSourceCRS,
2037
        Angle $ordinate2OfEvaluationPointInSourceCRS,
2038
        Angle $ordinate1OfEvaluationPointInTargetCRS,
2039
        Angle $ordinate2OfEvaluationPointInTargetCRS,
2040
        Scale $scalingFactorForSourceCRSCoordDifferences,
2041
        Scale $scalingFactorForTargetCRSCoordDifferences,
2042
        Scale $A0,
2043
        Scale $B0,
2044
        array $powerCoefficients,
2045
        bool $inReverse
2046
    ): self {
2047
        $xs = $this->latitude->getValue();
2048
        $ys = $this->longitude->getValue();
2049
2050
        $t = $this->generalPolynomialUnitless(
2051
            $xs,
2052
            $ys,
2053
            $ordinate1OfEvaluationPointInSourceCRS,
2054
            $ordinate2OfEvaluationPointInSourceCRS,
2055
            $ordinate1OfEvaluationPointInTargetCRS,
2056
            $ordinate2OfEvaluationPointInTargetCRS,
2057
            $scalingFactorForSourceCRSCoordDifferences,
2058
            $scalingFactorForTargetCRSCoordDifferences,
2059
            $A0,
2060
            $B0,
2061
            $powerCoefficients,
2062
            $inReverse
2063
        );
2064
2065
        $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId();
2066
        $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId();
2067
2068
        return static::create(
2069
            $to,
2070
            Angle::makeUnit($t['xt'], $xtUnit),
2071
            Angle::makeUnit($t['yt'], $ytUnit),
2072
            $this->height,
2073
            $this->epoch
2074
        );
2075
    }
2076
2077
    /**
2078
     * Reversible polynomial.
2079
     * @param Coefficient[] $powerCoefficients
2080
     */
2081
    public function reversiblePolynomial(
2082
        Geographic2D|Geographic3D $to,
2083
        Angle $ordinate1OfEvaluationPoint,
2084
        Angle $ordinate2OfEvaluationPoint,
2085
        Scale $scalingFactorForCoordDifferences,
2086
        Scale $A0,
2087
        Scale $B0,
2088
        $powerCoefficients
2089
    ): self {
2090
        $xs = $this->latitude->getValue();
2091
        $ys = $this->longitude->getValue();
2092
2093
        $t = $this->reversiblePolynomialUnitless(
2094
            $xs,
2095
            $ys,
2096
            $ordinate1OfEvaluationPoint,
2097
            $ordinate2OfEvaluationPoint,
2098
            $scalingFactorForCoordDifferences,
2099
            $A0,
2100
            $B0,
2101
            $powerCoefficients
2102
        );
2103
2104
        $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId();
2105
        $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId();
2106
2107
        return static::create(
2108
            $to,
2109
            Angle::makeUnit($t['xt'], $xtUnit),
2110
            Angle::makeUnit($t['yt'], $ytUnit),
2111
            $this->height,
2112
            $this->epoch
2113
        );
2114
    }
2115
2116
    /**
2117
     * Axis Order Reversal.
2118
     */
2119
    public function axisReversal(
2120
        Geographic2D|Geographic3D $to
2121
    ): self {
2122
        // axes are read in from the CRS, this is a book-keeping adjustment only
2123
        return static::create($to, $this->latitude, $this->longitude, $this->height, $this->epoch);
2124
    }
2125
2126
    /**
2127
     * Ordnance Survey National Transformation
2128
     * Geodetic transformation between ETRS89 (or WGS 84) and OSGB36 / National Grid.  Uses ETRS89 / National Grid as
2129
     * an intermediate coordinate system for bi-linear interpolation of gridded grid coordinate differences.
2130
     */
2131
    public function OSTN15(
2132
        Projected $to,
0 ignored issues
show
Unused Code introduced by
The parameter $to is not used and could be removed. ( Ignorable by Annotation )

If this is a false-positive, you can also ignore this issue in your code via the ignore-unused  annotation

2132
        /** @scrutinizer ignore-unused */ Projected $to,

This check looks for parameters that have been defined for a function or method, but which are not used in the method body.

Loading history...
2133
        OSTNOSGM15Grid $eastingAndNorthingDifferenceFile
2134
    ): ProjectedPoint {
2135
        $osgb36NationalGrid = Projected::fromSRID(Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID);
2136
        $etrs89NationalGrid = new Projected(
2137
            'ETRS89 / National Grid',
2138
            Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M),
2139
            Datum::fromSRID(Datum::EPSG_EUROPEAN_TERRESTRIAL_REFERENCE_SYSTEM_1989_ENSEMBLE),
2140
            $osgb36NationalGrid->getBoundingArea()
2141
        );
2142
2143
        $projected = $this->transverseMercator($etrs89NationalGrid, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000));
2144
2145
        return $eastingAndNorthingDifferenceFile->applyForwardHorizontalAdjustment($projected);
2146
    }
2147
2148
    /**
2149
     * Geog3D to Geog2D+GravityRelatedHeight (OSGM-GB).
2150
     * Uses ETRS89 / National Grid as an intermediate coordinate system for bi-linear interpolation of gridded grid
2151
     * coordinate differences.
2152
     */
2153
    public function geographic3DTo2DPlusGravityHeightOSGM15(
2154
        Compound $to,
2155
        OSTNOSGM15Grid $geoidHeightCorrectionModelFile
2156
    ): CompoundPoint {
2157
        assert($this->height instanceof Length);
2158
        $osgb36NationalGrid = Projected::fromSRID(Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID);
2159
        $etrs89NationalGrid = new Projected(
2160
            'ETRS89 / National Grid',
2161
            Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M),
2162
            Datum::fromSRID(Datum::EPSG_EUROPEAN_TERRESTRIAL_REFERENCE_SYSTEM_1989_ENSEMBLE),
2163
            $osgb36NationalGrid->getBoundingArea()
2164
        );
2165
2166
        /** @var ProjectedPoint $projected */
2167
        $projected = $this->transverseMercator($etrs89NationalGrid, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000));
2168
2169
        assert($to->getHorizontal() instanceof Geographic2D);
2170
        $horizontalPoint = self::create(
2171
            $to->getHorizontal(),
2172
            $this->latitude,
2173
            $this->longitude,
2174
            null,
2175
            $this->getCoordinateEpoch()
2176
        );
2177
2178
        $verticalPoint = VerticalPoint::create(
2179
            $to->getVertical(),
2180
            $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($projected)),
2181
            $this->getCoordinateEpoch()
2182
        );
2183
2184
        return CompoundPoint::create(
2185
            $to,
2186
            $horizontalPoint,
2187
            $verticalPoint,
2188
            $this->getCoordinateEpoch()
2189
        );
2190
    }
2191
2192
    /**
2193
     * Geographic3D to GravityRelatedHeight (OSGM-GB).
2194
     * Uses ETRS89 / National Grid as an intermediate coordinate system for bi-linear interpolation of gridded grid
2195
     * coordinate differences.
2196
     */
2197
    public function geographic3DToGravityHeightOSGM15(
2198
        Vertical $to,
2199
        OSTNOSGM15Grid $geoidHeightCorrectionModelFile
2200
    ): VerticalPoint {
2201
        assert($this->height instanceof Length);
2202
        $osgb36NationalGrid = Projected::fromSRID(Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID);
2203
        $etrs89NationalGrid = new Projected(
2204
            'ETRS89 / National Grid',
2205
            Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M),
2206
            Datum::fromSRID(Datum::EPSG_EUROPEAN_TERRESTRIAL_REFERENCE_SYSTEM_1989_ENSEMBLE),
2207
            $osgb36NationalGrid->getBoundingArea()
2208
        );
2209
2210
        $projected = $this->transverseMercator($etrs89NationalGrid, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000));
2211
2212
        return VerticalPoint::create(
2213
            $to,
2214
            $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($projected)),
2215
            $this->getCoordinateEpoch()
2216
        );
2217
    }
2218
2219
    /**
2220
     * Geog3D to Geog2D+GravityRelatedHeight.
2221
     */
2222
    public function geographic3DTo2DPlusGravityHeightFromGrid(
2223
        Compound $to,
2224
        GeographicGeoidHeightGrid $geoidHeightCorrectionModelFile
2225
    ): CompoundPoint {
2226
        assert($this->height instanceof Length);
2227
        assert($to->getHorizontal() instanceof Geographic);
2228
        $horizontalPoint = self::create(
2229
            $to->getHorizontal(),
2230
            $this->latitude,
2231
            $this->longitude,
2232
            null,
2233
            $this->getCoordinateEpoch()
2234
        );
2235
2236
        $verticalPoint = VerticalPoint::create(
2237
            $to->getVertical(),
2238
            $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($this)),
2239
            $this->getCoordinateEpoch()
2240
        );
2241
2242
        return CompoundPoint::create(
2243
            $to,
2244
            $horizontalPoint,
2245
            $verticalPoint,
2246
            $this->getCoordinateEpoch()
2247
        );
2248
    }
2249
2250
    /**
2251
     * Geographic3D to GravityRelatedHeight.
2252
     */
2253
    public function geographic3DToGravityHeightFromGrid(
2254
        Vertical $to,
2255
        GeographicGeoidHeightGrid $geoidHeightCorrectionModelFile
2256
    ): VerticalPoint {
2257
        assert($this->height instanceof Length);
2258
2259
        return VerticalPoint::create(
2260
            $to,
2261
            $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($this)),
2262
            $this->getCoordinateEpoch()
2263
        );
2264
    }
2265
2266
    /**
2267
     * NADCON5.
2268
     * @internal just a wrapper
2269
     */
2270
    public function offsetsFromGridNADCON5(
2271
        Geographic2D|Geographic3D $to,
2272
        NADCON5Grid $latitudeDifferenceFile,
2273
        NADCON5Grid $longitudeDifferenceFile,
2274
        ?NADCON5Grid $ellipsoidalHeightDifferenceFile,
2275
        bool $inReverse
2276
    ): self {
2277
        $aggregation = new NADCON5Grids($longitudeDifferenceFile, $latitudeDifferenceFile, $ellipsoidalHeightDifferenceFile);
2278
2279
        return $this->offsetsFromGrid($to, $aggregation, $inReverse);
2280
    }
2281
2282
    /**
2283
     * Geographic offsets from grid.
2284
     */
2285
    public function offsetsFromGrid(
2286
        Geographic2D|Geographic3D $to,
2287
        GeographicGrid $offsetsFile,
2288
        bool $inReverse
2289
    ): self {
2290
        if (!$inReverse) {
2291
            return $offsetsFile->applyForwardAdjustment($this, $to);
2292
        }
2293
2294
        return $offsetsFile->applyReverseAdjustment($this, $to);
2295
    }
2296
2297
    public function localOrthographic(
2298
        Projected $to,
2299
        Angle $latitudeOfProjectionCentre,
2300
        Angle $longitudeOfProjectionCentre,
2301
        Angle $azimuthAtProjectionCentre,
2302
        Scale $scaleFactorAtProjectionCentre,
2303
        Length $eastingAtProjectionCentre,
2304
        Length $northingAtProjectionCentre
2305
    ): ProjectedPoint {
2306
        $ellipsoid = $this->crs->getDatum()->getEllipsoid();
2307
        $latitude = $this->latitude->asRadians()->getValue();
2308
        $longitude = $this->longitude->asRadians()->getValue();
2309
        $latitudeCentre = $latitudeOfProjectionCentre->asRadians()->getValue();
2310
        $longitudeCentre = $longitudeOfProjectionCentre->asRadians()->getValue();
2311
        $azimuthCentre = $azimuthAtProjectionCentre->asRadians()->getValue();
2312
        $scaleFactorCentre = $scaleFactorAtProjectionCentre->asUnity()->getValue();
2313
2314
        $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue();
2315
        $e2 = $ellipsoid->getEccentricitySquared();
2316
        $v = $a / sqrt(1 - $e2 * sin($latitude) ** 2);
2317
        $vc = $a / sqrt(1 - $e2 * sin($latitudeCentre) ** 2);
2318
2319
        $xp = $v * cos($latitude) * sin($longitude - $longitudeCentre);
2320
        $yp = -sin($latitudeCentre) * ($v * cos($latitude) * cos($longitude - $longitudeCentre) - $vc * cos($latitudeCentre)) + cos($latitudeCentre) * ($v * (1 - $e2) * sin($latitude) - $vc * (1 - $e2) * sin($latitudeCentre));
2321
2322
        $easting = $eastingAtProjectionCentre->asMetres()->getValue() + $scaleFactorCentre * (cos($azimuthCentre) * $xp - sin($azimuthCentre) * $yp);
2323
        $northing = $northingAtProjectionCentre->asMetres()->getValue() + $scaleFactorCentre * (sin($azimuthCentre) * $xp + cos($azimuthCentre) * $yp);
2324
2325
        return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch);
2326
    }
2327
2328
    public function asGeographicValue(): GeographicValue
2329
    {
2330
        return new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum());
2331
    }
2332
2333
    public function asUTMPoint(): UTMPoint
2334
    {
2335
        $hemisphere = $this->getLatitude()->asDegrees()->getValue() >= 0 ? UTMPoint::HEMISPHERE_NORTH : UTMPoint::HEMISPHERE_SOUTH;
2336
2337
        $initialLongitude = new Degree(-180);
2338
        $zone = (int) ($this->longitude->subtract($initialLongitude)->asDegrees()->getValue() / 6) % (360 / 6) + 1;
2339
2340
        if ($hemisphere === UTMPoint::HEMISPHERE_NORTH) {
2341
            $derivingConversion = 'urn:ogc:def:coordinateOperation:EPSG::' . ($zone + 16000);
2342
        } else {
2343
            $derivingConversion = 'urn:ogc:def:coordinateOperation:EPSG::' . ($zone + 16100);
2344
        }
2345
2346
        $srid = 'urn:ogc:def:crs,' . str_replace('urn:ogc:def:', '', $this->crs->getSRID()) . ',' . str_replace('urn:ogc:def:', '', Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M) . ',' . str_replace('urn:ogc:def:', '', $derivingConversion);
2347
2348
        $projectedCRS = new Projected(
2349
            $srid,
2350
            Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M),
2351
            $this->crs->getDatum(),
2352
            BoundingArea::createWorld() // this is a dummy CRS for the transform only, details don't matter (UTMPoint creates own)
2353
        );
2354
2355
        /** @var ProjectedPoint $asProjected */
2356
        $asProjected = $this->performOperation($derivingConversion, $projectedCRS, false);
2357
2358
        return new UTMPoint($this->crs, $asProjected->getEasting(), $asProjected->getNorthing(), $zone, $hemisphere, $this->epoch);
2359
    }
2360
}
2361