| Total Complexity | 117 |
| Total Lines | 2285 |
| Duplicated Lines | 0 % |
| Changes | 0 | ||
Complex classes like GeographicPoint often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
While breaking up the class, it is a good idea to analyze how other classes use GeographicPoint, and based on these observations, apply Extract Interface, too.
| 1 | <?php |
||
| 74 | class GeographicPoint extends Point implements ConvertiblePoint |
||
| 75 | { |
||
| 76 | use AutoConversion; |
||
| 77 | |||
| 78 | /** |
||
| 79 | * Latitude. |
||
| 80 | */ |
||
| 81 | protected Angle $latitude; |
||
| 82 | |||
| 83 | /** |
||
| 84 | * Longitude. |
||
| 85 | */ |
||
| 86 | protected Angle $longitude; |
||
| 87 | |||
| 88 | /** |
||
| 89 | * Height above ellipsoid (N.B. *not* height above ground, sea-level or anything else tangible). |
||
| 90 | */ |
||
| 91 | protected ?Length $height; |
||
| 92 | |||
| 93 | /** |
||
| 94 | * Coordinate reference system. |
||
| 95 | */ |
||
| 96 | protected Geographic2D|Geographic3D $crs; |
||
| 97 | |||
| 98 | /** |
||
| 99 | * Coordinate epoch (date for which the specified coordinates represented this point). |
||
| 100 | */ |
||
| 101 | protected ?DateTimeImmutable $epoch; |
||
| 102 | |||
| 103 | protected function __construct(Geographic2D|Geographic3D $crs, Angle $latitude, Angle $longitude, ?Length $height, ?DateTimeInterface $epoch) |
||
| 104 | { |
||
| 105 | if ($crs instanceof Geographic2D && $height !== null) { |
||
| 106 | throw new InvalidCoordinateReferenceSystemException('A 2D geographic point must not include a height'); |
||
| 107 | } |
||
| 108 | |||
| 109 | if ($crs instanceof Geographic3D && $height === null) { |
||
| 110 | throw new InvalidCoordinateReferenceSystemException('A 3D geographic point must include a height, none given'); |
||
| 111 | } |
||
| 112 | |||
| 113 | $this->crs = $crs; |
||
| 114 | |||
| 115 | $latitude = $this->normaliseLatitude($latitude); |
||
| 116 | $longitude = $this->normaliseLongitude($longitude); |
||
| 117 | |||
| 118 | $this->latitude = $latitude::convert($latitude, $this->crs->getCoordinateSystem()->getAxisByName(Axis::GEODETIC_LATITUDE)->getUnitOfMeasureId()); |
||
| 119 | $this->longitude = $longitude::convert($longitude, $this->crs->getCoordinateSystem()->getAxisByName(Axis::GEODETIC_LONGITUDE)->getUnitOfMeasureId()); |
||
| 120 | |||
| 121 | if ($height) { |
||
| 122 | $this->height = $height::convert($height, $this->crs->getCoordinateSystem()->getAxisByName(Axis::ELLIPSOIDAL_HEIGHT)->getUnitOfMeasureId()); |
||
| 123 | } else { |
||
| 124 | $this->height = null; |
||
| 125 | } |
||
| 126 | |||
| 127 | if ($epoch instanceof DateTime) { |
||
| 128 | $epoch = DateTimeImmutable::createFromMutable($epoch); |
||
| 129 | } |
||
| 130 | $this->epoch = $epoch; |
||
| 131 | } |
||
| 132 | |||
| 133 | /** |
||
| 134 | * @param ?Length $height refer to CRS for preferred unit of measure, but any length unit accepted |
||
| 135 | * @param Angle $latitude refer to CRS for preferred unit of measure, but any angle unit accepted |
||
| 136 | * @param Angle $longitude refer to CRS for preferred unit of measure, but any angle unit accepted |
||
| 137 | */ |
||
| 138 | public static function create(Geographic2D|Geographic3D $crs, Angle $latitude, Angle $longitude, ?Length $height = null, ?DateTimeInterface $epoch = null): self |
||
| 139 | { |
||
| 140 | return new self($crs, $latitude, $longitude, $height, $epoch); |
||
| 141 | } |
||
| 142 | |||
| 143 | public function getLatitude(): Angle |
||
| 144 | { |
||
| 145 | return $this->latitude; |
||
| 146 | } |
||
| 147 | |||
| 148 | public function getLongitude(): Angle |
||
| 149 | { |
||
| 150 | return $this->longitude; |
||
| 151 | } |
||
| 152 | |||
| 153 | public function getHeight(): ?Length |
||
| 154 | { |
||
| 155 | return $this->height; |
||
| 156 | } |
||
| 157 | |||
| 158 | public function getCRS(): Geographic2D|Geographic3D |
||
| 159 | { |
||
| 160 | return $this->crs; |
||
| 161 | } |
||
| 162 | |||
| 163 | public function getCoordinateEpoch(): ?DateTimeImmutable |
||
| 164 | { |
||
| 165 | return $this->epoch; |
||
| 166 | } |
||
| 167 | |||
| 168 | protected function normaliseLatitude(Angle $latitude): Angle |
||
| 169 | { |
||
| 170 | if ($latitude->asDegrees()->getValue() > 90) { |
||
| 171 | return new Degree(90); |
||
| 172 | } |
||
| 173 | if ($latitude->asDegrees()->getValue() < -90) { |
||
| 174 | return new Degree(-90); |
||
| 175 | } |
||
| 176 | |||
| 177 | return $latitude; |
||
| 178 | } |
||
| 179 | |||
| 180 | protected function normaliseLongitude(Angle $longitude): Angle |
||
| 181 | { |
||
| 182 | while ($longitude->asDegrees()->getValue() > 180) { |
||
| 183 | $longitude = $longitude->subtract(new Degree(360)); |
||
| 184 | } |
||
| 185 | while ($longitude->asDegrees()->getValue() <= -180) { |
||
| 186 | $longitude = $longitude->add(new Degree(360)); |
||
| 187 | } |
||
| 188 | |||
| 189 | return $longitude; |
||
| 190 | } |
||
| 191 | |||
| 192 | /** |
||
| 193 | * Calculate surface distance between two points. |
||
| 194 | */ |
||
| 195 | public function calculateDistance(Point $to): Length |
||
| 196 | { |
||
| 197 | try { |
||
| 198 | if ($to instanceof ConvertiblePoint) { |
||
| 199 | $to = $to->convert($this->crs); |
||
| 200 | } |
||
| 201 | } finally { |
||
| 202 | if ($to->getCRS()->getSRID() !== $this->crs->getSRID()) { |
||
| 203 | throw new InvalidCoordinateReferenceSystemException('Can only calculate distances between two points in the same CRS'); |
||
| 204 | } |
||
| 205 | |||
| 206 | /** @var GeographicPoint $to */ |
||
| 207 | $geodesic = new Geodesic($this->getCRS()->getDatum()->getEllipsoid()); |
||
| 208 | |||
| 209 | return $geodesic->distance($this->asGeographicValue(), $to->asGeographicValue()); |
||
| 210 | } |
||
| 211 | } |
||
| 212 | |||
| 213 | public function __toString(): string |
||
| 214 | { |
||
| 215 | $values = []; |
||
| 216 | foreach ($this->getCRS()->getCoordinateSystem()->getAxes() as $axis) { |
||
| 217 | if ($axis->getName() === Axis::GEODETIC_LATITUDE) { |
||
| 218 | $values[] = $this->latitude; |
||
| 219 | } elseif ($axis->getName() === Axis::GEODETIC_LONGITUDE) { |
||
| 220 | $values[] = $this->longitude; |
||
| 221 | } elseif ($axis->getName() === Axis::ELLIPSOIDAL_HEIGHT) { |
||
| 222 | $values[] = $this->height; |
||
| 223 | } else { |
||
| 224 | throw new UnknownAxisException(); // @codeCoverageIgnore |
||
| 225 | } |
||
| 226 | } |
||
| 227 | |||
| 228 | return '(' . implode(', ', $values) . ')'; |
||
| 229 | } |
||
| 230 | |||
| 231 | /** |
||
| 232 | * Geographic/geocentric conversions |
||
| 233 | * In applications it is often concatenated with the 3- 7- or 10-parameter transformations 9603, 9606, 9607 or |
||
| 234 | * 9636 to form a geographic to geographic transformation. |
||
| 235 | */ |
||
| 236 | public function geographicGeocentric( |
||
| 237 | Geocentric $to |
||
| 238 | ): GeocentricPoint { |
||
| 239 | $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum()); |
||
| 240 | $asGeocentric = $geographicValue->asGeocentricValue(); |
||
| 241 | |||
| 242 | return GeocentricPoint::create($to, $asGeocentric->getX(), $asGeocentric->getY(), $asGeocentric->getZ(), $this->epoch); |
||
| 243 | } |
||
| 244 | |||
| 245 | /** |
||
| 246 | * Coordinate Frame rotation (geog2D/geog3D domain) |
||
| 247 | * Note the analogy with the Position Vector tfm (codes 9606/1037) but beware of the differences! The Position Vector |
||
| 248 | * convention is used by IAG and recommended by ISO 19111. See methods 1032/1038/9607 for similar tfms operating |
||
| 249 | * between other CRS types. |
||
| 250 | */ |
||
| 251 | public function coordinateFrameRotation( |
||
| 252 | Geographic2D|Geographic3D $to, |
||
| 253 | Length $xAxisTranslation, |
||
| 254 | Length $yAxisTranslation, |
||
| 255 | Length $zAxisTranslation, |
||
| 256 | Angle $xAxisRotation, |
||
| 257 | Angle $yAxisRotation, |
||
| 258 | Angle $zAxisRotation, |
||
| 259 | Scale $scaleDifference |
||
| 260 | ): self { |
||
| 261 | return $this->coordinateFrameMolodenskyBadekas( |
||
| 262 | $to, |
||
| 263 | $xAxisTranslation, |
||
| 264 | $yAxisTranslation, |
||
| 265 | $zAxisTranslation, |
||
| 266 | $xAxisRotation, |
||
| 267 | $yAxisRotation, |
||
| 268 | $zAxisRotation, |
||
| 269 | $scaleDifference, |
||
| 270 | new Metre(0), |
||
| 271 | new Metre(0), |
||
| 272 | new Metre(0) |
||
| 273 | ); |
||
| 274 | } |
||
| 275 | |||
| 276 | /** |
||
| 277 | * Molodensky-Badekas (CF geog2D/geog3D domain) |
||
| 278 | * See method codes 1034 and 1039/9636 for this operation in other coordinate domains and method code 1062/1063 for the |
||
| 279 | * opposite rotation convention in geographic 2D domain. |
||
| 280 | */ |
||
| 281 | public function coordinateFrameMolodenskyBadekas( |
||
| 282 | Geographic2D|Geographic3D $to, |
||
| 283 | Length $xAxisTranslation, |
||
| 284 | Length $yAxisTranslation, |
||
| 285 | Length $zAxisTranslation, |
||
| 286 | Angle $xAxisRotation, |
||
| 287 | Angle $yAxisRotation, |
||
| 288 | Angle $zAxisRotation, |
||
| 289 | Scale $scaleDifference, |
||
| 290 | Length $ordinate1OfEvaluationPoint, |
||
| 291 | Length $ordinate2OfEvaluationPoint, |
||
| 292 | Length $ordinate3OfEvaluationPoint |
||
| 293 | ): self { |
||
| 294 | $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum()); |
||
| 295 | $asGeocentric = $geographicValue->asGeocentricValue(); |
||
| 296 | |||
| 297 | $xs = $asGeocentric->getX()->asMetres()->getValue(); |
||
| 298 | $ys = $asGeocentric->getY()->asMetres()->getValue(); |
||
| 299 | $zs = $asGeocentric->getZ()->asMetres()->getValue(); |
||
| 300 | $tx = $xAxisTranslation->asMetres()->getValue(); |
||
| 301 | $ty = $yAxisTranslation->asMetres()->getValue(); |
||
| 302 | $tz = $zAxisTranslation->asMetres()->getValue(); |
||
| 303 | $rx = $xAxisRotation->asRadians()->getValue(); |
||
| 304 | $ry = $yAxisRotation->asRadians()->getValue(); |
||
| 305 | $rz = $zAxisRotation->asRadians()->getValue(); |
||
| 306 | $M = 1 + $scaleDifference->asUnity()->getValue(); |
||
| 307 | $xp = $ordinate1OfEvaluationPoint->asMetres()->getValue(); |
||
| 308 | $yp = $ordinate2OfEvaluationPoint->asMetres()->getValue(); |
||
| 309 | $zp = $ordinate3OfEvaluationPoint->asMetres()->getValue(); |
||
| 310 | |||
| 311 | $xt = $M * ((($xs - $xp) * 1) + (($ys - $yp) * $rz) + (($zs - $zp) * -$ry)) + $tx + $xp; |
||
| 312 | $yt = $M * ((($xs - $xp) * -$rz) + (($ys - $yp) * 1) + (($zs - $zp) * $rx)) + $ty + $yp; |
||
| 313 | $zt = $M * ((($xs - $xp) * $ry) + (($ys - $yp) * -$rx) + (($zs - $zp) * 1)) + $tz + $zp; |
||
| 314 | $newGeocentric = new GeocentricValue(new Metre($xt), new Metre($yt), new Metre($zt), $to->getDatum()); |
||
| 315 | $newGeographic = $newGeocentric->asGeographicValue(); |
||
| 316 | |||
| 317 | return static::create($to, $newGeographic->getLatitude(), $newGeographic->getLongitude(), $to instanceof Geographic3D ? $newGeographic->getHeight() : null, $this->epoch); |
||
| 318 | } |
||
| 319 | |||
| 320 | /** |
||
| 321 | * Position Vector transformation (geog2D/geog3D domain) |
||
| 322 | * Note the analogy with the Coordinate Frame rotation (code 9607/1038) but beware of the differences! The Position |
||
| 323 | * Vector convention is used by IAG and recommended by ISO 19111. See methods 1033/1037/9606 for similar tfms |
||
| 324 | * operating between other CRS types. |
||
| 325 | */ |
||
| 326 | public function positionVectorTransformation( |
||
| 327 | Geographic2D|Geographic3D $to, |
||
| 328 | Length $xAxisTranslation, |
||
| 329 | Length $yAxisTranslation, |
||
| 330 | Length $zAxisTranslation, |
||
| 331 | Angle $xAxisRotation, |
||
| 332 | Angle $yAxisRotation, |
||
| 333 | Angle $zAxisRotation, |
||
| 334 | Scale $scaleDifference |
||
| 335 | ): self { |
||
| 336 | return $this->positionVectorMolodenskyBadekas( |
||
| 337 | $to, |
||
| 338 | $xAxisTranslation, |
||
| 339 | $yAxisTranslation, |
||
| 340 | $zAxisTranslation, |
||
| 341 | $xAxisRotation, |
||
| 342 | $yAxisRotation, |
||
| 343 | $zAxisRotation, |
||
| 344 | $scaleDifference, |
||
| 345 | new Metre(0), |
||
| 346 | new Metre(0), |
||
| 347 | new Metre(0) |
||
| 348 | ); |
||
| 349 | } |
||
| 350 | |||
| 351 | /** |
||
| 352 | * Molodensky-Badekas (PV geog2D/geog3D domain) |
||
| 353 | * See method codes 1061 and 1062/1063 for this operation in other coordinate domains and method code 1039/9636 for opposite |
||
| 354 | * rotation in geographic 2D/3D domain. |
||
| 355 | */ |
||
| 356 | public function positionVectorMolodenskyBadekas( |
||
| 357 | Geographic2D|Geographic3D $to, |
||
| 358 | Length $xAxisTranslation, |
||
| 359 | Length $yAxisTranslation, |
||
| 360 | Length $zAxisTranslation, |
||
| 361 | Angle $xAxisRotation, |
||
| 362 | Angle $yAxisRotation, |
||
| 363 | Angle $zAxisRotation, |
||
| 364 | Scale $scaleDifference, |
||
| 365 | Length $ordinate1OfEvaluationPoint, |
||
| 366 | Length $ordinate2OfEvaluationPoint, |
||
| 367 | Length $ordinate3OfEvaluationPoint |
||
| 368 | ): self { |
||
| 369 | $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum()); |
||
| 370 | $asGeocentric = $geographicValue->asGeocentricValue(); |
||
| 371 | |||
| 372 | $xs = $asGeocentric->getX()->asMetres()->getValue(); |
||
| 373 | $ys = $asGeocentric->getY()->asMetres()->getValue(); |
||
| 374 | $zs = $asGeocentric->getZ()->asMetres()->getValue(); |
||
| 375 | $tx = $xAxisTranslation->asMetres()->getValue(); |
||
| 376 | $ty = $yAxisTranslation->asMetres()->getValue(); |
||
| 377 | $tz = $zAxisTranslation->asMetres()->getValue(); |
||
| 378 | $rx = $xAxisRotation->asRadians()->getValue(); |
||
| 379 | $ry = $yAxisRotation->asRadians()->getValue(); |
||
| 380 | $rz = $zAxisRotation->asRadians()->getValue(); |
||
| 381 | $M = 1 + $scaleDifference->asUnity()->getValue(); |
||
| 382 | $xp = $ordinate1OfEvaluationPoint->asMetres()->getValue(); |
||
| 383 | $yp = $ordinate2OfEvaluationPoint->asMetres()->getValue(); |
||
| 384 | $zp = $ordinate3OfEvaluationPoint->asMetres()->getValue(); |
||
| 385 | |||
| 386 | $xt = $M * ((($xs - $xp) * 1) + (($ys - $yp) * -$rz) + (($zs - $zp) * $ry)) + $tx + $xp; |
||
| 387 | $yt = $M * ((($xs - $xp) * $rz) + (($ys - $yp) * 1) + (($zs - $zp) * -$rx)) + $ty + $yp; |
||
| 388 | $zt = $M * ((($xs - $xp) * -$ry) + (($ys - $yp) * $rx) + (($zs - $zp) * 1)) + $tz + $zp; |
||
| 389 | $newGeocentric = new GeocentricValue(new Metre($xt), new Metre($yt), new Metre($zt), $to->getDatum()); |
||
| 390 | $newGeographic = $newGeocentric->asGeographicValue(); |
||
| 391 | |||
| 392 | return static::create($to, $newGeographic->getLatitude(), $newGeographic->getLongitude(), $to instanceof Geographic3D ? $newGeographic->getHeight() : null, $this->epoch); |
||
| 393 | } |
||
| 394 | |||
| 395 | /** |
||
| 396 | * Geocentric translations |
||
| 397 | * This method allows calculation of geocentric coords in the target system by adding the parameter values to the |
||
| 398 | * corresponding coordinates of the point in the source system. See methods 1031 and 1035 for similar tfms |
||
| 399 | * operating between other CRSs types. |
||
| 400 | */ |
||
| 401 | public function geocentricTranslation( |
||
| 402 | Geographic2D|Geographic3D $to, |
||
| 403 | Length $xAxisTranslation, |
||
| 404 | Length $yAxisTranslation, |
||
| 405 | Length $zAxisTranslation |
||
| 406 | ): self { |
||
| 407 | return $this->positionVectorTransformation( |
||
| 408 | $to, |
||
| 409 | $xAxisTranslation, |
||
| 410 | $yAxisTranslation, |
||
| 411 | $zAxisTranslation, |
||
| 412 | new Radian(0), |
||
| 413 | new Radian(0), |
||
| 414 | new Radian(0), |
||
| 415 | new Unity(0) |
||
| 416 | ); |
||
| 417 | } |
||
| 418 | |||
| 419 | /** |
||
| 420 | * Abridged Molodensky |
||
| 421 | * This transformation is a truncated Taylor series expansion of a transformation between two geographic coordinate |
||
| 422 | * systems, modelled as a set of geocentric translations. |
||
| 423 | */ |
||
| 424 | public function abridgedMolodensky( |
||
| 425 | Geographic2D|Geographic3D $to, |
||
| 426 | Length $xAxisTranslation, |
||
| 427 | Length $yAxisTranslation, |
||
| 428 | Length $zAxisTranslation, |
||
| 429 | Length $differenceInSemiMajorAxis, |
||
| 430 | Scale $differenceInFlattening |
||
| 431 | ): self { |
||
| 432 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 433 | $latitude = $this->latitude->asRadians()->getValue(); |
||
| 434 | $longitude = $this->longitude->asRadians()->getValue(); |
||
| 435 | $fromHeight = $this->height ? $this->height->asMetres()->getValue() : 0; |
||
| 436 | $tx = $xAxisTranslation->asMetres()->getValue(); |
||
| 437 | $ty = $yAxisTranslation->asMetres()->getValue(); |
||
| 438 | $tz = $zAxisTranslation->asMetres()->getValue(); |
||
| 439 | $da = $differenceInSemiMajorAxis->asMetres()->getValue(); |
||
| 440 | $df = $differenceInFlattening->asUnity()->getValue(); |
||
| 441 | |||
| 442 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 443 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 444 | |||
| 445 | $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2); |
||
| 446 | $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2)); |
||
| 447 | |||
| 448 | $f = $ellipsoid->getFlattening(); |
||
| 449 | |||
| 450 | $dLatitude = ((-$tx * sin($latitude) * cos($longitude)) - ($ty * sin($latitude) * sin($longitude)) + ($tz * cos($latitude)) + ((($a * $df) + ($ellipsoid->getFlattening() * $da)) * sin(2 * $latitude))) / ($rho * sin((new ArcSecond(1))->asRadians()->getValue())); |
||
| 451 | $dLongitude = (-$tx * sin($longitude) + $ty * cos($longitude)) / (($nu * cos($latitude)) * sin((new ArcSecond(1))->asRadians()->getValue())); |
||
| 452 | $dHeight = ($tx * cos($latitude) * cos($longitude)) + ($ty * cos($latitude) * sin($longitude)) + ($tz * sin($latitude)) + (($a * $df + $f * $da) * (sin($latitude) ** 2)) - $da; |
||
| 453 | |||
| 454 | $toLatitude = $latitude + (new ArcSecond($dLatitude))->asRadians()->getValue(); |
||
| 455 | $toLongitude = $longitude + (new ArcSecond($dLongitude))->asRadians()->getValue(); |
||
| 456 | $toHeight = $fromHeight + $dHeight; |
||
| 457 | |||
| 458 | return static::create($to, new Radian($toLatitude), new Radian($toLongitude), $to instanceof Geographic3D ? new Metre($toHeight) : null, $this->epoch); |
||
| 459 | } |
||
| 460 | |||
| 461 | /** |
||
| 462 | * Molodensky |
||
| 463 | * See Abridged Molodensky. |
||
| 464 | */ |
||
| 465 | public function molodensky( |
||
| 466 | Geographic2D|Geographic3D $to, |
||
| 467 | Length $xAxisTranslation, |
||
| 468 | Length $yAxisTranslation, |
||
| 469 | Length $zAxisTranslation, |
||
| 470 | Length $differenceInSemiMajorAxis, |
||
| 471 | Scale $differenceInFlattening |
||
| 472 | ): self { |
||
| 473 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 474 | $latitude = $this->latitude->asRadians()->getValue(); |
||
| 475 | $longitude = $this->longitude->asRadians()->getValue(); |
||
| 476 | $fromHeight = $this->height ? $this->height->asMetres()->getValue() : 0; |
||
| 477 | $tx = $xAxisTranslation->asMetres()->getValue(); |
||
| 478 | $ty = $yAxisTranslation->asMetres()->getValue(); |
||
| 479 | $tz = $zAxisTranslation->asMetres()->getValue(); |
||
| 480 | $da = $differenceInSemiMajorAxis->asMetres()->getValue(); |
||
| 481 | $df = $differenceInFlattening->asUnity()->getValue(); |
||
| 482 | |||
| 483 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 484 | $b = $ellipsoid->getSemiMinorAxis()->asMetres()->getValue(); |
||
| 485 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 486 | |||
| 487 | $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2); |
||
| 488 | $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2)); |
||
| 489 | |||
| 490 | $f = $ellipsoid->getFlattening(); |
||
|
|
|||
| 491 | |||
| 492 | $dLatitude = ((-$tx * sin($latitude) * cos($longitude)) - ($ty * sin($latitude) * sin($longitude)) + ($tz * cos($latitude)) + ($da * ($nu * $e2 * sin($latitude) * cos($latitude)) / $a + $df * ($rho * ($a / $b) + $nu * ($b / $a)) * sin($latitude) * cos($latitude))) / (($rho + $fromHeight) * sin((new ArcSecond(1))->asRadians()->getValue())); |
||
| 493 | $dLongitude = (-$tx * sin($longitude) + $ty * cos($longitude)) / ((($nu + $fromHeight) * cos($latitude)) * sin((new ArcSecond(1))->asRadians()->getValue())); |
||
| 494 | $dHeight = ($tx * cos($latitude) * cos($longitude)) + ($ty * cos($latitude) * sin($longitude)) + ($tz * sin($latitude)) - $da * $a / $nu + $df * $b / $a * $nu * sin($latitude) ** 2; |
||
| 495 | |||
| 496 | $toLatitude = $latitude + (new ArcSecond($dLatitude))->asRadians()->getValue(); |
||
| 497 | $toLongitude = $longitude + (new ArcSecond($dLongitude))->asRadians()->getValue(); |
||
| 498 | $toHeight = $fromHeight + $dHeight; |
||
| 499 | |||
| 500 | return static::create($to, new Radian($toLatitude), new Radian($toLongitude), $to instanceof Geographic3D ? new Metre($toHeight) : null, $this->epoch); |
||
| 501 | } |
||
| 502 | |||
| 503 | /** |
||
| 504 | * Albers Equal Area. |
||
| 505 | */ |
||
| 506 | public function albersEqualArea( |
||
| 507 | Projected $to, |
||
| 508 | Angle $latitudeOfFalseOrigin, |
||
| 509 | Angle $longitudeOfFalseOrigin, |
||
| 510 | Angle $latitudeOf1stStandardParallel, |
||
| 511 | Angle $latitudeOf2ndStandardParallel, |
||
| 512 | Length $eastingAtFalseOrigin, |
||
| 513 | Length $northingAtFalseOrigin |
||
| 514 | ): ProjectedPoint { |
||
| 515 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 516 | $latitude = $this->latitude->asRadians()->getValue(); |
||
| 517 | $longitude = $this->longitude->asRadians()->getValue(); |
||
| 518 | $phiOrigin = $latitudeOfFalseOrigin->asRadians()->getValue(); |
||
| 519 | $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
||
| 520 | $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue(); |
||
| 521 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 522 | $e = $ellipsoid->getEccentricity(); |
||
| 523 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 524 | |||
| 525 | $centralMeridianFirstParallel = cos($phi1) / sqrt(1 - ($e2 * sin($phi1) ** 2)); |
||
| 526 | $centralMeridianSecondParallel = cos($phi2) / sqrt(1 - ($e2 * sin($phi2) ** 2)); |
||
| 527 | |||
| 528 | $alpha = (1 - $e2) * (sin($latitude) / (1 - $e2 * sin($latitude) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude)))); |
||
| 529 | $alphaOrigin = (1 - $e2) * (sin($phiOrigin) / (1 - $e2 * sin($phiOrigin) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phiOrigin)) / (1 + $e * sin($phiOrigin)))); |
||
| 530 | $alphaFirstParallel = (1 - $e2) * (sin($phi1) / (1 - $e2 * sin($phi1) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi1)) / (1 + $e * sin($phi1)))); |
||
| 531 | $alphaSecondParallel = (1 - $e2) * (sin($phi2) / (1 - $e2 * sin($phi2) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi2)) / (1 + $e * sin($phi2)))); |
||
| 532 | |||
| 533 | $n = ($centralMeridianFirstParallel ** 2 - $centralMeridianSecondParallel ** 2) / ($alphaSecondParallel - $alphaFirstParallel); |
||
| 534 | $C = $centralMeridianFirstParallel ** 2 + $n * $alphaFirstParallel; |
||
| 535 | $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue(); |
||
| 536 | $rho = $a * sqrt($C - $n * $alpha) / $n; |
||
| 537 | $rhoOrigin = ($a * sqrt($C - $n * $alphaOrigin)) / $n; |
||
| 538 | |||
| 539 | $easting = $eastingAtFalseOrigin->asMetres()->getValue() + ($rho * sin($theta)); |
||
| 540 | $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rhoOrigin - ($rho * cos($theta)); |
||
| 541 | |||
| 542 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
| 543 | } |
||
| 544 | |||
| 545 | /** |
||
| 546 | * American Polyconic. |
||
| 547 | */ |
||
| 548 | public function americanPolyconic( |
||
| 549 | Projected $to, |
||
| 550 | Angle $latitudeOfNaturalOrigin, |
||
| 551 | Angle $longitudeOfNaturalOrigin, |
||
| 552 | Length $falseEasting, |
||
| 553 | Length $falseNorthing |
||
| 554 | ): ProjectedPoint { |
||
| 555 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 556 | $latitude = $this->latitude->asRadians()->getValue(); |
||
| 557 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 558 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 559 | $e = $ellipsoid->getEccentricity(); |
||
| 560 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 561 | $e4 = $e ** 4; |
||
| 562 | $e6 = $e ** 6; |
||
| 563 | |||
| 564 | $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude)); |
||
| 565 | $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
||
| 566 | |||
| 567 | if ($latitude === 0.0) { |
||
| 568 | $easting = $falseEasting->asMetres()->getValue() + $a * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue(); |
||
| 569 | $northing = $falseNorthing->asMetres()->getValue() - $MO; |
||
| 570 | } else { |
||
| 571 | $L = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * sin($latitude); |
||
| 572 | $nu = $a / sqrt(1 - $e2 * sin($latitude) ** 2); |
||
| 573 | |||
| 574 | $easting = $falseEasting->asMetres()->getValue() + $nu * 1 / tan($latitude) * sin($L); |
||
| 575 | $northing = $falseNorthing->asMetres()->getValue() + $M - $MO + $nu * 1 / tan($latitude) * (1 - cos($L)); |
||
| 576 | } |
||
| 577 | |||
| 578 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
| 579 | } |
||
| 580 | |||
| 581 | /** |
||
| 582 | * Bonne. |
||
| 583 | */ |
||
| 584 | public function bonne( |
||
| 585 | Projected $to, |
||
| 586 | Angle $latitudeOfNaturalOrigin, |
||
| 587 | Angle $longitudeOfNaturalOrigin, |
||
| 588 | Length $falseEasting, |
||
| 589 | Length $falseNorthing |
||
| 590 | ): ProjectedPoint { |
||
| 591 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 592 | $latitude = $this->latitude->asRadians()->getValue(); |
||
| 593 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 594 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 595 | $e = $ellipsoid->getEccentricity(); |
||
| 596 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 597 | $e4 = $e ** 4; |
||
| 598 | $e6 = $e ** 6; |
||
| 599 | |||
| 600 | $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2); |
||
| 601 | $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2); |
||
| 602 | |||
| 603 | $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude)); |
||
| 604 | $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
||
| 605 | |||
| 606 | $rho = $a * $mO / sin($latitudeOrigin) + $MO - $M; |
||
| 607 | $tau = $a * $m * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() / $rho; |
||
| 608 | |||
| 609 | $easting = $falseEasting->asMetres()->getValue() + ($rho * sin($tau)); |
||
| 610 | $northing = $falseNorthing->asMetres()->getValue() + ($a * $mO / sin($latitudeOrigin) - $rho * cos($tau)); |
||
| 611 | |||
| 612 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
| 613 | } |
||
| 614 | |||
| 615 | /** |
||
| 616 | * Bonne South Orientated. |
||
| 617 | */ |
||
| 618 | public function bonneSouthOrientated( |
||
| 619 | Projected $to, |
||
| 620 | Angle $latitudeOfNaturalOrigin, |
||
| 621 | Angle $longitudeOfNaturalOrigin, |
||
| 622 | Length $falseEasting, |
||
| 623 | Length $falseNorthing |
||
| 624 | ): ProjectedPoint { |
||
| 625 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 626 | $latitude = $this->latitude->asRadians()->getValue(); |
||
| 627 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 628 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 629 | $e = $ellipsoid->getEccentricity(); |
||
| 630 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 631 | $e4 = $e ** 4; |
||
| 632 | $e6 = $e ** 6; |
||
| 633 | |||
| 634 | $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2); |
||
| 635 | $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2); |
||
| 636 | |||
| 637 | $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude)); |
||
| 638 | $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
||
| 639 | |||
| 640 | $rho = $a * $mO / sin($latitudeOrigin) + $MO - $M; |
||
| 641 | $tau = $a * $m * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() / $rho; |
||
| 642 | |||
| 643 | $westing = $falseEasting->asMetres()->getValue() - ($rho * sin($tau)); |
||
| 644 | $southing = $falseNorthing->asMetres()->getValue() - ($a * $mO / sin($latitudeOrigin) - $rho * cos($tau)); |
||
| 645 | |||
| 646 | return ProjectedPoint::create($to, new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $this->epoch); |
||
| 647 | } |
||
| 648 | |||
| 649 | /** |
||
| 650 | * Cassini-Soldner. |
||
| 651 | */ |
||
| 652 | public function cassiniSoldner( |
||
| 653 | Projected $to, |
||
| 654 | Angle $latitudeOfNaturalOrigin, |
||
| 655 | Angle $longitudeOfNaturalOrigin, |
||
| 656 | Length $falseEasting, |
||
| 657 | Length $falseNorthing |
||
| 658 | ): ProjectedPoint { |
||
| 659 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 660 | $latitude = $this->latitude->asRadians()->getValue(); |
||
| 661 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 662 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 663 | $e = $ellipsoid->getEccentricity(); |
||
| 664 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 665 | $e4 = $e ** 4; |
||
| 666 | $e6 = $e ** 6; |
||
| 667 | |||
| 668 | $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude)); |
||
| 669 | $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
||
| 670 | |||
| 671 | $A = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($latitude); |
||
| 672 | $T = tan($latitude) ** 2; |
||
| 673 | $C = $e2 * cos($latitude) ** 2 / (1 - $e2); |
||
| 674 | $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2)); |
||
| 675 | $X = $M - $MO + $nu * tan($latitude) * ($A ** 2 / 2 + (5 - $T + 6 * $C) * $A ** 4 / 24); |
||
| 676 | |||
| 677 | $easting = $falseEasting->asMetres()->getValue() + $nu * ($A - $T * $A ** 3 / 6 - (8 - $T + 8 * $C) * $T * $A ** 5 / 120); |
||
| 678 | $northing = $falseNorthing->asMetres()->getValue() + $X; |
||
| 679 | |||
| 680 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
| 681 | } |
||
| 682 | |||
| 683 | /** |
||
| 684 | * Hyperbolic Cassini-Soldner. |
||
| 685 | */ |
||
| 686 | public function hyperbolicCassiniSoldner( |
||
| 687 | Projected $to, |
||
| 688 | Angle $latitudeOfNaturalOrigin, |
||
| 689 | Angle $longitudeOfNaturalOrigin, |
||
| 690 | Length $falseEasting, |
||
| 691 | Length $falseNorthing |
||
| 692 | ): ProjectedPoint { |
||
| 693 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 694 | $latitude = $this->latitude->asRadians()->getValue(); |
||
| 695 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 696 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 697 | $e = $ellipsoid->getEccentricity(); |
||
| 698 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 699 | $e4 = $e ** 4; |
||
| 700 | $e6 = $e ** 6; |
||
| 701 | |||
| 702 | $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude)); |
||
| 703 | $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
||
| 704 | |||
| 705 | $A = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($latitude); |
||
| 706 | $T = tan($latitude) ** 2; |
||
| 707 | $C = $e2 * cos($latitude) ** 2 / (1 - $e2); |
||
| 708 | $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2)); |
||
| 709 | $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2); |
||
| 710 | $X = $M - $MO + $nu * tan($latitude) * ($A ** 2 / 2 + (5 - $T + 6 * $C) * $A ** 4 / 24); |
||
| 711 | |||
| 712 | $easting = $falseEasting->asMetres()->getValue() + $nu * ($A - $T * $A ** 3 / 6 - (8 - $T + 8 * $C) * $T * $A ** 5 / 120); |
||
| 713 | $northing = $falseNorthing->asMetres()->getValue() + $X - ($X ** 3 / (6 * $rho * $nu)); |
||
| 714 | |||
| 715 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
| 716 | } |
||
| 717 | |||
| 718 | /** |
||
| 719 | * Colombia Urban. |
||
| 720 | */ |
||
| 721 | public function columbiaUrban( |
||
| 722 | Projected $to, |
||
| 723 | Angle $latitudeOfNaturalOrigin, |
||
| 724 | Angle $longitudeOfNaturalOrigin, |
||
| 725 | Length $falseEasting, |
||
| 726 | Length $falseNorthing, |
||
| 727 | Length $projectionPlaneOriginHeight |
||
| 728 | ): ProjectedPoint { |
||
| 729 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 730 | $latitude = $this->latitude->asRadians()->getValue(); |
||
| 731 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 732 | $heightOrigin = $projectionPlaneOriginHeight->asMetres()->getValue(); |
||
| 733 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 734 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 735 | |||
| 736 | $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2); |
||
| 737 | $rhoMid = $a * (1 - $e2) / (1 - $e2 * sin(($latitude + $latitudeOrigin) / 2) ** 2) ** (3 / 2); |
||
| 738 | |||
| 739 | $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2)); |
||
| 740 | $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2)); |
||
| 741 | |||
| 742 | $A = 1 + $heightOrigin / $nuOrigin; |
||
| 743 | $B = tan($latitudeOrigin) / (2 * $rhoOrigin * $nuOrigin); |
||
| 744 | $G = 1 + $heightOrigin / $rhoMid; |
||
| 745 | |||
| 746 | $easting = $falseEasting->asMetres()->getValue() + $A * $nu * cos($latitude) * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue(); |
||
| 747 | $northing = $falseNorthing->asMetres()->getValue() + $G * $rhoOrigin * (($latitude - $latitudeOrigin) + ($B * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() ** 2 * $nu ** 2 * cos($latitude) ** 2)); |
||
| 748 | |||
| 749 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
| 750 | } |
||
| 751 | |||
| 752 | /** |
||
| 753 | * Equal Earth. |
||
| 754 | */ |
||
| 755 | public function equalEarth( |
||
| 756 | Projected $to, |
||
| 757 | Angle $longitudeOfNaturalOrigin, |
||
| 758 | Length $falseEasting, |
||
| 759 | Length $falseNorthing |
||
| 760 | ): ProjectedPoint { |
||
| 761 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 762 | $latitude = $this->latitude->asRadians()->getValue(); |
||
| 763 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 764 | $e = $ellipsoid->getEccentricity(); |
||
| 765 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 766 | |||
| 767 | $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - (1 / (2 * $e) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))))); |
||
| 768 | $qP = (1 - $e2) * ((1 / (1 - $e2)) - (1 / (2 * $e) * log((1 - $e) / (1 + $e)))); |
||
| 769 | $beta = self::asin($q / $qP); |
||
| 770 | $theta = self::asin(sin($beta) * sqrt(3) / 2); |
||
| 771 | $Rq = $a * sqrt($qP / 2); |
||
| 772 | |||
| 773 | $easting = $falseEasting->asMetres()->getValue() + ($Rq * 2 * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($theta)) / (sqrt(3) * (1.340264 - 0.243318 * $theta ** 2 + $theta ** 6 * (0.006251 + 0.034164 * $theta ** 2))); |
||
| 774 | $northing = $falseNorthing->asMetres()->getValue() + $Rq * $theta * (1.340264 - 0.081106 * $theta ** 2 + $theta ** 6 * (0.000893 + 0.003796 * $theta ** 2)); |
||
| 775 | |||
| 776 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
| 777 | } |
||
| 778 | |||
| 779 | /** |
||
| 780 | * Equidistant Cylindrical |
||
| 781 | * See method code 1029 for spherical development. See also Pseudo Plate Carree, method code 9825. |
||
| 782 | */ |
||
| 783 | public function equidistantCylindrical( |
||
| 784 | Projected $to, |
||
| 785 | Angle $latitudeOf1stStandardParallel, |
||
| 786 | Angle $longitudeOfNaturalOrigin, |
||
| 787 | Length $falseEasting, |
||
| 788 | Length $falseNorthing |
||
| 789 | ): ProjectedPoint { |
||
| 790 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 791 | $latitude = $this->latitude->asRadians()->getValue(); |
||
| 792 | $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
||
| 793 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 794 | $e = $ellipsoid->getEccentricity(); |
||
| 795 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 796 | $e4 = $e ** 4; |
||
| 797 | $e6 = $e ** 6; |
||
| 798 | $e8 = $e ** 8; |
||
| 799 | $e10 = $e ** 10; |
||
| 800 | $e12 = $e ** 12; |
||
| 801 | $e14 = $e ** 14; |
||
| 802 | |||
| 803 | $nu1 = $a / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2); |
||
| 804 | |||
| 805 | $M = $a * ( |
||
| 806 | (1 - 1 / 4 * $e2 - 3 / 64 * $e4 - 5 / 256 * $e6 - 175 / 16384 * $e8 - 441 / 65536 * $e10 - 4851 / 1048576 * $e12 - 14157 / 4194304 * $e14) * $latitude + |
||
| 807 | (-3 / 8 * $e2 - 3 / 32 * $e4 - 45 / 1024 * $e6 - 105 / 4096 * $e8 - 2205 / 131072 * $e10 - 6237 / 524288 * $e12 - 297297 / 33554432 * $e14) * sin(2 * $latitude) + |
||
| 808 | (15 / 256 * $e4 + 45 / 1024 * $e ** 6 + 525 / 16384 * $e ** 8 + 1575 / 65536 * $e10 + 155925 / 8388608 * $e12 + 495495 / 33554432 * $e14) * sin(4 * $latitude) + |
||
| 809 | (-35 / 3072 * $e6 - 175 / 12288 * $e8 - 3675 / 262144 * $e10 - 13475 / 1048576 * $e12 - 385385 / 33554432 * $e14) * sin(6 * $latitude) + |
||
| 810 | (315 / 131072 * $e8 + 2205 / 524288 * $e10 + 43659 / 8388608 * $e12 + 189189 / 33554432 * $e14) * sin(8 * $latitude) + |
||
| 811 | (-693 / 1310720 * $e10 - 6537 / 5242880 * $e12 - 297297 / 167772160 * $e14) * sin(10 * $latitude) + |
||
| 812 | (1001 / 8388608 * $e12 + 11011 / 33554432 * $e14) * sin(12 * $latitude) + |
||
| 813 | (-6435 / 234881024 * $e ** 14) * sin(14 * $latitude) |
||
| 814 | ); |
||
| 815 | |||
| 816 | $easting = $falseEasting->asMetres()->getValue() + $nu1 * cos($latitudeFirstParallel) * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue(); |
||
| 817 | $northing = $falseNorthing->asMetres()->getValue() + $M; |
||
| 818 | |||
| 819 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
| 820 | } |
||
| 821 | |||
| 822 | /** |
||
| 823 | * Guam Projection |
||
| 824 | * Simplified form of Oblique Azimuthal Equidistant projection method. |
||
| 825 | */ |
||
| 826 | public function guamProjection( |
||
| 827 | Projected $to, |
||
| 828 | Angle $latitudeOfNaturalOrigin, |
||
| 829 | Angle $longitudeOfNaturalOrigin, |
||
| 830 | Length $falseEasting, |
||
| 831 | Length $falseNorthing |
||
| 832 | ): ProjectedPoint { |
||
| 833 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 834 | $latitude = $this->latitude->asRadians()->getValue(); |
||
| 835 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 836 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 837 | $e = $ellipsoid->getEccentricity(); |
||
| 838 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 839 | $e4 = $e ** 4; |
||
| 840 | $e6 = $e ** 6; |
||
| 841 | |||
| 842 | $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude)); |
||
| 843 | $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
||
| 844 | $x = ($a * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($latitude)) / sqrt(1 - $e2 * sin($latitude) ** 2); |
||
| 845 | |||
| 846 | $easting = $falseEasting->asMetres()->getValue() + $x; |
||
| 847 | $northing = $falseNorthing->asMetres()->getValue() + $M - $MO + ($x ** 2 * tan($latitude) * sqrt(1 - $e2 * sin($latitude) ** 2) / (2 * $a)); |
||
| 848 | |||
| 849 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
| 850 | } |
||
| 851 | |||
| 852 | /** |
||
| 853 | * Krovak. |
||
| 854 | */ |
||
| 855 | public function krovak( |
||
| 856 | Projected $to, |
||
| 857 | Angle $latitudeOfProjectionCentre, |
||
| 858 | Angle $longitudeOfOrigin, |
||
| 859 | Angle $coLatitudeOfConeAxis, |
||
| 860 | Angle $latitudeOfPseudoStandardParallel, |
||
| 861 | Scale $scaleFactorOnPseudoStandardParallel, |
||
| 862 | Length $falseEasting, |
||
| 863 | Length $falseNorthing |
||
| 864 | ): ProjectedPoint { |
||
| 865 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 866 | $longitudeOffset = $to->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue() - $this->getCRS()->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue(); |
||
| 867 | $latitude = $this->latitude->asRadians()->getValue(); |
||
| 868 | $longitude = $this->longitude->asRadians()->getValue() - $longitudeOffset; |
||
| 869 | $latitudeC = $latitudeOfProjectionCentre->asRadians()->getValue(); |
||
| 870 | $longitudeO = $longitudeOfOrigin->asRadians()->getValue(); |
||
| 871 | $alphaC = $coLatitudeOfConeAxis->asRadians()->getValue(); |
||
| 872 | $latitudeP = $latitudeOfPseudoStandardParallel->asRadians()->getValue(); |
||
| 873 | $kP = $scaleFactorOnPseudoStandardParallel->asUnity()->getValue(); |
||
| 874 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 875 | $e = $ellipsoid->getEccentricity(); |
||
| 876 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 877 | |||
| 878 | $A = $a * sqrt(1 - $e2) / (1 - $e2 * sin($latitudeC) ** 2); |
||
| 879 | $B = sqrt(1 + $e2 * cos($latitudeC) ** 4 / (1 - $e2)); |
||
| 880 | $upsilonO = self::asin(sin($latitudeC) / $B); |
||
| 881 | $tO = tan(M_PI / 4 + $upsilonO / 2) * ((1 + $e * sin($latitudeC)) / (1 - $e * sin($latitudeC))) ** ($e * $B / 2) / (tan(M_PI / 4 + $latitudeC / 2) ** $B); |
||
| 882 | $n = sin($latitudeP); |
||
| 883 | $rO = $kP * $A / tan($latitudeP); |
||
| 884 | |||
| 885 | $U = 2 * (atan($tO * tan($latitude / 2 + M_PI / 4) ** $B / ((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e * $B / 2)) - M_PI / 4); |
||
| 886 | $V = $B * ($longitudeO - $longitude); |
||
| 887 | $T = self::asin(cos($alphaC) * sin($U) + sin($alphaC) * cos($U) * cos($V)); |
||
| 888 | $D = atan2(cos($U) * sin($V) / cos($T), (cos($alphaC) * sin($T) - sin($U)) / (sin($alphaC) * cos($T))); |
||
| 889 | $theta = $n * $D; |
||
| 890 | $r = $rO * tan(M_PI / 4 + $latitudeP / 2) ** $n / tan($T / 2 + M_PI / 4) ** $n; |
||
| 891 | $X = $r * cos($theta); |
||
| 892 | $Y = $r * sin($theta); |
||
| 893 | |||
| 894 | $westing = $Y + $falseEasting->asMetres()->getValue(); |
||
| 895 | $southing = $X + $falseNorthing->asMetres()->getValue(); |
||
| 896 | |||
| 897 | return ProjectedPoint::create($to, new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $this->epoch); |
||
| 898 | } |
||
| 899 | |||
| 900 | /** |
||
| 901 | * Krovak Modified |
||
| 902 | * Incorporates a polynomial transformation which is defined to be exact and for practical purposes is considered |
||
| 903 | * to be a map projection. |
||
| 904 | */ |
||
| 905 | public function krovakModified( |
||
| 906 | Projected $to, |
||
| 907 | Angle $latitudeOfProjectionCentre, |
||
| 908 | Angle $longitudeOfOrigin, |
||
| 909 | Angle $coLatitudeOfConeAxis, |
||
| 910 | Angle $latitudeOfPseudoStandardParallel, |
||
| 911 | Scale $scaleFactorOnPseudoStandardParallel, |
||
| 912 | Length $falseEasting, |
||
| 913 | Length $falseNorthing, |
||
| 914 | Length $ordinate1OfEvaluationPoint, |
||
| 915 | Length $ordinate2OfEvaluationPoint, |
||
| 916 | Coefficient $C1, |
||
| 917 | Coefficient $C2, |
||
| 918 | Coefficient $C3, |
||
| 919 | Coefficient $C4, |
||
| 920 | Coefficient $C5, |
||
| 921 | Coefficient $C6, |
||
| 922 | Coefficient $C7, |
||
| 923 | Coefficient $C8, |
||
| 924 | Coefficient $C9, |
||
| 925 | Coefficient $C10 |
||
| 926 | ): ProjectedPoint { |
||
| 927 | $asKrovak = $this->krovak($to, $latitudeOfProjectionCentre, $longitudeOfOrigin, $coLatitudeOfConeAxis, $latitudeOfPseudoStandardParallel, $scaleFactorOnPseudoStandardParallel, new Metre(0), new Metre(0)); |
||
| 928 | |||
| 929 | $westing = $asKrovak->getWesting()->asMetres()->getValue(); |
||
| 930 | $southing = $asKrovak->getSouthing()->asMetres()->getValue(); |
||
| 931 | $c1 = $C1->asUnity()->getValue(); |
||
| 932 | $c2 = $C2->asUnity()->getValue(); |
||
| 933 | $c3 = $C3->asUnity()->getValue(); |
||
| 934 | $c4 = $C4->asUnity()->getValue(); |
||
| 935 | $c5 = $C5->asUnity()->getValue(); |
||
| 936 | $c6 = $C6->asUnity()->getValue(); |
||
| 937 | $c7 = $C7->asUnity()->getValue(); |
||
| 938 | $c8 = $C8->asUnity()->getValue(); |
||
| 939 | $c9 = $C9->asUnity()->getValue(); |
||
| 940 | $c10 = $C10->asUnity()->getValue(); |
||
| 941 | |||
| 942 | $Xr = $southing - $ordinate1OfEvaluationPoint->asMetres()->getValue(); |
||
| 943 | $Yr = $westing - $ordinate2OfEvaluationPoint->asMetres()->getValue(); |
||
| 944 | |||
| 945 | $dX = $c1 + $c3 * $Xr - $c4 * $Yr - 2 * $c6 * $Xr * $Yr + $c5 * ($Xr ** 2 - $Yr ** 2) + $c7 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) - $c8 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) + 4 * $c9 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c10 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2); |
||
| 946 | $dY = $c2 + $c3 * $Yr + $c4 * $Xr + 2 * $c5 * $Xr * $Yr + $c6 * ($Xr ** 2 - $Yr ** 2) + $c8 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) + $c7 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) - 4 * $c10 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c9 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2); |
||
| 947 | |||
| 948 | $westing += $falseEasting->asMetres()->getValue() - $dY; |
||
| 949 | $southing += $falseNorthing->asMetres()->getValue() - $dX; |
||
| 950 | |||
| 951 | return ProjectedPoint::create($to, new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $this->epoch); |
||
| 952 | } |
||
| 953 | |||
| 954 | /** |
||
| 955 | * Lambert Azimuthal Equal Area |
||
| 956 | * This is the ellipsoidal form of the projection. |
||
| 957 | */ |
||
| 958 | public function lambertAzimuthalEqualArea( |
||
| 959 | Projected $to, |
||
| 960 | Angle $latitudeOfNaturalOrigin, |
||
| 961 | Angle $longitudeOfNaturalOrigin, |
||
| 962 | Length $falseEasting, |
||
| 963 | Length $falseNorthing |
||
| 964 | ): ProjectedPoint { |
||
| 965 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 966 | $latitude = $this->latitude->asRadians()->getValue(); |
||
| 967 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 968 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 969 | $e = $ellipsoid->getEccentricity(); |
||
| 970 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 971 | |||
| 972 | $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))))); |
||
| 973 | $qO = (1 - $e2) * ((sin($latitudeOrigin) / (1 - $e2 * sin($latitudeOrigin) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))))); |
||
| 974 | $qP = (1 - $e2) * ((1 / (1 - $e2)) - ((1 / (2 * $e)) * log((1 - $e) / (1 + $e)))); |
||
| 975 | $beta = self::asin($q / $qP); |
||
| 976 | $betaO = self::asin($qO / $qP); |
||
| 977 | $Rq = $a * sqrt($qP / 2); |
||
| 978 | $B = $Rq * sqrt(2 / (1 + sin($betaO) * sin($beta) + (cos($betaO) * cos($beta) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())))); |
||
| 979 | $D = $a * (cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2)) / ($Rq * cos($betaO)); |
||
| 980 | |||
| 981 | $easting = $falseEasting->asMetres()->getValue() + (($B * $D) * (cos($beta) * sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()))); |
||
| 982 | $northing = $falseNorthing->asMetres()->getValue() + ($B / $D) * ((cos($betaO) * sin($beta)) - (sin($betaO) * cos($beta) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()))); |
||
| 983 | |||
| 984 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
| 985 | } |
||
| 986 | |||
| 987 | /** |
||
| 988 | * Lambert Azimuthal Equal Area (Spherical) |
||
| 989 | * This is the spherical form of the projection. See coordinate operation method Lambert Azimuthal Equal Area |
||
| 990 | * (code 9820) for ellipsoidal form. Differences of several tens of metres result from comparison of the two |
||
| 991 | * methods. |
||
| 992 | */ |
||
| 993 | public function lambertAzimuthalEqualAreaSpherical( |
||
| 994 | Projected $to, |
||
| 995 | Angle $latitudeOfNaturalOrigin, |
||
| 996 | Angle $longitudeOfNaturalOrigin, |
||
| 997 | Length $falseEasting, |
||
| 998 | Length $falseNorthing |
||
| 999 | ): ProjectedPoint { |
||
| 1000 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 1001 | $latitude = $this->latitude->asRadians()->getValue(); |
||
| 1002 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 1003 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 1004 | |||
| 1005 | $k = sqrt(2 / (1 + sin($latitudeOrigin) * sin($latitude) + cos($latitudeOrigin) * cos($latitude) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()))); |
||
| 1006 | |||
| 1007 | $easting = $falseEasting->asMetres()->getValue() + ($a * $k * cos($latitude) * sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())); |
||
| 1008 | $northing = $falseNorthing->asMetres()->getValue() + ($a * $k * (cos($latitudeOrigin) * sin($latitude) - sin($latitudeOrigin) * cos($latitude) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()))); |
||
| 1009 | |||
| 1010 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
| 1011 | } |
||
| 1012 | |||
| 1013 | /** |
||
| 1014 | * Lambert Conic Conformal (1SP). |
||
| 1015 | */ |
||
| 1016 | public function lambertConicConformal1SP( |
||
| 1017 | Projected $to, |
||
| 1018 | Angle $latitudeOfNaturalOrigin, |
||
| 1019 | Angle $longitudeOfNaturalOrigin, |
||
| 1020 | Scale $scaleFactorAtNaturalOrigin, |
||
| 1021 | Length $falseEasting, |
||
| 1022 | Length $falseNorthing |
||
| 1023 | ): ProjectedPoint { |
||
| 1024 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 1025 | $latitude = $this->latitude->asRadians()->getValue(); |
||
| 1026 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 1027 | $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
||
| 1028 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 1029 | $e = $ellipsoid->getEccentricity(); |
||
| 1030 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 1031 | |||
| 1032 | $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2); |
||
| 1033 | $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2); |
||
| 1034 | $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2); |
||
| 1035 | $n = sin($latitudeOrigin); |
||
| 1036 | $F = $mO / ($n * $tO ** $n); |
||
| 1037 | $rO = $a * $F * $tO ** $n * $kO; |
||
| 1038 | $r = $a * $F * $t ** $n * $kO; |
||
| 1039 | $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue(); |
||
| 1040 | |||
| 1041 | $easting = $falseEasting->asMetres()->getValue() + $r * sin($theta); |
||
| 1042 | $northing = $falseNorthing->asMetres()->getValue() + $rO - $r * cos($theta); |
||
| 1043 | |||
| 1044 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
| 1045 | } |
||
| 1046 | |||
| 1047 | /** |
||
| 1048 | * Lambert Conic Conformal (1SP) Variant B. |
||
| 1049 | */ |
||
| 1050 | public function lambertConicConformal1SPVariantB( |
||
| 1051 | Projected $to, |
||
| 1052 | Angle $latitudeOfNaturalOrigin, |
||
| 1053 | Scale $scaleFactorAtNaturalOrigin, |
||
| 1054 | Angle $latitudeOfFalseOrigin, |
||
| 1055 | Angle $longitudeOfFalseOrigin, |
||
| 1056 | Length $eastingAtFalseOrigin, |
||
| 1057 | Length $northingAtFalseOrigin |
||
| 1058 | ): ProjectedPoint { |
||
| 1059 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 1060 | $latitude = $this->latitude->asRadians()->getValue(); |
||
| 1061 | $latitudeNaturalOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 1062 | $latitudeFalseOrigin = $latitudeOfFalseOrigin->asRadians()->getValue(); |
||
| 1063 | $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
||
| 1064 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 1065 | $e = $ellipsoid->getEccentricity(); |
||
| 1066 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 1067 | |||
| 1068 | $mO = cos($latitudeNaturalOrigin) / sqrt(1 - $e2 * sin($latitudeNaturalOrigin) ** 2); |
||
| 1069 | $tO = tan(M_PI / 4 - $latitudeNaturalOrigin / 2) / ((1 - $e * sin($latitudeNaturalOrigin)) / (1 + $e * sin($latitudeNaturalOrigin))) ** ($e / 2); |
||
| 1070 | $tF = tan(M_PI / 4 - $latitudeFalseOrigin / 2) / ((1 - $e * sin($latitudeFalseOrigin)) / (1 + $e * sin($latitudeFalseOrigin))) ** ($e / 2); |
||
| 1071 | $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2); |
||
| 1072 | $n = sin($latitudeNaturalOrigin); |
||
| 1073 | $F = $mO / ($n * $tO ** $n); |
||
| 1074 | $rF = $a * $F * $tF ** $n * $kO; |
||
| 1075 | $r = $a * $F * $t ** $n * $kO; |
||
| 1076 | $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue(); |
||
| 1077 | |||
| 1078 | $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta); |
||
| 1079 | $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta); |
||
| 1080 | |||
| 1081 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
| 1082 | } |
||
| 1083 | |||
| 1084 | /** |
||
| 1085 | * Lambert Conic Conformal (2SP Belgium) |
||
| 1086 | * In 2000 this modification was replaced through use of the regular Lambert Conic Conformal (2SP) method [9802] |
||
| 1087 | * with appropriately modified parameter values. |
||
| 1088 | */ |
||
| 1089 | public function lambertConicConformal2SPBelgium( |
||
| 1090 | Projected $to, |
||
| 1091 | Angle $latitudeOfFalseOrigin, |
||
| 1092 | Angle $longitudeOfFalseOrigin, |
||
| 1093 | Angle $latitudeOf1stStandardParallel, |
||
| 1094 | Angle $latitudeOf2ndStandardParallel, |
||
| 1095 | Length $eastingAtFalseOrigin, |
||
| 1096 | Length $northingAtFalseOrigin |
||
| 1097 | ): ProjectedPoint { |
||
| 1098 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 1099 | $latitude = $this->latitude->asRadians()->getValue(); |
||
| 1100 | $phiF = $latitudeOfFalseOrigin->asRadians()->getValue(); |
||
| 1101 | $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
||
| 1102 | $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue(); |
||
| 1103 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 1104 | $e = $ellipsoid->getEccentricity(); |
||
| 1105 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 1106 | |||
| 1107 | $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2); |
||
| 1108 | $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2); |
||
| 1109 | $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2); |
||
| 1110 | $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2); |
||
| 1111 | $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2); |
||
| 1112 | $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2); |
||
| 1113 | $n = (log($m1) - log($m2)) / (log($t1) - log($t2)); |
||
| 1114 | $F = $m1 / ($n * $t1 ** $n); |
||
| 1115 | $r = $a * $F * $t ** $n; |
||
| 1116 | $rF = $a * $F * $tF ** $n; |
||
| 1117 | if (is_nan($rF)) { |
||
| 1118 | $rF = 0; |
||
| 1119 | } |
||
| 1120 | $theta = ($n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue()) - (new ArcSecond(29.2985))->asRadians()->getValue(); |
||
| 1121 | |||
| 1122 | $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta); |
||
| 1123 | $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta); |
||
| 1124 | |||
| 1125 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
| 1126 | } |
||
| 1127 | |||
| 1128 | /** |
||
| 1129 | * Lambert Conic Conformal (2SP Michigan). |
||
| 1130 | */ |
||
| 1131 | public function lambertConicConformal2SPMichigan( |
||
| 1132 | Projected $to, |
||
| 1133 | Angle $latitudeOfFalseOrigin, |
||
| 1134 | Angle $longitudeOfFalseOrigin, |
||
| 1135 | Angle $latitudeOf1stStandardParallel, |
||
| 1136 | Angle $latitudeOf2ndStandardParallel, |
||
| 1137 | Length $eastingAtFalseOrigin, |
||
| 1138 | Length $northingAtFalseOrigin, |
||
| 1139 | Scale $ellipsoidScalingFactor |
||
| 1140 | ): ProjectedPoint { |
||
| 1141 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 1142 | $latitude = $this->latitude->asRadians()->getValue(); |
||
| 1143 | $phiF = $latitudeOfFalseOrigin->asRadians()->getValue(); |
||
| 1144 | $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
||
| 1145 | $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue(); |
||
| 1146 | $K = $ellipsoidScalingFactor->asUnity()->getValue(); |
||
| 1147 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 1148 | $e = $ellipsoid->getEccentricity(); |
||
| 1149 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 1150 | |||
| 1151 | $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2); |
||
| 1152 | $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2); |
||
| 1153 | $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2); |
||
| 1154 | $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2); |
||
| 1155 | $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2); |
||
| 1156 | $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2); |
||
| 1157 | $n = (log($m1) - log($m2)) / (log($t1) - log($t2)); |
||
| 1158 | $F = $m1 / ($n * $t1 ** $n); |
||
| 1159 | $r = $a * $K * $F * $t ** $n; |
||
| 1160 | $rF = $a * $K * $F * $tF ** $n; |
||
| 1161 | $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue(); |
||
| 1162 | |||
| 1163 | $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta); |
||
| 1164 | $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta); |
||
| 1165 | |||
| 1166 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
| 1167 | } |
||
| 1168 | |||
| 1169 | /** |
||
| 1170 | * Lambert Conic Conformal (2SP). |
||
| 1171 | */ |
||
| 1172 | public function lambertConicConformal2SP( |
||
| 1173 | Projected $to, |
||
| 1174 | Angle $latitudeOfFalseOrigin, |
||
| 1175 | Angle $longitudeOfFalseOrigin, |
||
| 1176 | Angle $latitudeOf1stStandardParallel, |
||
| 1177 | Angle $latitudeOf2ndStandardParallel, |
||
| 1178 | Length $eastingAtFalseOrigin, |
||
| 1179 | Length $northingAtFalseOrigin |
||
| 1180 | ): ProjectedPoint { |
||
| 1181 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 1182 | $latitude = $this->latitude->asRadians()->getValue(); |
||
| 1183 | $phiF = $latitudeOfFalseOrigin->asRadians()->getValue(); |
||
| 1184 | $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
||
| 1185 | $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue(); |
||
| 1186 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 1187 | $e = $ellipsoid->getEccentricity(); |
||
| 1188 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 1189 | |||
| 1190 | $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2); |
||
| 1191 | $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2); |
||
| 1192 | $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2); |
||
| 1193 | $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2); |
||
| 1194 | $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2); |
||
| 1195 | $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2); |
||
| 1196 | $n = (log($m1) - log($m2)) / (log($t1) - log($t2)); |
||
| 1197 | $F = $m1 / ($n * $t1 ** $n); |
||
| 1198 | $r = $a * $F * $t ** $n; |
||
| 1199 | $rF = $a * $F * $tF ** $n; |
||
| 1200 | $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue(); |
||
| 1201 | |||
| 1202 | $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta); |
||
| 1203 | $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta); |
||
| 1204 | |||
| 1205 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
| 1206 | } |
||
| 1207 | |||
| 1208 | /** |
||
| 1209 | * Lambert Conic Conformal (West Orientated). |
||
| 1210 | */ |
||
| 1211 | public function lambertConicConformalWestOrientated( |
||
| 1212 | Projected $to, |
||
| 1213 | Angle $latitudeOfNaturalOrigin, |
||
| 1214 | Angle $longitudeOfNaturalOrigin, |
||
| 1215 | Scale $scaleFactorAtNaturalOrigin, |
||
| 1216 | Length $falseEasting, |
||
| 1217 | Length $falseNorthing |
||
| 1218 | ): ProjectedPoint { |
||
| 1219 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 1220 | $latitude = $this->latitude->asRadians()->getValue(); |
||
| 1221 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 1222 | $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
||
| 1223 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 1224 | $e = $ellipsoid->getEccentricity(); |
||
| 1225 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 1226 | |||
| 1227 | $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2); |
||
| 1228 | $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2); |
||
| 1229 | $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2); |
||
| 1230 | $n = sin($latitudeOrigin); |
||
| 1231 | $F = $mO / ($n * $tO ** $n); |
||
| 1232 | $rO = $a * $F * $tO ** $n ** $kO; |
||
| 1233 | $r = $a * $F * $t ** $n ** $kO; |
||
| 1234 | $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue(); |
||
| 1235 | |||
| 1236 | $westing = $falseEasting->asMetres()->getValue() - $r * sin($theta); |
||
| 1237 | $northing = $falseNorthing->asMetres()->getValue() + $rO - $r * cos($theta); |
||
| 1238 | |||
| 1239 | return ProjectedPoint::create($to, new Metre(-$westing), new Metre($northing), new Metre($westing), new Metre(-$northing), $this->epoch); |
||
| 1240 | } |
||
| 1241 | |||
| 1242 | /** |
||
| 1243 | * Lambert Conic Near-Conformal |
||
| 1244 | * The Lambert Near-Conformal projection is derived from the Lambert Conformal Conic projection by truncating the |
||
| 1245 | * series expansion of the projection formulae. |
||
| 1246 | */ |
||
| 1247 | public function lambertConicNearConformal( |
||
| 1284 | } |
||
| 1285 | |||
| 1286 | /** |
||
| 1287 | * Lambert Cylindrical Equal Area |
||
| 1288 | * This is the ellipsoidal form of the projection. |
||
| 1289 | */ |
||
| 1290 | public function lambertCylindricalEqualArea( |
||
| 1291 | Projected $to, |
||
| 1292 | Angle $latitudeOf1stStandardParallel, |
||
| 1293 | Angle $longitudeOfNaturalOrigin, |
||
| 1294 | Length $falseEasting, |
||
| 1295 | Length $falseNorthing |
||
| 1296 | ): ProjectedPoint { |
||
| 1297 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 1298 | $latitude = $this->latitude->asRadians()->getValue(); |
||
| 1299 | $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
||
| 1300 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 1301 | $e = $ellipsoid->getEccentricity(); |
||
| 1302 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 1303 | |||
| 1304 | $k = cos($latitudeFirstParallel) / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2); |
||
| 1305 | $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - (1 / (2 * $e)) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude)))); |
||
| 1306 | |||
| 1307 | $x = $a * $k * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue(); |
||
| 1308 | $y = $a * $q / (2 * $k); |
||
| 1309 | |||
| 1310 | $easting = $falseEasting->asMetres()->getValue() + $x; |
||
| 1311 | $northing = $falseNorthing->asMetres()->getValue() + $y; |
||
| 1312 | |||
| 1313 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
| 1314 | } |
||
| 1315 | |||
| 1316 | /** |
||
| 1317 | * Lambert Cylindrical Equal Area |
||
| 1318 | * This is the spherical form of the projection. |
||
| 1319 | */ |
||
| 1320 | public function lambertCylindricalEqualAreaSpherical( |
||
| 1321 | Projected $to, |
||
| 1322 | Angle $latitudeOf1stStandardParallel, |
||
| 1323 | Angle $longitudeOfNaturalOrigin, |
||
| 1324 | Length $falseEasting, |
||
| 1325 | Length $falseNorthing |
||
| 1326 | ): ProjectedPoint { |
||
| 1327 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 1328 | $latitude = $this->latitude->asRadians()->getValue(); |
||
| 1329 | $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
||
| 1330 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 1331 | |||
| 1332 | $x = $a * cos($latitudeFirstParallel) * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue(); |
||
| 1333 | $y = $a * sin($latitude) / cos($latitudeFirstParallel); |
||
| 1334 | |||
| 1335 | $easting = $falseEasting->asMetres()->getValue() + $x; |
||
| 1336 | $northing = $falseNorthing->asMetres()->getValue() + $y; |
||
| 1337 | |||
| 1338 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
| 1339 | } |
||
| 1340 | |||
| 1341 | /** |
||
| 1342 | * Modified Azimuthal Equidistant |
||
| 1343 | * Modified form of Oblique Azimuthal Equidistant projection method developed for Polynesian islands. For the |
||
| 1344 | * distances over which these projections are used (under 800km) this modification introduces no significant error. |
||
| 1345 | */ |
||
| 1346 | public function modifiedAzimuthalEquidistant( |
||
| 1347 | Projected $to, |
||
| 1348 | Angle $latitudeOfNaturalOrigin, |
||
| 1349 | Angle $longitudeOfNaturalOrigin, |
||
| 1350 | Length $falseEasting, |
||
| 1351 | Length $falseNorthing |
||
| 1352 | ): ProjectedPoint { |
||
| 1353 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 1354 | $latitude = $this->latitude->asRadians()->getValue(); |
||
| 1355 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 1356 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 1357 | $e = $ellipsoid->getEccentricity(); |
||
| 1358 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 1359 | |||
| 1360 | $nuO = $a / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2); |
||
| 1361 | $nu = $a / sqrt(1 - $e2 * sin($latitude) ** 2); |
||
| 1362 | $psi = atan((1 - $e2) * tan($latitude) + ($e2 * $nuO * sin($latitudeOrigin)) / ($nu * cos($latitude))); |
||
| 1363 | $alpha = atan2(sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()), cos($latitudeOrigin) * tan($psi) - sin($latitudeOrigin) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())); |
||
| 1364 | $G = $e * sin($latitudeOrigin) / sqrt(1 - $e2); |
||
| 1365 | $H = $e * cos($latitudeOrigin) * cos($alpha) / sqrt(1 - $e2); |
||
| 1366 | |||
| 1367 | if (sin($alpha) === 0.0) { |
||
| 1368 | $s = self::asin(cos($latitudeOrigin) * sin($psi) - sin($latitudeOrigin) * cos($alpha)) * cos($alpha) / abs(cos($alpha)); |
||
| 1369 | } else { |
||
| 1370 | $s = self::asin(sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()) * cos($psi) / sin($alpha)); |
||
| 1371 | } |
||
| 1372 | |||
| 1373 | $c = $nuO * $s * ((1 - $s ** 2 * $H ** 2 * (1 - $H ** 2) / 6) + (($s ** 3 / 8) * $G * $H * (1 - 2 * $H ** 2)) + ($s ** 4 / 120) * ($H ** 2 * (4 - 7 * $H ** 2) - 3 * $G ** 2 * (1 - 7 * $H ** 2)) - (($s ** 5 / 48) * $G * $H)); |
||
| 1374 | |||
| 1375 | $easting = $falseEasting->asMetres()->getValue() + $c * sin($alpha); |
||
| 1376 | $northing = $falseNorthing->asMetres()->getValue() + $c * cos($alpha); |
||
| 1377 | |||
| 1378 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
| 1379 | } |
||
| 1380 | |||
| 1381 | /** |
||
| 1382 | * Oblique Stereographic |
||
| 1383 | * This is not the same as the projection method of the same name in USGS Professional Paper no. 1395, "Map |
||
| 1384 | * Projections - A Working Manual" by John P. Snyder. |
||
| 1385 | */ |
||
| 1386 | public function obliqueStereographic( |
||
| 1387 | Projected $to, |
||
| 1388 | Angle $latitudeOfNaturalOrigin, |
||
| 1389 | Angle $longitudeOfNaturalOrigin, |
||
| 1390 | Scale $scaleFactorAtNaturalOrigin, |
||
| 1391 | Length $falseEasting, |
||
| 1392 | Length $falseNorthing |
||
| 1393 | ): ProjectedPoint { |
||
| 1394 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 1395 | $latitude = $this->latitude->asRadians()->getValue(); |
||
| 1396 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 1397 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 1398 | $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
||
| 1399 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 1400 | $e = $ellipsoid->getEccentricity(); |
||
| 1401 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 1402 | |||
| 1403 | $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2); |
||
| 1404 | $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2)); |
||
| 1405 | $R = sqrt($rhoOrigin * $nuOrigin); |
||
| 1406 | |||
| 1407 | $n = sqrt(1 + ($e2 * cos($latitudeOrigin) ** 4 / (1 - $e2))); |
||
| 1408 | $S1 = (1 + sin($latitudeOrigin)) / (1 - sin($latitudeOrigin)); |
||
| 1409 | $S2 = (1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin)); |
||
| 1410 | $w1 = ($S1 * ($S2 ** $e)) ** $n; |
||
| 1411 | $c = (($n + sin($latitudeOrigin)) * (1 - ($w1 - 1) / ($w1 + 1))) / (($n - sin($latitudeOrigin)) * (1 + ($w1 - 1) / ($w1 + 1))); |
||
| 1412 | $w2 = $c * $w1; |
||
| 1413 | $chiOrigin = self::asin(($w2 - 1) / ($w2 + 1)); |
||
| 1414 | |||
| 1415 | $lambda = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() + $longitudeOrigin; |
||
| 1416 | |||
| 1417 | $Sa = (1 + sin($latitude)) / (1 - sin($latitude)); |
||
| 1418 | $Sb = (1 - $e * sin($latitude)) / (1 + $e * sin($latitude)); |
||
| 1419 | $w = $c * ($Sa * ($Sb ** $e)) ** $n; |
||
| 1420 | $chi = self::asin(($w - 1) / ($w + 1)); |
||
| 1421 | |||
| 1422 | $B = (1 + sin($chi) * sin($chiOrigin) + cos($chi) * cos($chiOrigin) * cos($lambda - $longitudeOrigin)); |
||
| 1423 | |||
| 1424 | $easting = $falseEasting->asMetres()->getValue() + 2 * $R * $kO * cos($chi) * sin($lambda - $longitudeOrigin) / $B; |
||
| 1425 | $northing = $falseNorthing->asMetres()->getValue() + 2 * $R * $kO * (sin($chi) * cos($chiOrigin) - cos($chi) * sin($chiOrigin) * cos($lambda - $longitudeOrigin)) / $B; |
||
| 1426 | |||
| 1427 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
| 1428 | } |
||
| 1429 | |||
| 1430 | /** |
||
| 1431 | * Polar Stereographic (variant A) |
||
| 1432 | * Latitude of natural origin must be either 90 degrees or -90 degrees (or equivalent in alternative angle unit). |
||
| 1433 | */ |
||
| 1434 | public function polarStereographicVariantA( |
||
| 1435 | Projected $to, |
||
| 1436 | Angle $latitudeOfNaturalOrigin, |
||
| 1437 | Angle $longitudeOfNaturalOrigin, |
||
| 1438 | Scale $scaleFactorAtNaturalOrigin, |
||
| 1439 | Length $falseEasting, |
||
| 1440 | Length $falseNorthing |
||
| 1441 | ): ProjectedPoint { |
||
| 1442 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 1443 | $latitude = $this->latitude->asRadians()->getValue(); |
||
| 1444 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 1445 | $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
||
| 1446 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 1447 | $e = $ellipsoid->getEccentricity(); |
||
| 1448 | |||
| 1449 | if ($latitudeOrigin < 0) { |
||
| 1450 | $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2)); |
||
| 1451 | } else { |
||
| 1452 | $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2)); |
||
| 1453 | } |
||
| 1454 | $rho = 2 * $a * $kO * $t / sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)); |
||
| 1455 | |||
| 1456 | $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue(); |
||
| 1457 | $dE = $rho * sin($theta); |
||
| 1458 | $dN = $rho * cos($theta); |
||
| 1459 | |||
| 1460 | $easting = $falseEasting->asMetres()->getValue() + $dE; |
||
| 1461 | if ($latitudeOrigin < 0) { |
||
| 1462 | $northing = $falseNorthing->asMetres()->getValue() + $dN; |
||
| 1463 | } else { |
||
| 1464 | $northing = $falseNorthing->asMetres()->getValue() - $dN; |
||
| 1465 | } |
||
| 1466 | |||
| 1467 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
| 1468 | } |
||
| 1469 | |||
| 1470 | /** |
||
| 1471 | * Polar Stereographic (variant B). |
||
| 1472 | */ |
||
| 1473 | public function polarStereographicVariantB( |
||
| 1474 | Projected $to, |
||
| 1475 | Angle $latitudeOfStandardParallel, |
||
| 1476 | Angle $longitudeOfOrigin, |
||
| 1477 | Length $falseEasting, |
||
| 1478 | Length $falseNorthing |
||
| 1479 | ): ProjectedPoint { |
||
| 1480 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 1481 | $latitude = $this->latitude->asRadians()->getValue(); |
||
| 1482 | $firstStandardParallel = $latitudeOfStandardParallel->asRadians()->getValue(); |
||
| 1483 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 1484 | $e = $ellipsoid->getEccentricity(); |
||
| 1485 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 1486 | |||
| 1487 | if ($firstStandardParallel < 0) { |
||
| 1488 | $tF = tan(M_PI / 4 + $firstStandardParallel / 2) / (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2)); |
||
| 1489 | $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2)); |
||
| 1490 | } else { |
||
| 1491 | $tF = tan(M_PI / 4 - $firstStandardParallel / 2) * (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2)); |
||
| 1492 | $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2)); |
||
| 1493 | } |
||
| 1494 | $mF = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2); |
||
| 1495 | $kO = $mF * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $tF); |
||
| 1496 | |||
| 1497 | $rho = 2 * $a * $kO * $t / sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)); |
||
| 1498 | |||
| 1499 | $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfOrigin))->asRadians()->getValue(); |
||
| 1500 | $dE = $rho * sin($theta); |
||
| 1501 | $dN = $rho * cos($theta); |
||
| 1502 | |||
| 1503 | $easting = $falseEasting->asMetres()->getValue() + $dE; |
||
| 1504 | if ($firstStandardParallel < 0) { |
||
| 1505 | $northing = $falseNorthing->asMetres()->getValue() + $dN; |
||
| 1506 | } else { |
||
| 1507 | $northing = $falseNorthing->asMetres()->getValue() - $dN; |
||
| 1508 | } |
||
| 1509 | |||
| 1510 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
| 1511 | } |
||
| 1512 | |||
| 1513 | /** |
||
| 1514 | * Polar Stereographic (variant C). |
||
| 1515 | */ |
||
| 1516 | public function polarStereographicVariantC( |
||
| 1517 | Projected $to, |
||
| 1518 | Angle $latitudeOfStandardParallel, |
||
| 1519 | Angle $longitudeOfOrigin, |
||
| 1520 | Length $eastingAtFalseOrigin, |
||
| 1521 | Length $northingAtFalseOrigin |
||
| 1522 | ): ProjectedPoint { |
||
| 1523 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 1524 | $latitude = $this->latitude->asRadians()->getValue(); |
||
| 1525 | $firstStandardParallel = $latitudeOfStandardParallel->asRadians()->getValue(); |
||
| 1526 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 1527 | $e = $ellipsoid->getEccentricity(); |
||
| 1528 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 1529 | |||
| 1530 | if ($firstStandardParallel < 0) { |
||
| 1531 | $tF = tan(M_PI / 4 + $firstStandardParallel / 2) / (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2)); |
||
| 1532 | $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2)); |
||
| 1533 | } else { |
||
| 1534 | $tF = tan(M_PI / 4 - $firstStandardParallel / 2) * (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2)); |
||
| 1535 | $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2)); |
||
| 1536 | } |
||
| 1537 | $mF = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2); |
||
| 1538 | |||
| 1539 | $rhoF = $a * $mF; |
||
| 1540 | $rho = $rhoF * $t / $tF; |
||
| 1541 | |||
| 1542 | $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfOrigin))->asRadians()->getValue(); |
||
| 1543 | $dE = $rho * sin($theta); |
||
| 1544 | $dN = $rho * cos($theta); |
||
| 1545 | |||
| 1546 | $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $dE; |
||
| 1547 | if ($firstStandardParallel < 0) { |
||
| 1548 | $northing = $northingAtFalseOrigin->asMetres()->getValue() - $rhoF + $dN; |
||
| 1549 | } else { |
||
| 1550 | $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rhoF - $dN; |
||
| 1551 | } |
||
| 1552 | |||
| 1553 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
| 1554 | } |
||
| 1555 | |||
| 1556 | /** |
||
| 1557 | * Popular Visualisation Pseudo Mercator |
||
| 1558 | * Applies spherical formulas to the ellipsoid. As such does not have the properties of a true Mercator projection. |
||
| 1559 | */ |
||
| 1560 | public function popularVisualisationPseudoMercator( |
||
| 1561 | Projected $to, |
||
| 1562 | Angle $latitudeOfNaturalOrigin, |
||
| 1563 | Angle $longitudeOfNaturalOrigin, |
||
| 1564 | Length $falseEasting, |
||
| 1565 | Length $falseNorthing |
||
| 1566 | ): ProjectedPoint { |
||
| 1567 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 1568 | $latitude = $this->latitude->asRadians()->getValue(); |
||
| 1569 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 1570 | |||
| 1571 | $easting = $falseEasting->asMetres()->getValue() + $a * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue(); |
||
| 1572 | $northing = $falseNorthing->asMetres()->getValue() + $a * log(tan(M_PI / 4 + $latitude / 2)); |
||
| 1573 | |||
| 1574 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
| 1575 | } |
||
| 1576 | |||
| 1577 | /** |
||
| 1578 | * Mercator (variant A) |
||
| 1579 | * Note that in these formulas the parameter latitude of natural origin (latO) is not used. However for this |
||
| 1580 | * Mercator (variant A) method the EPSG dataset includes this parameter, which must have a value of zero, for |
||
| 1581 | * completeness in CRS labelling. |
||
| 1582 | */ |
||
| 1583 | public function mercatorVariantA( |
||
| 1584 | Projected $to, |
||
| 1585 | Angle $latitudeOfNaturalOrigin, |
||
| 1586 | Angle $longitudeOfNaturalOrigin, |
||
| 1587 | Scale $scaleFactorAtNaturalOrigin, |
||
| 1588 | Length $falseEasting, |
||
| 1589 | Length $falseNorthing |
||
| 1590 | ): ProjectedPoint { |
||
| 1591 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 1592 | $latitude = $this->latitude->asRadians()->getValue(); |
||
| 1593 | $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
||
| 1594 | |||
| 1595 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 1596 | $e = $ellipsoid->getEccentricity(); |
||
| 1597 | |||
| 1598 | $easting = $falseEasting->asMetres()->getValue() + $a * $kO * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue(); |
||
| 1599 | $northing = $falseNorthing->asMetres()->getValue() + $a * $kO * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2)); |
||
| 1600 | |||
| 1601 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
| 1602 | } |
||
| 1603 | |||
| 1604 | /** |
||
| 1605 | * Mercator (variant B) |
||
| 1606 | * Used for most nautical charts. |
||
| 1607 | */ |
||
| 1608 | public function mercatorVariantB( |
||
| 1609 | Projected $to, |
||
| 1610 | Angle $latitudeOf1stStandardParallel, |
||
| 1611 | Angle $longitudeOfNaturalOrigin, |
||
| 1612 | Length $falseEasting, |
||
| 1613 | Length $falseNorthing |
||
| 1614 | ): ProjectedPoint { |
||
| 1615 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 1616 | $latitude = $this->latitude->asRadians()->getValue(); |
||
| 1617 | $firstStandardParallel = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
||
| 1618 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 1619 | $e = $ellipsoid->getEccentricity(); |
||
| 1620 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 1621 | |||
| 1622 | $kO = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2); |
||
| 1623 | |||
| 1624 | $easting = $falseEasting->asMetres()->getValue() + $a * $kO * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue(); |
||
| 1625 | $northing = $falseNorthing->asMetres()->getValue() + $a * $kO * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2)); |
||
| 1626 | |||
| 1627 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
| 1628 | } |
||
| 1629 | |||
| 1630 | /** |
||
| 1631 | * Longitude rotation |
||
| 1632 | * This transformation allows calculation of the longitude of a point in the target system by adding the parameter |
||
| 1633 | * value to the longitude value of the point in the source system. |
||
| 1634 | */ |
||
| 1635 | public function longitudeRotation( |
||
| 1636 | Geographic2D|Geographic3D $to, |
||
| 1637 | Angle $longitudeOffset |
||
| 1638 | ): self { |
||
| 1639 | $newLongitude = $this->longitude->add($longitudeOffset); |
||
| 1640 | |||
| 1641 | return static::create($to, $this->latitude, $newLongitude, $this->height, $this->epoch); |
||
| 1642 | } |
||
| 1643 | |||
| 1644 | /** |
||
| 1645 | * Hotine Oblique Mercator (variant A). |
||
| 1646 | */ |
||
| 1647 | public function obliqueMercatorHotineVariantA( |
||
| 1648 | Projected $to, |
||
| 1649 | Angle $latitudeOfProjectionCentre, |
||
| 1650 | Angle $longitudeOfProjectionCentre, |
||
| 1651 | Angle $azimuthAtProjectionCentre, |
||
| 1652 | Angle $angleFromRectifiedToSkewGrid, |
||
| 1653 | Scale $scaleFactorAtProjectionCentre, |
||
| 1654 | Length $falseEasting, |
||
| 1655 | Length $falseNorthing |
||
| 1656 | ): ProjectedPoint { |
||
| 1657 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 1658 | $latitude = $this->latitude->asRadians()->getValue(); |
||
| 1659 | $longitude = $this->longitude->asRadians()->getValue(); |
||
| 1660 | $latC = $latitudeOfProjectionCentre->asRadians()->getValue(); |
||
| 1661 | $lonC = $longitudeOfProjectionCentre->asRadians()->getValue(); |
||
| 1662 | $alphaC = $azimuthAtProjectionCentre->asRadians()->getValue(); |
||
| 1663 | $kC = $scaleFactorAtProjectionCentre->asUnity()->getValue(); |
||
| 1664 | $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue(); |
||
| 1665 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 1666 | $e = $ellipsoid->getEccentricity(); |
||
| 1667 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 1668 | |||
| 1669 | $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2))); |
||
| 1670 | $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2); |
||
| 1671 | $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2); |
||
| 1672 | $D = $B * sqrt(1 - $e2) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2)); |
||
| 1673 | $DD = max(1, $D ** 2); |
||
| 1674 | $F = $D + sqrt($DD - 1) * static::sign($latC); |
||
| 1675 | $H = $F * $tO ** $B; |
||
| 1676 | $G = ($F - 1 / $F) / 2; |
||
| 1677 | $gammaO = self::asin(sin($alphaC) / $D); |
||
| 1678 | $lonO = $lonC - self::asin($G * tan($gammaO)) / $B; |
||
| 1679 | |||
| 1680 | $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2); |
||
| 1681 | $Q = $H / $t ** $B; |
||
| 1682 | $S = ($Q - 1 / $Q) / 2; |
||
| 1683 | $T = ($Q + 1 / $Q) / 2; |
||
| 1684 | $V = sin($B * ($longitude - $lonO)); |
||
| 1685 | $U = (-$V * cos($gammaO) + $S * sin($gammaO)) / $T; |
||
| 1686 | $v = $A * log((1 - $U) / (1 + $U)) / (2 * $B); |
||
| 1687 | $u = $A * atan2($S * cos($gammaO) + $V * sin($gammaO), cos($B * ($longitude - $lonO))) / $B; |
||
| 1688 | |||
| 1689 | $easting = $v * cos($gammaC) + $u * sin($gammaC) + $falseEasting->asMetres()->getValue(); |
||
| 1690 | $northing = $u * cos($gammaC) - $v * sin($gammaC) + $falseNorthing->asMetres()->getValue(); |
||
| 1691 | |||
| 1692 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
| 1693 | } |
||
| 1694 | |||
| 1695 | /** |
||
| 1696 | * Hotine Oblique Mercator (variant B). |
||
| 1697 | */ |
||
| 1698 | public function obliqueMercatorHotineVariantB( |
||
| 1699 | Projected $to, |
||
| 1700 | Angle $latitudeOfProjectionCentre, |
||
| 1701 | Angle $longitudeOfProjectionCentre, |
||
| 1702 | Angle $azimuthAtProjectionCentre, |
||
| 1703 | Angle $angleFromRectifiedToSkewGrid, |
||
| 1704 | Scale $scaleFactorAtProjectionCentre, |
||
| 1705 | Length $eastingAtProjectionCentre, |
||
| 1706 | Length $northingAtProjectionCentre |
||
| 1707 | ): ProjectedPoint { |
||
| 1708 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 1709 | $latitude = $this->latitude->asRadians()->getValue(); |
||
| 1710 | $longitude = $this->longitude->asRadians()->getValue(); |
||
| 1711 | $latC = $latitudeOfProjectionCentre->asRadians()->getValue(); |
||
| 1712 | $lonC = $longitudeOfProjectionCentre->asRadians()->getValue(); |
||
| 1713 | $alphaC = $azimuthAtProjectionCentre->asRadians()->getValue(); |
||
| 1714 | $kC = $scaleFactorAtProjectionCentre->asUnity()->getValue(); |
||
| 1715 | $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue(); |
||
| 1716 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 1717 | $e = $ellipsoid->getEccentricity(); |
||
| 1718 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 1719 | |||
| 1720 | $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2))); |
||
| 1721 | $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2); |
||
| 1722 | $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2); |
||
| 1723 | $D = $B * sqrt(1 - $e2) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2)); |
||
| 1724 | $F = $D + sqrt(max($D ** 2, 1) - 1) * static::sign($latC); |
||
| 1725 | $H = $F * $tO ** $B; |
||
| 1726 | $G = ($F - 1 / $F) / 2; |
||
| 1727 | $gammaO = self::asin(sin($alphaC) / $D); |
||
| 1728 | $lonO = $lonC - self::asin($G * tan($gammaO)) / $B; |
||
| 1729 | $vC = 0; |
||
| 1730 | if ($alphaC === M_PI / 2) { |
||
| 1731 | $uC = $A * ($lonC - $lonO); |
||
| 1732 | } else { |
||
| 1733 | $uC = ($A / $B) * atan2(sqrt(max($D ** 2, 1) - 1), cos($alphaC)) * static::sign($latC); |
||
| 1734 | } |
||
| 1735 | |||
| 1736 | $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2); |
||
| 1737 | $Q = $H / $t ** $B; |
||
| 1738 | $S = ($Q - 1 / $Q) / 2; |
||
| 1739 | $T = ($Q + 1 / $Q) / 2; |
||
| 1740 | $V = sin($B * ($longitude - $lonO)); |
||
| 1741 | $U = (-$V * cos($gammaO) + $S * sin($gammaO)) / $T; |
||
| 1742 | $v = $A * log((1 - $U) / (1 + $U)) / (2 * $B); |
||
| 1743 | $u = ($A * atan2($S * cos($gammaO) + $V * sin($gammaO), cos($B * ($longitude - $lonO))) / $B) - (abs($uC) * static::sign($latC)); |
||
| 1744 | |||
| 1745 | $easting = $v * cos($gammaC) + $u * sin($gammaC) + $eastingAtProjectionCentre->asMetres()->getValue(); |
||
| 1746 | $northing = $u * cos($gammaC) - $v * sin($gammaC) + $northingAtProjectionCentre->asMetres()->getValue(); |
||
| 1747 | |||
| 1748 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
| 1749 | } |
||
| 1750 | |||
| 1751 | /** |
||
| 1752 | * Laborde Oblique Mercator. |
||
| 1753 | */ |
||
| 1754 | public function obliqueMercatorLaborde( |
||
| 1755 | Projected $to, |
||
| 1756 | Angle $latitudeOfProjectionCentre, |
||
| 1757 | Angle $longitudeOfProjectionCentre, |
||
| 1758 | Angle $azimuthAtProjectionCentre, |
||
| 1759 | Scale $scaleFactorAtProjectionCentre, |
||
| 1760 | Length $falseEasting, |
||
| 1761 | Length $falseNorthing |
||
| 1762 | ): ProjectedPoint { |
||
| 1763 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 1764 | $latitude = $this->latitude->asRadians()->getValue(); |
||
| 1765 | $latC = $latitudeOfProjectionCentre->asRadians()->getValue(); |
||
| 1766 | $alphaC = $azimuthAtProjectionCentre->asRadians()->getValue(); |
||
| 1767 | $kC = $scaleFactorAtProjectionCentre->asUnity()->getValue(); |
||
| 1768 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 1769 | $e = $ellipsoid->getEccentricity(); |
||
| 1770 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 1771 | |||
| 1772 | $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2))); |
||
| 1773 | $latS = self::asin(sin($latC) / $B); |
||
| 1774 | $R = $a * $kC * (sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2)); |
||
| 1775 | $C = log(tan(M_PI / 4 + $latS / 2)) - $B * log(tan(M_PI / 4 + $latC / 2) * ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2)); |
||
| 1776 | |||
| 1777 | $L = $B * $this->normaliseLongitude($this->longitude->subtract($longitudeOfProjectionCentre))->asRadians()->getValue(); |
||
| 1778 | $q = $C + $B * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2)); |
||
| 1779 | $P = 2 * atan(M_E ** $q) - M_PI / 2; |
||
| 1780 | $U = cos($P) * cos($L) * cos($latS) + sin($P) * sin($latS); |
||
| 1781 | $V = cos($P) * cos($L) * sin($latS) - sin($P) * cos($latS); |
||
| 1782 | $W = cos($P) * sin($L); |
||
| 1783 | $d = hypot($U, $V); |
||
| 1784 | if ($d === 0.0) { |
||
| 1785 | $LPrime = 0; |
||
| 1786 | $PPrime = static::sign($W) * M_PI / 2; |
||
| 1787 | } else { |
||
| 1788 | $LPrime = 2 * atan($V / ($U + $d)); |
||
| 1789 | $PPrime = atan($W / $d); |
||
| 1790 | } |
||
| 1791 | $H = new ComplexNumber(-$LPrime, log(tan(M_PI / 4 + $PPrime / 2))); |
||
| 1792 | $G = (new ComplexNumber(1 - cos(2 * $alphaC), sin(2 * $alphaC)))->divide(new ComplexNumber(12, 0)); |
||
| 1793 | |||
| 1794 | $easting = $falseEasting->asMetres()->getValue() + $R * $H->pow(3)->multiply($G)->add($H)->getImaginary(); |
||
| 1795 | $northing = $falseNorthing->asMetres()->getValue() + $R * $H->pow(3)->multiply($G)->add($H)->getReal(); |
||
| 1796 | |||
| 1797 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
| 1798 | } |
||
| 1799 | |||
| 1800 | /** |
||
| 1801 | * Transverse Mercator. |
||
| 1802 | */ |
||
| 1803 | public function transverseMercator( |
||
| 1804 | Projected $to, |
||
| 1805 | Angle $latitudeOfNaturalOrigin, |
||
| 1806 | Angle $longitudeOfNaturalOrigin, |
||
| 1807 | Scale $scaleFactorAtNaturalOrigin, |
||
| 1808 | Length $falseEasting, |
||
| 1809 | Length $falseNorthing |
||
| 1810 | ): ProjectedPoint { |
||
| 1811 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 1812 | $latitude = $this->latitude->asRadians()->getValue(); |
||
| 1813 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
| 1814 | $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
||
| 1815 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 1816 | $e = $ellipsoid->getEccentricity(); |
||
| 1817 | $f = $ellipsoid->getFlattening(); |
||
| 1818 | |||
| 1819 | $n = $f / (2 - $f); |
||
| 1820 | $B = ($a / (1 + $n)) * (1 + $n ** 2 / 4 + $n ** 4 / 64 + $n ** 6 / 256 + (25 / 16384) * $n ** 8); |
||
| 1821 | |||
| 1822 | $h1 = $n / 2 - (2 / 3) * $n ** 2 + (5 / 16) * $n ** 3 + (41 / 180) * $n ** 4 - (127 / 288) * $n ** 5 + (7891 / 37800) * $n ** 6 + (72161 / 387072) * $n ** 7 - (18975107 / 50803200) * $n ** 8; |
||
| 1823 | $h2 = (13 / 48) * $n ** 2 - (3 / 5) * $n ** 3 + (557 / 1440) * $n ** 4 + (281 / 630) * $n ** 5 - (1983433 / 1935360) * $n ** 6 + (13769 / 28800) * $n ** 7 + (148003883 / 174182400) * $n ** 8; |
||
| 1824 | $h3 = (61 / 240) * $n ** 3 - (103 / 140) * $n ** 4 + (15061 / 26880) * $n ** 5 + (167603 / 181440) * $n ** 6 - (67102379 / 29030400) * $n ** 7 + (79682431 / 79833600) * $n ** 8; |
||
| 1825 | $h4 = (49561 / 161280) * $n ** 4 - (179 / 168) * $n ** 5 + (6601661 / 7257600) * $n ** 6 + (97445 / 49896) * $n ** 7 - (40176129013 / 7664025600) * $n ** 8; |
||
| 1826 | $h5 = (34729 / 80640) * $n ** 5 - (3418889 / 1995840) * $n ** 6 + (14644087 / 9123840) * $n ** 7 + (2605413599 / 622702080) * $n ** 8; |
||
| 1827 | $h6 = (212378941 / 319334400) * $n ** 6 - (30705481 / 10378368) * $n ** 7 + (175214326799 / 58118860800) * $n ** 8; |
||
| 1828 | $h7 = (1522256789 / 1383782400) * $n ** 7 - (16759934899 / 3113510400) * $n ** 8; |
||
| 1829 | $h8 = (1424729850961 / 743921418240) * $n ** 8; |
||
| 1830 | |||
| 1831 | if ($latitudeOrigin === 0.0) { |
||
| 1832 | $mO = 0; |
||
| 1833 | } elseif ($latitudeOrigin === M_PI / 2) { |
||
| 1834 | $mO = $B * M_PI / 2; |
||
| 1835 | } elseif ($latitudeOrigin === -M_PI / 2) { |
||
| 1836 | $mO = $B * -M_PI / 2; |
||
| 1837 | } else { |
||
| 1838 | $qO = asinh(tan($latitudeOrigin)) - ($e * atanh($e * sin($latitudeOrigin))); |
||
| 1839 | $betaO = atan(sinh($qO)); |
||
| 1840 | $xiO0 = self::asin(sin($betaO)); |
||
| 1841 | $xiO1 = $h1 * sin(2 * $xiO0); |
||
| 1842 | $xiO2 = $h2 * sin(4 * $xiO0); |
||
| 1843 | $xiO3 = $h3 * sin(6 * $xiO0); |
||
| 1844 | $xiO4 = $h4 * sin(8 * $xiO0); |
||
| 1845 | $xiO5 = $h5 * sin(10 * $xiO0); |
||
| 1846 | $xiO6 = $h6 * sin(12 * $xiO0); |
||
| 1847 | $xiO7 = $h7 * sin(14 * $xiO0); |
||
| 1848 | $xiO8 = $h8 * sin(16 * $xiO0); |
||
| 1849 | $xiO = $xiO0 + $xiO1 + $xiO2 + $xiO3 + $xiO4 + $xiO5 + $xiO6 + $xiO7 + $xiO8; |
||
| 1850 | $mO = $B * $xiO; |
||
| 1851 | } |
||
| 1852 | |||
| 1853 | $Q = asinh(tan($latitude)) - ($e * atanh($e * sin($latitude))); |
||
| 1854 | $beta = atan(sinh($Q)); |
||
| 1855 | $eta0 = atanh(cos($beta) * sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())); |
||
| 1856 | $xi0 = self::asin(sin($beta) * cosh($eta0)); |
||
| 1857 | $xi1 = $h1 * sin(2 * $xi0) * cosh(2 * $eta0); |
||
| 1858 | $eta1 = $h1 * cos(2 * $xi0) * sinh(2 * $eta0); |
||
| 1859 | $xi2 = $h2 * sin(4 * $xi0) * cosh(4 * $eta0); |
||
| 1860 | $eta2 = $h2 * cos(4 * $xi0) * sinh(4 * $eta0); |
||
| 1861 | $xi3 = $h3 * sin(6 * $xi0) * cosh(6 * $eta0); |
||
| 1862 | $eta3 = $h3 * cos(6 * $xi0) * sinh(6 * $eta0); |
||
| 1863 | $xi4 = $h4 * sin(8 * $xi0) * cosh(8 * $eta0); |
||
| 1864 | $eta4 = $h4 * cos(8 * $xi0) * sinh(8 * $eta0); |
||
| 1865 | $xi5 = $h5 * sin(10 * $xi0) * cosh(10 * $eta0); |
||
| 1866 | $eta5 = $h5 * cos(10 * $xi0) * sinh(10 * $eta0); |
||
| 1867 | $xi6 = $h6 * sin(12 * $xi0) * cosh(12 * $eta0); |
||
| 1868 | $eta6 = $h6 * cos(12 * $xi0) * sinh(12 * $eta0); |
||
| 1869 | $xi7 = $h7 * sin(14 * $xi0) * cosh(14 * $eta0); |
||
| 1870 | $eta7 = $h7 * cos(14 * $xi0) * sinh(14 * $eta0); |
||
| 1871 | $xi8 = $h8 * sin(16 * $xi0) * cosh(16 * $eta0); |
||
| 1872 | $eta8 = $h8 * cos(16 * $xi0) * sinh(16 * $eta0); |
||
| 1873 | $xi = $xi0 + $xi1 + $xi2 + $xi3 + $xi4 + $xi5 + $xi6 + $xi7 + $xi8; |
||
| 1874 | $eta = $eta0 + $eta1 + $eta2 + $eta3 + $eta4 + $eta5 + $eta6 + $eta7 + $eta8; |
||
| 1875 | |||
| 1876 | $easting = $falseEasting->asMetres()->getValue() + $kO * $B * $eta; |
||
| 1877 | $northing = $falseNorthing->asMetres()->getValue() + $kO * ($B * $xi - $mO); |
||
| 1878 | |||
| 1879 | $height = count($to->getCoordinateSystem()->getAxes()) === 3 ? $this->height : null; |
||
| 1880 | |||
| 1881 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch, $height); |
||
| 1882 | } |
||
| 1883 | |||
| 1884 | /** |
||
| 1885 | * Transverse Mercator Zoned Grid System |
||
| 1886 | * If locations fall outwith the fixed zones the general Transverse Mercator method (code 9807) must be used for |
||
| 1887 | * each zone. |
||
| 1888 | */ |
||
| 1889 | public function transverseMercatorZonedGrid( |
||
| 1905 | } |
||
| 1906 | |||
| 1907 | /** |
||
| 1908 | * New Zealand Map Grid. |
||
| 1909 | */ |
||
| 1910 | public function newZealandMapGrid( |
||
| 1911 | Projected $to, |
||
| 1912 | Angle $latitudeOfNaturalOrigin, |
||
| 1913 | Angle $longitudeOfNaturalOrigin, |
||
| 1914 | Length $falseEasting, |
||
| 1915 | Length $falseNorthing |
||
| 1916 | ): ProjectedPoint { |
||
| 1917 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 1918 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 1919 | |||
| 1920 | $deltaLatitudeToOrigin = Angle::convert($this->latitude->subtract($latitudeOfNaturalOrigin), Angle::EPSG_ARC_SECOND)->getValue(); |
||
| 1921 | $deltaLongitudeToOrigin = $this->longitude->subtract($longitudeOfNaturalOrigin)->asRadians(); |
||
| 1922 | |||
| 1923 | $deltaPsi = 0; |
||
| 1924 | $deltaPsi += 0.6399175073 * ($deltaLatitudeToOrigin * 0.00001) ** 1; |
||
| 1925 | $deltaPsi += -0.1358797613 * ($deltaLatitudeToOrigin * 0.00001) ** 2; |
||
| 1926 | $deltaPsi += 0.063294409 * ($deltaLatitudeToOrigin * 0.00001) ** 3; |
||
| 1927 | $deltaPsi += -0.02526853 * ($deltaLatitudeToOrigin * 0.00001) ** 4; |
||
| 1928 | $deltaPsi += 0.0117879 * ($deltaLatitudeToOrigin * 0.00001) ** 5; |
||
| 1929 | $deltaPsi += -0.0055161 * ($deltaLatitudeToOrigin * 0.00001) ** 6; |
||
| 1930 | $deltaPsi += 0.0026906 * ($deltaLatitudeToOrigin * 0.00001) ** 7; |
||
| 1931 | $deltaPsi += -0.001333 * ($deltaLatitudeToOrigin * 0.00001) ** 8; |
||
| 1932 | $deltaPsi += 0.00067 * ($deltaLatitudeToOrigin * 0.00001) ** 9; |
||
| 1933 | $deltaPsi += -0.00034 * ($deltaLatitudeToOrigin * 0.00001) ** 10; |
||
| 1934 | |||
| 1935 | $zeta = new ComplexNumber($deltaPsi, $deltaLongitudeToOrigin->getValue()); |
||
| 1936 | |||
| 1937 | $B1 = new ComplexNumber(0.7557853228, 0.0); |
||
| 1938 | $B2 = new ComplexNumber(0.249204646, 0.003371507); |
||
| 1939 | $B3 = new ComplexNumber(-0.001541739, 0.041058560); |
||
| 1940 | $B4 = new ComplexNumber(-0.10162907, 0.01727609); |
||
| 1941 | $B5 = new ComplexNumber(-0.26623489, -0.36249218); |
||
| 1942 | $B6 = new ComplexNumber(-0.6870983, -1.1651967); |
||
| 1943 | $z = new ComplexNumber(0, 0); |
||
| 1944 | $z = $z->add($B1->multiply($zeta->pow(1))); |
||
| 1945 | $z = $z->add($B2->multiply($zeta->pow(2))); |
||
| 1946 | $z = $z->add($B3->multiply($zeta->pow(3))); |
||
| 1947 | $z = $z->add($B4->multiply($zeta->pow(4))); |
||
| 1948 | $z = $z->add($B5->multiply($zeta->pow(5))); |
||
| 1949 | $z = $z->add($B6->multiply($zeta->pow(6))); |
||
| 1950 | |||
| 1951 | $easting = $falseEasting->asMetres()->getValue() + $z->getImaginary() * $a; |
||
| 1952 | $northing = $falseNorthing->asMetres()->getValue() + $z->getReal() * $a; |
||
| 1953 | |||
| 1954 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
| 1955 | } |
||
| 1956 | |||
| 1957 | /** |
||
| 1958 | * Madrid to ED50 polynomial. |
||
| 1959 | */ |
||
| 1960 | public function madridToED50Polynomial( |
||
| 1976 | } |
||
| 1977 | |||
| 1978 | /** |
||
| 1979 | * Geographic3D to 2D conversion. |
||
| 1980 | */ |
||
| 1981 | public function threeDToTwoD( |
||
| 1982 | Geographic2D|Geographic3D $to |
||
| 1983 | ): self { |
||
| 1984 | if ($to instanceof Geographic2D) { |
||
| 1985 | return static::create($to, $this->latitude, $this->longitude, null, $this->epoch); |
||
| 1986 | } |
||
| 1987 | |||
| 1988 | return static::create($to, $this->latitude, $this->longitude, new Metre(0), $this->epoch); |
||
| 1989 | } |
||
| 1990 | |||
| 1991 | /** |
||
| 1992 | * Geographic2D offsets. |
||
| 1993 | * This transformation allows calculation of coordinates in the target system by adding the parameter value to the |
||
| 1994 | * coordinate values of the point in the source system. |
||
| 1995 | */ |
||
| 1996 | public function geographic2DOffsets( |
||
| 2005 | } |
||
| 2006 | |||
| 2007 | /* |
||
| 2008 | * Geographic2D with Height Offsets. |
||
| 2009 | * This transformation allows calculation of coordinates in the target system by adding the parameter value to the |
||
| 2010 | * coordinate values of the point in the source system. |
||
| 2011 | */ |
||
| 2012 | public function geographic2DWithHeightOffsets( |
||
| 2028 | } |
||
| 2029 | |||
| 2030 | /** |
||
| 2031 | * General polynomial. |
||
| 2032 | * @param Coefficient[] $powerCoefficients |
||
| 2033 | */ |
||
| 2034 | public function generalPolynomial( |
||
| 2035 | Geographic2D|Geographic3D $to, |
||
| 2036 | Angle $ordinate1OfEvaluationPointInSourceCRS, |
||
| 2037 | Angle $ordinate2OfEvaluationPointInSourceCRS, |
||
| 2038 | Angle $ordinate1OfEvaluationPointInTargetCRS, |
||
| 2039 | Angle $ordinate2OfEvaluationPointInTargetCRS, |
||
| 2040 | Scale $scalingFactorForSourceCRSCoordDifferences, |
||
| 2041 | Scale $scalingFactorForTargetCRSCoordDifferences, |
||
| 2042 | Scale $A0, |
||
| 2043 | Scale $B0, |
||
| 2044 | array $powerCoefficients, |
||
| 2045 | bool $inReverse |
||
| 2046 | ): self { |
||
| 2047 | $xs = $this->latitude->getValue(); |
||
| 2048 | $ys = $this->longitude->getValue(); |
||
| 2049 | |||
| 2050 | $t = $this->generalPolynomialUnitless( |
||
| 2051 | $xs, |
||
| 2052 | $ys, |
||
| 2053 | $ordinate1OfEvaluationPointInSourceCRS, |
||
| 2054 | $ordinate2OfEvaluationPointInSourceCRS, |
||
| 2055 | $ordinate1OfEvaluationPointInTargetCRS, |
||
| 2056 | $ordinate2OfEvaluationPointInTargetCRS, |
||
| 2057 | $scalingFactorForSourceCRSCoordDifferences, |
||
| 2058 | $scalingFactorForTargetCRSCoordDifferences, |
||
| 2059 | $A0, |
||
| 2060 | $B0, |
||
| 2061 | $powerCoefficients, |
||
| 2062 | $inReverse |
||
| 2063 | ); |
||
| 2064 | |||
| 2065 | $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId(); |
||
| 2066 | $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId(); |
||
| 2067 | |||
| 2068 | return static::create( |
||
| 2069 | $to, |
||
| 2070 | Angle::makeUnit($t['xt'], $xtUnit), |
||
| 2071 | Angle::makeUnit($t['yt'], $ytUnit), |
||
| 2072 | $this->height, |
||
| 2073 | $this->epoch |
||
| 2074 | ); |
||
| 2075 | } |
||
| 2076 | |||
| 2077 | /** |
||
| 2078 | * Reversible polynomial. |
||
| 2079 | * @param Coefficient[] $powerCoefficients |
||
| 2080 | */ |
||
| 2081 | public function reversiblePolynomial( |
||
| 2113 | ); |
||
| 2114 | } |
||
| 2115 | |||
| 2116 | /** |
||
| 2117 | * Axis Order Reversal. |
||
| 2118 | */ |
||
| 2119 | public function axisReversal( |
||
| 2124 | } |
||
| 2125 | |||
| 2126 | /** |
||
| 2127 | * Ordnance Survey National Transformation |
||
| 2128 | * Geodetic transformation between ETRS89 (or WGS 84) and OSGB36 / National Grid. Uses ETRS89 / National Grid as |
||
| 2129 | * an intermediate coordinate system for bi-linear interpolation of gridded grid coordinate differences. |
||
| 2130 | */ |
||
| 2131 | public function OSTN15( |
||
| 2132 | Projected $to, |
||
| 2133 | OSTNOSGM15Grid $eastingAndNorthingDifferenceFile |
||
| 2134 | ): ProjectedPoint { |
||
| 2135 | $osgb36NationalGrid = Projected::fromSRID(Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID); |
||
| 2136 | $etrs89NationalGrid = new Projected( |
||
| 2137 | 'ETRS89 / National Grid', |
||
| 2138 | Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M), |
||
| 2139 | Datum::fromSRID(Datum::EPSG_EUROPEAN_TERRESTRIAL_REFERENCE_SYSTEM_1989_ENSEMBLE), |
||
| 2140 | $osgb36NationalGrid->getBoundingArea() |
||
| 2141 | ); |
||
| 2142 | |||
| 2143 | $projected = $this->transverseMercator($etrs89NationalGrid, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000)); |
||
| 2144 | |||
| 2145 | return $eastingAndNorthingDifferenceFile->applyForwardHorizontalAdjustment($projected); |
||
| 2146 | } |
||
| 2147 | |||
| 2148 | /** |
||
| 2149 | * Geog3D to Geog2D+GravityRelatedHeight (OSGM-GB). |
||
| 2150 | * Uses ETRS89 / National Grid as an intermediate coordinate system for bi-linear interpolation of gridded grid |
||
| 2151 | * coordinate differences. |
||
| 2152 | */ |
||
| 2153 | public function geographic3DTo2DPlusGravityHeightOSGM15( |
||
| 2154 | Compound $to, |
||
| 2155 | OSTNOSGM15Grid $geoidHeightCorrectionModelFile |
||
| 2156 | ): CompoundPoint { |
||
| 2157 | assert($this->height instanceof Length); |
||
| 2158 | $osgb36NationalGrid = Projected::fromSRID(Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID); |
||
| 2159 | $etrs89NationalGrid = new Projected( |
||
| 2160 | 'ETRS89 / National Grid', |
||
| 2161 | Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M), |
||
| 2162 | Datum::fromSRID(Datum::EPSG_EUROPEAN_TERRESTRIAL_REFERENCE_SYSTEM_1989_ENSEMBLE), |
||
| 2163 | $osgb36NationalGrid->getBoundingArea() |
||
| 2164 | ); |
||
| 2165 | |||
| 2166 | /** @var ProjectedPoint $projected */ |
||
| 2167 | $projected = $this->transverseMercator($etrs89NationalGrid, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000)); |
||
| 2168 | |||
| 2169 | assert($to->getHorizontal() instanceof Geographic2D); |
||
| 2170 | $horizontalPoint = self::create( |
||
| 2171 | $to->getHorizontal(), |
||
| 2172 | $this->latitude, |
||
| 2173 | $this->longitude, |
||
| 2174 | null, |
||
| 2175 | $this->getCoordinateEpoch() |
||
| 2176 | ); |
||
| 2177 | |||
| 2178 | $verticalPoint = VerticalPoint::create( |
||
| 2179 | $to->getVertical(), |
||
| 2180 | $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($projected)), |
||
| 2181 | $this->getCoordinateEpoch() |
||
| 2182 | ); |
||
| 2183 | |||
| 2184 | return CompoundPoint::create( |
||
| 2185 | $to, |
||
| 2186 | $horizontalPoint, |
||
| 2187 | $verticalPoint, |
||
| 2188 | $this->getCoordinateEpoch() |
||
| 2189 | ); |
||
| 2190 | } |
||
| 2191 | |||
| 2192 | /** |
||
| 2193 | * Geographic3D to GravityRelatedHeight (OSGM-GB). |
||
| 2194 | * Uses ETRS89 / National Grid as an intermediate coordinate system for bi-linear interpolation of gridded grid |
||
| 2195 | * coordinate differences. |
||
| 2196 | */ |
||
| 2197 | public function geographic3DToGravityHeightOSGM15( |
||
| 2198 | Vertical $to, |
||
| 2199 | OSTNOSGM15Grid $geoidHeightCorrectionModelFile |
||
| 2200 | ): VerticalPoint { |
||
| 2201 | assert($this->height instanceof Length); |
||
| 2202 | $osgb36NationalGrid = Projected::fromSRID(Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID); |
||
| 2203 | $etrs89NationalGrid = new Projected( |
||
| 2204 | 'ETRS89 / National Grid', |
||
| 2205 | Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M), |
||
| 2206 | Datum::fromSRID(Datum::EPSG_EUROPEAN_TERRESTRIAL_REFERENCE_SYSTEM_1989_ENSEMBLE), |
||
| 2207 | $osgb36NationalGrid->getBoundingArea() |
||
| 2208 | ); |
||
| 2209 | |||
| 2210 | $projected = $this->transverseMercator($etrs89NationalGrid, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000)); |
||
| 2211 | |||
| 2212 | return VerticalPoint::create( |
||
| 2213 | $to, |
||
| 2214 | $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($projected)), |
||
| 2215 | $this->getCoordinateEpoch() |
||
| 2216 | ); |
||
| 2217 | } |
||
| 2218 | |||
| 2219 | /** |
||
| 2220 | * Geog3D to Geog2D+GravityRelatedHeight. |
||
| 2221 | */ |
||
| 2222 | public function geographic3DTo2DPlusGravityHeightFromGrid( |
||
| 2223 | Compound $to, |
||
| 2224 | GeographicGeoidHeightGrid $geoidHeightCorrectionModelFile |
||
| 2225 | ): CompoundPoint { |
||
| 2226 | assert($this->height instanceof Length); |
||
| 2227 | assert($to->getHorizontal() instanceof Geographic); |
||
| 2228 | $horizontalPoint = self::create( |
||
| 2229 | $to->getHorizontal(), |
||
| 2230 | $this->latitude, |
||
| 2231 | $this->longitude, |
||
| 2232 | null, |
||
| 2233 | $this->getCoordinateEpoch() |
||
| 2234 | ); |
||
| 2235 | |||
| 2236 | $verticalPoint = VerticalPoint::create( |
||
| 2237 | $to->getVertical(), |
||
| 2238 | $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($this)), |
||
| 2239 | $this->getCoordinateEpoch() |
||
| 2240 | ); |
||
| 2241 | |||
| 2242 | return CompoundPoint::create( |
||
| 2243 | $to, |
||
| 2244 | $horizontalPoint, |
||
| 2245 | $verticalPoint, |
||
| 2246 | $this->getCoordinateEpoch() |
||
| 2247 | ); |
||
| 2248 | } |
||
| 2249 | |||
| 2250 | /** |
||
| 2251 | * Geographic3D to GravityRelatedHeight. |
||
| 2252 | */ |
||
| 2253 | public function geographic3DToGravityHeightFromGrid( |
||
| 2263 | ); |
||
| 2264 | } |
||
| 2265 | |||
| 2266 | /** |
||
| 2267 | * NADCON5. |
||
| 2268 | * @internal just a wrapper |
||
| 2269 | */ |
||
| 2270 | public function offsetsFromGridNADCON5( |
||
| 2271 | Geographic2D|Geographic3D $to, |
||
| 2272 | NADCON5Grid $latitudeDifferenceFile, |
||
| 2273 | NADCON5Grid $longitudeDifferenceFile, |
||
| 2274 | ?NADCON5Grid $ellipsoidalHeightDifferenceFile, |
||
| 2275 | bool $inReverse |
||
| 2276 | ): self { |
||
| 2277 | $aggregation = new NADCON5Grids($longitudeDifferenceFile, $latitudeDifferenceFile, $ellipsoidalHeightDifferenceFile); |
||
| 2278 | |||
| 2279 | return $this->offsetsFromGrid($to, $aggregation, $inReverse); |
||
| 2280 | } |
||
| 2281 | |||
| 2282 | /** |
||
| 2283 | * Geographic offsets from grid. |
||
| 2284 | */ |
||
| 2285 | public function offsetsFromGrid( |
||
| 2286 | Geographic2D|Geographic3D $to, |
||
| 2287 | GeographicGrid $offsetsFile, |
||
| 2288 | bool $inReverse |
||
| 2289 | ): self { |
||
| 2290 | if (!$inReverse) { |
||
| 2291 | return $offsetsFile->applyForwardAdjustment($this, $to); |
||
| 2292 | } |
||
| 2293 | |||
| 2294 | return $offsetsFile->applyReverseAdjustment($this, $to); |
||
| 2295 | } |
||
| 2296 | |||
| 2297 | public function localOrthographic( |
||
| 2298 | Projected $to, |
||
| 2299 | Angle $latitudeOfProjectionCentre, |
||
| 2300 | Angle $longitudeOfProjectionCentre, |
||
| 2301 | Angle $azimuthAtProjectionCentre, |
||
| 2302 | Scale $scaleFactorAtProjectionCentre, |
||
| 2303 | Length $eastingAtProjectionCentre, |
||
| 2304 | Length $northingAtProjectionCentre |
||
| 2305 | ): ProjectedPoint { |
||
| 2306 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
| 2307 | $latitude = $this->latitude->asRadians()->getValue(); |
||
| 2308 | $longitude = $this->longitude->asRadians()->getValue(); |
||
| 2309 | $latitudeCentre = $latitudeOfProjectionCentre->asRadians()->getValue(); |
||
| 2310 | $longitudeCentre = $longitudeOfProjectionCentre->asRadians()->getValue(); |
||
| 2311 | $azimuthCentre = $azimuthAtProjectionCentre->asRadians()->getValue(); |
||
| 2312 | $scaleFactorCentre = $scaleFactorAtProjectionCentre->asUnity()->getValue(); |
||
| 2313 | |||
| 2314 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
| 2315 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
| 2316 | $v = $a / sqrt(1 - $e2 * sin($latitude) ** 2); |
||
| 2317 | $vc = $a / sqrt(1 - $e2 * sin($latitudeCentre) ** 2); |
||
| 2318 | |||
| 2319 | $xp = $v * cos($latitude) * sin($longitude - $longitudeCentre); |
||
| 2320 | $yp = -sin($latitudeCentre) * ($v * cos($latitude) * cos($longitude - $longitudeCentre) - $vc * cos($latitudeCentre)) + cos($latitudeCentre) * ($v * (1 - $e2) * sin($latitude) - $vc * (1 - $e2) * sin($latitudeCentre)); |
||
| 2321 | |||
| 2322 | $easting = $eastingAtProjectionCentre->asMetres()->getValue() + $scaleFactorCentre * (cos($azimuthCentre) * $xp - sin($azimuthCentre) * $yp); |
||
| 2323 | $northing = $northingAtProjectionCentre->asMetres()->getValue() + $scaleFactorCentre * (sin($azimuthCentre) * $xp + cos($azimuthCentre) * $yp); |
||
| 2324 | |||
| 2325 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
| 2326 | } |
||
| 2327 | |||
| 2328 | public function asGeographicValue(): GeographicValue |
||
| 2329 | { |
||
| 2330 | return new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum()); |
||
| 2331 | } |
||
| 2332 | |||
| 2333 | public function asUTMPoint(): UTMPoint |
||
| 2359 | } |
||
| 2360 | } |
||
| 2361 |