Total Complexity | 117 |
Total Lines | 2285 |
Duplicated Lines | 0 % |
Changes | 0 |
Complex classes like GeographicPoint often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
While breaking up the class, it is a good idea to analyze how other classes use GeographicPoint, and based on these observations, apply Extract Interface, too.
1 | <?php |
||
74 | class GeographicPoint extends Point implements ConvertiblePoint |
||
75 | { |
||
76 | use AutoConversion; |
||
77 | |||
78 | /** |
||
79 | * Latitude. |
||
80 | */ |
||
81 | protected Angle $latitude; |
||
82 | |||
83 | /** |
||
84 | * Longitude. |
||
85 | */ |
||
86 | protected Angle $longitude; |
||
87 | |||
88 | /** |
||
89 | * Height above ellipsoid (N.B. *not* height above ground, sea-level or anything else tangible). |
||
90 | */ |
||
91 | protected ?Length $height; |
||
92 | |||
93 | /** |
||
94 | * Coordinate reference system. |
||
95 | */ |
||
96 | protected Geographic2D|Geographic3D $crs; |
||
97 | |||
98 | /** |
||
99 | * Coordinate epoch (date for which the specified coordinates represented this point). |
||
100 | */ |
||
101 | protected ?DateTimeImmutable $epoch; |
||
102 | |||
103 | protected function __construct(Geographic2D|Geographic3D $crs, Angle $latitude, Angle $longitude, ?Length $height, ?DateTimeInterface $epoch) |
||
104 | { |
||
105 | if ($crs instanceof Geographic2D && $height !== null) { |
||
106 | throw new InvalidCoordinateReferenceSystemException('A 2D geographic point must not include a height'); |
||
107 | } |
||
108 | |||
109 | if ($crs instanceof Geographic3D && $height === null) { |
||
110 | throw new InvalidCoordinateReferenceSystemException('A 3D geographic point must include a height, none given'); |
||
111 | } |
||
112 | |||
113 | $this->crs = $crs; |
||
114 | |||
115 | $latitude = $this->normaliseLatitude($latitude); |
||
116 | $longitude = $this->normaliseLongitude($longitude); |
||
117 | |||
118 | $this->latitude = $latitude::convert($latitude, $this->crs->getCoordinateSystem()->getAxisByName(Axis::GEODETIC_LATITUDE)->getUnitOfMeasureId()); |
||
119 | $this->longitude = $longitude::convert($longitude, $this->crs->getCoordinateSystem()->getAxisByName(Axis::GEODETIC_LONGITUDE)->getUnitOfMeasureId()); |
||
120 | |||
121 | if ($height) { |
||
122 | $this->height = $height::convert($height, $this->crs->getCoordinateSystem()->getAxisByName(Axis::ELLIPSOIDAL_HEIGHT)->getUnitOfMeasureId()); |
||
123 | } else { |
||
124 | $this->height = null; |
||
125 | } |
||
126 | |||
127 | if ($epoch instanceof DateTime) { |
||
128 | $epoch = DateTimeImmutable::createFromMutable($epoch); |
||
129 | } |
||
130 | $this->epoch = $epoch; |
||
131 | } |
||
132 | |||
133 | /** |
||
134 | * @param ?Length $height refer to CRS for preferred unit of measure, but any length unit accepted |
||
135 | * @param Angle $latitude refer to CRS for preferred unit of measure, but any angle unit accepted |
||
136 | * @param Angle $longitude refer to CRS for preferred unit of measure, but any angle unit accepted |
||
137 | */ |
||
138 | public static function create(Geographic2D|Geographic3D $crs, Angle $latitude, Angle $longitude, ?Length $height = null, ?DateTimeInterface $epoch = null): self |
||
139 | { |
||
140 | return new self($crs, $latitude, $longitude, $height, $epoch); |
||
141 | } |
||
142 | |||
143 | public function getLatitude(): Angle |
||
144 | { |
||
145 | return $this->latitude; |
||
146 | } |
||
147 | |||
148 | public function getLongitude(): Angle |
||
149 | { |
||
150 | return $this->longitude; |
||
151 | } |
||
152 | |||
153 | public function getHeight(): ?Length |
||
154 | { |
||
155 | return $this->height; |
||
156 | } |
||
157 | |||
158 | public function getCRS(): Geographic2D|Geographic3D |
||
159 | { |
||
160 | return $this->crs; |
||
161 | } |
||
162 | |||
163 | public function getCoordinateEpoch(): ?DateTimeImmutable |
||
164 | { |
||
165 | return $this->epoch; |
||
166 | } |
||
167 | |||
168 | protected function normaliseLatitude(Angle $latitude): Angle |
||
169 | { |
||
170 | if ($latitude->asDegrees()->getValue() > 90) { |
||
171 | return new Degree(90); |
||
172 | } |
||
173 | if ($latitude->asDegrees()->getValue() < -90) { |
||
174 | return new Degree(-90); |
||
175 | } |
||
176 | |||
177 | return $latitude; |
||
178 | } |
||
179 | |||
180 | protected function normaliseLongitude(Angle $longitude): Angle |
||
181 | { |
||
182 | while ($longitude->asDegrees()->getValue() > 180) { |
||
183 | $longitude = $longitude->subtract(new Degree(360)); |
||
184 | } |
||
185 | while ($longitude->asDegrees()->getValue() <= -180) { |
||
186 | $longitude = $longitude->add(new Degree(360)); |
||
187 | } |
||
188 | |||
189 | return $longitude; |
||
190 | } |
||
191 | |||
192 | /** |
||
193 | * Calculate surface distance between two points. |
||
194 | */ |
||
195 | public function calculateDistance(Point $to): Length |
||
196 | { |
||
197 | try { |
||
198 | if ($to instanceof ConvertiblePoint) { |
||
199 | $to = $to->convert($this->crs); |
||
200 | } |
||
201 | } finally { |
||
202 | if ($to->getCRS()->getSRID() !== $this->crs->getSRID()) { |
||
203 | throw new InvalidCoordinateReferenceSystemException('Can only calculate distances between two points in the same CRS'); |
||
204 | } |
||
205 | |||
206 | /** @var GeographicPoint $to */ |
||
207 | $geodesic = new Geodesic($this->getCRS()->getDatum()->getEllipsoid()); |
||
208 | |||
209 | return $geodesic->distance($this->asGeographicValue(), $to->asGeographicValue()); |
||
210 | } |
||
211 | } |
||
212 | |||
213 | public function __toString(): string |
||
214 | { |
||
215 | $values = []; |
||
216 | foreach ($this->getCRS()->getCoordinateSystem()->getAxes() as $axis) { |
||
217 | if ($axis->getName() === Axis::GEODETIC_LATITUDE) { |
||
218 | $values[] = $this->latitude; |
||
219 | } elseif ($axis->getName() === Axis::GEODETIC_LONGITUDE) { |
||
220 | $values[] = $this->longitude; |
||
221 | } elseif ($axis->getName() === Axis::ELLIPSOIDAL_HEIGHT) { |
||
222 | $values[] = $this->height; |
||
223 | } else { |
||
224 | throw new UnknownAxisException(); // @codeCoverageIgnore |
||
225 | } |
||
226 | } |
||
227 | |||
228 | return '(' . implode(', ', $values) . ')'; |
||
229 | } |
||
230 | |||
231 | /** |
||
232 | * Geographic/geocentric conversions |
||
233 | * In applications it is often concatenated with the 3- 7- or 10-parameter transformations 9603, 9606, 9607 or |
||
234 | * 9636 to form a geographic to geographic transformation. |
||
235 | */ |
||
236 | public function geographicGeocentric( |
||
237 | Geocentric $to |
||
238 | ): GeocentricPoint { |
||
239 | $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum()); |
||
240 | $asGeocentric = $geographicValue->asGeocentricValue(); |
||
241 | |||
242 | return GeocentricPoint::create($to, $asGeocentric->getX(), $asGeocentric->getY(), $asGeocentric->getZ(), $this->epoch); |
||
243 | } |
||
244 | |||
245 | /** |
||
246 | * Coordinate Frame rotation (geog2D/geog3D domain) |
||
247 | * Note the analogy with the Position Vector tfm (codes 9606/1037) but beware of the differences! The Position Vector |
||
248 | * convention is used by IAG and recommended by ISO 19111. See methods 1032/1038/9607 for similar tfms operating |
||
249 | * between other CRS types. |
||
250 | */ |
||
251 | public function coordinateFrameRotation( |
||
252 | Geographic2D|Geographic3D $to, |
||
253 | Length $xAxisTranslation, |
||
254 | Length $yAxisTranslation, |
||
255 | Length $zAxisTranslation, |
||
256 | Angle $xAxisRotation, |
||
257 | Angle $yAxisRotation, |
||
258 | Angle $zAxisRotation, |
||
259 | Scale $scaleDifference |
||
260 | ): self { |
||
261 | return $this->coordinateFrameMolodenskyBadekas( |
||
262 | $to, |
||
263 | $xAxisTranslation, |
||
264 | $yAxisTranslation, |
||
265 | $zAxisTranslation, |
||
266 | $xAxisRotation, |
||
267 | $yAxisRotation, |
||
268 | $zAxisRotation, |
||
269 | $scaleDifference, |
||
270 | new Metre(0), |
||
271 | new Metre(0), |
||
272 | new Metre(0) |
||
273 | ); |
||
274 | } |
||
275 | |||
276 | /** |
||
277 | * Molodensky-Badekas (CF geog2D/geog3D domain) |
||
278 | * See method codes 1034 and 1039/9636 for this operation in other coordinate domains and method code 1062/1063 for the |
||
279 | * opposite rotation convention in geographic 2D domain. |
||
280 | */ |
||
281 | public function coordinateFrameMolodenskyBadekas( |
||
282 | Geographic2D|Geographic3D $to, |
||
283 | Length $xAxisTranslation, |
||
284 | Length $yAxisTranslation, |
||
285 | Length $zAxisTranslation, |
||
286 | Angle $xAxisRotation, |
||
287 | Angle $yAxisRotation, |
||
288 | Angle $zAxisRotation, |
||
289 | Scale $scaleDifference, |
||
290 | Length $ordinate1OfEvaluationPoint, |
||
291 | Length $ordinate2OfEvaluationPoint, |
||
292 | Length $ordinate3OfEvaluationPoint |
||
293 | ): self { |
||
294 | $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum()); |
||
295 | $asGeocentric = $geographicValue->asGeocentricValue(); |
||
296 | |||
297 | $xs = $asGeocentric->getX()->asMetres()->getValue(); |
||
298 | $ys = $asGeocentric->getY()->asMetres()->getValue(); |
||
299 | $zs = $asGeocentric->getZ()->asMetres()->getValue(); |
||
300 | $tx = $xAxisTranslation->asMetres()->getValue(); |
||
301 | $ty = $yAxisTranslation->asMetres()->getValue(); |
||
302 | $tz = $zAxisTranslation->asMetres()->getValue(); |
||
303 | $rx = $xAxisRotation->asRadians()->getValue(); |
||
304 | $ry = $yAxisRotation->asRadians()->getValue(); |
||
305 | $rz = $zAxisRotation->asRadians()->getValue(); |
||
306 | $M = 1 + $scaleDifference->asUnity()->getValue(); |
||
307 | $xp = $ordinate1OfEvaluationPoint->asMetres()->getValue(); |
||
308 | $yp = $ordinate2OfEvaluationPoint->asMetres()->getValue(); |
||
309 | $zp = $ordinate3OfEvaluationPoint->asMetres()->getValue(); |
||
310 | |||
311 | $xt = $M * ((($xs - $xp) * 1) + (($ys - $yp) * $rz) + (($zs - $zp) * -$ry)) + $tx + $xp; |
||
312 | $yt = $M * ((($xs - $xp) * -$rz) + (($ys - $yp) * 1) + (($zs - $zp) * $rx)) + $ty + $yp; |
||
313 | $zt = $M * ((($xs - $xp) * $ry) + (($ys - $yp) * -$rx) + (($zs - $zp) * 1)) + $tz + $zp; |
||
314 | $newGeocentric = new GeocentricValue(new Metre($xt), new Metre($yt), new Metre($zt), $to->getDatum()); |
||
315 | $newGeographic = $newGeocentric->asGeographicValue(); |
||
316 | |||
317 | return static::create($to, $newGeographic->getLatitude(), $newGeographic->getLongitude(), $to instanceof Geographic3D ? $newGeographic->getHeight() : null, $this->epoch); |
||
318 | } |
||
319 | |||
320 | /** |
||
321 | * Position Vector transformation (geog2D/geog3D domain) |
||
322 | * Note the analogy with the Coordinate Frame rotation (code 9607/1038) but beware of the differences! The Position |
||
323 | * Vector convention is used by IAG and recommended by ISO 19111. See methods 1033/1037/9606 for similar tfms |
||
324 | * operating between other CRS types. |
||
325 | */ |
||
326 | public function positionVectorTransformation( |
||
327 | Geographic2D|Geographic3D $to, |
||
328 | Length $xAxisTranslation, |
||
329 | Length $yAxisTranslation, |
||
330 | Length $zAxisTranslation, |
||
331 | Angle $xAxisRotation, |
||
332 | Angle $yAxisRotation, |
||
333 | Angle $zAxisRotation, |
||
334 | Scale $scaleDifference |
||
335 | ): self { |
||
336 | return $this->positionVectorMolodenskyBadekas( |
||
337 | $to, |
||
338 | $xAxisTranslation, |
||
339 | $yAxisTranslation, |
||
340 | $zAxisTranslation, |
||
341 | $xAxisRotation, |
||
342 | $yAxisRotation, |
||
343 | $zAxisRotation, |
||
344 | $scaleDifference, |
||
345 | new Metre(0), |
||
346 | new Metre(0), |
||
347 | new Metre(0) |
||
348 | ); |
||
349 | } |
||
350 | |||
351 | /** |
||
352 | * Molodensky-Badekas (PV geog2D/geog3D domain) |
||
353 | * See method codes 1061 and 1062/1063 for this operation in other coordinate domains and method code 1039/9636 for opposite |
||
354 | * rotation in geographic 2D/3D domain. |
||
355 | */ |
||
356 | public function positionVectorMolodenskyBadekas( |
||
357 | Geographic2D|Geographic3D $to, |
||
358 | Length $xAxisTranslation, |
||
359 | Length $yAxisTranslation, |
||
360 | Length $zAxisTranslation, |
||
361 | Angle $xAxisRotation, |
||
362 | Angle $yAxisRotation, |
||
363 | Angle $zAxisRotation, |
||
364 | Scale $scaleDifference, |
||
365 | Length $ordinate1OfEvaluationPoint, |
||
366 | Length $ordinate2OfEvaluationPoint, |
||
367 | Length $ordinate3OfEvaluationPoint |
||
368 | ): self { |
||
369 | $geographicValue = new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum()); |
||
370 | $asGeocentric = $geographicValue->asGeocentricValue(); |
||
371 | |||
372 | $xs = $asGeocentric->getX()->asMetres()->getValue(); |
||
373 | $ys = $asGeocentric->getY()->asMetres()->getValue(); |
||
374 | $zs = $asGeocentric->getZ()->asMetres()->getValue(); |
||
375 | $tx = $xAxisTranslation->asMetres()->getValue(); |
||
376 | $ty = $yAxisTranslation->asMetres()->getValue(); |
||
377 | $tz = $zAxisTranslation->asMetres()->getValue(); |
||
378 | $rx = $xAxisRotation->asRadians()->getValue(); |
||
379 | $ry = $yAxisRotation->asRadians()->getValue(); |
||
380 | $rz = $zAxisRotation->asRadians()->getValue(); |
||
381 | $M = 1 + $scaleDifference->asUnity()->getValue(); |
||
382 | $xp = $ordinate1OfEvaluationPoint->asMetres()->getValue(); |
||
383 | $yp = $ordinate2OfEvaluationPoint->asMetres()->getValue(); |
||
384 | $zp = $ordinate3OfEvaluationPoint->asMetres()->getValue(); |
||
385 | |||
386 | $xt = $M * ((($xs - $xp) * 1) + (($ys - $yp) * -$rz) + (($zs - $zp) * $ry)) + $tx + $xp; |
||
387 | $yt = $M * ((($xs - $xp) * $rz) + (($ys - $yp) * 1) + (($zs - $zp) * -$rx)) + $ty + $yp; |
||
388 | $zt = $M * ((($xs - $xp) * -$ry) + (($ys - $yp) * $rx) + (($zs - $zp) * 1)) + $tz + $zp; |
||
389 | $newGeocentric = new GeocentricValue(new Metre($xt), new Metre($yt), new Metre($zt), $to->getDatum()); |
||
390 | $newGeographic = $newGeocentric->asGeographicValue(); |
||
391 | |||
392 | return static::create($to, $newGeographic->getLatitude(), $newGeographic->getLongitude(), $to instanceof Geographic3D ? $newGeographic->getHeight() : null, $this->epoch); |
||
393 | } |
||
394 | |||
395 | /** |
||
396 | * Geocentric translations |
||
397 | * This method allows calculation of geocentric coords in the target system by adding the parameter values to the |
||
398 | * corresponding coordinates of the point in the source system. See methods 1031 and 1035 for similar tfms |
||
399 | * operating between other CRSs types. |
||
400 | */ |
||
401 | public function geocentricTranslation( |
||
402 | Geographic2D|Geographic3D $to, |
||
403 | Length $xAxisTranslation, |
||
404 | Length $yAxisTranslation, |
||
405 | Length $zAxisTranslation |
||
406 | ): self { |
||
407 | return $this->positionVectorTransformation( |
||
408 | $to, |
||
409 | $xAxisTranslation, |
||
410 | $yAxisTranslation, |
||
411 | $zAxisTranslation, |
||
412 | new Radian(0), |
||
413 | new Radian(0), |
||
414 | new Radian(0), |
||
415 | new Unity(0) |
||
416 | ); |
||
417 | } |
||
418 | |||
419 | /** |
||
420 | * Abridged Molodensky |
||
421 | * This transformation is a truncated Taylor series expansion of a transformation between two geographic coordinate |
||
422 | * systems, modelled as a set of geocentric translations. |
||
423 | */ |
||
424 | public function abridgedMolodensky( |
||
425 | Geographic2D|Geographic3D $to, |
||
426 | Length $xAxisTranslation, |
||
427 | Length $yAxisTranslation, |
||
428 | Length $zAxisTranslation, |
||
429 | Length $differenceInSemiMajorAxis, |
||
430 | Scale $differenceInFlattening |
||
431 | ): self { |
||
432 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
433 | $latitude = $this->latitude->asRadians()->getValue(); |
||
434 | $longitude = $this->longitude->asRadians()->getValue(); |
||
435 | $fromHeight = $this->height ? $this->height->asMetres()->getValue() : 0; |
||
436 | $tx = $xAxisTranslation->asMetres()->getValue(); |
||
437 | $ty = $yAxisTranslation->asMetres()->getValue(); |
||
438 | $tz = $zAxisTranslation->asMetres()->getValue(); |
||
439 | $da = $differenceInSemiMajorAxis->asMetres()->getValue(); |
||
440 | $df = $differenceInFlattening->asUnity()->getValue(); |
||
441 | |||
442 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
443 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
444 | |||
445 | $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2); |
||
446 | $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2)); |
||
447 | |||
448 | $f = $ellipsoid->getFlattening(); |
||
449 | |||
450 | $dLatitude = ((-$tx * sin($latitude) * cos($longitude)) - ($ty * sin($latitude) * sin($longitude)) + ($tz * cos($latitude)) + ((($a * $df) + ($ellipsoid->getFlattening() * $da)) * sin(2 * $latitude))) / ($rho * sin((new ArcSecond(1))->asRadians()->getValue())); |
||
451 | $dLongitude = (-$tx * sin($longitude) + $ty * cos($longitude)) / (($nu * cos($latitude)) * sin((new ArcSecond(1))->asRadians()->getValue())); |
||
452 | $dHeight = ($tx * cos($latitude) * cos($longitude)) + ($ty * cos($latitude) * sin($longitude)) + ($tz * sin($latitude)) + (($a * $df + $f * $da) * (sin($latitude) ** 2)) - $da; |
||
453 | |||
454 | $toLatitude = $latitude + (new ArcSecond($dLatitude))->asRadians()->getValue(); |
||
455 | $toLongitude = $longitude + (new ArcSecond($dLongitude))->asRadians()->getValue(); |
||
456 | $toHeight = $fromHeight + $dHeight; |
||
457 | |||
458 | return static::create($to, new Radian($toLatitude), new Radian($toLongitude), $to instanceof Geographic3D ? new Metre($toHeight) : null, $this->epoch); |
||
459 | } |
||
460 | |||
461 | /** |
||
462 | * Molodensky |
||
463 | * See Abridged Molodensky. |
||
464 | */ |
||
465 | public function molodensky( |
||
466 | Geographic2D|Geographic3D $to, |
||
467 | Length $xAxisTranslation, |
||
468 | Length $yAxisTranslation, |
||
469 | Length $zAxisTranslation, |
||
470 | Length $differenceInSemiMajorAxis, |
||
471 | Scale $differenceInFlattening |
||
472 | ): self { |
||
473 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
474 | $latitude = $this->latitude->asRadians()->getValue(); |
||
475 | $longitude = $this->longitude->asRadians()->getValue(); |
||
476 | $fromHeight = $this->height ? $this->height->asMetres()->getValue() : 0; |
||
477 | $tx = $xAxisTranslation->asMetres()->getValue(); |
||
478 | $ty = $yAxisTranslation->asMetres()->getValue(); |
||
479 | $tz = $zAxisTranslation->asMetres()->getValue(); |
||
480 | $da = $differenceInSemiMajorAxis->asMetres()->getValue(); |
||
481 | $df = $differenceInFlattening->asUnity()->getValue(); |
||
482 | |||
483 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
484 | $b = $ellipsoid->getSemiMinorAxis()->asMetres()->getValue(); |
||
485 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
486 | |||
487 | $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2); |
||
488 | $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2)); |
||
489 | |||
490 | $f = $ellipsoid->getFlattening(); |
||
|
|||
491 | |||
492 | $dLatitude = ((-$tx * sin($latitude) * cos($longitude)) - ($ty * sin($latitude) * sin($longitude)) + ($tz * cos($latitude)) + ($da * ($nu * $e2 * sin($latitude) * cos($latitude)) / $a + $df * ($rho * ($a / $b) + $nu * ($b / $a)) * sin($latitude) * cos($latitude))) / (($rho + $fromHeight) * sin((new ArcSecond(1))->asRadians()->getValue())); |
||
493 | $dLongitude = (-$tx * sin($longitude) + $ty * cos($longitude)) / ((($nu + $fromHeight) * cos($latitude)) * sin((new ArcSecond(1))->asRadians()->getValue())); |
||
494 | $dHeight = ($tx * cos($latitude) * cos($longitude)) + ($ty * cos($latitude) * sin($longitude)) + ($tz * sin($latitude)) - $da * $a / $nu + $df * $b / $a * $nu * sin($latitude) ** 2; |
||
495 | |||
496 | $toLatitude = $latitude + (new ArcSecond($dLatitude))->asRadians()->getValue(); |
||
497 | $toLongitude = $longitude + (new ArcSecond($dLongitude))->asRadians()->getValue(); |
||
498 | $toHeight = $fromHeight + $dHeight; |
||
499 | |||
500 | return static::create($to, new Radian($toLatitude), new Radian($toLongitude), $to instanceof Geographic3D ? new Metre($toHeight) : null, $this->epoch); |
||
501 | } |
||
502 | |||
503 | /** |
||
504 | * Albers Equal Area. |
||
505 | */ |
||
506 | public function albersEqualArea( |
||
507 | Projected $to, |
||
508 | Angle $latitudeOfFalseOrigin, |
||
509 | Angle $longitudeOfFalseOrigin, |
||
510 | Angle $latitudeOf1stStandardParallel, |
||
511 | Angle $latitudeOf2ndStandardParallel, |
||
512 | Length $eastingAtFalseOrigin, |
||
513 | Length $northingAtFalseOrigin |
||
514 | ): ProjectedPoint { |
||
515 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
516 | $latitude = $this->latitude->asRadians()->getValue(); |
||
517 | $longitude = $this->longitude->asRadians()->getValue(); |
||
518 | $phiOrigin = $latitudeOfFalseOrigin->asRadians()->getValue(); |
||
519 | $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
||
520 | $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue(); |
||
521 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
522 | $e = $ellipsoid->getEccentricity(); |
||
523 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
524 | |||
525 | $centralMeridianFirstParallel = cos($phi1) / sqrt(1 - ($e2 * sin($phi1) ** 2)); |
||
526 | $centralMeridianSecondParallel = cos($phi2) / sqrt(1 - ($e2 * sin($phi2) ** 2)); |
||
527 | |||
528 | $alpha = (1 - $e2) * (sin($latitude) / (1 - $e2 * sin($latitude) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude)))); |
||
529 | $alphaOrigin = (1 - $e2) * (sin($phiOrigin) / (1 - $e2 * sin($phiOrigin) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phiOrigin)) / (1 + $e * sin($phiOrigin)))); |
||
530 | $alphaFirstParallel = (1 - $e2) * (sin($phi1) / (1 - $e2 * sin($phi1) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi1)) / (1 + $e * sin($phi1)))); |
||
531 | $alphaSecondParallel = (1 - $e2) * (sin($phi2) / (1 - $e2 * sin($phi2) ** 2) - (1 / 2 / $e) * log((1 - $e * sin($phi2)) / (1 + $e * sin($phi2)))); |
||
532 | |||
533 | $n = ($centralMeridianFirstParallel ** 2 - $centralMeridianSecondParallel ** 2) / ($alphaSecondParallel - $alphaFirstParallel); |
||
534 | $C = $centralMeridianFirstParallel ** 2 + $n * $alphaFirstParallel; |
||
535 | $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue(); |
||
536 | $rho = $a * sqrt($C - $n * $alpha) / $n; |
||
537 | $rhoOrigin = ($a * sqrt($C - $n * $alphaOrigin)) / $n; |
||
538 | |||
539 | $easting = $eastingAtFalseOrigin->asMetres()->getValue() + ($rho * sin($theta)); |
||
540 | $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rhoOrigin - ($rho * cos($theta)); |
||
541 | |||
542 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
543 | } |
||
544 | |||
545 | /** |
||
546 | * American Polyconic. |
||
547 | */ |
||
548 | public function americanPolyconic( |
||
549 | Projected $to, |
||
550 | Angle $latitudeOfNaturalOrigin, |
||
551 | Angle $longitudeOfNaturalOrigin, |
||
552 | Length $falseEasting, |
||
553 | Length $falseNorthing |
||
554 | ): ProjectedPoint { |
||
555 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
556 | $latitude = $this->latitude->asRadians()->getValue(); |
||
557 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
558 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
559 | $e = $ellipsoid->getEccentricity(); |
||
560 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
561 | $e4 = $e ** 4; |
||
562 | $e6 = $e ** 6; |
||
563 | |||
564 | $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude)); |
||
565 | $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
||
566 | |||
567 | if ($latitude === 0.0) { |
||
568 | $easting = $falseEasting->asMetres()->getValue() + $a * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue(); |
||
569 | $northing = $falseNorthing->asMetres()->getValue() - $MO; |
||
570 | } else { |
||
571 | $L = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * sin($latitude); |
||
572 | $nu = $a / sqrt(1 - $e2 * sin($latitude) ** 2); |
||
573 | |||
574 | $easting = $falseEasting->asMetres()->getValue() + $nu * 1 / tan($latitude) * sin($L); |
||
575 | $northing = $falseNorthing->asMetres()->getValue() + $M - $MO + $nu * 1 / tan($latitude) * (1 - cos($L)); |
||
576 | } |
||
577 | |||
578 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
579 | } |
||
580 | |||
581 | /** |
||
582 | * Bonne. |
||
583 | */ |
||
584 | public function bonne( |
||
585 | Projected $to, |
||
586 | Angle $latitudeOfNaturalOrigin, |
||
587 | Angle $longitudeOfNaturalOrigin, |
||
588 | Length $falseEasting, |
||
589 | Length $falseNorthing |
||
590 | ): ProjectedPoint { |
||
591 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
592 | $latitude = $this->latitude->asRadians()->getValue(); |
||
593 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
594 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
595 | $e = $ellipsoid->getEccentricity(); |
||
596 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
597 | $e4 = $e ** 4; |
||
598 | $e6 = $e ** 6; |
||
599 | |||
600 | $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2); |
||
601 | $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2); |
||
602 | |||
603 | $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude)); |
||
604 | $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
||
605 | |||
606 | $rho = $a * $mO / sin($latitudeOrigin) + $MO - $M; |
||
607 | $tau = $a * $m * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() / $rho; |
||
608 | |||
609 | $easting = $falseEasting->asMetres()->getValue() + ($rho * sin($tau)); |
||
610 | $northing = $falseNorthing->asMetres()->getValue() + ($a * $mO / sin($latitudeOrigin) - $rho * cos($tau)); |
||
611 | |||
612 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
613 | } |
||
614 | |||
615 | /** |
||
616 | * Bonne South Orientated. |
||
617 | */ |
||
618 | public function bonneSouthOrientated( |
||
619 | Projected $to, |
||
620 | Angle $latitudeOfNaturalOrigin, |
||
621 | Angle $longitudeOfNaturalOrigin, |
||
622 | Length $falseEasting, |
||
623 | Length $falseNorthing |
||
624 | ): ProjectedPoint { |
||
625 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
626 | $latitude = $this->latitude->asRadians()->getValue(); |
||
627 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
628 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
629 | $e = $ellipsoid->getEccentricity(); |
||
630 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
631 | $e4 = $e ** 4; |
||
632 | $e6 = $e ** 6; |
||
633 | |||
634 | $m = cos($latitude) / sqrt(1 - $e2 * sin($latitude) ** 2); |
||
635 | $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2); |
||
636 | |||
637 | $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude)); |
||
638 | $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
||
639 | |||
640 | $rho = $a * $mO / sin($latitudeOrigin) + $MO - $M; |
||
641 | $tau = $a * $m * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() / $rho; |
||
642 | |||
643 | $westing = $falseEasting->asMetres()->getValue() - ($rho * sin($tau)); |
||
644 | $southing = $falseNorthing->asMetres()->getValue() - ($a * $mO / sin($latitudeOrigin) - $rho * cos($tau)); |
||
645 | |||
646 | return ProjectedPoint::create($to, new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $this->epoch); |
||
647 | } |
||
648 | |||
649 | /** |
||
650 | * Cassini-Soldner. |
||
651 | */ |
||
652 | public function cassiniSoldner( |
||
653 | Projected $to, |
||
654 | Angle $latitudeOfNaturalOrigin, |
||
655 | Angle $longitudeOfNaturalOrigin, |
||
656 | Length $falseEasting, |
||
657 | Length $falseNorthing |
||
658 | ): ProjectedPoint { |
||
659 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
660 | $latitude = $this->latitude->asRadians()->getValue(); |
||
661 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
662 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
663 | $e = $ellipsoid->getEccentricity(); |
||
664 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
665 | $e4 = $e ** 4; |
||
666 | $e6 = $e ** 6; |
||
667 | |||
668 | $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude)); |
||
669 | $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
||
670 | |||
671 | $A = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($latitude); |
||
672 | $T = tan($latitude) ** 2; |
||
673 | $C = $e2 * cos($latitude) ** 2 / (1 - $e2); |
||
674 | $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2)); |
||
675 | $X = $M - $MO + $nu * tan($latitude) * ($A ** 2 / 2 + (5 - $T + 6 * $C) * $A ** 4 / 24); |
||
676 | |||
677 | $easting = $falseEasting->asMetres()->getValue() + $nu * ($A - $T * $A ** 3 / 6 - (8 - $T + 8 * $C) * $T * $A ** 5 / 120); |
||
678 | $northing = $falseNorthing->asMetres()->getValue() + $X; |
||
679 | |||
680 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
681 | } |
||
682 | |||
683 | /** |
||
684 | * Hyperbolic Cassini-Soldner. |
||
685 | */ |
||
686 | public function hyperbolicCassiniSoldner( |
||
687 | Projected $to, |
||
688 | Angle $latitudeOfNaturalOrigin, |
||
689 | Angle $longitudeOfNaturalOrigin, |
||
690 | Length $falseEasting, |
||
691 | Length $falseNorthing |
||
692 | ): ProjectedPoint { |
||
693 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
694 | $latitude = $this->latitude->asRadians()->getValue(); |
||
695 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
696 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
697 | $e = $ellipsoid->getEccentricity(); |
||
698 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
699 | $e4 = $e ** 4; |
||
700 | $e6 = $e ** 6; |
||
701 | |||
702 | $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude)); |
||
703 | $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
||
704 | |||
705 | $A = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($latitude); |
||
706 | $T = tan($latitude) ** 2; |
||
707 | $C = $e2 * cos($latitude) ** 2 / (1 - $e2); |
||
708 | $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2)); |
||
709 | $rho = $a * (1 - $e2) / (1 - $e2 * sin($latitude) ** 2) ** (3 / 2); |
||
710 | $X = $M - $MO + $nu * tan($latitude) * ($A ** 2 / 2 + (5 - $T + 6 * $C) * $A ** 4 / 24); |
||
711 | |||
712 | $easting = $falseEasting->asMetres()->getValue() + $nu * ($A - $T * $A ** 3 / 6 - (8 - $T + 8 * $C) * $T * $A ** 5 / 120); |
||
713 | $northing = $falseNorthing->asMetres()->getValue() + $X - ($X ** 3 / (6 * $rho * $nu)); |
||
714 | |||
715 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
716 | } |
||
717 | |||
718 | /** |
||
719 | * Colombia Urban. |
||
720 | */ |
||
721 | public function columbiaUrban( |
||
722 | Projected $to, |
||
723 | Angle $latitudeOfNaturalOrigin, |
||
724 | Angle $longitudeOfNaturalOrigin, |
||
725 | Length $falseEasting, |
||
726 | Length $falseNorthing, |
||
727 | Length $projectionPlaneOriginHeight |
||
728 | ): ProjectedPoint { |
||
729 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
730 | $latitude = $this->latitude->asRadians()->getValue(); |
||
731 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
732 | $heightOrigin = $projectionPlaneOriginHeight->asMetres()->getValue(); |
||
733 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
734 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
735 | |||
736 | $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2); |
||
737 | $rhoMid = $a * (1 - $e2) / (1 - $e2 * sin(($latitude + $latitudeOrigin) / 2) ** 2) ** (3 / 2); |
||
738 | |||
739 | $nu = $a / sqrt(1 - $e2 * (sin($latitude) ** 2)); |
||
740 | $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2)); |
||
741 | |||
742 | $A = 1 + $heightOrigin / $nuOrigin; |
||
743 | $B = tan($latitudeOrigin) / (2 * $rhoOrigin * $nuOrigin); |
||
744 | $G = 1 + $heightOrigin / $rhoMid; |
||
745 | |||
746 | $easting = $falseEasting->asMetres()->getValue() + $A * $nu * cos($latitude) * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue(); |
||
747 | $northing = $falseNorthing->asMetres()->getValue() + $G * $rhoOrigin * (($latitude - $latitudeOrigin) + ($B * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() ** 2 * $nu ** 2 * cos($latitude) ** 2)); |
||
748 | |||
749 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
750 | } |
||
751 | |||
752 | /** |
||
753 | * Equal Earth. |
||
754 | */ |
||
755 | public function equalEarth( |
||
756 | Projected $to, |
||
757 | Angle $longitudeOfNaturalOrigin, |
||
758 | Length $falseEasting, |
||
759 | Length $falseNorthing |
||
760 | ): ProjectedPoint { |
||
761 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
762 | $latitude = $this->latitude->asRadians()->getValue(); |
||
763 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
764 | $e = $ellipsoid->getEccentricity(); |
||
765 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
766 | |||
767 | $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - (1 / (2 * $e) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))))); |
||
768 | $qP = (1 - $e2) * ((1 / (1 - $e2)) - (1 / (2 * $e) * log((1 - $e) / (1 + $e)))); |
||
769 | $beta = self::asin($q / $qP); |
||
770 | $theta = self::asin(sin($beta) * sqrt(3) / 2); |
||
771 | $Rq = $a * sqrt($qP / 2); |
||
772 | |||
773 | $easting = $falseEasting->asMetres()->getValue() + ($Rq * 2 * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($theta)) / (sqrt(3) * (1.340264 - 0.243318 * $theta ** 2 + $theta ** 6 * (0.006251 + 0.034164 * $theta ** 2))); |
||
774 | $northing = $falseNorthing->asMetres()->getValue() + $Rq * $theta * (1.340264 - 0.081106 * $theta ** 2 + $theta ** 6 * (0.000893 + 0.003796 * $theta ** 2)); |
||
775 | |||
776 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
777 | } |
||
778 | |||
779 | /** |
||
780 | * Equidistant Cylindrical |
||
781 | * See method code 1029 for spherical development. See also Pseudo Plate Carree, method code 9825. |
||
782 | */ |
||
783 | public function equidistantCylindrical( |
||
784 | Projected $to, |
||
785 | Angle $latitudeOf1stStandardParallel, |
||
786 | Angle $longitudeOfNaturalOrigin, |
||
787 | Length $falseEasting, |
||
788 | Length $falseNorthing |
||
789 | ): ProjectedPoint { |
||
790 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
791 | $latitude = $this->latitude->asRadians()->getValue(); |
||
792 | $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
||
793 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
794 | $e = $ellipsoid->getEccentricity(); |
||
795 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
796 | $e4 = $e ** 4; |
||
797 | $e6 = $e ** 6; |
||
798 | $e8 = $e ** 8; |
||
799 | $e10 = $e ** 10; |
||
800 | $e12 = $e ** 12; |
||
801 | $e14 = $e ** 14; |
||
802 | |||
803 | $nu1 = $a / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2); |
||
804 | |||
805 | $M = $a * ( |
||
806 | (1 - 1 / 4 * $e2 - 3 / 64 * $e4 - 5 / 256 * $e6 - 175 / 16384 * $e8 - 441 / 65536 * $e10 - 4851 / 1048576 * $e12 - 14157 / 4194304 * $e14) * $latitude + |
||
807 | (-3 / 8 * $e2 - 3 / 32 * $e4 - 45 / 1024 * $e6 - 105 / 4096 * $e8 - 2205 / 131072 * $e10 - 6237 / 524288 * $e12 - 297297 / 33554432 * $e14) * sin(2 * $latitude) + |
||
808 | (15 / 256 * $e4 + 45 / 1024 * $e ** 6 + 525 / 16384 * $e ** 8 + 1575 / 65536 * $e10 + 155925 / 8388608 * $e12 + 495495 / 33554432 * $e14) * sin(4 * $latitude) + |
||
809 | (-35 / 3072 * $e6 - 175 / 12288 * $e8 - 3675 / 262144 * $e10 - 13475 / 1048576 * $e12 - 385385 / 33554432 * $e14) * sin(6 * $latitude) + |
||
810 | (315 / 131072 * $e8 + 2205 / 524288 * $e10 + 43659 / 8388608 * $e12 + 189189 / 33554432 * $e14) * sin(8 * $latitude) + |
||
811 | (-693 / 1310720 * $e10 - 6537 / 5242880 * $e12 - 297297 / 167772160 * $e14) * sin(10 * $latitude) + |
||
812 | (1001 / 8388608 * $e12 + 11011 / 33554432 * $e14) * sin(12 * $latitude) + |
||
813 | (-6435 / 234881024 * $e ** 14) * sin(14 * $latitude) |
||
814 | ); |
||
815 | |||
816 | $easting = $falseEasting->asMetres()->getValue() + $nu1 * cos($latitudeFirstParallel) * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue(); |
||
817 | $northing = $falseNorthing->asMetres()->getValue() + $M; |
||
818 | |||
819 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
820 | } |
||
821 | |||
822 | /** |
||
823 | * Guam Projection |
||
824 | * Simplified form of Oblique Azimuthal Equidistant projection method. |
||
825 | */ |
||
826 | public function guamProjection( |
||
827 | Projected $to, |
||
828 | Angle $latitudeOfNaturalOrigin, |
||
829 | Angle $longitudeOfNaturalOrigin, |
||
830 | Length $falseEasting, |
||
831 | Length $falseNorthing |
||
832 | ): ProjectedPoint { |
||
833 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
834 | $latitude = $this->latitude->asRadians()->getValue(); |
||
835 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
836 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
837 | $e = $ellipsoid->getEccentricity(); |
||
838 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
839 | $e4 = $e ** 4; |
||
840 | $e6 = $e ** 6; |
||
841 | |||
842 | $M = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitude - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitude) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitude) - (35 * $e6 / 3072) * sin(6 * $latitude)); |
||
843 | $MO = $a * ((1 - $e2 / 4 - 3 * $e4 / 64 - 5 * $e6 / 256) * $latitudeOrigin - (3 * $e2 / 8 + 3 * $e4 / 32 + 45 * $e6 / 1024) * sin(2 * $latitudeOrigin) + (15 * $e4 / 256 + 45 * $e6 / 1024) * sin(4 * $latitudeOrigin) - (35 * $e6 / 3072) * sin(6 * $latitudeOrigin)); |
||
844 | $x = ($a * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() * cos($latitude)) / sqrt(1 - $e2 * sin($latitude) ** 2); |
||
845 | |||
846 | $easting = $falseEasting->asMetres()->getValue() + $x; |
||
847 | $northing = $falseNorthing->asMetres()->getValue() + $M - $MO + ($x ** 2 * tan($latitude) * sqrt(1 - $e2 * sin($latitude) ** 2) / (2 * $a)); |
||
848 | |||
849 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
850 | } |
||
851 | |||
852 | /** |
||
853 | * Krovak. |
||
854 | */ |
||
855 | public function krovak( |
||
856 | Projected $to, |
||
857 | Angle $latitudeOfProjectionCentre, |
||
858 | Angle $longitudeOfOrigin, |
||
859 | Angle $coLatitudeOfConeAxis, |
||
860 | Angle $latitudeOfPseudoStandardParallel, |
||
861 | Scale $scaleFactorOnPseudoStandardParallel, |
||
862 | Length $falseEasting, |
||
863 | Length $falseNorthing |
||
864 | ): ProjectedPoint { |
||
865 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
866 | $longitudeOffset = $to->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue() - $this->getCRS()->getDatum()->getPrimeMeridian()->getGreenwichLongitude()->asRadians()->getValue(); |
||
867 | $latitude = $this->latitude->asRadians()->getValue(); |
||
868 | $longitude = $this->longitude->asRadians()->getValue() - $longitudeOffset; |
||
869 | $latitudeC = $latitudeOfProjectionCentre->asRadians()->getValue(); |
||
870 | $longitudeO = $longitudeOfOrigin->asRadians()->getValue(); |
||
871 | $alphaC = $coLatitudeOfConeAxis->asRadians()->getValue(); |
||
872 | $latitudeP = $latitudeOfPseudoStandardParallel->asRadians()->getValue(); |
||
873 | $kP = $scaleFactorOnPseudoStandardParallel->asUnity()->getValue(); |
||
874 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
875 | $e = $ellipsoid->getEccentricity(); |
||
876 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
877 | |||
878 | $A = $a * sqrt(1 - $e2) / (1 - $e2 * sin($latitudeC) ** 2); |
||
879 | $B = sqrt(1 + $e2 * cos($latitudeC) ** 4 / (1 - $e2)); |
||
880 | $upsilonO = self::asin(sin($latitudeC) / $B); |
||
881 | $tO = tan(M_PI / 4 + $upsilonO / 2) * ((1 + $e * sin($latitudeC)) / (1 - $e * sin($latitudeC))) ** ($e * $B / 2) / (tan(M_PI / 4 + $latitudeC / 2) ** $B); |
||
882 | $n = sin($latitudeP); |
||
883 | $rO = $kP * $A / tan($latitudeP); |
||
884 | |||
885 | $U = 2 * (atan($tO * tan($latitude / 2 + M_PI / 4) ** $B / ((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e * $B / 2)) - M_PI / 4); |
||
886 | $V = $B * ($longitudeO - $longitude); |
||
887 | $T = self::asin(cos($alphaC) * sin($U) + sin($alphaC) * cos($U) * cos($V)); |
||
888 | $D = atan2(cos($U) * sin($V) / cos($T), (cos($alphaC) * sin($T) - sin($U)) / (sin($alphaC) * cos($T))); |
||
889 | $theta = $n * $D; |
||
890 | $r = $rO * tan(M_PI / 4 + $latitudeP / 2) ** $n / tan($T / 2 + M_PI / 4) ** $n; |
||
891 | $X = $r * cos($theta); |
||
892 | $Y = $r * sin($theta); |
||
893 | |||
894 | $westing = $Y + $falseEasting->asMetres()->getValue(); |
||
895 | $southing = $X + $falseNorthing->asMetres()->getValue(); |
||
896 | |||
897 | return ProjectedPoint::create($to, new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $this->epoch); |
||
898 | } |
||
899 | |||
900 | /** |
||
901 | * Krovak Modified |
||
902 | * Incorporates a polynomial transformation which is defined to be exact and for practical purposes is considered |
||
903 | * to be a map projection. |
||
904 | */ |
||
905 | public function krovakModified( |
||
906 | Projected $to, |
||
907 | Angle $latitudeOfProjectionCentre, |
||
908 | Angle $longitudeOfOrigin, |
||
909 | Angle $coLatitudeOfConeAxis, |
||
910 | Angle $latitudeOfPseudoStandardParallel, |
||
911 | Scale $scaleFactorOnPseudoStandardParallel, |
||
912 | Length $falseEasting, |
||
913 | Length $falseNorthing, |
||
914 | Length $ordinate1OfEvaluationPoint, |
||
915 | Length $ordinate2OfEvaluationPoint, |
||
916 | Coefficient $C1, |
||
917 | Coefficient $C2, |
||
918 | Coefficient $C3, |
||
919 | Coefficient $C4, |
||
920 | Coefficient $C5, |
||
921 | Coefficient $C6, |
||
922 | Coefficient $C7, |
||
923 | Coefficient $C8, |
||
924 | Coefficient $C9, |
||
925 | Coefficient $C10 |
||
926 | ): ProjectedPoint { |
||
927 | $asKrovak = $this->krovak($to, $latitudeOfProjectionCentre, $longitudeOfOrigin, $coLatitudeOfConeAxis, $latitudeOfPseudoStandardParallel, $scaleFactorOnPseudoStandardParallel, new Metre(0), new Metre(0)); |
||
928 | |||
929 | $westing = $asKrovak->getWesting()->asMetres()->getValue(); |
||
930 | $southing = $asKrovak->getSouthing()->asMetres()->getValue(); |
||
931 | $c1 = $C1->asUnity()->getValue(); |
||
932 | $c2 = $C2->asUnity()->getValue(); |
||
933 | $c3 = $C3->asUnity()->getValue(); |
||
934 | $c4 = $C4->asUnity()->getValue(); |
||
935 | $c5 = $C5->asUnity()->getValue(); |
||
936 | $c6 = $C6->asUnity()->getValue(); |
||
937 | $c7 = $C7->asUnity()->getValue(); |
||
938 | $c8 = $C8->asUnity()->getValue(); |
||
939 | $c9 = $C9->asUnity()->getValue(); |
||
940 | $c10 = $C10->asUnity()->getValue(); |
||
941 | |||
942 | $Xr = $southing - $ordinate1OfEvaluationPoint->asMetres()->getValue(); |
||
943 | $Yr = $westing - $ordinate2OfEvaluationPoint->asMetres()->getValue(); |
||
944 | |||
945 | $dX = $c1 + $c3 * $Xr - $c4 * $Yr - 2 * $c6 * $Xr * $Yr + $c5 * ($Xr ** 2 - $Yr ** 2) + $c7 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) - $c8 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) + 4 * $c9 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c10 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2); |
||
946 | $dY = $c2 + $c3 * $Yr + $c4 * $Xr + 2 * $c5 * $Xr * $Yr + $c6 * ($Xr ** 2 - $Yr ** 2) + $c8 * $Xr * ($Xr ** 2 - 3 * $Yr ** 2) + $c7 * $Yr * (3 * $Xr ** 2 - $Yr ** 2) - 4 * $c10 * $Xr * $Yr * ($Xr ** 2 - $Yr ** 2) + $c9 * ($Xr ** 4 + $Yr ** 4 - 6 * $Xr ** 2 * $Yr ** 2); |
||
947 | |||
948 | $westing += $falseEasting->asMetres()->getValue() - $dY; |
||
949 | $southing += $falseNorthing->asMetres()->getValue() - $dX; |
||
950 | |||
951 | return ProjectedPoint::create($to, new Metre(-$westing), new Metre(-$southing), new Metre($westing), new Metre($southing), $this->epoch); |
||
952 | } |
||
953 | |||
954 | /** |
||
955 | * Lambert Azimuthal Equal Area |
||
956 | * This is the ellipsoidal form of the projection. |
||
957 | */ |
||
958 | public function lambertAzimuthalEqualArea( |
||
959 | Projected $to, |
||
960 | Angle $latitudeOfNaturalOrigin, |
||
961 | Angle $longitudeOfNaturalOrigin, |
||
962 | Length $falseEasting, |
||
963 | Length $falseNorthing |
||
964 | ): ProjectedPoint { |
||
965 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
966 | $latitude = $this->latitude->asRadians()->getValue(); |
||
967 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
968 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
969 | $e = $ellipsoid->getEccentricity(); |
||
970 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
971 | |||
972 | $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))))); |
||
973 | $qO = (1 - $e2) * ((sin($latitudeOrigin) / (1 - $e2 * sin($latitudeOrigin) ** 2)) - ((1 / (2 * $e)) * log((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))))); |
||
974 | $qP = (1 - $e2) * ((1 / (1 - $e2)) - ((1 / (2 * $e)) * log((1 - $e) / (1 + $e)))); |
||
975 | $beta = self::asin($q / $qP); |
||
976 | $betaO = self::asin($qO / $qP); |
||
977 | $Rq = $a * sqrt($qP / 2); |
||
978 | $B = $Rq * sqrt(2 / (1 + sin($betaO) * sin($beta) + (cos($betaO) * cos($beta) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())))); |
||
979 | $D = $a * (cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2)) / ($Rq * cos($betaO)); |
||
980 | |||
981 | $easting = $falseEasting->asMetres()->getValue() + (($B * $D) * (cos($beta) * sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()))); |
||
982 | $northing = $falseNorthing->asMetres()->getValue() + ($B / $D) * ((cos($betaO) * sin($beta)) - (sin($betaO) * cos($beta) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()))); |
||
983 | |||
984 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
985 | } |
||
986 | |||
987 | /** |
||
988 | * Lambert Azimuthal Equal Area (Spherical) |
||
989 | * This is the spherical form of the projection. See coordinate operation method Lambert Azimuthal Equal Area |
||
990 | * (code 9820) for ellipsoidal form. Differences of several tens of metres result from comparison of the two |
||
991 | * methods. |
||
992 | */ |
||
993 | public function lambertAzimuthalEqualAreaSpherical( |
||
994 | Projected $to, |
||
995 | Angle $latitudeOfNaturalOrigin, |
||
996 | Angle $longitudeOfNaturalOrigin, |
||
997 | Length $falseEasting, |
||
998 | Length $falseNorthing |
||
999 | ): ProjectedPoint { |
||
1000 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
1001 | $latitude = $this->latitude->asRadians()->getValue(); |
||
1002 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
1003 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
1004 | |||
1005 | $k = sqrt(2 / (1 + sin($latitudeOrigin) * sin($latitude) + cos($latitudeOrigin) * cos($latitude) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()))); |
||
1006 | |||
1007 | $easting = $falseEasting->asMetres()->getValue() + ($a * $k * cos($latitude) * sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())); |
||
1008 | $northing = $falseNorthing->asMetres()->getValue() + ($a * $k * (cos($latitudeOrigin) * sin($latitude) - sin($latitudeOrigin) * cos($latitude) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()))); |
||
1009 | |||
1010 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
1011 | } |
||
1012 | |||
1013 | /** |
||
1014 | * Lambert Conic Conformal (1SP). |
||
1015 | */ |
||
1016 | public function lambertConicConformal1SP( |
||
1017 | Projected $to, |
||
1018 | Angle $latitudeOfNaturalOrigin, |
||
1019 | Angle $longitudeOfNaturalOrigin, |
||
1020 | Scale $scaleFactorAtNaturalOrigin, |
||
1021 | Length $falseEasting, |
||
1022 | Length $falseNorthing |
||
1023 | ): ProjectedPoint { |
||
1024 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
1025 | $latitude = $this->latitude->asRadians()->getValue(); |
||
1026 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
1027 | $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
||
1028 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
1029 | $e = $ellipsoid->getEccentricity(); |
||
1030 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
1031 | |||
1032 | $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2); |
||
1033 | $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2); |
||
1034 | $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2); |
||
1035 | $n = sin($latitudeOrigin); |
||
1036 | $F = $mO / ($n * $tO ** $n); |
||
1037 | $rO = $a * $F * $tO ** $n * $kO; |
||
1038 | $r = $a * $F * $t ** $n * $kO; |
||
1039 | $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue(); |
||
1040 | |||
1041 | $easting = $falseEasting->asMetres()->getValue() + $r * sin($theta); |
||
1042 | $northing = $falseNorthing->asMetres()->getValue() + $rO - $r * cos($theta); |
||
1043 | |||
1044 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
1045 | } |
||
1046 | |||
1047 | /** |
||
1048 | * Lambert Conic Conformal (1SP) Variant B. |
||
1049 | */ |
||
1050 | public function lambertConicConformal1SPVariantB( |
||
1051 | Projected $to, |
||
1052 | Angle $latitudeOfNaturalOrigin, |
||
1053 | Scale $scaleFactorAtNaturalOrigin, |
||
1054 | Angle $latitudeOfFalseOrigin, |
||
1055 | Angle $longitudeOfFalseOrigin, |
||
1056 | Length $eastingAtFalseOrigin, |
||
1057 | Length $northingAtFalseOrigin |
||
1058 | ): ProjectedPoint { |
||
1059 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
1060 | $latitude = $this->latitude->asRadians()->getValue(); |
||
1061 | $latitudeNaturalOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
1062 | $latitudeFalseOrigin = $latitudeOfFalseOrigin->asRadians()->getValue(); |
||
1063 | $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
||
1064 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
1065 | $e = $ellipsoid->getEccentricity(); |
||
1066 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
1067 | |||
1068 | $mO = cos($latitudeNaturalOrigin) / sqrt(1 - $e2 * sin($latitudeNaturalOrigin) ** 2); |
||
1069 | $tO = tan(M_PI / 4 - $latitudeNaturalOrigin / 2) / ((1 - $e * sin($latitudeNaturalOrigin)) / (1 + $e * sin($latitudeNaturalOrigin))) ** ($e / 2); |
||
1070 | $tF = tan(M_PI / 4 - $latitudeFalseOrigin / 2) / ((1 - $e * sin($latitudeFalseOrigin)) / (1 + $e * sin($latitudeFalseOrigin))) ** ($e / 2); |
||
1071 | $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2); |
||
1072 | $n = sin($latitudeNaturalOrigin); |
||
1073 | $F = $mO / ($n * $tO ** $n); |
||
1074 | $rF = $a * $F * $tF ** $n * $kO; |
||
1075 | $r = $a * $F * $t ** $n * $kO; |
||
1076 | $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue(); |
||
1077 | |||
1078 | $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta); |
||
1079 | $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta); |
||
1080 | |||
1081 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
1082 | } |
||
1083 | |||
1084 | /** |
||
1085 | * Lambert Conic Conformal (2SP Belgium) |
||
1086 | * In 2000 this modification was replaced through use of the regular Lambert Conic Conformal (2SP) method [9802] |
||
1087 | * with appropriately modified parameter values. |
||
1088 | */ |
||
1089 | public function lambertConicConformal2SPBelgium( |
||
1090 | Projected $to, |
||
1091 | Angle $latitudeOfFalseOrigin, |
||
1092 | Angle $longitudeOfFalseOrigin, |
||
1093 | Angle $latitudeOf1stStandardParallel, |
||
1094 | Angle $latitudeOf2ndStandardParallel, |
||
1095 | Length $eastingAtFalseOrigin, |
||
1096 | Length $northingAtFalseOrigin |
||
1097 | ): ProjectedPoint { |
||
1098 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
1099 | $latitude = $this->latitude->asRadians()->getValue(); |
||
1100 | $phiF = $latitudeOfFalseOrigin->asRadians()->getValue(); |
||
1101 | $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
||
1102 | $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue(); |
||
1103 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
1104 | $e = $ellipsoid->getEccentricity(); |
||
1105 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
1106 | |||
1107 | $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2); |
||
1108 | $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2); |
||
1109 | $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2); |
||
1110 | $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2); |
||
1111 | $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2); |
||
1112 | $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2); |
||
1113 | $n = (log($m1) - log($m2)) / (log($t1) - log($t2)); |
||
1114 | $F = $m1 / ($n * $t1 ** $n); |
||
1115 | $r = $a * $F * $t ** $n; |
||
1116 | $rF = $a * $F * $tF ** $n; |
||
1117 | if (is_nan($rF)) { |
||
1118 | $rF = 0; |
||
1119 | } |
||
1120 | $theta = ($n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue()) - (new ArcSecond(29.2985))->asRadians()->getValue(); |
||
1121 | |||
1122 | $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta); |
||
1123 | $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta); |
||
1124 | |||
1125 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
1126 | } |
||
1127 | |||
1128 | /** |
||
1129 | * Lambert Conic Conformal (2SP Michigan). |
||
1130 | */ |
||
1131 | public function lambertConicConformal2SPMichigan( |
||
1132 | Projected $to, |
||
1133 | Angle $latitudeOfFalseOrigin, |
||
1134 | Angle $longitudeOfFalseOrigin, |
||
1135 | Angle $latitudeOf1stStandardParallel, |
||
1136 | Angle $latitudeOf2ndStandardParallel, |
||
1137 | Length $eastingAtFalseOrigin, |
||
1138 | Length $northingAtFalseOrigin, |
||
1139 | Scale $ellipsoidScalingFactor |
||
1140 | ): ProjectedPoint { |
||
1141 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
1142 | $latitude = $this->latitude->asRadians()->getValue(); |
||
1143 | $phiF = $latitudeOfFalseOrigin->asRadians()->getValue(); |
||
1144 | $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
||
1145 | $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue(); |
||
1146 | $K = $ellipsoidScalingFactor->asUnity()->getValue(); |
||
1147 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
1148 | $e = $ellipsoid->getEccentricity(); |
||
1149 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
1150 | |||
1151 | $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2); |
||
1152 | $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2); |
||
1153 | $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2); |
||
1154 | $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2); |
||
1155 | $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2); |
||
1156 | $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2); |
||
1157 | $n = (log($m1) - log($m2)) / (log($t1) - log($t2)); |
||
1158 | $F = $m1 / ($n * $t1 ** $n); |
||
1159 | $r = $a * $K * $F * $t ** $n; |
||
1160 | $rF = $a * $K * $F * $tF ** $n; |
||
1161 | $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue(); |
||
1162 | |||
1163 | $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta); |
||
1164 | $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta); |
||
1165 | |||
1166 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
1167 | } |
||
1168 | |||
1169 | /** |
||
1170 | * Lambert Conic Conformal (2SP). |
||
1171 | */ |
||
1172 | public function lambertConicConformal2SP( |
||
1173 | Projected $to, |
||
1174 | Angle $latitudeOfFalseOrigin, |
||
1175 | Angle $longitudeOfFalseOrigin, |
||
1176 | Angle $latitudeOf1stStandardParallel, |
||
1177 | Angle $latitudeOf2ndStandardParallel, |
||
1178 | Length $eastingAtFalseOrigin, |
||
1179 | Length $northingAtFalseOrigin |
||
1180 | ): ProjectedPoint { |
||
1181 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
1182 | $latitude = $this->latitude->asRadians()->getValue(); |
||
1183 | $phiF = $latitudeOfFalseOrigin->asRadians()->getValue(); |
||
1184 | $phi1 = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
||
1185 | $phi2 = $latitudeOf2ndStandardParallel->asRadians()->getValue(); |
||
1186 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
1187 | $e = $ellipsoid->getEccentricity(); |
||
1188 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
1189 | |||
1190 | $m1 = cos($phi1) / sqrt(1 - $e2 * sin($phi1) ** 2); |
||
1191 | $m2 = cos($phi2) / sqrt(1 - $e2 * sin($phi2) ** 2); |
||
1192 | $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2); |
||
1193 | $t1 = tan(M_PI / 4 - $phi1 / 2) / ((1 - $e * sin($phi1)) / (1 + $e * sin($phi1))) ** ($e / 2); |
||
1194 | $t2 = tan(M_PI / 4 - $phi2 / 2) / ((1 - $e * sin($phi2)) / (1 + $e * sin($phi2))) ** ($e / 2); |
||
1195 | $tF = tan(M_PI / 4 - $phiF / 2) / ((1 - $e * sin($phiF)) / (1 + $e * sin($phiF))) ** ($e / 2); |
||
1196 | $n = (log($m1) - log($m2)) / (log($t1) - log($t2)); |
||
1197 | $F = $m1 / ($n * $t1 ** $n); |
||
1198 | $r = $a * $F * $t ** $n; |
||
1199 | $rF = $a * $F * $tF ** $n; |
||
1200 | $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfFalseOrigin))->asRadians()->getValue(); |
||
1201 | |||
1202 | $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $r * sin($theta); |
||
1203 | $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rF - $r * cos($theta); |
||
1204 | |||
1205 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
1206 | } |
||
1207 | |||
1208 | /** |
||
1209 | * Lambert Conic Conformal (West Orientated). |
||
1210 | */ |
||
1211 | public function lambertConicConformalWestOrientated( |
||
1212 | Projected $to, |
||
1213 | Angle $latitudeOfNaturalOrigin, |
||
1214 | Angle $longitudeOfNaturalOrigin, |
||
1215 | Scale $scaleFactorAtNaturalOrigin, |
||
1216 | Length $falseEasting, |
||
1217 | Length $falseNorthing |
||
1218 | ): ProjectedPoint { |
||
1219 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
1220 | $latitude = $this->latitude->asRadians()->getValue(); |
||
1221 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
1222 | $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
||
1223 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
1224 | $e = $ellipsoid->getEccentricity(); |
||
1225 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
1226 | |||
1227 | $mO = cos($latitudeOrigin) / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2); |
||
1228 | $tO = tan(M_PI / 4 - $latitudeOrigin / 2) / ((1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin))) ** ($e / 2); |
||
1229 | $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2); |
||
1230 | $n = sin($latitudeOrigin); |
||
1231 | $F = $mO / ($n * $tO ** $n); |
||
1232 | $rO = $a * $F * $tO ** $n ** $kO; |
||
1233 | $r = $a * $F * $t ** $n ** $kO; |
||
1234 | $theta = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue(); |
||
1235 | |||
1236 | $westing = $falseEasting->asMetres()->getValue() - $r * sin($theta); |
||
1237 | $northing = $falseNorthing->asMetres()->getValue() + $rO - $r * cos($theta); |
||
1238 | |||
1239 | return ProjectedPoint::create($to, new Metre(-$westing), new Metre($northing), new Metre($westing), new Metre(-$northing), $this->epoch); |
||
1240 | } |
||
1241 | |||
1242 | /** |
||
1243 | * Lambert Conic Near-Conformal |
||
1244 | * The Lambert Near-Conformal projection is derived from the Lambert Conformal Conic projection by truncating the |
||
1245 | * series expansion of the projection formulae. |
||
1246 | */ |
||
1247 | public function lambertConicNearConformal( |
||
1284 | } |
||
1285 | |||
1286 | /** |
||
1287 | * Lambert Cylindrical Equal Area |
||
1288 | * This is the ellipsoidal form of the projection. |
||
1289 | */ |
||
1290 | public function lambertCylindricalEqualArea( |
||
1291 | Projected $to, |
||
1292 | Angle $latitudeOf1stStandardParallel, |
||
1293 | Angle $longitudeOfNaturalOrigin, |
||
1294 | Length $falseEasting, |
||
1295 | Length $falseNorthing |
||
1296 | ): ProjectedPoint { |
||
1297 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
1298 | $latitude = $this->latitude->asRadians()->getValue(); |
||
1299 | $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
||
1300 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
1301 | $e = $ellipsoid->getEccentricity(); |
||
1302 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
1303 | |||
1304 | $k = cos($latitudeFirstParallel) / sqrt(1 - $e2 * sin($latitudeFirstParallel) ** 2); |
||
1305 | $q = (1 - $e2) * ((sin($latitude) / (1 - $e2 * sin($latitude) ** 2)) - (1 / (2 * $e)) * log((1 - $e * sin($latitude)) / (1 + $e * sin($latitude)))); |
||
1306 | |||
1307 | $x = $a * $k * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue(); |
||
1308 | $y = $a * $q / (2 * $k); |
||
1309 | |||
1310 | $easting = $falseEasting->asMetres()->getValue() + $x; |
||
1311 | $northing = $falseNorthing->asMetres()->getValue() + $y; |
||
1312 | |||
1313 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
1314 | } |
||
1315 | |||
1316 | /** |
||
1317 | * Lambert Cylindrical Equal Area |
||
1318 | * This is the spherical form of the projection. |
||
1319 | */ |
||
1320 | public function lambertCylindricalEqualAreaSpherical( |
||
1321 | Projected $to, |
||
1322 | Angle $latitudeOf1stStandardParallel, |
||
1323 | Angle $longitudeOfNaturalOrigin, |
||
1324 | Length $falseEasting, |
||
1325 | Length $falseNorthing |
||
1326 | ): ProjectedPoint { |
||
1327 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
1328 | $latitude = $this->latitude->asRadians()->getValue(); |
||
1329 | $latitudeFirstParallel = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
||
1330 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
1331 | |||
1332 | $x = $a * cos($latitudeFirstParallel) * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue(); |
||
1333 | $y = $a * sin($latitude) / cos($latitudeFirstParallel); |
||
1334 | |||
1335 | $easting = $falseEasting->asMetres()->getValue() + $x; |
||
1336 | $northing = $falseNorthing->asMetres()->getValue() + $y; |
||
1337 | |||
1338 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
1339 | } |
||
1340 | |||
1341 | /** |
||
1342 | * Modified Azimuthal Equidistant |
||
1343 | * Modified form of Oblique Azimuthal Equidistant projection method developed for Polynesian islands. For the |
||
1344 | * distances over which these projections are used (under 800km) this modification introduces no significant error. |
||
1345 | */ |
||
1346 | public function modifiedAzimuthalEquidistant( |
||
1347 | Projected $to, |
||
1348 | Angle $latitudeOfNaturalOrigin, |
||
1349 | Angle $longitudeOfNaturalOrigin, |
||
1350 | Length $falseEasting, |
||
1351 | Length $falseNorthing |
||
1352 | ): ProjectedPoint { |
||
1353 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
1354 | $latitude = $this->latitude->asRadians()->getValue(); |
||
1355 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
1356 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
1357 | $e = $ellipsoid->getEccentricity(); |
||
1358 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
1359 | |||
1360 | $nuO = $a / sqrt(1 - $e2 * sin($latitudeOrigin) ** 2); |
||
1361 | $nu = $a / sqrt(1 - $e2 * sin($latitude) ** 2); |
||
1362 | $psi = atan((1 - $e2) * tan($latitude) + ($e2 * $nuO * sin($latitudeOrigin)) / ($nu * cos($latitude))); |
||
1363 | $alpha = atan2(sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()), cos($latitudeOrigin) * tan($psi) - sin($latitudeOrigin) * cos($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())); |
||
1364 | $G = $e * sin($latitudeOrigin) / sqrt(1 - $e2); |
||
1365 | $H = $e * cos($latitudeOrigin) * cos($alpha) / sqrt(1 - $e2); |
||
1366 | |||
1367 | if (sin($alpha) === 0.0) { |
||
1368 | $s = self::asin(cos($latitudeOrigin) * sin($psi) - sin($latitudeOrigin) * cos($alpha)) * cos($alpha) / abs(cos($alpha)); |
||
1369 | } else { |
||
1370 | $s = self::asin(sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue()) * cos($psi) / sin($alpha)); |
||
1371 | } |
||
1372 | |||
1373 | $c = $nuO * $s * ((1 - $s ** 2 * $H ** 2 * (1 - $H ** 2) / 6) + (($s ** 3 / 8) * $G * $H * (1 - 2 * $H ** 2)) + ($s ** 4 / 120) * ($H ** 2 * (4 - 7 * $H ** 2) - 3 * $G ** 2 * (1 - 7 * $H ** 2)) - (($s ** 5 / 48) * $G * $H)); |
||
1374 | |||
1375 | $easting = $falseEasting->asMetres()->getValue() + $c * sin($alpha); |
||
1376 | $northing = $falseNorthing->asMetres()->getValue() + $c * cos($alpha); |
||
1377 | |||
1378 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
1379 | } |
||
1380 | |||
1381 | /** |
||
1382 | * Oblique Stereographic |
||
1383 | * This is not the same as the projection method of the same name in USGS Professional Paper no. 1395, "Map |
||
1384 | * Projections - A Working Manual" by John P. Snyder. |
||
1385 | */ |
||
1386 | public function obliqueStereographic( |
||
1387 | Projected $to, |
||
1388 | Angle $latitudeOfNaturalOrigin, |
||
1389 | Angle $longitudeOfNaturalOrigin, |
||
1390 | Scale $scaleFactorAtNaturalOrigin, |
||
1391 | Length $falseEasting, |
||
1392 | Length $falseNorthing |
||
1393 | ): ProjectedPoint { |
||
1394 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
1395 | $latitude = $this->latitude->asRadians()->getValue(); |
||
1396 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
1397 | $longitudeOrigin = $longitudeOfNaturalOrigin->asRadians()->getValue(); |
||
1398 | $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
||
1399 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
1400 | $e = $ellipsoid->getEccentricity(); |
||
1401 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
1402 | |||
1403 | $rhoOrigin = $a * (1 - $e2) / (1 - $e2 * sin($latitudeOrigin) ** 2) ** (3 / 2); |
||
1404 | $nuOrigin = $a / sqrt(1 - $e2 * (sin($latitudeOrigin) ** 2)); |
||
1405 | $R = sqrt($rhoOrigin * $nuOrigin); |
||
1406 | |||
1407 | $n = sqrt(1 + ($e2 * cos($latitudeOrigin) ** 4 / (1 - $e2))); |
||
1408 | $S1 = (1 + sin($latitudeOrigin)) / (1 - sin($latitudeOrigin)); |
||
1409 | $S2 = (1 - $e * sin($latitudeOrigin)) / (1 + $e * sin($latitudeOrigin)); |
||
1410 | $w1 = ($S1 * ($S2 ** $e)) ** $n; |
||
1411 | $c = (($n + sin($latitudeOrigin)) * (1 - ($w1 - 1) / ($w1 + 1))) / (($n - sin($latitudeOrigin)) * (1 + ($w1 - 1) / ($w1 + 1))); |
||
1412 | $w2 = $c * $w1; |
||
1413 | $chiOrigin = self::asin(($w2 - 1) / ($w2 + 1)); |
||
1414 | |||
1415 | $lambda = $n * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue() + $longitudeOrigin; |
||
1416 | |||
1417 | $Sa = (1 + sin($latitude)) / (1 - sin($latitude)); |
||
1418 | $Sb = (1 - $e * sin($latitude)) / (1 + $e * sin($latitude)); |
||
1419 | $w = $c * ($Sa * ($Sb ** $e)) ** $n; |
||
1420 | $chi = self::asin(($w - 1) / ($w + 1)); |
||
1421 | |||
1422 | $B = (1 + sin($chi) * sin($chiOrigin) + cos($chi) * cos($chiOrigin) * cos($lambda - $longitudeOrigin)); |
||
1423 | |||
1424 | $easting = $falseEasting->asMetres()->getValue() + 2 * $R * $kO * cos($chi) * sin($lambda - $longitudeOrigin) / $B; |
||
1425 | $northing = $falseNorthing->asMetres()->getValue() + 2 * $R * $kO * (sin($chi) * cos($chiOrigin) - cos($chi) * sin($chiOrigin) * cos($lambda - $longitudeOrigin)) / $B; |
||
1426 | |||
1427 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
1428 | } |
||
1429 | |||
1430 | /** |
||
1431 | * Polar Stereographic (variant A) |
||
1432 | * Latitude of natural origin must be either 90 degrees or -90 degrees (or equivalent in alternative angle unit). |
||
1433 | */ |
||
1434 | public function polarStereographicVariantA( |
||
1435 | Projected $to, |
||
1436 | Angle $latitudeOfNaturalOrigin, |
||
1437 | Angle $longitudeOfNaturalOrigin, |
||
1438 | Scale $scaleFactorAtNaturalOrigin, |
||
1439 | Length $falseEasting, |
||
1440 | Length $falseNorthing |
||
1441 | ): ProjectedPoint { |
||
1442 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
1443 | $latitude = $this->latitude->asRadians()->getValue(); |
||
1444 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
1445 | $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
||
1446 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
1447 | $e = $ellipsoid->getEccentricity(); |
||
1448 | |||
1449 | if ($latitudeOrigin < 0) { |
||
1450 | $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2)); |
||
1451 | } else { |
||
1452 | $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2)); |
||
1453 | } |
||
1454 | $rho = 2 * $a * $kO * $t / sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)); |
||
1455 | |||
1456 | $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue(); |
||
1457 | $dE = $rho * sin($theta); |
||
1458 | $dN = $rho * cos($theta); |
||
1459 | |||
1460 | $easting = $falseEasting->asMetres()->getValue() + $dE; |
||
1461 | if ($latitudeOrigin < 0) { |
||
1462 | $northing = $falseNorthing->asMetres()->getValue() + $dN; |
||
1463 | } else { |
||
1464 | $northing = $falseNorthing->asMetres()->getValue() - $dN; |
||
1465 | } |
||
1466 | |||
1467 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
1468 | } |
||
1469 | |||
1470 | /** |
||
1471 | * Polar Stereographic (variant B). |
||
1472 | */ |
||
1473 | public function polarStereographicVariantB( |
||
1474 | Projected $to, |
||
1475 | Angle $latitudeOfStandardParallel, |
||
1476 | Angle $longitudeOfOrigin, |
||
1477 | Length $falseEasting, |
||
1478 | Length $falseNorthing |
||
1479 | ): ProjectedPoint { |
||
1480 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
1481 | $latitude = $this->latitude->asRadians()->getValue(); |
||
1482 | $firstStandardParallel = $latitudeOfStandardParallel->asRadians()->getValue(); |
||
1483 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
1484 | $e = $ellipsoid->getEccentricity(); |
||
1485 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
1486 | |||
1487 | if ($firstStandardParallel < 0) { |
||
1488 | $tF = tan(M_PI / 4 + $firstStandardParallel / 2) / (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2)); |
||
1489 | $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2)); |
||
1490 | } else { |
||
1491 | $tF = tan(M_PI / 4 - $firstStandardParallel / 2) * (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2)); |
||
1492 | $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2)); |
||
1493 | } |
||
1494 | $mF = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2); |
||
1495 | $kO = $mF * sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)) / (2 * $tF); |
||
1496 | |||
1497 | $rho = 2 * $a * $kO * $t / sqrt((1 + $e) ** (1 + $e) * (1 - $e) ** (1 - $e)); |
||
1498 | |||
1499 | $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfOrigin))->asRadians()->getValue(); |
||
1500 | $dE = $rho * sin($theta); |
||
1501 | $dN = $rho * cos($theta); |
||
1502 | |||
1503 | $easting = $falseEasting->asMetres()->getValue() + $dE; |
||
1504 | if ($firstStandardParallel < 0) { |
||
1505 | $northing = $falseNorthing->asMetres()->getValue() + $dN; |
||
1506 | } else { |
||
1507 | $northing = $falseNorthing->asMetres()->getValue() - $dN; |
||
1508 | } |
||
1509 | |||
1510 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
1511 | } |
||
1512 | |||
1513 | /** |
||
1514 | * Polar Stereographic (variant C). |
||
1515 | */ |
||
1516 | public function polarStereographicVariantC( |
||
1517 | Projected $to, |
||
1518 | Angle $latitudeOfStandardParallel, |
||
1519 | Angle $longitudeOfOrigin, |
||
1520 | Length $eastingAtFalseOrigin, |
||
1521 | Length $northingAtFalseOrigin |
||
1522 | ): ProjectedPoint { |
||
1523 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
1524 | $latitude = $this->latitude->asRadians()->getValue(); |
||
1525 | $firstStandardParallel = $latitudeOfStandardParallel->asRadians()->getValue(); |
||
1526 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
1527 | $e = $ellipsoid->getEccentricity(); |
||
1528 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
1529 | |||
1530 | if ($firstStandardParallel < 0) { |
||
1531 | $tF = tan(M_PI / 4 + $firstStandardParallel / 2) / (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2)); |
||
1532 | $t = tan(M_PI / 4 + $latitude / 2) / (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2)); |
||
1533 | } else { |
||
1534 | $tF = tan(M_PI / 4 - $firstStandardParallel / 2) * (((1 + $e * sin($firstStandardParallel)) / (1 - $e * sin($firstStandardParallel))) ** ($e / 2)); |
||
1535 | $t = tan(M_PI / 4 - $latitude / 2) * (((1 + $e * sin($latitude)) / (1 - $e * sin($latitude))) ** ($e / 2)); |
||
1536 | } |
||
1537 | $mF = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2); |
||
1538 | |||
1539 | $rhoF = $a * $mF; |
||
1540 | $rho = $rhoF * $t / $tF; |
||
1541 | |||
1542 | $theta = $this->normaliseLongitude($this->longitude->subtract($longitudeOfOrigin))->asRadians()->getValue(); |
||
1543 | $dE = $rho * sin($theta); |
||
1544 | $dN = $rho * cos($theta); |
||
1545 | |||
1546 | $easting = $eastingAtFalseOrigin->asMetres()->getValue() + $dE; |
||
1547 | if ($firstStandardParallel < 0) { |
||
1548 | $northing = $northingAtFalseOrigin->asMetres()->getValue() - $rhoF + $dN; |
||
1549 | } else { |
||
1550 | $northing = $northingAtFalseOrigin->asMetres()->getValue() + $rhoF - $dN; |
||
1551 | } |
||
1552 | |||
1553 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
1554 | } |
||
1555 | |||
1556 | /** |
||
1557 | * Popular Visualisation Pseudo Mercator |
||
1558 | * Applies spherical formulas to the ellipsoid. As such does not have the properties of a true Mercator projection. |
||
1559 | */ |
||
1560 | public function popularVisualisationPseudoMercator( |
||
1561 | Projected $to, |
||
1562 | Angle $latitudeOfNaturalOrigin, |
||
1563 | Angle $longitudeOfNaturalOrigin, |
||
1564 | Length $falseEasting, |
||
1565 | Length $falseNorthing |
||
1566 | ): ProjectedPoint { |
||
1567 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
1568 | $latitude = $this->latitude->asRadians()->getValue(); |
||
1569 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
1570 | |||
1571 | $easting = $falseEasting->asMetres()->getValue() + $a * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue(); |
||
1572 | $northing = $falseNorthing->asMetres()->getValue() + $a * log(tan(M_PI / 4 + $latitude / 2)); |
||
1573 | |||
1574 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
1575 | } |
||
1576 | |||
1577 | /** |
||
1578 | * Mercator (variant A) |
||
1579 | * Note that in these formulas the parameter latitude of natural origin (latO) is not used. However for this |
||
1580 | * Mercator (variant A) method the EPSG dataset includes this parameter, which must have a value of zero, for |
||
1581 | * completeness in CRS labelling. |
||
1582 | */ |
||
1583 | public function mercatorVariantA( |
||
1584 | Projected $to, |
||
1585 | Angle $latitudeOfNaturalOrigin, |
||
1586 | Angle $longitudeOfNaturalOrigin, |
||
1587 | Scale $scaleFactorAtNaturalOrigin, |
||
1588 | Length $falseEasting, |
||
1589 | Length $falseNorthing |
||
1590 | ): ProjectedPoint { |
||
1591 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
1592 | $latitude = $this->latitude->asRadians()->getValue(); |
||
1593 | $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
||
1594 | |||
1595 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
1596 | $e = $ellipsoid->getEccentricity(); |
||
1597 | |||
1598 | $easting = $falseEasting->asMetres()->getValue() + $a * $kO * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue(); |
||
1599 | $northing = $falseNorthing->asMetres()->getValue() + $a * $kO * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2)); |
||
1600 | |||
1601 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
1602 | } |
||
1603 | |||
1604 | /** |
||
1605 | * Mercator (variant B) |
||
1606 | * Used for most nautical charts. |
||
1607 | */ |
||
1608 | public function mercatorVariantB( |
||
1609 | Projected $to, |
||
1610 | Angle $latitudeOf1stStandardParallel, |
||
1611 | Angle $longitudeOfNaturalOrigin, |
||
1612 | Length $falseEasting, |
||
1613 | Length $falseNorthing |
||
1614 | ): ProjectedPoint { |
||
1615 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
1616 | $latitude = $this->latitude->asRadians()->getValue(); |
||
1617 | $firstStandardParallel = $latitudeOf1stStandardParallel->asRadians()->getValue(); |
||
1618 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
1619 | $e = $ellipsoid->getEccentricity(); |
||
1620 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
1621 | |||
1622 | $kO = cos($firstStandardParallel) / sqrt(1 - $e2 * sin($firstStandardParallel) ** 2); |
||
1623 | |||
1624 | $easting = $falseEasting->asMetres()->getValue() + $a * $kO * $this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue(); |
||
1625 | $northing = $falseNorthing->asMetres()->getValue() + $a * $kO * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2)); |
||
1626 | |||
1627 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
1628 | } |
||
1629 | |||
1630 | /** |
||
1631 | * Longitude rotation |
||
1632 | * This transformation allows calculation of the longitude of a point in the target system by adding the parameter |
||
1633 | * value to the longitude value of the point in the source system. |
||
1634 | */ |
||
1635 | public function longitudeRotation( |
||
1636 | Geographic2D|Geographic3D $to, |
||
1637 | Angle $longitudeOffset |
||
1638 | ): self { |
||
1639 | $newLongitude = $this->longitude->add($longitudeOffset); |
||
1640 | |||
1641 | return static::create($to, $this->latitude, $newLongitude, $this->height, $this->epoch); |
||
1642 | } |
||
1643 | |||
1644 | /** |
||
1645 | * Hotine Oblique Mercator (variant A). |
||
1646 | */ |
||
1647 | public function obliqueMercatorHotineVariantA( |
||
1648 | Projected $to, |
||
1649 | Angle $latitudeOfProjectionCentre, |
||
1650 | Angle $longitudeOfProjectionCentre, |
||
1651 | Angle $azimuthAtProjectionCentre, |
||
1652 | Angle $angleFromRectifiedToSkewGrid, |
||
1653 | Scale $scaleFactorAtProjectionCentre, |
||
1654 | Length $falseEasting, |
||
1655 | Length $falseNorthing |
||
1656 | ): ProjectedPoint { |
||
1657 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
1658 | $latitude = $this->latitude->asRadians()->getValue(); |
||
1659 | $longitude = $this->longitude->asRadians()->getValue(); |
||
1660 | $latC = $latitudeOfProjectionCentre->asRadians()->getValue(); |
||
1661 | $lonC = $longitudeOfProjectionCentre->asRadians()->getValue(); |
||
1662 | $alphaC = $azimuthAtProjectionCentre->asRadians()->getValue(); |
||
1663 | $kC = $scaleFactorAtProjectionCentre->asUnity()->getValue(); |
||
1664 | $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue(); |
||
1665 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
1666 | $e = $ellipsoid->getEccentricity(); |
||
1667 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
1668 | |||
1669 | $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2))); |
||
1670 | $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2); |
||
1671 | $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2); |
||
1672 | $D = $B * sqrt(1 - $e2) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2)); |
||
1673 | $DD = max(1, $D ** 2); |
||
1674 | $F = $D + sqrt($DD - 1) * static::sign($latC); |
||
1675 | $H = $F * $tO ** $B; |
||
1676 | $G = ($F - 1 / $F) / 2; |
||
1677 | $gammaO = self::asin(sin($alphaC) / $D); |
||
1678 | $lonO = $lonC - self::asin($G * tan($gammaO)) / $B; |
||
1679 | |||
1680 | $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2); |
||
1681 | $Q = $H / $t ** $B; |
||
1682 | $S = ($Q - 1 / $Q) / 2; |
||
1683 | $T = ($Q + 1 / $Q) / 2; |
||
1684 | $V = sin($B * ($longitude - $lonO)); |
||
1685 | $U = (-$V * cos($gammaO) + $S * sin($gammaO)) / $T; |
||
1686 | $v = $A * log((1 - $U) / (1 + $U)) / (2 * $B); |
||
1687 | $u = $A * atan2($S * cos($gammaO) + $V * sin($gammaO), cos($B * ($longitude - $lonO))) / $B; |
||
1688 | |||
1689 | $easting = $v * cos($gammaC) + $u * sin($gammaC) + $falseEasting->asMetres()->getValue(); |
||
1690 | $northing = $u * cos($gammaC) - $v * sin($gammaC) + $falseNorthing->asMetres()->getValue(); |
||
1691 | |||
1692 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
1693 | } |
||
1694 | |||
1695 | /** |
||
1696 | * Hotine Oblique Mercator (variant B). |
||
1697 | */ |
||
1698 | public function obliqueMercatorHotineVariantB( |
||
1699 | Projected $to, |
||
1700 | Angle $latitudeOfProjectionCentre, |
||
1701 | Angle $longitudeOfProjectionCentre, |
||
1702 | Angle $azimuthAtProjectionCentre, |
||
1703 | Angle $angleFromRectifiedToSkewGrid, |
||
1704 | Scale $scaleFactorAtProjectionCentre, |
||
1705 | Length $eastingAtProjectionCentre, |
||
1706 | Length $northingAtProjectionCentre |
||
1707 | ): ProjectedPoint { |
||
1708 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
1709 | $latitude = $this->latitude->asRadians()->getValue(); |
||
1710 | $longitude = $this->longitude->asRadians()->getValue(); |
||
1711 | $latC = $latitudeOfProjectionCentre->asRadians()->getValue(); |
||
1712 | $lonC = $longitudeOfProjectionCentre->asRadians()->getValue(); |
||
1713 | $alphaC = $azimuthAtProjectionCentre->asRadians()->getValue(); |
||
1714 | $kC = $scaleFactorAtProjectionCentre->asUnity()->getValue(); |
||
1715 | $gammaC = $angleFromRectifiedToSkewGrid->asRadians()->getValue(); |
||
1716 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
1717 | $e = $ellipsoid->getEccentricity(); |
||
1718 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
1719 | |||
1720 | $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2))); |
||
1721 | $A = $a * $B * $kC * sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2); |
||
1722 | $tO = tan(M_PI / 4 - $latC / 2) / ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2); |
||
1723 | $D = $B * sqrt(1 - $e2) / (cos($latC) * sqrt(1 - $e2 * sin($latC) ** 2)); |
||
1724 | $F = $D + sqrt(max($D ** 2, 1) - 1) * static::sign($latC); |
||
1725 | $H = $F * $tO ** $B; |
||
1726 | $G = ($F - 1 / $F) / 2; |
||
1727 | $gammaO = self::asin(sin($alphaC) / $D); |
||
1728 | $lonO = $lonC - self::asin($G * tan($gammaO)) / $B; |
||
1729 | $vC = 0; |
||
1730 | if ($alphaC === M_PI / 2) { |
||
1731 | $uC = $A * ($lonC - $lonO); |
||
1732 | } else { |
||
1733 | $uC = ($A / $B) * atan2(sqrt(max($D ** 2, 1) - 1), cos($alphaC)) * static::sign($latC); |
||
1734 | } |
||
1735 | |||
1736 | $t = tan(M_PI / 4 - $latitude / 2) / ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2); |
||
1737 | $Q = $H / $t ** $B; |
||
1738 | $S = ($Q - 1 / $Q) / 2; |
||
1739 | $T = ($Q + 1 / $Q) / 2; |
||
1740 | $V = sin($B * ($longitude - $lonO)); |
||
1741 | $U = (-$V * cos($gammaO) + $S * sin($gammaO)) / $T; |
||
1742 | $v = $A * log((1 - $U) / (1 + $U)) / (2 * $B); |
||
1743 | $u = ($A * atan2($S * cos($gammaO) + $V * sin($gammaO), cos($B * ($longitude - $lonO))) / $B) - (abs($uC) * static::sign($latC)); |
||
1744 | |||
1745 | $easting = $v * cos($gammaC) + $u * sin($gammaC) + $eastingAtProjectionCentre->asMetres()->getValue(); |
||
1746 | $northing = $u * cos($gammaC) - $v * sin($gammaC) + $northingAtProjectionCentre->asMetres()->getValue(); |
||
1747 | |||
1748 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
1749 | } |
||
1750 | |||
1751 | /** |
||
1752 | * Laborde Oblique Mercator. |
||
1753 | */ |
||
1754 | public function obliqueMercatorLaborde( |
||
1755 | Projected $to, |
||
1756 | Angle $latitudeOfProjectionCentre, |
||
1757 | Angle $longitudeOfProjectionCentre, |
||
1758 | Angle $azimuthAtProjectionCentre, |
||
1759 | Scale $scaleFactorAtProjectionCentre, |
||
1760 | Length $falseEasting, |
||
1761 | Length $falseNorthing |
||
1762 | ): ProjectedPoint { |
||
1763 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
1764 | $latitude = $this->latitude->asRadians()->getValue(); |
||
1765 | $latC = $latitudeOfProjectionCentre->asRadians()->getValue(); |
||
1766 | $alphaC = $azimuthAtProjectionCentre->asRadians()->getValue(); |
||
1767 | $kC = $scaleFactorAtProjectionCentre->asUnity()->getValue(); |
||
1768 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
1769 | $e = $ellipsoid->getEccentricity(); |
||
1770 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
1771 | |||
1772 | $B = sqrt(1 + ($e2 * cos($latC) ** 4 / (1 - $e2))); |
||
1773 | $latS = self::asin(sin($latC) / $B); |
||
1774 | $R = $a * $kC * (sqrt(1 - $e2) / (1 - $e2 * sin($latC) ** 2)); |
||
1775 | $C = log(tan(M_PI / 4 + $latS / 2)) - $B * log(tan(M_PI / 4 + $latC / 2) * ((1 - $e * sin($latC)) / (1 + $e * sin($latC))) ** ($e / 2)); |
||
1776 | |||
1777 | $L = $B * $this->normaliseLongitude($this->longitude->subtract($longitudeOfProjectionCentre))->asRadians()->getValue(); |
||
1778 | $q = $C + $B * log(tan(M_PI / 4 + $latitude / 2) * ((1 - $e * sin($latitude)) / (1 + $e * sin($latitude))) ** ($e / 2)); |
||
1779 | $P = 2 * atan(M_E ** $q) - M_PI / 2; |
||
1780 | $U = cos($P) * cos($L) * cos($latS) + sin($P) * sin($latS); |
||
1781 | $V = cos($P) * cos($L) * sin($latS) - sin($P) * cos($latS); |
||
1782 | $W = cos($P) * sin($L); |
||
1783 | $d = hypot($U, $V); |
||
1784 | if ($d === 0.0) { |
||
1785 | $LPrime = 0; |
||
1786 | $PPrime = static::sign($W) * M_PI / 2; |
||
1787 | } else { |
||
1788 | $LPrime = 2 * atan($V / ($U + $d)); |
||
1789 | $PPrime = atan($W / $d); |
||
1790 | } |
||
1791 | $H = new ComplexNumber(-$LPrime, log(tan(M_PI / 4 + $PPrime / 2))); |
||
1792 | $G = (new ComplexNumber(1 - cos(2 * $alphaC), sin(2 * $alphaC)))->divide(new ComplexNumber(12, 0)); |
||
1793 | |||
1794 | $easting = $falseEasting->asMetres()->getValue() + $R * $H->pow(3)->multiply($G)->add($H)->getImaginary(); |
||
1795 | $northing = $falseNorthing->asMetres()->getValue() + $R * $H->pow(3)->multiply($G)->add($H)->getReal(); |
||
1796 | |||
1797 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
1798 | } |
||
1799 | |||
1800 | /** |
||
1801 | * Transverse Mercator. |
||
1802 | */ |
||
1803 | public function transverseMercator( |
||
1804 | Projected $to, |
||
1805 | Angle $latitudeOfNaturalOrigin, |
||
1806 | Angle $longitudeOfNaturalOrigin, |
||
1807 | Scale $scaleFactorAtNaturalOrigin, |
||
1808 | Length $falseEasting, |
||
1809 | Length $falseNorthing |
||
1810 | ): ProjectedPoint { |
||
1811 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
1812 | $latitude = $this->latitude->asRadians()->getValue(); |
||
1813 | $latitudeOrigin = $latitudeOfNaturalOrigin->asRadians()->getValue(); |
||
1814 | $kO = $scaleFactorAtNaturalOrigin->asUnity()->getValue(); |
||
1815 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
1816 | $e = $ellipsoid->getEccentricity(); |
||
1817 | $f = $ellipsoid->getFlattening(); |
||
1818 | |||
1819 | $n = $f / (2 - $f); |
||
1820 | $B = ($a / (1 + $n)) * (1 + $n ** 2 / 4 + $n ** 4 / 64 + $n ** 6 / 256 + (25 / 16384) * $n ** 8); |
||
1821 | |||
1822 | $h1 = $n / 2 - (2 / 3) * $n ** 2 + (5 / 16) * $n ** 3 + (41 / 180) * $n ** 4 - (127 / 288) * $n ** 5 + (7891 / 37800) * $n ** 6 + (72161 / 387072) * $n ** 7 - (18975107 / 50803200) * $n ** 8; |
||
1823 | $h2 = (13 / 48) * $n ** 2 - (3 / 5) * $n ** 3 + (557 / 1440) * $n ** 4 + (281 / 630) * $n ** 5 - (1983433 / 1935360) * $n ** 6 + (13769 / 28800) * $n ** 7 + (148003883 / 174182400) * $n ** 8; |
||
1824 | $h3 = (61 / 240) * $n ** 3 - (103 / 140) * $n ** 4 + (15061 / 26880) * $n ** 5 + (167603 / 181440) * $n ** 6 - (67102379 / 29030400) * $n ** 7 + (79682431 / 79833600) * $n ** 8; |
||
1825 | $h4 = (49561 / 161280) * $n ** 4 - (179 / 168) * $n ** 5 + (6601661 / 7257600) * $n ** 6 + (97445 / 49896) * $n ** 7 - (40176129013 / 7664025600) * $n ** 8; |
||
1826 | $h5 = (34729 / 80640) * $n ** 5 - (3418889 / 1995840) * $n ** 6 + (14644087 / 9123840) * $n ** 7 + (2605413599 / 622702080) * $n ** 8; |
||
1827 | $h6 = (212378941 / 319334400) * $n ** 6 - (30705481 / 10378368) * $n ** 7 + (175214326799 / 58118860800) * $n ** 8; |
||
1828 | $h7 = (1522256789 / 1383782400) * $n ** 7 - (16759934899 / 3113510400) * $n ** 8; |
||
1829 | $h8 = (1424729850961 / 743921418240) * $n ** 8; |
||
1830 | |||
1831 | if ($latitudeOrigin === 0.0) { |
||
1832 | $mO = 0; |
||
1833 | } elseif ($latitudeOrigin === M_PI / 2) { |
||
1834 | $mO = $B * M_PI / 2; |
||
1835 | } elseif ($latitudeOrigin === -M_PI / 2) { |
||
1836 | $mO = $B * -M_PI / 2; |
||
1837 | } else { |
||
1838 | $qO = asinh(tan($latitudeOrigin)) - ($e * atanh($e * sin($latitudeOrigin))); |
||
1839 | $betaO = atan(sinh($qO)); |
||
1840 | $xiO0 = self::asin(sin($betaO)); |
||
1841 | $xiO1 = $h1 * sin(2 * $xiO0); |
||
1842 | $xiO2 = $h2 * sin(4 * $xiO0); |
||
1843 | $xiO3 = $h3 * sin(6 * $xiO0); |
||
1844 | $xiO4 = $h4 * sin(8 * $xiO0); |
||
1845 | $xiO5 = $h5 * sin(10 * $xiO0); |
||
1846 | $xiO6 = $h6 * sin(12 * $xiO0); |
||
1847 | $xiO7 = $h7 * sin(14 * $xiO0); |
||
1848 | $xiO8 = $h8 * sin(16 * $xiO0); |
||
1849 | $xiO = $xiO0 + $xiO1 + $xiO2 + $xiO3 + $xiO4 + $xiO5 + $xiO6 + $xiO7 + $xiO8; |
||
1850 | $mO = $B * $xiO; |
||
1851 | } |
||
1852 | |||
1853 | $Q = asinh(tan($latitude)) - ($e * atanh($e * sin($latitude))); |
||
1854 | $beta = atan(sinh($Q)); |
||
1855 | $eta0 = atanh(cos($beta) * sin($this->normaliseLongitude($this->longitude->subtract($longitudeOfNaturalOrigin))->asRadians()->getValue())); |
||
1856 | $xi0 = self::asin(sin($beta) * cosh($eta0)); |
||
1857 | $xi1 = $h1 * sin(2 * $xi0) * cosh(2 * $eta0); |
||
1858 | $eta1 = $h1 * cos(2 * $xi0) * sinh(2 * $eta0); |
||
1859 | $xi2 = $h2 * sin(4 * $xi0) * cosh(4 * $eta0); |
||
1860 | $eta2 = $h2 * cos(4 * $xi0) * sinh(4 * $eta0); |
||
1861 | $xi3 = $h3 * sin(6 * $xi0) * cosh(6 * $eta0); |
||
1862 | $eta3 = $h3 * cos(6 * $xi0) * sinh(6 * $eta0); |
||
1863 | $xi4 = $h4 * sin(8 * $xi0) * cosh(8 * $eta0); |
||
1864 | $eta4 = $h4 * cos(8 * $xi0) * sinh(8 * $eta0); |
||
1865 | $xi5 = $h5 * sin(10 * $xi0) * cosh(10 * $eta0); |
||
1866 | $eta5 = $h5 * cos(10 * $xi0) * sinh(10 * $eta0); |
||
1867 | $xi6 = $h6 * sin(12 * $xi0) * cosh(12 * $eta0); |
||
1868 | $eta6 = $h6 * cos(12 * $xi0) * sinh(12 * $eta0); |
||
1869 | $xi7 = $h7 * sin(14 * $xi0) * cosh(14 * $eta0); |
||
1870 | $eta7 = $h7 * cos(14 * $xi0) * sinh(14 * $eta0); |
||
1871 | $xi8 = $h8 * sin(16 * $xi0) * cosh(16 * $eta0); |
||
1872 | $eta8 = $h8 * cos(16 * $xi0) * sinh(16 * $eta0); |
||
1873 | $xi = $xi0 + $xi1 + $xi2 + $xi3 + $xi4 + $xi5 + $xi6 + $xi7 + $xi8; |
||
1874 | $eta = $eta0 + $eta1 + $eta2 + $eta3 + $eta4 + $eta5 + $eta6 + $eta7 + $eta8; |
||
1875 | |||
1876 | $easting = $falseEasting->asMetres()->getValue() + $kO * $B * $eta; |
||
1877 | $northing = $falseNorthing->asMetres()->getValue() + $kO * ($B * $xi - $mO); |
||
1878 | |||
1879 | $height = count($to->getCoordinateSystem()->getAxes()) === 3 ? $this->height : null; |
||
1880 | |||
1881 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch, $height); |
||
1882 | } |
||
1883 | |||
1884 | /** |
||
1885 | * Transverse Mercator Zoned Grid System |
||
1886 | * If locations fall outwith the fixed zones the general Transverse Mercator method (code 9807) must be used for |
||
1887 | * each zone. |
||
1888 | */ |
||
1889 | public function transverseMercatorZonedGrid( |
||
1905 | } |
||
1906 | |||
1907 | /** |
||
1908 | * New Zealand Map Grid. |
||
1909 | */ |
||
1910 | public function newZealandMapGrid( |
||
1911 | Projected $to, |
||
1912 | Angle $latitudeOfNaturalOrigin, |
||
1913 | Angle $longitudeOfNaturalOrigin, |
||
1914 | Length $falseEasting, |
||
1915 | Length $falseNorthing |
||
1916 | ): ProjectedPoint { |
||
1917 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
1918 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
1919 | |||
1920 | $deltaLatitudeToOrigin = Angle::convert($this->latitude->subtract($latitudeOfNaturalOrigin), Angle::EPSG_ARC_SECOND)->getValue(); |
||
1921 | $deltaLongitudeToOrigin = $this->longitude->subtract($longitudeOfNaturalOrigin)->asRadians(); |
||
1922 | |||
1923 | $deltaPsi = 0; |
||
1924 | $deltaPsi += 0.6399175073 * ($deltaLatitudeToOrigin * 0.00001) ** 1; |
||
1925 | $deltaPsi += -0.1358797613 * ($deltaLatitudeToOrigin * 0.00001) ** 2; |
||
1926 | $deltaPsi += 0.063294409 * ($deltaLatitudeToOrigin * 0.00001) ** 3; |
||
1927 | $deltaPsi += -0.02526853 * ($deltaLatitudeToOrigin * 0.00001) ** 4; |
||
1928 | $deltaPsi += 0.0117879 * ($deltaLatitudeToOrigin * 0.00001) ** 5; |
||
1929 | $deltaPsi += -0.0055161 * ($deltaLatitudeToOrigin * 0.00001) ** 6; |
||
1930 | $deltaPsi += 0.0026906 * ($deltaLatitudeToOrigin * 0.00001) ** 7; |
||
1931 | $deltaPsi += -0.001333 * ($deltaLatitudeToOrigin * 0.00001) ** 8; |
||
1932 | $deltaPsi += 0.00067 * ($deltaLatitudeToOrigin * 0.00001) ** 9; |
||
1933 | $deltaPsi += -0.00034 * ($deltaLatitudeToOrigin * 0.00001) ** 10; |
||
1934 | |||
1935 | $zeta = new ComplexNumber($deltaPsi, $deltaLongitudeToOrigin->getValue()); |
||
1936 | |||
1937 | $B1 = new ComplexNumber(0.7557853228, 0.0); |
||
1938 | $B2 = new ComplexNumber(0.249204646, 0.003371507); |
||
1939 | $B3 = new ComplexNumber(-0.001541739, 0.041058560); |
||
1940 | $B4 = new ComplexNumber(-0.10162907, 0.01727609); |
||
1941 | $B5 = new ComplexNumber(-0.26623489, -0.36249218); |
||
1942 | $B6 = new ComplexNumber(-0.6870983, -1.1651967); |
||
1943 | $z = new ComplexNumber(0, 0); |
||
1944 | $z = $z->add($B1->multiply($zeta->pow(1))); |
||
1945 | $z = $z->add($B2->multiply($zeta->pow(2))); |
||
1946 | $z = $z->add($B3->multiply($zeta->pow(3))); |
||
1947 | $z = $z->add($B4->multiply($zeta->pow(4))); |
||
1948 | $z = $z->add($B5->multiply($zeta->pow(5))); |
||
1949 | $z = $z->add($B6->multiply($zeta->pow(6))); |
||
1950 | |||
1951 | $easting = $falseEasting->asMetres()->getValue() + $z->getImaginary() * $a; |
||
1952 | $northing = $falseNorthing->asMetres()->getValue() + $z->getReal() * $a; |
||
1953 | |||
1954 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
1955 | } |
||
1956 | |||
1957 | /** |
||
1958 | * Madrid to ED50 polynomial. |
||
1959 | */ |
||
1960 | public function madridToED50Polynomial( |
||
1976 | } |
||
1977 | |||
1978 | /** |
||
1979 | * Geographic3D to 2D conversion. |
||
1980 | */ |
||
1981 | public function threeDToTwoD( |
||
1982 | Geographic2D|Geographic3D $to |
||
1983 | ): self { |
||
1984 | if ($to instanceof Geographic2D) { |
||
1985 | return static::create($to, $this->latitude, $this->longitude, null, $this->epoch); |
||
1986 | } |
||
1987 | |||
1988 | return static::create($to, $this->latitude, $this->longitude, new Metre(0), $this->epoch); |
||
1989 | } |
||
1990 | |||
1991 | /** |
||
1992 | * Geographic2D offsets. |
||
1993 | * This transformation allows calculation of coordinates in the target system by adding the parameter value to the |
||
1994 | * coordinate values of the point in the source system. |
||
1995 | */ |
||
1996 | public function geographic2DOffsets( |
||
2005 | } |
||
2006 | |||
2007 | /* |
||
2008 | * Geographic2D with Height Offsets. |
||
2009 | * This transformation allows calculation of coordinates in the target system by adding the parameter value to the |
||
2010 | * coordinate values of the point in the source system. |
||
2011 | */ |
||
2012 | public function geographic2DWithHeightOffsets( |
||
2028 | } |
||
2029 | |||
2030 | /** |
||
2031 | * General polynomial. |
||
2032 | * @param Coefficient[] $powerCoefficients |
||
2033 | */ |
||
2034 | public function generalPolynomial( |
||
2035 | Geographic2D|Geographic3D $to, |
||
2036 | Angle $ordinate1OfEvaluationPointInSourceCRS, |
||
2037 | Angle $ordinate2OfEvaluationPointInSourceCRS, |
||
2038 | Angle $ordinate1OfEvaluationPointInTargetCRS, |
||
2039 | Angle $ordinate2OfEvaluationPointInTargetCRS, |
||
2040 | Scale $scalingFactorForSourceCRSCoordDifferences, |
||
2041 | Scale $scalingFactorForTargetCRSCoordDifferences, |
||
2042 | Scale $A0, |
||
2043 | Scale $B0, |
||
2044 | array $powerCoefficients, |
||
2045 | bool $inReverse |
||
2046 | ): self { |
||
2047 | $xs = $this->latitude->getValue(); |
||
2048 | $ys = $this->longitude->getValue(); |
||
2049 | |||
2050 | $t = $this->generalPolynomialUnitless( |
||
2051 | $xs, |
||
2052 | $ys, |
||
2053 | $ordinate1OfEvaluationPointInSourceCRS, |
||
2054 | $ordinate2OfEvaluationPointInSourceCRS, |
||
2055 | $ordinate1OfEvaluationPointInTargetCRS, |
||
2056 | $ordinate2OfEvaluationPointInTargetCRS, |
||
2057 | $scalingFactorForSourceCRSCoordDifferences, |
||
2058 | $scalingFactorForTargetCRSCoordDifferences, |
||
2059 | $A0, |
||
2060 | $B0, |
||
2061 | $powerCoefficients, |
||
2062 | $inReverse |
||
2063 | ); |
||
2064 | |||
2065 | $xtUnit = $to->getCoordinateSystem()->getAxes()[0]->getUnitOfMeasureId(); |
||
2066 | $ytUnit = $to->getCoordinateSystem()->getAxes()[1]->getUnitOfMeasureId(); |
||
2067 | |||
2068 | return static::create( |
||
2069 | $to, |
||
2070 | Angle::makeUnit($t['xt'], $xtUnit), |
||
2071 | Angle::makeUnit($t['yt'], $ytUnit), |
||
2072 | $this->height, |
||
2073 | $this->epoch |
||
2074 | ); |
||
2075 | } |
||
2076 | |||
2077 | /** |
||
2078 | * Reversible polynomial. |
||
2079 | * @param Coefficient[] $powerCoefficients |
||
2080 | */ |
||
2081 | public function reversiblePolynomial( |
||
2113 | ); |
||
2114 | } |
||
2115 | |||
2116 | /** |
||
2117 | * Axis Order Reversal. |
||
2118 | */ |
||
2119 | public function axisReversal( |
||
2124 | } |
||
2125 | |||
2126 | /** |
||
2127 | * Ordnance Survey National Transformation |
||
2128 | * Geodetic transformation between ETRS89 (or WGS 84) and OSGB36 / National Grid. Uses ETRS89 / National Grid as |
||
2129 | * an intermediate coordinate system for bi-linear interpolation of gridded grid coordinate differences. |
||
2130 | */ |
||
2131 | public function OSTN15( |
||
2132 | Projected $to, |
||
2133 | OSTNOSGM15Grid $eastingAndNorthingDifferenceFile |
||
2134 | ): ProjectedPoint { |
||
2135 | $osgb36NationalGrid = Projected::fromSRID(Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID); |
||
2136 | $etrs89NationalGrid = new Projected( |
||
2137 | 'ETRS89 / National Grid', |
||
2138 | Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M), |
||
2139 | Datum::fromSRID(Datum::EPSG_EUROPEAN_TERRESTRIAL_REFERENCE_SYSTEM_1989_ENSEMBLE), |
||
2140 | $osgb36NationalGrid->getBoundingArea() |
||
2141 | ); |
||
2142 | |||
2143 | $projected = $this->transverseMercator($etrs89NationalGrid, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000)); |
||
2144 | |||
2145 | return $eastingAndNorthingDifferenceFile->applyForwardHorizontalAdjustment($projected); |
||
2146 | } |
||
2147 | |||
2148 | /** |
||
2149 | * Geog3D to Geog2D+GravityRelatedHeight (OSGM-GB). |
||
2150 | * Uses ETRS89 / National Grid as an intermediate coordinate system for bi-linear interpolation of gridded grid |
||
2151 | * coordinate differences. |
||
2152 | */ |
||
2153 | public function geographic3DTo2DPlusGravityHeightOSGM15( |
||
2154 | Compound $to, |
||
2155 | OSTNOSGM15Grid $geoidHeightCorrectionModelFile |
||
2156 | ): CompoundPoint { |
||
2157 | assert($this->height instanceof Length); |
||
2158 | $osgb36NationalGrid = Projected::fromSRID(Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID); |
||
2159 | $etrs89NationalGrid = new Projected( |
||
2160 | 'ETRS89 / National Grid', |
||
2161 | Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M), |
||
2162 | Datum::fromSRID(Datum::EPSG_EUROPEAN_TERRESTRIAL_REFERENCE_SYSTEM_1989_ENSEMBLE), |
||
2163 | $osgb36NationalGrid->getBoundingArea() |
||
2164 | ); |
||
2165 | |||
2166 | /** @var ProjectedPoint $projected */ |
||
2167 | $projected = $this->transverseMercator($etrs89NationalGrid, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000)); |
||
2168 | |||
2169 | assert($to->getHorizontal() instanceof Geographic2D); |
||
2170 | $horizontalPoint = self::create( |
||
2171 | $to->getHorizontal(), |
||
2172 | $this->latitude, |
||
2173 | $this->longitude, |
||
2174 | null, |
||
2175 | $this->getCoordinateEpoch() |
||
2176 | ); |
||
2177 | |||
2178 | $verticalPoint = VerticalPoint::create( |
||
2179 | $to->getVertical(), |
||
2180 | $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($projected)), |
||
2181 | $this->getCoordinateEpoch() |
||
2182 | ); |
||
2183 | |||
2184 | return CompoundPoint::create( |
||
2185 | $to, |
||
2186 | $horizontalPoint, |
||
2187 | $verticalPoint, |
||
2188 | $this->getCoordinateEpoch() |
||
2189 | ); |
||
2190 | } |
||
2191 | |||
2192 | /** |
||
2193 | * Geographic3D to GravityRelatedHeight (OSGM-GB). |
||
2194 | * Uses ETRS89 / National Grid as an intermediate coordinate system for bi-linear interpolation of gridded grid |
||
2195 | * coordinate differences. |
||
2196 | */ |
||
2197 | public function geographic3DToGravityHeightOSGM15( |
||
2198 | Vertical $to, |
||
2199 | OSTNOSGM15Grid $geoidHeightCorrectionModelFile |
||
2200 | ): VerticalPoint { |
||
2201 | assert($this->height instanceof Length); |
||
2202 | $osgb36NationalGrid = Projected::fromSRID(Projected::EPSG_OSGB36_BRITISH_NATIONAL_GRID); |
||
2203 | $etrs89NationalGrid = new Projected( |
||
2204 | 'ETRS89 / National Grid', |
||
2205 | Cartesian::fromSRID(Cartesian::EPSG_2D_AXES_EASTING_NORTHING_E_N_ORIENTATIONS_EAST_NORTH_UOM_M), |
||
2206 | Datum::fromSRID(Datum::EPSG_EUROPEAN_TERRESTRIAL_REFERENCE_SYSTEM_1989_ENSEMBLE), |
||
2207 | $osgb36NationalGrid->getBoundingArea() |
||
2208 | ); |
||
2209 | |||
2210 | $projected = $this->transverseMercator($etrs89NationalGrid, new Degree(49), new Degree(-2), new Unity(0.9996012717), new Metre(400000), new Metre(-100000)); |
||
2211 | |||
2212 | return VerticalPoint::create( |
||
2213 | $to, |
||
2214 | $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($projected)), |
||
2215 | $this->getCoordinateEpoch() |
||
2216 | ); |
||
2217 | } |
||
2218 | |||
2219 | /** |
||
2220 | * Geog3D to Geog2D+GravityRelatedHeight. |
||
2221 | */ |
||
2222 | public function geographic3DTo2DPlusGravityHeightFromGrid( |
||
2223 | Compound $to, |
||
2224 | GeographicGeoidHeightGrid $geoidHeightCorrectionModelFile |
||
2225 | ): CompoundPoint { |
||
2226 | assert($this->height instanceof Length); |
||
2227 | assert($to->getHorizontal() instanceof Geographic); |
||
2228 | $horizontalPoint = self::create( |
||
2229 | $to->getHorizontal(), |
||
2230 | $this->latitude, |
||
2231 | $this->longitude, |
||
2232 | null, |
||
2233 | $this->getCoordinateEpoch() |
||
2234 | ); |
||
2235 | |||
2236 | $verticalPoint = VerticalPoint::create( |
||
2237 | $to->getVertical(), |
||
2238 | $this->height->subtract($geoidHeightCorrectionModelFile->getHeightAdjustment($this)), |
||
2239 | $this->getCoordinateEpoch() |
||
2240 | ); |
||
2241 | |||
2242 | return CompoundPoint::create( |
||
2243 | $to, |
||
2244 | $horizontalPoint, |
||
2245 | $verticalPoint, |
||
2246 | $this->getCoordinateEpoch() |
||
2247 | ); |
||
2248 | } |
||
2249 | |||
2250 | /** |
||
2251 | * Geographic3D to GravityRelatedHeight. |
||
2252 | */ |
||
2253 | public function geographic3DToGravityHeightFromGrid( |
||
2263 | ); |
||
2264 | } |
||
2265 | |||
2266 | /** |
||
2267 | * NADCON5. |
||
2268 | * @internal just a wrapper |
||
2269 | */ |
||
2270 | public function offsetsFromGridNADCON5( |
||
2271 | Geographic2D|Geographic3D $to, |
||
2272 | NADCON5Grid $latitudeDifferenceFile, |
||
2273 | NADCON5Grid $longitudeDifferenceFile, |
||
2274 | ?NADCON5Grid $ellipsoidalHeightDifferenceFile, |
||
2275 | bool $inReverse |
||
2276 | ): self { |
||
2277 | $aggregation = new NADCON5Grids($longitudeDifferenceFile, $latitudeDifferenceFile, $ellipsoidalHeightDifferenceFile); |
||
2278 | |||
2279 | return $this->offsetsFromGrid($to, $aggregation, $inReverse); |
||
2280 | } |
||
2281 | |||
2282 | /** |
||
2283 | * Geographic offsets from grid. |
||
2284 | */ |
||
2285 | public function offsetsFromGrid( |
||
2286 | Geographic2D|Geographic3D $to, |
||
2287 | GeographicGrid $offsetsFile, |
||
2288 | bool $inReverse |
||
2289 | ): self { |
||
2290 | if (!$inReverse) { |
||
2291 | return $offsetsFile->applyForwardAdjustment($this, $to); |
||
2292 | } |
||
2293 | |||
2294 | return $offsetsFile->applyReverseAdjustment($this, $to); |
||
2295 | } |
||
2296 | |||
2297 | public function localOrthographic( |
||
2298 | Projected $to, |
||
2299 | Angle $latitudeOfProjectionCentre, |
||
2300 | Angle $longitudeOfProjectionCentre, |
||
2301 | Angle $azimuthAtProjectionCentre, |
||
2302 | Scale $scaleFactorAtProjectionCentre, |
||
2303 | Length $eastingAtProjectionCentre, |
||
2304 | Length $northingAtProjectionCentre |
||
2305 | ): ProjectedPoint { |
||
2306 | $ellipsoid = $this->crs->getDatum()->getEllipsoid(); |
||
2307 | $latitude = $this->latitude->asRadians()->getValue(); |
||
2308 | $longitude = $this->longitude->asRadians()->getValue(); |
||
2309 | $latitudeCentre = $latitudeOfProjectionCentre->asRadians()->getValue(); |
||
2310 | $longitudeCentre = $longitudeOfProjectionCentre->asRadians()->getValue(); |
||
2311 | $azimuthCentre = $azimuthAtProjectionCentre->asRadians()->getValue(); |
||
2312 | $scaleFactorCentre = $scaleFactorAtProjectionCentre->asUnity()->getValue(); |
||
2313 | |||
2314 | $a = $ellipsoid->getSemiMajorAxis()->asMetres()->getValue(); |
||
2315 | $e2 = $ellipsoid->getEccentricitySquared(); |
||
2316 | $v = $a / sqrt(1 - $e2 * sin($latitude) ** 2); |
||
2317 | $vc = $a / sqrt(1 - $e2 * sin($latitudeCentre) ** 2); |
||
2318 | |||
2319 | $xp = $v * cos($latitude) * sin($longitude - $longitudeCentre); |
||
2320 | $yp = -sin($latitudeCentre) * ($v * cos($latitude) * cos($longitude - $longitudeCentre) - $vc * cos($latitudeCentre)) + cos($latitudeCentre) * ($v * (1 - $e2) * sin($latitude) - $vc * (1 - $e2) * sin($latitudeCentre)); |
||
2321 | |||
2322 | $easting = $eastingAtProjectionCentre->asMetres()->getValue() + $scaleFactorCentre * (cos($azimuthCentre) * $xp - sin($azimuthCentre) * $yp); |
||
2323 | $northing = $northingAtProjectionCentre->asMetres()->getValue() + $scaleFactorCentre * (sin($azimuthCentre) * $xp + cos($azimuthCentre) * $yp); |
||
2324 | |||
2325 | return ProjectedPoint::create($to, new Metre($easting), new Metre($northing), new Metre(-$easting), new Metre(-$northing), $this->epoch); |
||
2326 | } |
||
2327 | |||
2328 | public function asGeographicValue(): GeographicValue |
||
2329 | { |
||
2330 | return new GeographicValue($this->latitude, $this->longitude, $this->height, $this->crs->getDatum()); |
||
2331 | } |
||
2332 | |||
2333 | public function asUTMPoint(): UTMPoint |
||
2359 | } |
||
2360 | } |
||
2361 |