1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
|
3
|
|
|
# Copyright 2014-2018 by Christopher C. Little. |
4
|
|
|
# This file is part of Abydos. |
5
|
|
|
# |
6
|
|
|
# Abydos is free software: you can redistribute it and/or modify |
7
|
|
|
# it under the terms of the GNU General Public License as published by |
8
|
|
|
# the Free Software Foundation, either version 3 of the License, or |
9
|
|
|
# (at your option) any later version. |
10
|
|
|
# |
11
|
|
|
# Abydos is distributed in the hope that it will be useful, |
12
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
13
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14
|
|
|
# GNU General Public License for more details. |
15
|
|
|
# |
16
|
|
|
# You should have received a copy of the GNU General Public License |
17
|
|
|
# along with Abydos. If not, see <http://www.gnu.org/licenses/>. |
18
|
|
|
|
19
|
1 |
|
"""abydos.distance.jaro. |
20
|
|
|
|
21
|
|
|
The distance.jaro module implements distance metrics based on |
22
|
|
|
:cite:`Jaro:1989` and subsequent works: |
23
|
|
|
|
24
|
|
|
- Jaro distance |
25
|
|
|
- Jaro-Winkler distance |
26
|
|
|
- the strcmp95 algorithm variant of Jaro-Winkler distance |
27
|
|
|
""" |
28
|
|
|
|
29
|
1 |
|
from __future__ import division, unicode_literals |
30
|
|
|
|
31
|
1 |
|
from collections import defaultdict |
32
|
|
|
|
33
|
1 |
|
from six.moves import range |
34
|
|
|
|
35
|
1 |
|
from ..tokenizer import QGrams |
36
|
|
|
|
37
|
|
|
|
38
|
1 |
|
__all__ = [ |
39
|
|
|
'dist_jaro_winkler', |
40
|
|
|
'dist_strcmp95', |
41
|
|
|
'sim_jaro_winkler', |
42
|
|
|
'sim_strcmp95', |
43
|
|
|
] |
44
|
|
|
|
45
|
|
|
|
46
|
1 |
|
def sim_strcmp95(src, tar, long_strings=False): |
|
|
|
|
47
|
|
|
"""Return the strcmp95 similarity of two strings. |
48
|
|
|
|
49
|
|
|
This is a Python translation of the C code for strcmp95: |
50
|
|
|
http://web.archive.org/web/20110629121242/http://www.census.gov/geo/msb/stand/strcmp.c |
51
|
|
|
:cite:`Winkler:1994`. |
52
|
|
|
The above file is a US Government publication and, accordingly, |
53
|
|
|
in the public domain. |
54
|
|
|
|
55
|
|
|
This is based on the Jaro-Winkler distance, but also attempts to correct |
56
|
|
|
for some common typos and frequently confused characters. It is also |
57
|
|
|
limited to uppercase ASCII characters, so it is appropriate to American |
58
|
|
|
names, but not much else. |
59
|
|
|
|
60
|
|
|
:param str src: source string for comparison |
61
|
|
|
:param str tar: target string for comparison |
62
|
|
|
:param bool long_strings: set to True to "Increase the probability of a |
63
|
|
|
match when the number of matched characters is large. This option |
64
|
|
|
allows for a little more tolerance when the strings are large. It is |
65
|
|
|
not an appropriate test when comparing fixed length fields such as |
66
|
|
|
phone and social security numbers." |
67
|
|
|
:returns: strcmp95 similarity |
68
|
|
|
:rtype: float |
69
|
|
|
|
70
|
|
|
>>> sim_strcmp95('cat', 'hat') |
71
|
|
|
0.7777777777777777 |
72
|
|
|
>>> sim_strcmp95('Niall', 'Neil') |
73
|
|
|
0.8454999999999999 |
74
|
|
|
>>> sim_strcmp95('aluminum', 'Catalan') |
75
|
|
|
0.6547619047619048 |
76
|
|
|
>>> sim_strcmp95('ATCG', 'TAGC') |
77
|
|
|
0.8333333333333334 |
78
|
|
|
""" |
79
|
|
|
|
80
|
1 |
|
def _in_range(char): |
81
|
|
|
"""Return True if char is in the range (0, 91).""" |
82
|
1 |
|
return 91 > ord(char) > 0 |
83
|
|
|
|
84
|
1 |
|
ying = src.strip().upper() |
85
|
1 |
|
yang = tar.strip().upper() |
86
|
|
|
|
87
|
1 |
|
if ying == yang: |
88
|
1 |
|
return 1.0 |
89
|
|
|
# If either string is blank - return - added in Version 2 |
90
|
1 |
|
if not ying or not yang: |
91
|
1 |
|
return 0.0 |
92
|
|
|
|
93
|
1 |
|
adjwt = defaultdict(int) |
94
|
1 |
|
sp_mx = ( |
95
|
|
|
('A', 'E'), |
96
|
|
|
('A', 'I'), |
97
|
|
|
('A', 'O'), |
98
|
|
|
('A', 'U'), |
99
|
|
|
('B', 'V'), |
100
|
|
|
('E', 'I'), |
101
|
|
|
('E', 'O'), |
102
|
|
|
('E', 'U'), |
103
|
|
|
('I', 'O'), |
104
|
|
|
('I', 'U'), |
105
|
|
|
('O', 'U'), |
106
|
|
|
('I', 'Y'), |
107
|
|
|
('E', 'Y'), |
108
|
|
|
('C', 'G'), |
109
|
|
|
('E', 'F'), |
110
|
|
|
('W', 'U'), |
111
|
|
|
('W', 'V'), |
112
|
|
|
('X', 'K'), |
113
|
|
|
('S', 'Z'), |
114
|
|
|
('X', 'S'), |
115
|
|
|
('Q', 'C'), |
116
|
|
|
('U', 'V'), |
117
|
|
|
('M', 'N'), |
118
|
|
|
('L', 'I'), |
119
|
|
|
('Q', 'O'), |
120
|
|
|
('P', 'R'), |
121
|
|
|
('I', 'J'), |
122
|
|
|
('2', 'Z'), |
123
|
|
|
('5', 'S'), |
124
|
|
|
('8', 'B'), |
125
|
|
|
('1', 'I'), |
126
|
|
|
('1', 'L'), |
127
|
|
|
('0', 'O'), |
128
|
|
|
('0', 'Q'), |
129
|
|
|
('C', 'K'), |
130
|
|
|
('G', 'J'), |
131
|
|
|
) |
132
|
|
|
|
133
|
|
|
# Initialize the adjwt array on the first call to the function only. |
134
|
|
|
# The adjwt array is used to give partial credit for characters that |
135
|
|
|
# may be errors due to known phonetic or character recognition errors. |
136
|
|
|
# A typical example is to match the letter "O" with the number "0" |
137
|
1 |
|
for i in sp_mx: |
138
|
1 |
|
adjwt[(i[0], i[1])] = 3 |
139
|
1 |
|
adjwt[(i[1], i[0])] = 3 |
140
|
|
|
|
141
|
1 |
|
if len(ying) > len(yang): |
142
|
1 |
|
search_range = len(ying) |
143
|
1 |
|
minv = len(yang) |
144
|
|
|
else: |
145
|
1 |
|
search_range = len(yang) |
146
|
1 |
|
minv = len(ying) |
147
|
|
|
|
148
|
|
|
# Blank out the flags |
149
|
1 |
|
ying_flag = [0] * search_range |
150
|
1 |
|
yang_flag = [0] * search_range |
151
|
1 |
|
search_range = max(0, search_range // 2 - 1) |
152
|
|
|
|
153
|
|
|
# Looking only within the search range, count and flag the matched pairs. |
154
|
1 |
|
num_com = 0 |
155
|
1 |
|
yl1 = len(yang) - 1 |
156
|
1 |
|
for i in range(len(ying)): |
|
|
|
|
157
|
1 |
|
low_lim = (i - search_range) if (i >= search_range) else 0 |
158
|
1 |
|
hi_lim = (i + search_range) if ((i + search_range) <= yl1) else yl1 |
159
|
1 |
|
for j in range(low_lim, hi_lim + 1): |
160
|
1 |
|
if (yang_flag[j] == 0) and (yang[j] == ying[i]): |
161
|
1 |
|
yang_flag[j] = 1 |
162
|
1 |
|
ying_flag[i] = 1 |
163
|
1 |
|
num_com += 1 |
164
|
1 |
|
break |
165
|
|
|
|
166
|
|
|
# If no characters in common - return |
167
|
1 |
|
if num_com == 0: |
168
|
1 |
|
return 0.0 |
169
|
|
|
|
170
|
|
|
# Count the number of transpositions |
171
|
1 |
|
k = n_trans = 0 |
172
|
1 |
|
for i in range(len(ying)): |
|
|
|
|
173
|
1 |
|
if ying_flag[i] != 0: |
174
|
1 |
|
j = 0 |
175
|
1 |
|
for j in range(k, len(yang)): # pragma: no branch |
176
|
1 |
|
if yang_flag[j] != 0: |
177
|
1 |
|
k = j + 1 |
178
|
1 |
|
break |
179
|
1 |
|
if ying[i] != yang[j]: |
180
|
1 |
|
n_trans += 1 |
181
|
1 |
|
n_trans //= 2 |
182
|
|
|
|
183
|
|
|
# Adjust for similarities in unmatched characters |
184
|
1 |
|
n_simi = 0 |
185
|
1 |
|
if minv > num_com: |
|
|
|
|
186
|
1 |
|
for i in range(len(ying)): |
|
|
|
|
187
|
1 |
|
if ying_flag[i] == 0 and _in_range(ying[i]): |
188
|
1 |
|
for j in range(len(yang)): |
|
|
|
|
189
|
1 |
|
if yang_flag[j] == 0 and _in_range(yang[j]): |
190
|
1 |
|
if (ying[i], yang[j]) in adjwt: |
191
|
1 |
|
n_simi += adjwt[(ying[i], yang[j])] |
192
|
1 |
|
yang_flag[j] = 2 |
193
|
1 |
|
break |
194
|
1 |
|
num_sim = n_simi / 10.0 + num_com |
195
|
|
|
|
196
|
|
|
# Main weight computation |
197
|
1 |
|
weight = ( |
198
|
|
|
num_sim / len(ying) |
199
|
|
|
+ num_sim / len(yang) |
200
|
|
|
+ (num_com - n_trans) / num_com |
201
|
|
|
) |
202
|
1 |
|
weight /= 3.0 |
203
|
|
|
|
204
|
|
|
# Continue to boost the weight if the strings are similar |
205
|
1 |
|
if weight > 0.7: |
206
|
|
|
|
207
|
|
|
# Adjust for having up to the first 4 characters in common |
208
|
1 |
|
j = 4 if (minv >= 4) else minv |
209
|
1 |
|
i = 0 |
210
|
1 |
|
while (i < j) and (ying[i] == yang[i]) and (not ying[i].isdigit()): |
211
|
1 |
|
i += 1 |
212
|
1 |
|
if i: |
213
|
1 |
|
weight += i * 0.1 * (1.0 - weight) |
214
|
|
|
|
215
|
|
|
# Optionally adjust for long strings. |
216
|
|
|
|
217
|
|
|
# After agreeing beginning chars, at least two more must agree and |
218
|
|
|
# the agreeing characters must be > .5 of remaining characters. |
219
|
1 |
|
if ( |
220
|
|
|
long_strings |
|
|
|
|
221
|
|
|
and (minv > 4) |
|
|
|
|
222
|
|
|
and (num_com > i + 1) |
|
|
|
|
223
|
|
|
and (2 * num_com >= minv + i) |
|
|
|
|
224
|
|
|
): |
225
|
1 |
|
if not ying[0].isdigit(): |
226
|
1 |
|
weight += (1.0 - weight) * ( |
227
|
|
|
(num_com - i - 1) / (len(ying) + len(yang) - i * 2 + 2) |
228
|
|
|
) |
229
|
|
|
|
230
|
1 |
|
return weight |
231
|
|
|
|
232
|
|
|
|
233
|
1 |
|
def dist_strcmp95(src, tar, long_strings=False): |
234
|
|
|
"""Return the strcmp95 distance between two strings. |
235
|
|
|
|
236
|
|
|
strcmp95 distance is the complement of strcmp95 similarity: |
237
|
|
|
:math:`dist_{strcmp95} = 1 - sim_{strcmp95}`. |
238
|
|
|
|
239
|
|
|
:param str src: source string for comparison |
240
|
|
|
:param str tar: target string for comparison |
241
|
|
|
:param bool long_strings: set to True to "Increase the probability of a |
242
|
|
|
match when the number of matched characters is large. This option |
243
|
|
|
allows for a little more tolerance when the strings are large. It is |
244
|
|
|
not an appropriate test when comparing fixed length fields such as |
245
|
|
|
phone and social security numbers." |
246
|
|
|
:returns: strcmp95 distance |
247
|
|
|
:rtype: float |
248
|
|
|
|
249
|
|
|
>>> round(dist_strcmp95('cat', 'hat'), 12) |
250
|
|
|
0.222222222222 |
251
|
|
|
>>> round(dist_strcmp95('Niall', 'Neil'), 12) |
252
|
|
|
0.1545 |
253
|
|
|
>>> round(dist_strcmp95('aluminum', 'Catalan'), 12) |
254
|
|
|
0.345238095238 |
255
|
|
|
>>> round(dist_strcmp95('ATCG', 'TAGC'), 12) |
256
|
|
|
0.166666666667 |
257
|
|
|
""" |
258
|
1 |
|
return 1 - sim_strcmp95(src, tar, long_strings) |
259
|
|
|
|
260
|
|
|
|
261
|
1 |
|
def sim_jaro_winkler( |
|
|
|
|
262
|
|
|
src, |
|
|
|
|
263
|
|
|
tar, |
|
|
|
|
264
|
|
|
qval=1, |
|
|
|
|
265
|
|
|
mode='winkler', |
|
|
|
|
266
|
|
|
long_strings=False, |
|
|
|
|
267
|
|
|
boost_threshold=0.7, |
|
|
|
|
268
|
|
|
scaling_factor=0.1, |
|
|
|
|
269
|
|
|
): |
270
|
|
|
"""Return the Jaro or Jaro-Winkler similarity of two strings. |
271
|
|
|
|
272
|
|
|
Jaro(-Winkler) distance is a string edit distance initially proposed by |
273
|
|
|
Jaro and extended by Winkler :cite:`Jaro:1989,Winkler:1990`. |
274
|
|
|
|
275
|
|
|
This is Python based on the C code for strcmp95: |
276
|
|
|
http://web.archive.org/web/20110629121242/http://www.census.gov/geo/msb/stand/strcmp.c |
277
|
|
|
:cite:`Winkler:1994`. The above file is a US Government publication and, |
278
|
|
|
accordingly, in the public domain. |
279
|
|
|
|
280
|
|
|
:param str src: source string for comparison |
281
|
|
|
:param str tar: target string for comparison |
282
|
|
|
:param int qval: the length of each q-gram (defaults to 1: character-wise |
283
|
|
|
matching) |
284
|
|
|
:param str mode: indicates which variant of this distance metric to |
285
|
|
|
compute: |
286
|
|
|
|
287
|
|
|
- 'winkler' -- computes the Jaro-Winkler distance (default) which |
288
|
|
|
increases the score for matches near the start of the word |
289
|
|
|
- 'jaro' -- computes the Jaro distance |
290
|
|
|
|
291
|
|
|
The following arguments apply only when mode is 'winkler': |
292
|
|
|
|
293
|
|
|
:param bool long_strings: set to True to "Increase the probability of a |
294
|
|
|
match when the number of matched characters is large. This option |
295
|
|
|
allows for a little more tolerance when the strings are large. It is |
296
|
|
|
not an appropriate test when comparing fixed length fields such as |
297
|
|
|
phone and social security numbers." |
298
|
|
|
:param float boost_threshold: a value between 0 and 1, below which the |
299
|
|
|
Winkler boost is not applied (defaults to 0.7) |
300
|
|
|
:param float scaling_factor: a value between 0 and 0.25, indicating by how |
301
|
|
|
much to boost scores for matching prefixes (defaults to 0.1) |
302
|
|
|
|
303
|
|
|
:returns: Jaro or Jaro-Winkler similarity |
304
|
|
|
:rtype: float |
305
|
|
|
|
306
|
|
|
>>> round(sim_jaro_winkler('cat', 'hat'), 12) |
307
|
|
|
0.777777777778 |
308
|
|
|
>>> round(sim_jaro_winkler('Niall', 'Neil'), 12) |
309
|
|
|
0.805 |
310
|
|
|
>>> round(sim_jaro_winkler('aluminum', 'Catalan'), 12) |
311
|
|
|
0.60119047619 |
312
|
|
|
>>> round(sim_jaro_winkler('ATCG', 'TAGC'), 12) |
313
|
|
|
0.833333333333 |
314
|
|
|
|
315
|
|
|
>>> round(sim_jaro_winkler('cat', 'hat', mode='jaro'), 12) |
316
|
|
|
0.777777777778 |
317
|
|
|
>>> round(sim_jaro_winkler('Niall', 'Neil', mode='jaro'), 12) |
318
|
|
|
0.783333333333 |
319
|
|
|
>>> round(sim_jaro_winkler('aluminum', 'Catalan', mode='jaro'), 12) |
320
|
|
|
0.60119047619 |
321
|
|
|
>>> round(sim_jaro_winkler('ATCG', 'TAGC', mode='jaro'), 12) |
322
|
|
|
0.833333333333 |
323
|
|
|
""" |
324
|
1 |
|
if mode == 'winkler': |
325
|
1 |
|
if boost_threshold > 1 or boost_threshold < 0: |
326
|
1 |
|
raise ValueError( |
327
|
|
|
'Unsupported boost_threshold assignment; ' |
328
|
|
|
+ 'boost_threshold must be between 0 and 1.' |
329
|
|
|
) |
330
|
1 |
|
if scaling_factor > 0.25 or scaling_factor < 0: |
331
|
1 |
|
raise ValueError( |
332
|
|
|
'Unsupported scaling_factor assignment; ' |
333
|
|
|
+ 'scaling_factor must be between 0 and 0.25.' |
334
|
|
|
) |
335
|
|
|
|
336
|
1 |
|
if src == tar: |
337
|
1 |
|
return 1.0 |
338
|
|
|
|
339
|
1 |
|
src = QGrams(src.strip(), qval).ordered_list |
340
|
1 |
|
tar = QGrams(tar.strip(), qval).ordered_list |
341
|
|
|
|
342
|
1 |
|
lens = len(src) |
343
|
1 |
|
lent = len(tar) |
344
|
|
|
|
345
|
|
|
# If either string is blank - return - added in Version 2 |
346
|
1 |
|
if lens == 0 or lent == 0: |
347
|
1 |
|
return 0.0 |
348
|
|
|
|
349
|
1 |
|
if lens > lent: |
350
|
1 |
|
search_range = lens |
351
|
1 |
|
minv = lent |
352
|
|
|
else: |
353
|
1 |
|
search_range = lent |
354
|
1 |
|
minv = lens |
355
|
|
|
|
356
|
|
|
# Zero out the flags |
357
|
1 |
|
src_flag = [0] * search_range |
358
|
1 |
|
tar_flag = [0] * search_range |
359
|
1 |
|
search_range = max(0, search_range // 2 - 1) |
360
|
|
|
|
361
|
|
|
# Looking only within the search range, count and flag the matched pairs. |
362
|
1 |
|
num_com = 0 |
363
|
1 |
|
yl1 = lent - 1 |
364
|
1 |
|
for i in range(lens): |
365
|
1 |
|
low_lim = (i - search_range) if (i >= search_range) else 0 |
366
|
1 |
|
hi_lim = (i + search_range) if ((i + search_range) <= yl1) else yl1 |
367
|
1 |
|
for j in range(low_lim, hi_lim + 1): |
368
|
1 |
|
if (tar_flag[j] == 0) and (tar[j] == src[i]): |
369
|
1 |
|
tar_flag[j] = 1 |
370
|
1 |
|
src_flag[i] = 1 |
371
|
1 |
|
num_com += 1 |
372
|
1 |
|
break |
373
|
|
|
|
374
|
|
|
# If no characters in common - return |
375
|
1 |
|
if num_com == 0: |
376
|
1 |
|
return 0.0 |
377
|
|
|
|
378
|
|
|
# Count the number of transpositions |
379
|
1 |
|
k = n_trans = 0 |
380
|
1 |
|
for i in range(lens): |
381
|
1 |
|
if src_flag[i] != 0: |
382
|
1 |
|
j = 0 |
383
|
1 |
|
for j in range(k, lent): # pragma: no branch |
384
|
1 |
|
if tar_flag[j] != 0: |
385
|
1 |
|
k = j + 1 |
386
|
1 |
|
break |
387
|
1 |
|
if src[i] != tar[j]: |
388
|
1 |
|
n_trans += 1 |
389
|
1 |
|
n_trans //= 2 |
390
|
|
|
|
391
|
|
|
# Main weight computation for Jaro distance |
392
|
1 |
|
weight = num_com / lens + num_com / lent + (num_com - n_trans) / num_com |
393
|
1 |
|
weight /= 3.0 |
394
|
|
|
|
395
|
|
|
# Continue to boost the weight if the strings are similar |
396
|
|
|
# This is the Winkler portion of Jaro-Winkler distance |
397
|
1 |
|
if mode == 'winkler' and weight > boost_threshold: |
398
|
|
|
|
399
|
|
|
# Adjust for having up to the first 4 characters in common |
400
|
1 |
|
j = 4 if (minv >= 4) else minv |
401
|
1 |
|
i = 0 |
402
|
1 |
|
while (i < j) and (src[i] == tar[i]): |
403
|
1 |
|
i += 1 |
404
|
1 |
|
weight += i * scaling_factor * (1.0 - weight) |
405
|
|
|
|
406
|
|
|
# Optionally adjust for long strings. |
407
|
|
|
|
408
|
|
|
# After agreeing beginning chars, at least two more must agree and |
409
|
|
|
# the agreeing characters must be > .5 of remaining characters. |
410
|
1 |
|
if ( |
411
|
|
|
long_strings |
|
|
|
|
412
|
|
|
and (minv > 4) |
|
|
|
|
413
|
|
|
and (num_com > i + 1) |
|
|
|
|
414
|
|
|
and (2 * num_com >= minv + i) |
|
|
|
|
415
|
|
|
): |
416
|
1 |
|
weight += (1.0 - weight) * ( |
417
|
|
|
(num_com - i - 1) / (lens + lent - i * 2 + 2) |
418
|
|
|
) |
419
|
|
|
|
420
|
1 |
|
return weight |
421
|
|
|
|
422
|
|
|
|
423
|
1 |
|
def dist_jaro_winkler( |
|
|
|
|
424
|
|
|
src, |
|
|
|
|
425
|
|
|
tar, |
|
|
|
|
426
|
|
|
qval=1, |
|
|
|
|
427
|
|
|
mode='winkler', |
|
|
|
|
428
|
|
|
long_strings=False, |
|
|
|
|
429
|
|
|
boost_threshold=0.7, |
|
|
|
|
430
|
|
|
scaling_factor=0.1, |
|
|
|
|
431
|
|
|
): |
432
|
|
|
"""Return the Jaro or Jaro-Winkler distance between two strings. |
433
|
|
|
|
434
|
|
|
Jaro(-Winkler) similarity is the complement of Jaro(-Winkler) distance: |
435
|
|
|
:math:`sim_{Jaro(-Winkler)} = 1 - dist_{Jaro(-Winkler)}`. |
436
|
|
|
|
437
|
|
|
:param str src: source string for comparison |
438
|
|
|
:param str tar: target string for comparison |
439
|
|
|
:param int qval: the length of each q-gram (defaults to 1: character-wise |
440
|
|
|
matching) |
441
|
|
|
:param str mode: indicates which variant of this distance metric to |
442
|
|
|
compute: |
443
|
|
|
|
444
|
|
|
- 'winkler' -- computes the Jaro-Winkler distance (default) which |
445
|
|
|
increases the score for matches near the start of the word |
446
|
|
|
- 'jaro' -- computes the Jaro distance |
447
|
|
|
|
448
|
|
|
The following arguments apply only when mode is 'winkler': |
449
|
|
|
|
450
|
|
|
:param bool long_strings: set to True to "Increase the probability of a |
451
|
|
|
match when the number of matched characters is large. This option |
452
|
|
|
allows for a little more tolerance when the strings are large. It is |
453
|
|
|
not an appropriate test when comparing fixed length fields such as |
454
|
|
|
phone and social security numbers." |
455
|
|
|
:param float boost_threshold: a value between 0 and 1, below which the |
456
|
|
|
Winkler boost is not applied (defaults to 0.7) |
457
|
|
|
:param float scaling_factor: a value between 0 and 0.25, indicating by how |
458
|
|
|
much to boost scores for matching prefixes (defaults to 0.1) |
459
|
|
|
|
460
|
|
|
:returns: Jaro or Jaro-Winkler distance |
461
|
|
|
:rtype: float |
462
|
|
|
|
463
|
|
|
>>> round(dist_jaro_winkler('cat', 'hat'), 12) |
464
|
|
|
0.222222222222 |
465
|
|
|
>>> round(dist_jaro_winkler('Niall', 'Neil'), 12) |
466
|
|
|
0.195 |
467
|
|
|
>>> round(dist_jaro_winkler('aluminum', 'Catalan'), 12) |
468
|
|
|
0.39880952381 |
469
|
|
|
>>> round(dist_jaro_winkler('ATCG', 'TAGC'), 12) |
470
|
|
|
0.166666666667 |
471
|
|
|
|
472
|
|
|
>>> round(dist_jaro_winkler('cat', 'hat', mode='jaro'), 12) |
473
|
|
|
0.222222222222 |
474
|
|
|
>>> round(dist_jaro_winkler('Niall', 'Neil', mode='jaro'), 12) |
475
|
|
|
0.216666666667 |
476
|
|
|
>>> round(dist_jaro_winkler('aluminum', 'Catalan', mode='jaro'), 12) |
477
|
|
|
0.39880952381 |
478
|
|
|
>>> round(dist_jaro_winkler('ATCG', 'TAGC', mode='jaro'), 12) |
479
|
|
|
0.166666666667 |
480
|
|
|
""" |
481
|
1 |
|
return 1 - sim_jaro_winkler( |
482
|
|
|
src, tar, qval, mode, long_strings, boost_threshold, scaling_factor |
483
|
|
|
) |
484
|
|
|
|
485
|
|
|
|
486
|
|
|
if __name__ == '__main__': |
487
|
|
|
import doctest |
488
|
|
|
|
489
|
|
|
doctest.testmod() |
490
|
|
|
|